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Abstract

Federated learning harnesses the power of dis-

tributed optimization to train a unified machine

learning model across separate clients. However,

heterogeneous data distributions and computa-

tional workloads can lead to inconsistent updates

and limit model performance. This work tack-

les these challenges by proposing FedECADO, a

new algorithm inspired by a dynamical system

representation of the federated learning process.

FedECADO addresses non-IID data distribution

through an aggregate sensitivity model that re-

flects the amount of data processed by each client.

To tackle heterogeneous computing, we design a

multi-rate integration method with adaptive step-

size selections that synchronizes active client up-

dates in continuous time. Compared to prominent

techniques, including FedProx, FedExp, and Fed-

Nova, FedECADO achieves higher classification

accuracies in numerous heterogeneous scenarios.

1. Introduction

Federated learning collaboratively trains machine learning

models across distributed compute nodes, each equipped

with a distinct local dataset and computational capabilities

(McMahan et al., 2017; Kairouz et al., 2021). Employing

techniques from distributed optimization, federated learning

samples update from individual clients and calculates an

aggregate update to refine the global model. This paradigm

yields several advantages, such as improving data privacy

by keep data at the edge node, improving model generaliz-

ability via collaboration with other nodes, and optimizing

efficiency when training large datasets.

Nevertheless, compared to distributed optimization, feder-

ated learning encounters unique challenges of non-IID data

distributions and varying computation capacities amongst

1Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, USA. Correspondence
to: Aayushya Agarwal <aayushya@andrew.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

local clients. Neglecting the impact of heterogeneity can

lead to inconsistent models with limited performance (Wang

et al., 2020). However, previous research has often studied

federated learning in the context where local clients have

identical learning rates and an IID data distribution (Kairouz

et al., 2021; Wang et al., 2021). As a result, new techniques

for aggregating local updates require careful consideration

that synchronize heterogeneous client updates for model

consistency while being computationally efficient without

extensive hyperparameter tuning.

In this work, we design a new consensus algorithm that

addresses the challenges of non-IID data distribution and

heterogeneous computing in federated learning. We design

heuristics inspired by an equivalent circuit model of dis-

tributed optimization (Agarwal and Pileggi, 2023) named

ECADO (Equivalent Circuit Approach for Distributed Op-

timization) which represents the trajectory of the global

model’s state variables by an ordinary differential equa-

tion (ODE) and whose steady state coincides with the local

optimum. These methods draw inspiration from circuit sim-

ulation decomposition methods to address key challenges in

federated learning. Our main contributions are:

• Aggregate Sensitivity Model: A first-order sensitivity

model of each client update provides faster conver-

gence in the consensus step and reflects the fraction of

data for non-IID data distributions amongst clients.

• Multi-rate integration with adaptive step sizes: Lo-

cal updates from clients with heterogeneous computa-

tional capabilities are synchronized in continuous-time

using a multi-rate numerical integration. Using proper-

ties of numerical accuracy, we propose an aggregation

method with adaptive step sizes for faster convergence.

The key novelty of our work is the introduction of circuit-

inspired modeling and simulation principles to federated

learning. FedECADO builds on the distribution framework

(Agarwal and Pileggi, 2023) and introduces new methodolo-

gies (multi-rate integration and aggregate sensitivity model)

to address challenges unique to federated settings including

intermittent client availability, heterogeneous client com-

putational capabilities, and non-IID data distributions. By

reinterpreting these challenges through circuit theory, we

are able to use well-established techniques from distributed

circuit simulation to handle heterogeneity. This provides a
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new perspective to federated learning for robust and scalable

training.

Compared to prominent methods including FedProx, Fed-

Exp, FedRS and FedNova, our combined approach demon-

strates faster convergence and achieves higher classification

accuracies for training deep neural network models in nu-

merous heterogeneous computing scenarios.

2. Related Work

Federated learning has received significant attention in ad-

dressing challenges related to heterogeneous computation

and communication overhead. A comprehensive survey of

these methods is available in (Zhu et al., 2021; Kairouz et al.,

2021; Wang et al., 2021). We specifically focus on methods

that target heterogeneous client computation and non-IID

data distributions.

Federated learning methods traditionally rely on discrete

iterative algorithms, such as FedAvg (Li et al., 2020) which

uses SGD for client training and averages the updated results

in each consensus step. While FedAvg offers theoretical

guarantees, its performance is often limited in settings with

heterogeneous computation and non-IID data distribution

(Zhao et al., 2018). To address these limitations, several

modifications have been proposed, including adjustments

to the SGD update using state information from the central

agent (Acar et al., 2021; Pathak and Wainwright, 2020;

Karimireddy et al., 2020; Li et al., 2020) and a Newton-like

update in FedDANE (Li et al., 2019a). One notable method,

FedProx (Li et al., 2020), penalizes client updates deviating

far from the central agent step. Other variations of FedProx

include the following (Acar et al., 2021; Li et al., 2019b).

Certain federated learning methods have improved conver-

gence rates by introducing new step-size routines (Li et al.,

2019b; Malinovsky et al., 2023; Charles and Konečnỳ, 2020)

or incorporating momentum into client updates (Das et al.,

2022; Xu and Huang, 2022; Khanduri et al., 2021). Adaptive

step size selections, as seen in FedYogi, FedADAM, SCAF-

FOLD (Karimireddy et al., 2020) and FedAdaGrad (Reddi

et al., 2020), as well as FedExp (Jhunjhunwala et al., 2023),

have also been explored; however, these methods generally

do not address heterogeneous computational challenges. A

notable method, FedNova (Wang et al., 2020), specifically

addresses heterogeneous computation and data scenarios

in federated learning by modifying the gradient update to

compensate for variations in client local computation.

Our work adopts a new continuous-time formulation of the

federated learning process, where the challenges of hetero-

geneous computation and non-IID data distributions are

seen as updates occurring in parallel in continuous time.

This enables us to design new methods based on concepts

from dynamical system processes. Our continuous-time for-

mulation of optimization is inspired by work on control sys-

tems (Behrman, 1998; Attouch and Cominetti, 1996; Polyak

and Shcherbakov, 2017; Wilson et al., 2021) and circuit

simulation principles (Agarwal et al., 2023; Agarwal and

Pileggi, 2023) to design new optimization algorithms. This

approach was previously applied to distributed optimization

in ECADO (Agarwal and Pileggi, 2023), but was not suit-

able for federated learning because it assumed full client

participation. Our work specifically extends ECADO’s ideas

to address the distinct challenges posed by federated learn-

ing. The key distinctions between our work and ECADO

are the introduction of an aggregate sensitivity model to

account for non-IID data distributions among clients and

a multi-rate integration mechanism to synchronize client

updates from heterogeneous client computation.

3. Background on Circuit-Inspired

Optimization

In federated learning, n distributed edge devices collectively

train a global model. Each device, i, has a local dataset, Di,

and coordinates with the central server to update the param-

eters of a global machine learning model, represented by a

vector x. Due to communication and privacy constraints,

the raw local data is not transferred to the central server;

instead only model updates or gradients are shared.

Each client device trains a localized model, where the local

objective function fi(x) is the empirical risk function with

respect to the local dataset Di, defined as

fi(x) =
∑

ξ∈Di

ℓ(x; ξ), (1)

where ξ is sample index and ℓ(x; ξ) is the sample loss func-

tion. The central server seeks to minimize global objective,

which is the sum of the local objectives:

min
x

f(x) where f(x) =

n
∑

i=1

fi(x). (2)

To tackle the challenges of heterogeneous computing and

non-IID data distribution, we design a federated learning

algorithm inspired by an equivalent circuit (EC) model of

the federated learning process. This EC model builds on

the framework introduced in (Agarwal and Pileggi, 2023),

which employs a circuit-based approach to distributed opti-

mization. In the EC approach, the solution trajectory of the

global objective is analyzed as a continuous-time ordinary

differential equation (ODE), referred to as gradient flow:

ẋ = −∇f(x) (3)

= −

n
∑

i=1

∇fi(x), x(0) = x0 (4)
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Figure 1: The federated learning process is modeled as an

equivalent circuit, where node voltages represent state vari-

ables, xi, and gradients, ∇fi(xi), are voltage-controlled

current sources. Using circuit insights, the gradient flow

equations (3),(4) are modified by introducing an inductor

(with an inductance of L) between the central agent state,

xc, and the state of each sub-problem, xi. The resulting gra-

dient flow equations (5),(6),(7) are mapped to the equivalent

circuit shown.

where x0 are the initial conditions. At steady-state, the

gradient flow (4) reaches a point where ẋ = 0, implying

∇f(x) = 0 as per (3). Thus, the steady-state aligns with a

critical point of the objective function (2).

Directly solving the gradient flow equations, (3), to steady-

state reveals similar convergence characteristics to those

of SGD (Agarwal and Pileggi, 2023). To improve conver-

gence, new insights are derived by translating the ODE

into an equivalent circuit (EC) model, motivating physics-

based optimization techniques that can effectively address

the challenges in heterogeneous computation. In the EC

model depicted in Figure 1, the node voltages correspond

to the state variables for the central agent and local sub-

problems, while the local gradients, ∇fi(xi), are repre-

sented by voltage-controlled current sources. By applying

principles from circuit analysis and simulation, we create

circuit-inspired algorithms that shape the solution trajectory

and select appropriate step sizes. The connection between

circuit analysis and the ODEs is provided in Appendix A.

To separate the central agent state, xc, from the local state

of each subproblem, xi, in the EC model, the gradient flow

equations (3),(4) are first modified by introducing an in-

termediate flow variable (representing an inductor current

in Figure 1), IiL. The flow variables, IiL, interact with the

ODEs of the central agent and local agents according to

Kirchhoff’s current law (KCL) of the EC as follows:

ẋc(t) =

n
∑

i=1

IiL(t) (5)

IiL(t) + ẋi(t) +∇fi(xi(t)) = 0 (6)

Inspired by the current-voltage relationship of an inductor,

the flow variables, IiL, couple the central agent to the local

state variables according to:

L ˙IL
i
(t) = xc(t)− xi(t) (7)

The flow variable, IiL, represents the cumulative error be-

tween the central agent state, xc, and local state, xi, over the

simulation window [0, t]. This acts as an integral controller

for the dynamical system and achieves a second-order effect

for faster convergence to steady-state (Agarwal and Pileggi,

2023). At steady-state (i.e., critical point in the optimization

function), the system reaches an equilibrium where the flow

variables, IiL, are stationary, indicating that xc = xi for all

i. The settling time for the continuous-time response of the

flow variables, IiL, is influenced by the hyperparameter L
and can be tuned to provide fast convergence as shown in

(Agarwal and Pileggi, 2023).

The modified ODEs (5)-(7) describes a set of differential

equations with the states of all local subproblems, xi, implic-

itly coupled. In federated learning, the differential equations

are solved over a set of distributed compute nodes. To de-

couple the circuit equations (i.e., ODEs), an iterative Gauss-

Seidel (G-S) method separates each subproblem from the

central agent by treating the intermediate flow variable as

constant from the prior iteration. Analyzing the distributed

computation as a G-S enables us to study the continuous-

time convergence of the full set of ODEs without the effect

of discrete updates due to client participation.

The G-S process separately solves each client independently

and subsequently communicates updates the coupling vari-

ables at each iteration. During the (k+1)-th iteration of G-S,

a client first simulates its local sub-problem (i.e., gradient

flow) as follows:

ẋk+1
i (t) +∇fi(x

k+1
i (t)) + Ii

k

L (t) = 0, (8)

where Ii
k

L is the intermediate flow variable that couples the

local client ODE to the central agent. In the G-S iteration, IiL
is modeled as a constant from the previous G-S iteration (as

indicated by Ii
k

L ). The differential equation is solved using a

numerical integration method over a time window of [t0, t1].
For example, a Forward Euler integration (equivalent to

gradient descent (Agarwal et al., 2023)) solves for the state

at each discrete time point:

xk+1
i (t+∆t) = xk+1

i (t)−∆t(∇fi(x
k+1
i (t))+Ii

k

L (t)) (9)
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where ∆t is the time step (or learning rate).

During each iteration of G-S, the local subproblem is simu-

lated for a number of time steps, corresponding to a number

of iterations denoted as ei. Afterwards, active clients com-

municate their local states to the central agent. Using the

local client updates, the central agent then updates the flow

variables, IiL, and central agent state, xc, according to the

following ODE:

ẋk+1
c (t) =

n
∑

i=1

Ii
k+1

L (t) (10)

L ˙IL
ik+1

(t) = xk+1
c (t)− xk+1

i (t). (11)

In this update, the state variables of each sub-problem is

represented by a constant value, xk+1
i , which effectively

models the sub-problem for a given time period.

The entire circuit then progresses in time towards its natural

steady-state. Through this perspective, we design new fed-

erated learning algorithms that aims to efficiently simulate

the circuit equations (10)-(11) to the critical point of the

objective function in the federated learning setting of hetero-

geneous client computation and non-IID data distributions.

4. FedECADO

The EC model depicted in Figure 1 offers a physical analogy

to the underlying optimization problem. However, simulat-

ing the EC model for federated learning to a steady-state

encounters unique challenges due to heterogeneous client

computation and non-IID datasets. While prior work (Agar-

wal and Pileggi, 2023) leveraged insights from the EC model

to address homogeneous distributed optimization problems,

these approaches are not directly applicable to federated

learning and are susceptible to model inconsistencies, as

highlighted in (Wang et al., 2020). Specifically, (Agarwal

and Pileggi, 2023) simulates the circuit model assuming

full client participation and uses a global step learning rate

consistent for all clients and the central server. However,

heterogeneous computation in federated learning creates

asynchronous simulation timescales between clients because

each client model is trained using a different learning rate

and number of epochs.

We introduce FedECADO, a new algorithm that leverages

circuit-based insights from the EC model in Figure 1 to

address the challenges posed by heterogeneous client com-

putation and non-IID data distributions in federated learning.

Our focus is on deriving the aggregation step for the cen-

tral server, which processes updates from each active client

based on (6). Our approach presents a multirate integra-

tion method that synchronizes client updates to account for

varying client computational capabilities. Additionally, we

propose an aggregate sensitivity approach to model non-IID

data distributions.

4.1. Aggregate Sensitivity Model

In federated learning, non-IID data distributions can result

in inconsistent models if not addressed during the consensus

step. To represent the non-IID data distributions, we account

for these variations in the following joint optimization with

non-IID data distributions:

min
x

f(x) (12)

f(x) =
n
∑

i

pifi(x) (13)

where pi scales the contribution of fi(x) to the overall ob-

jective based on the size of local dataset, Di, relative to the

total dataset size, D, defined as:

pi = |Di|/|D|. (14)

The gradient flow equations for the federated learning ob-

jective with non-IID data distributions (13) is:

ẋ(t) = −pi∇f(x(t)), x(0) = x0. (15)

Using the modified gradient flow based on the EC in Figure

1, the set of ODEs describing the circuit are:

ẋc =
∑

i∈C

IiL(t) (16)

IiL(t) + ẋi(t) + pi∇fi(xi(t)) = 0 (17)

L ˙IL
i
(t) = xc(t)− xi(t), (18)

where the local gradients are scaled by the relative dataset

size, pi, in (17).

However, the constant-value model of each client assumes

that a change in the central agent state, xc, does not influence

xi for the time-period. We improve the consensus updates

by modeling the first-order effect of each sub-problem due

to changes in the state-variable, xc, using an aggregate

sensitivity model of each client’s subproblem, denoted by

Gth
i . This reflects the varying data distributions and the

relative dataset size, pi, of each client in the consensus

step. Incorporating the first-order sensitivity model has

been proven to improve the convergence of the G-S process

as we can better capture the coupled interactions between

clients and adds a proportional controller to the dynamical

system to improve the convergence rate of G-S (Agarwal

and Pileggi, 2023)(Dartu and Pileggi, 1998).

The aggregate sensitivity model represents a circuit concept

known as Thevenin impedance of a client sub-circuit and is

defined for the EC in Figure 1 as follows:

Gi
th =

∂IiL
∂xi

. (19)
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Using (17), we evaluate the sensitivity model, Gi
th, as

Gi
th = pi

∂

∂xi

∇fi(xi) +
∂

∂xi

ẋi. (20)

The sensitivity model in (20) includes a partial of a time-

derivative term. Assuming a BE step for the ODE, we can

numerically evaluate Gi
th as:

Gi
th =

1

∆t
+ pi∇

2fi(xi). (21)

The derivation of Gi
th is provided in (Agarwal and Pileggi,

2023). However, calculating the Hessian at each G-S itera-

tion is a bottleneck for computation and communication. To

reduce the computation load of evaluating the Hessian,∇2f ,

for individual datapoints, FedECADO introduces a constant

aggregate sensitivity, Ĝth
i , which is derived by averaging

the Hessian across a subset of datapoints. Employing a con-

stant value to approximate the Hessian, Ĥ ≈ ∇2fi, defines

a constant sensitivity model for each client:

Ĝi
th =

1

∆t
+ piH̄

i (22)

Ĝi
th extends the work in (Agarwal and Pileggi, 2023) for the

federated learning setting as it captures the relative dataset

size, pi, within the first-order sensitivity. Notably, in fed-

erated settings with non-IID data, each client’s local loss

function exhibits a distinct landscape shaped by its data

distribution. The Hessian captures the local curvature and

is used to estimate the first-order sensitivity of a client’s

model to changes in the global parameters. This enables

the central agent to anticipate how aggregation steps will

influence individual client updates.

This sensitivity model can be periodically updated to re-

assess each client’s first-order response, balancing the trade-

off between communication and computation. Intuitively,

this approach suggests that a client with a larger local dataset

will produce a higher Ĝi
th, thus having a greater influence

on the central agent’s state updates.

The linear sensitivity model is then incorporated into the

G-S process as follows:

ẋk+1
c (t) =

n
∑

i=1

Ii
k+1

L (t) (23)

L ˙IL
ik+1

(t) = xk+1
c −(Ii

k+1

L (t)Ĝth−1

i +xk+1
i (t)−Ii

k

L (t)Ĝth−1

i ).
(24)

The relative values of each client’s linear sensitivities drive

the central agent states toward certain client updates.

4.2. Multi-Rate Integration for Heterogeneous

Computation

The aggregate sensitivity model adjusts the ODE equations

to accelerate the convergence of the Gauss-Seidel (G-S) pro-

cess in (23)-(24). To address the challenges posed by hetero-

geneous client computations, we introduce a technique that

synchronizes and simulates the central agent ODEs (23)-

(24), for efficient model convergence in federated learning.

During each round of communication, a set of active clients

transmit their most recent updates to the central agent. The

central agent then numerically solves the ODEs describing

the dynamics of the central agent states (23),(24). We apply

a Backward Euler (BE) integration step to solve for the

states. The BE step is numerically stable and improves

the convergence rate of the distributed optimization process

(Agarwal and Pileggi, 2023). The BE step solves for the

states at a time t+∆t:

xk+1
c (t+∆t) = xk+1

c (t)−∆t

n
∑

i=1

Ii
k+1

L (t+∆t) (25)

Ii
k+1

L (t+∆t) = Ii
k+1

L (t)

+
∆t

L
(xk+1

c (t+∆t)− (Ii
k+1

L (t+∆t)Ĝth−1

i

+xk+1
i (t+∆t)− Ii

k

L (t+∆t)Ĝth−1

i )).

(26)

However, the BE step in (26) assumes a globally syn-

chronous timescale, where all clients are simulated with the

same time step, ∆t, for the same number of epochs. This

assumption is not applicable to federated learning, where

the subset of actively participating clients, Ca ∈ C, exhibit

a varying step-size, ∆ti, and number of epochs, ei.

FedECADO tackles this issue by introducing a multirate in-

tegration method grounded in a continuous-time perspective

of federated learning. We recognize that in continuous time,

each active client simulates its local ODE (6) for a unique

time window, Ti:

Ti =

ei
∑

k=1

∆tki . (27)

where ∆tki is the learning rate for the client i during an

epoch k.

This insight builds upon the equivalence between discrete

step-sizes and time steps, ∆ti, resulting in each client es-

sentially simulating its local sub-problem for ei time steps

(i.e., number of epochs). For instance, a client with a local

learning rate of 10−3 and 3 epochs simulates its local ODE

for Ti = 3× 10−3 seconds.

The continuous-time perspective shows that each active

client simulates its local ODE on a distinct timescale and
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communicates its final state, xi(Ti), to the central agent,

leading to an asynchronous update. Figure 2 illustrates

this issue of asynchronous updates from three active clients.

Note, requiring a synchronous timescale is vital for conver-

gence, as all clients must reach steady state simultaneously.

Remark 1: Convergence to a critical point for the central

agent is achieved when all clients simultaneously reach a

steady state.

From a continuous-time point of view, Remark 1 illustrates

the importance of maintaining a uniform timescale with each

sub-circuit to simultaneously achieve a global steady-state.

Inspired by asynchronous distributed circuit simulation

(White and Sangiovanni-Vincentelli, 2012), FedECADO

introduces a multi-rate integration scheme designed to ad-

dress asynchronous local updates in federated learning. This

scheme effectively synchronizes the client updates to ensure

accuracy and consistency of the central model.

During each communication round, the multi-rate integra-

tion scheme begins by collecting the latest updates from

all active clients, xi(Ti) for all i ∈ Ca, along with each

client’s simulation runtime, denoted by Ti. Communicat-

ing the simulation time of each client is essential for syn-

chronizing local updates at the central client server and

adds minimal computation and communication costs. Next,

FedECADO solves for the central client states on a syn-

chronous timescale at intermediate timepoints. To synchro-

nize the client updates, we employ a linear interpolation

and extrapolation operator, Γ(xi(t), τ), that estimates client

states, xi(t), at an intermediate time point, τ , defined as:

Γ(xi(t), τ) =
xi(t2)− xi(t1)

t2 − t1
(τ − t1) + xi(t1), (28)

where xi(t2) and xi(t1) represent known state values at

time points t2 and t1, respectively.

This constructs a synchronous timescale for the central

agent to evaluate its state variables over a time window

τ ∈ [t0, t0 + max(Ti)], where t0 is the latest time point

in the previous communication round and max(Ti) is the

largest simulation time window amongst active clients. The

central agent states are now governed by the following

ODEs using the operator, Γ(·):

ẋk+1
c (τ) =

n
∑

i=1

Ii
k+1

L (τ) (29)

L ˙IL
ik+1

(τ) = xk+1
c (τ)− (Ii

k+1

L (τ)Gth−1

i

+ Γ(xk+1
i (t), τ)− Ii

k

L Gth−1

i ), (30)

where Γ(xk+1
i (t), τ) calculates the client states estimated

at time τ using the linear interpolation and extrapolation

operator (28). This operator addresses the challenges posed

by asynchronous client updates, which can otherwise lead to

model inconsistencies and poor performance. Without the

operator, Γ(xk+1
i (t), τ), the central agent would be forced

to incorporate asynchronous client states directly, leading

to disparate timescales within the coupled system. This

would prevent the central agent and local clients from syn-

chronously reaching a steady state, which has been estab-

lished by Remark 1 as a necessary condition to converge to

a stationary point in the objective function.

FedECADO solves for the central agent states in (29),(30)

using a numerically stable BE integration method as follows:

xk+1
c (τ +∆t) = xk+1

c (τ)−∆t

n
∑

i=1

Ii
k+1

L (τ +∆t) (31)

Ii
k+1

L (τ +∆t) = Ii
k+1

L (t) +
∆t

L
(xk+1

c (τ +∆t)

−(Ii
k+1

L (τ +∆t)Gth−1

i + Γ(xk+1
i (t), τ +∆t)

−Ii
k

L (τ +∆t)Gth−1

i )).

(32)

This results in the following set of linear equations that

determine the central agent states at the time-point, τ :











1+
∆tĜ

th
−1

1
L

0 ... −∆t

L

0 1+
∆tĜ

th
−1

2
L

... −∆t

L

0 0
. . . −∆t

L

−∆t −∆t ... 1



















IL
k+1

1 (τ+∆t)

IL
k+1

2 (τ+∆t)

...
x
k+1
c

(τ+∆t)









=

∆t

L







−Γ(xk+1
1 (t),τ)+I

1k

L
(t)Ĝth

−1

1

−Γ(xk+1
2 (t),τ)+I

2k

L
(t)Ĝth

−1

2

...
0







(33)

Note, ∆t represents the learning rate for the central agent

and is independent from the client learning rate. To estab-

lish the convergence properties of the multi-rate integration

using the linear interpolation and extrapolation operator,

Γ(·), we prove that each central agent step in (31),(32) is a

contraction mapping that progressively moves the central

agent states toward a stationary point.

Theorem 4.1. The operator Γ(x, τ), defined in (28), syn-

chronizes local client updates and at each evaluation of the

central agent states via the FedECADO consensus step in

(33) is a contraction mapping towards a stationary point.

The proof of Theorem 4.1 is provided in Appendix B.

4.2.1. SELECTING CENTRAL AGENT STEP-SIZE

During each communication round, we solve the central

agent ODEs (29),(30) using a BE integration. The BE in-

tegration is a stable numerical method that approximates

the central agent state at time points, τ ∈ [t0, t0 +max(Ti)]

6
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Figure 2: Heterogeneous computation among three clients

leads to simulation for different time windows (T1, T2, T3).

The final states (x1(T1), x2(T2), x3(T3)) are communicated

to the central agent, resulting in asynchronous updates.

Figure 3: FedECADO proposes a multi-rate integration that

evaluates the central agent step at intermediate time points

by linearly interpolating and extrapolating client states to

the synchronized time point.

over a time-step, ∆t. We propose adaptively selecting ∆t
using numerical accuracy properties of the BE integration.

The accuracy of the BE step for the central agent ODEs

((29) and (30)) can be measured by a local truncation error

(LTE) derived in (Pillage, 1998). The LTE for determining

the central agent state, εcBE , from (29) is estimated as:

εCBE = −
−∆t

2

[

n
∑

i=1

Ii
k+1

L (τ)−

n
∑

i=1

Ii
k+1

L (τ +∆t)

]

.

(34)

The LTE of the BE integration step for evaluating the flow

variables from (30), denoted εLBE , is estimated as:

εLBEi
= −

∆t

2L
[(xk+1

c (t)− Ii
k+1

L (t)Ḡth−1

i + xk+1
i (t)−

Ii
k

L (t)Ḡth−1

i )− (xk+1
c (t+∆t)− Ii

k+1

L (t+∆t)Ḡth−1

i +

xk+1
i (t+∆t)− Ii

k

L (t+∆t)Ḡth−1

i )] (35)

where Ḡth
i is the sensitivity model derived in (22).

To accurately capture the ODE trajectory, we adaptively

select the time step to guarantee that the accuracy of the

BE integration step in (31),(32) remains within a specified

tolerance, δ. At each iteration, a backtracking line-search

style method (shown in Algorithm 1) selects a step-size, ∆t,
to ensure the following accuracy condition is satisfied:

max|εBE | ≤ δ, (36)

where εBE = [εCBE , ε
L
BE ].

The adaptive time step selection in Algorithm 1 is initiated

by a time step, ∆t0 > 0, which can be selected as a constant

hyperparameter or from the previous communication round.

Then a back-tracking line search adjusts ∆t to ensure that

the LTE is bounded by δ. Note that convergence in continu-

ous time guarantees that there exists a ∆t > 0 that satisfies

the BE accuracy condition which ensures that the Algorithm

1 is bounded (Agarwal and Pileggi, 2023). Although ∆t0
is a hyperparameter, it does not affect convergence but can

influence the number of iterations in Algorithm 1.

Algorithm 1 Adaptive Time Stepping Method

Input: L > 0, δ > 0,∆t0 > 0

1: ∆t← ∆t0
2: do while max(|εBE |) ≤ δ
3: hi

4: ∆t = δ
max(∥εBE∥)∆t

5: Compute x
k+1
c (τ +∆t), Ii

k+1

L (τ +∆t) using (33)

6: Evaluate εBE = [εCBE , ε
L
BE ] using (34),(35)

7: Return ∆t

5. Experiments

We evaluate FedECADO’s performance by training multiple

models distributed across multiple clients. The FedECADO

workflow is shown in Algorithm 2 in Appendix C. We bench-

mark our approach against established federated learning

methods designed for heterogeneous computation, includ-

ing FedProx (Li et al., 2020), FedNova (Wang et al., 2020),

FedExp (Jhunjhunwala et al., 2023), FedDecorr (Shi et al.,

2022) and FedRS (Li and Zhan, 2021). Our experiments

focus on two key challenges: non-IID data distribution and

asynchronous client training. We then demonstrate the scal-

ability of FedECADO on larger models with both non-IID

data distributions and asynchronous training in Section D.

In these scenarios, FedECADO achieves higher classifica-

tion accuracy, thus demonstrating its efficacy for real-world

federated learning applications.

5.1. Non-IID Data Distribution

We evaluate FedECADO’s performance by training a VGG

model (Simonyan and Zisserman, 2014) on the non-IID

CIFAR-10 (Krizhevsky et al., 2009) dataset distributed

across 100 clients. To model realistic scenarios, we set an

active participation ratio of 0.1, meaning only 10 clients

actively participate in each communication round. The

data distribution adheres to a non-IID Dirichlet distribu-

tion (Dir16(0.1)). The specific dataset size, |Di|, for each

client is predetermined according to the Dirichlet distribu-

tion before training and used to precalculate the average

sensitivity model proposed in (22). In these experiments,

7
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Classification Acc. (%) FedECADO FedNova FedProx FedExp FedDecorr FedRS

Mean (Std.) 57.8 (3.6) 48.9 (2.9) 44.3 (3.2) 45.3 (4.7) 45.3 (4.7) 46.1 (4.2)

Table 1: Classification accuracies for training a VGG-11 model on CIFAR-10 dataset distributed across 100 with Dirichlet

data distribution for 100 epochs

Classification Acc. (%) FedECADO FedNova FedProx FedExp FedDecorr FedRS

Mean (Std.) 72.2 (3.8) 67.6 (5.2) 61.4 (4.8) 64.6 (3.8) 60.3 (5.1) 69.3 (2.8)

Table 2: Classification accuracies for a VGG-11 model trained on a CIFAR-10 dataset across 100 clients with each client

learning rate and epochs set by (37),(38).

Classification Acc. (%) FedECADO FedNova FedProx FedExp FedDecorr FedRS

Mean (Std.) 81.3 (4.8) 69.5 (5.1) 70.6 (4.1) 68.6 (10.2) 61.3 (5.5) 72.3 (5.8)

Table 3: Classification accuracies for training ResNet34 model on CIFAR-100 dataset distributed across 100 clients with

Dirichlet data distribution and random learning rates for 200 epochs.

the average sensitivity model is not updated during training.

Using each method, we train for 100 epochs, examining the

classification accuracy at each step. As illustrated in Figure

4a, FedECADO achieves the highest classification accuracy

throughout the training process (with an improvement of

7% compared to FedNova and 13% compared to FedProx).

This demonstrates the efficacy of its aggregate sensitivity

model in adapting to data heterogeneity.

To test FedECADO’s robustness, we repeat the experiment

20 times with random data partitioning sampled by Dirichlet

distribution. Table 1 shows the mean and standard deviation

(std) of each methods’ classification accuracies after 100

epochs. FedECADO exhibits the highest mean accuracy

with low variance, demonstrating its effectiveness across

diverse data distributions.

5.2. Asynchronous Computation

In this experiment, we evaluate the performance of the multi-

step integration proposed in Section 4.2. We train the VGG-

11 model (Simonyan and Zisserman, 2014) on a CIFAR-10

dataset (Krizhevsky et al., 2009) for 100 epochs across 100

clients with an IID data distribution. However, each client

exhibits a different learning rate, lri, and number of epochs,

ei, whose values are sampled by a uniform distribution:

lri ∼ U [10−4, 10−3] (37)

ei ∼ U [1, 10]. (38)

Figure 4b highlights the training loss and classification

accuracy for a single random sample of lri and ei using

FedECADO, FedNova, and FedProx.

FedECADO’s multi-rate integration synchronizes the up-

dates of active clients at each communication round, result-

ing in faster convergence toward a steady-state and a higher

classification accuracy. Note, due to the IID data distribu-

tion, the improvement is solely attributed to the multi-rate

integration because Ḡth is identical for each client.

FedECADO’s improvement is further demonstrated across

multiple runs, where the learning rate and number of epochs

are randomly selected according to (37),(38). As shown in

Table 2, FedECADO achieves a higher mean classification

accuracy and the low variance indicates that it performs well

across a range of client settings.

5.3. Scaling FedECADO for heterogeneous FL

To showcase the effectiveness of our method in heteroge-

neous settings, we evaluate FedECADO on larger ResNet-

34 model trained on CIFAR-100 dataset. In this setup, we

study the efficacy of our methodology where the data is

distributed according to a non-IID Dirichlet distribution and

each client is assigned a random learning rate defined in (37).

The result of these experiments are shown in Table 3, where

FedECADO further demonstrate its scalability and efficacy

in heterogeneous settings as compared to the state-of-the-art

optimizers.

Scaling to Other Datasets and Models: We demonstrate

FedECADO’s ability to scale across additional datasets,

including Sentiment140 and TinyImageNet, using diverse

models such as ResNet-18, ResNet-34, and LSTM in a

heterogeneous setting. Appendix D presents the results,

comparing FedECADO against FedNova, FedProx, FedExp,

FedDecorr, and FedRS.

Runtime Analysis: FedECADO achieves a runtime compa-

rable to the baseline methods, as shown in Appendix E.

Comparison with ECADO: FedECADO addresses the

challenges of heterogeneous federated learning overlooked

by ECADO (Agarwal and Pileggi, 2023) and achieves

8
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higher classification accuracies as shown in Appendix F.

6. Conclusion

We introduce a new federated learning algorithm,

FedECADO, inspired by a dynamical system of the under-

lying optimization problem, which addresses the challenges

of heterogeneous computation and non-IID data distribution.

To handle non-IID data distribution, FedECADO constructs

an aggregate sensitivity model that is integrated into the

central agent update for more accurate model adjustments.

To address heterogeneous computation in federated learning,

FedECADO employs a linear interpolation and extrapola-

tion algorithm that synchronizes client updates at each com-

munication round. The central model state is then evaluated

using a new multi-rate integration, which adaptively selects

step-sizes based on numerical accuracy, thus guaranteeing

convergence to a critical point. We demonstrate the effi-

cacy of FedECADO through distributed training of multiple

DNN models across diverse heterogeneous settings. Com-

pared to prominent federated learning methods, FedECADO

consistently achieves higher classification accuracies, under-

scoring its effectiveness in training distributed DNN models

with varying client capabilities and data distributions.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.
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Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,

Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. Advances and open problems in

federated learning. Foundations and trends® in machine

learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,

Sashank Reddi, Sebastian Stich, and Ananda Theertha

Suresh. Scaffold: Stochastic controlled averaging for fed-

erated learning. In International conference on machine

learning, pages 5132–5143. PMLR, 2020.

Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi

Hong, Jia Liu, Ketan Rajawat, and Pramod Varshney.

Stem: A stochastic two-sided momentum algorithm

achieving near-optimal sample and communication com-

plexities for federated learning. Advances in Neural In-

formation Processing Systems, 34:6050–6061, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-

jabi, Ameet Talwalkar, and Virginia Smithy. Feddane: A

federated newton-type method. In 2019 53rd Asilomar

Conference on Signals, Systems, and Computers, pages

1227–1231. IEEE, 2019a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-

jabi, Ameet Talwalkar, and Virginia Smith. Federated

optimization in heterogeneous networks. Proceedings of

Machine learning and systems, 2:429–450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang,

and Zhihua Zhang. On the convergence of fedavg on

non-iid data. arXiv preprint arXiv:1907.02189, 2019b.

9



FedECADO: A Dynamical System Model of Federated Learning

Xin-Chun Li and De-Chuan Zhan. Fedrs: Federated learning

with restricted softmax for label distribution non-iid data.

In Proceedings of the 27th ACM SIGKDD conference on

knowledge discovery & data mining, pages 995–1005,

2021.

Grigory Malinovsky, Konstantin Mishchenko, and Peter
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A. Background on Circuit Formulation

Federated learning trains a global model by aggregating updates from distributed clients, each training on local datasets.

The update to the global model can be written as:

xk+1 = xk − α
N
∑

i=1

∇fi(xk), (39)

where α is the learning rate and ∇fi(xk) is the local gradient from client i. As α → 0, this update can be modeled as a

continuous-time gradient flow:

ẋ(t) = −

N
∑

i=1

∇fi(x(t)). (40)

This defines an ordinary differential equation (ODE) that assumes each client computes its local gradients using global state,

xc(t). However, in federated settings, each client maintains its own local model state that is periodically communicated to

the central agent. To address this, (Agarwal et al., 2023) introduced a continuous-time dynamical model that couples global

and client states via auxiliary flow vector, IL(t), resulting in the following dynamical system:

d

dt
xc(t) +

|C|
∑

i=1

IiL(t) = 0, (41)

Li
˙IiL(t) = xc(t)− xi(t), (42)

ẋi(t) = IiL(t)−∇fi(xi(t)), (43)

where xc(t) is the global model, xi(t) is the state of client i, and the hyperparameter Li controls how strongly each client is

coupled to the central agent.

The dynamical system is modeled by an ordinary differential equation (ODE) that models the continuous-time evolution

of the client and central agent state variables. These state variables converge to a steady-state which coincides with the

stationary point of the global objective in (39). By viewing the federated learning setting as an ODE, this reframes the

federated learning method as simulating the ODE to its steady-state. However, in general, maintaining accurate and efficient

simulation of ODEs is challenging.

To efficiently simulate the ODEs to their steady-state, we adopt methods from circuit simulation, which has demonstrated

robust methodologies capable of scaling to billions of transistor devices. We model the dynamical system as an electrical

circuit in Figure 1.

In the equivalent circuit model, node voltages represent the model states at each component of the system: the global state,

xc(t), is represented by the voltage at the central server node, while each client’s local state, xi(t), is modeled by the voltage

at a corresponding node. These nodes are connected using an electrical device known as an inductor to represent the flow of

information between clients and the server.

The dynamics of each client is captured by a capacitor, an electrical component that stores energy and resists sudden changes

in voltage. In this context, the capacitor captures the continuous-time evolution of the client’s model. The current-voltage

behavior of the capacitor is governed by:

IC = Cẋi(t), (44)

where IC is the total current into the capacitor and ẋi is the rate of change of the client’s state. This reflects how the client

integrates incoming signals to update its model parameters.

Each client node is then connected to the central node via an inductor, a component that resists changes in current and

introduces momentum-like dynamics into the system. In this equivalent circuit model, the inductor is connected between the

central agent node and a client node. Therefore, the voltage across each inductor is given by xc(t)− xi(t), representing the

difference in the client and global state-variables. The inductor then captures the accumulation of difference between the

global and local states over time, and is represented by the following current-voltage relation:

xc(t)− xi(t) = Li
˙IiL(t), , (45)
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where Li is the inductance, and IiL(t) is the current flowing from the server to client i. The inductor effectively damps the

interaction between client and server, mitigating sharp transitions.

The behavior of the overall system is governed by Kirchhoff’s Current Law (KCL), a fundamental principle in circuit

theory that states that the total current entering a node must equal the total current leaving it. Applying KCL to each node

in the equivalent circuit, we observe that : (1) the current from the central server capacitor equals to the sum from all

client branches sum, (2) at each client, the current from the inductor equals the sum of the client capacitor current and

gradient-induced currents, ∇fi(xi). This correspondence between circuit behavior and federated optimization dynamics

forms the foundation for our simulation-driven approach.

B. Proof of Theorem 4.1

Proof. The convergence proof of FedECADO relies on the following assumptions for each local objective function, f(x).

Assumption 1. (Boundedness) f ∈ C2 and infx∈Rn f(x) > −R for some R > 0.

Assumption 2. (Coercive) f is coercive (i.e., lim∥x∥→∞ f(x) = +∞)

Assumption 3. (Lipschitz and bounded gradients): for all x, y ∈ R
n, ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥, and ∥∇f(x)∥ ≤ B

for some B > 0.

In order to analyze the convergence of the FedECADO consensus step (33) using the interpolation/extrapolation operator

(28), we represent all the state variables of the central agent, including the central agent state xc and the flow variables IiL,

as a vector X = [I1L, I
2
L,

. . . , InL,xc, ]. The ODE for the central agent state in FedECADO, as defined by equations (31) and

(32), can be generalized as follows:

Ẋ(t) = g(X(t),xi(t)), (46)

where g(X) is defined as

g(X) =

[
∑n

i=1 I
i
L(τm)

xk+1
c (τm)− Γ(xi(t), τm).

]

(47)

Here, τm represents the discretized time point indexed by m. Furthermore, we generalize the BE integration of the central

agent ODE (33) as:

ρ(Xk+1(τm)) = ∆tσ(g(Xk(τm),Γ(xk+1
1 (T1), τm),Γ(xk+1

2 (T1), τm), · · · )), (48)

where the operator, ρ(·), is defined as

ρ =













1 +
∆tGth

−1

1

L
0 . . . −∆t

L

0 1 +
∆tGth

−1

2

L
. . . −∆t

L

0 0
. . . −∆t

L

−∆t −∆t . . . 1













, (49)

and σ(·), is defined as

σ =











−Γ(xk+1
1 (T1), τm) + I1

k

L (τm)Gth−1

1

−Γ(xk+1
2 (T2), τm) + I2

k

L (τm)Gth−1

2
...

0











. (50)

Note, the operator, ρ(·), can be inverted to evaluate the central agent states:

Xk+1(τ) = ∆tρ−1σ(g(Xk(τm),Γ(xk+1
1 (T1), τm),Γ(xk+1

2 (T1), τm), · · · )). (51)

The continuous-time ODE of (31),(32) converges to a stationary point characterized by xc = xi for all i ∈ C and

İiL = 0. The proof of convergence is provided in (Agarwal and Pileggi, 2023). In this analysis, we study the multi-rate

discretization of the ODE to ensure the Gauss-Seidel process of solving the coupled system converges toward the steady
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state at each iteration. This proof uses the analysis for a multirate waveform relaxation for circuit simulation from (White

and Sangiovanni-Vincentelli, 2012). This analysis is based on proving that the central agent step is a contraction mapping

towards the steady state (i.e., the stationary point of the global objective function).

The multi-rate integration uses the linear operator, Γ(·), to interpolate and extrapolate state variables at intermediate time

points. Two important properties of the linear operator are the following:

1. Given two signals, y(t) and z(t):

Γ(y(t) + z(t), τ) = Γ(y(t), τ) + Γ(z(t), τ)

2. Given a signal y(t), and a scalar, α:

Γ(αy(t), τ) = αΓ(y(t), τ)

To prove convergence of the multi-rate integration step, we employ a continuous-time β > 0 norm defined as:

∥y∥β = max[0,T ]e
−βt[maxiΓ(yi(t), τ) ∀i ∈ C] (52)

Under certain conditions, (51) is a contraction mapping on the β norm. To prove this relation, we evaluate the difference

between two series, {Xk(τm)} and {Y k(τm)}, as follows:

{Xk+1(τm)} − {Y k+1(τm)} = ∆tρ−1σ(g(Xk(τm),Γ(xk+1
1 (T1), τm),Γ(xk+1

2 (T1), τm), · · · ))

−∆tρ−1σ(g(Y k(τm),Γ(yk+1
1 (T1), τm),Γ(yk+1

2 (T1), τm), · · · )). (53)

Exploiting the linearity of the operators, Γ(·) and ρ, leads to the following:

{Xk+1(τm)} − {Y k+1(τm)} = ∆tρ−1σ[g(Xk(τm),Γ(xk+1
1 (T1), τm),Γ(xk+1

2 (T2), τm), · · · )

− g(Y k(τm),Γ(yk+1
1 (T1), τm),Γ(yk+1

2 (T2), τm), · · · )]. (54)

The BE operator ρ−1σ(·) can be expanded into a series of summations, as shown in Appendix B.1, using the following

equation:

{Xk+1(τm)} − {Y k+1(τm)} = ∆t

m
∑

l=0

γl[g(X
k(τ),Γ(xk+1

1 (T1), τm−l),Γ(x
k+1
2 (T1), τ), · · · )

− g(Y k(τ),Γ(yk+1
1 (T1), τ),Γ(y

k+1
2 (T1), τ), · · · )] (55)

where γl is a scalar that determines the weight of the past state values in the numerical integration method.

To prove that the difference between the series is a contraction mapping, the following two lemmas are useful.

Lemma B.1. Given two sequences, {X(τ)} and{Y (τ)}, if X(Ti) > Y (Ti) ∀i, then Γ(X(Ti), τ) > Γ(Y (Ti), τ). Further-

more, if X(Ti) = K ∀i where K is a constant value, then Γ(X(Ti), τ) = K.

Lemma B.2. The β norm on the following series of XK is bounded according to the following:

max
[0,T ]

e−βτ∥
m
∑

l=0

∥γlΓ(X, τm−l)∥∥ ≤
M

1− e−β∆t
e−βτ∥Γ(X, τm)∥, (56)

where M is equal to maxl ∥γl∥.

Proof of the two lemmas is provided in Appendixes B.2 and B.3. Using Lemma B.1 and the Lipschitz constant of ∇f , we

can bound (55) as follows:

{Xk+1(τ)} − {Y k+1(τ)} ≤ |

m
∑

l=0

|γl|





i
∑

j=1

∆tiLij |Γ(X
k+1
j − Y k+1

j , τm−l)|+

n
∑

j=i+1

∆tiLij |Γ(X
k
j − Y k

j , τm−l)|



 ,

(57)
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where Lij is the Lipschitz constant of the ith row of g with respect to Xj . Using the triangle inequality, we formulate this as

follows:

{Xk+1(τ)} − {Y k+1(τ)} ≤ |

i
∑

j=1

∆tiLij

m
∑

l=0

|γl||Γ(X
k+1
j − Y k+1

j , τm−l)|+

n
∑

j=i+1

∆tiLij

m
∑

l=0

|γl||Γ(X
k
j − Y k

j , τm−l)|.

(58)

Multiplying both sides by e−βt and taking the maximum over the time window, [0, T ], results in the following:

max
[0,T ]

e−βt{Xk+1(τ)} − {Y k+1(τ)} ≤ |

i
∑

j=1

∆tiLij max
[0,T ]

e−βt

m
∑

l=0

|γl||Γ(X
k+1
j − Y k+1

j , τm−l)|

+
n
∑

j=i+1

∆tiLij max
[0,T ]

e−βt

m
∑

l=0

|γl||Γ(X
k
j − Y k

j , τm−l)|, (59)

where T = max(Ti). Using Lemma B.2, we conclude the following:

max
[0,T ]

e−βt{Xk+1(τ)} − {Y k+1(τ)} ≤





M∆ti
1− e−β∆ti

i
∑

j=1

Lij



 ∥Xk+1 − Y k+1∥β

+





M∆ti
1− e−β∆ti

n
∑

j=i+1

Lij



 ∥Xk − Y k∥β , (60)

where ∥ · ∥β is the β norm defined in (56).

Assuming all time steps, ∆ti > 0 are positive and a β > 0, then there exists a scalar, δ > 0 such that:

δ >
M∆ti

1− e−β∆ti

n
∑

j=i+1

Lij . (61)

Using the definition of δ, we conclude the following:

max
[0,T ]

e−βt{Xk+1(τ)} − {Y k+1(τ)} ≤ δ∥Xk+1 − Y k+1∥β + δ∥Xk − Y k∥β . (62)

Because the value of δ holds for all time-steps (indexed by i), then:

|{Xk+1(τ)} − {Y k+1(τ)}|β ≤ δ∥Xk+1 − Y k+1∥β + δ∥Xk − Y k∥β , (63)

which can be rewritten as:

∥Xk+1 − Y k+1∥β ≤
δ

1− δ
∥Xk − Y k∥β . (64)

This proves that for a value of δ such that δ
1−δ

< 1, the multirate integration scheme, ρ−1σ(·), is a contraction mapping

whereby the series {Xk+1(τ)} and {Y k+1(τ)} converges to a stationary point.

Note, the rate of the contraction mapping, determined by δ
1−δ

, is not affected by the ratio of client step-sizes, ∆ti. This

enables clients to take vastly different step sizes, with accuracy considerations imposed by a Local Truncation Error (LTE).

The LTE estimates the error in the approximation of the numerical integration and is a key measure of the accuracy at any

iteration.

To prove convergence to a stationary point of the global objective function, we consider the contraction mapping between

two series, {Xk} and {X∗}, where X∗ is the state at the stationary point (i.e., g(X∗) = 0). The difference between the

series is diminished according to the contraction mapping:

∥Xk+1 −X∗∥β ≤
δ

1− δ
∥Xk −X∗∥β . (65)

This implies that for a ∆t ensuring δ
1−δ

< 1, the FedECADO update asymptotically converges to a stationary point, with a

convergence rate determined by δ
1−δ

.
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B.1. Expanding Backward Euler Operator

Given a general ODE

ż(t) = s(z, t) (66)

with an initial known state of z(0), the state of z at a time point, τm is determined by solving the following:

z(τm) = z(τm−1) +

∫ τm

τm−1

s(z(τ), τ)dτ. (67)

The integral on the right-hand side generally does not have a closed form solution and is approximated using a generalized

numerical integration method:

z(τm) = z(τm−1) +

n
∑

l=0

kls(τl, τl), (68)

where kl is a scalar used to weight the contribution of the state at time τl. This expression can be further generalized:

z(τm) =

m
∑

l=0

γls(τl, τl) + z(0), (69)

where γl weights the contribution of past states.

We can apply this form for the Backward-Euler integration step of the ODE (46), which is generally written as follows:

X(τm) = X(τm−1) + ∆tmg(X(τm, xi(τm)), (70)

where the index m represents the iteration of Backward Euler steps taken. An equivalent representation is the following:

X(τm) =

m
∑

j=0

∆tm−jg(X(τm−j , xi(τm−j)) +X(0). (71)

This expresses the latest state X(τm) as a summation of previous values of g(·).

B.2. Proof of Lemma B.1

The proof of Lemma B.1 is a direct consequence of the linearity of the operator, Γ. Consider two sequences, X(τ) and

Y (τ), which are evaluated at time points t1 and t2, where by:

X(t1) > Y (t1) (72)

X(t2) > Y (t2). (73)

Applying the linear operator, Γ(·, τ) for a time point τ ∈ [t1, t2], is defined as follows:

Γ(X, τ) =
X(t2)−X(t1)

t2 − t1
(τ − t1) +X(t1) (74)

Γ(Y, τ) =
Y (t2)− Y (t1)

t2 − t1
(τ − t1) + Y (t1) (75)

Because X > Y at time points t1 and t2, we observe the following:

X(t2)−X(t1)

t2 − t1
(τ − t1) +X(t1) >

Y (t2)− Y (t1)

t2 − t1
(τ − t1) + Y (t1) (76)

thereby proving that Γ(X, τ) > Γ(Y, τ). Expanding this proof to multiple evaluated time points Ti, we note that if

X(Ti) > Y (Ti)∀i, then Γ(X, τ) > Γ(Y, τ).
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B.3. Proof for Lemma B.2

The proof of Lemma B.2 is reconstructed in the following from [(White and Sangiovanni-Vincentelli, 2012)].

From the definition of the β-norm, we see that:

∥

m
∑

l=0

γlX(τm−l)∥β = max
m

e−β∆tm∥

m
∑

l=0

γlX(τm−l)∥, (77)

which can be upper-bounded using the triangle inequality as:

∥

m
∑

l=0

γlX(τm−l)∥β ≤ max
m

e−β∆tm

m
∑

l=0

|γl|∥X(τm−l)∥. (78)

Multiplying eβ(m−l)∆te−β(m−l)∆t (equal to 1) into the right-hand side of the equation above leads to

∥

m
∑

l=0

γlX(τm−l)∥β ≤ max
m

e−β∆tm

m
∑

l=0

|γl|e
β(m−l)∆te−β(m−l)∆t∥X(τm−l)∥. (79)

Because e−β(m−l)∆t∥X(τm−l)∥ ≤ ∥X(τm−l∥β , then

∥

m
∑

l=0

γlX(τm−l)∥β ≤ max
m

e−β∆tm

m
∑

l=0

|γl|∥X(τm−l)∥β . (80)

Suppose |γl| is upper-bounded by M , then the inequality becomes

∥
m
∑

l=0

γlX(τm−l)∥β ≤M
m
∑

l=0

[e−β∆tm]∥X(τm−l)∥β (81)

Because e−β∆m > 0 and
∑m

l=0 e
−β∆m ≤

∑∞
l=0 e

−β∆m, then the inequality is as follows:

∥

m
∑

l=0

γlX(τm−l)∥β ≤M

∞
∑

l=0

[e−β∆tm]∥X(τm−l)∥β . (82)

The infinite series can be directly computed as:

∞
∑

l=0

e−β∆m =
e−β∆t

1− e−β∆t
, (83)

where the upper bound is as follows:

∥
m
∑

l=0

γlX(τm−l)∥β ≤M
e−β∆t

1− e−β∆t
e−β∆tm]∥X(τm−l)∥β , (84)

which proves Lemma B.2.

C. FedECADO Algorithm

The full workflow for the FedECADO algorithm is shown in Algorithm 2. The algorithm begins by initializing the state

values in Steps 1–4 and precomputing the constant sensitivity model, Ḡth, for all clients in Step 5. The hyperparameters for

the algorithm are L > 0 and the local truncation error tolerance, η > 0.

For each epoch, FedECADO begins by simulating the set of active clients, Ca ∈ C, in step 10, for a number of epochs, ei.
The client ODE is solved by using numerical integration selected by the user (further details are provided in (Agarwal et al.,

2023)). In step 11 of Algorithm 2, we use a Forward-Euler integration to simulate the local ODE.
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The active clients then communicate their final states, xk+1
i (t+ Ti), and simulation time, Ti, to the central agent server,

which evaluates its own states at intermediate time points (steps 12-16). First the central agent estimates the active client

state values at a time point, τ , using the operator, Γ(·, τ). Then after selecting a time step, ∆t, that satisfies the accuracy

conditions in (34),(35), the central agent solves for its states at the proceeding time point, τ +∆t, in step 15. The central

agent server progresses through time (performing steps 13-14), until it has simulated the maximum client simulation time

window determined by max(Ti).

Note, for a given time-step, ∆t, the central agent LU-factorizes the left hand matrix in Step 16 of Algorithm 2 (33), so

that any subsequent central agent steps with the same step size only requires a forward-backward substitution to solve for

the central agent states. In practice, once an appropriate step size, ∆t, is selected that satisfies the accuracy conditions in

(34)-(35), it is infrequently updated. As a result, re-using the same LU-factor provides a computational advantage across

multiple central agent evaluations and improves the overall runtime performance of FedECADO.

Algorithm 2 FedECADO Central Update

Input: ∇f(·),x(0), η > 0, L > 0

1: xc ← x(0)
2: xi ← x(0)
3: ILi ← 0
4: t← 0
5: Precompute Ḡth

i ∀i ∈ C
6: do while ∥ẋc∥

2 > 0
7: xk

c ← xk+1
c

8: xk
i ← xik+1

9: Parallel Solve for active client states, xk+1
i (t+ Ti)∀i ∈ Ca, by simulating:

10: for ei epochs:

11: xk+1
i (t+∆ti) = xk+1

i (t)−∆ti∇f(x
k+1
i (t))−∆tiI

Lk

i (t)
12: for τ ∈ [t, t+max(Ti)]
13: Select ∆t according to Algorithm 1

14: Evaluate active client states at timepoint τ : Γ(xk+1
i , τ) ∀i ∈ Ca

15: Solve for xk+1
c (τ +∆t), IL

k+1

i (τ +∆t) according to (33)

16: τ = τ +∆t
17: Return xc

D. Scaling the FedECADO Algorithm

The previous experiments highlight the individual contribution of the proposed aggregate sensitivity model and multi-rate

integration on distributed training. In this experiment, we study the impact of both methods to address the challenges of

federated learning across multiple datasets and models.

We demonstrate the effectiveness and scalability of FedECADO by training multiple models (ResNet 34, ResNet18 and

LSTM) on datasets including CIFAR-100, TinyImageNet and Sentiment140, distributed among 100 clients using a Dirichlet

allocation. In this setup, only 10% of clients participate in each training round, and each client is assigned a random learning

rate as defined in equation (37). We train a larger ResNet-34 model on a CIFAR-100 dataset distributed across 100 clients

with both non-IID data distribution as well as heterogeneous learning rates and numbers of epochs, determined by (37),(38).

Tables 3, 4, 5 demonstrates the efficacy of FedECADO and larger and varied datasets and models.

Figure 5 showcases FedECADO’s advantage over FedNova and FedProx in training the ResNet-34 model. Our approach

achieves a lower training loss, indicating more efficient convergence, as well as higher classification accuracy after 100

epochs (4.6% higher than FedNova and 8.6% higher than FedProx).
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Figure 4: The training loss and classification accuracy for a VGG-11 model trained on a CIFAR-10 dataset across 100

clients with (a) non-IID Dirichlet distribution and identical learning rates, and (b) each client’s learning rate and number of

epochs is randomly determined by (37),(38) .

Classification

Acc. (%)

FedECADO FedNova FedProx FedExp FedDecorr FedRS

58.9 45.4 40.7 47.6 41.9 44.3

Table 4: Classification accuracies for training a ResNet-18 on TinyImageNet dataset distributed across 100 clients with

Dirichlet data distribution and random learning rates for 60 epochs.

Testing Errors FedECADO FedNova FedProx FedExp FedDecorr FedRS

79.9 77.1 78.6 78.4 79.2 77.4

Table 5: Testing errors for training a LSTM model [R2] on Sentiment140 dataset distributed across 10 clients with Dirichlet

data distribution and random learning rates for 10 epochs.

Figure 5: Scaling FedECADO to train ResNet34 model on CIFAR-100 dataset distributed on 100 clients with heterogeneous

computation (non-IID data distribution and asynchronous updates.
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E. Runtime Analysis

Despite evaluating the central agent multiple times for multi-rate integration, FedECADO’s clock time for centralized

updates is comparable to those of FedNova and FedProx (only 1% slower than FedNova and 2.4% slower than FedProx).

The complete comparison of runtime analysis is shown in Table 6. The main computational cost of Algorithm 2 occurs

on the subset of active clients during each communication round, which is significantly smaller than the total client base.

The resulting BE matrix (33) is relatively small, with dimensions of Ra×a, where a is the size of the active client list.

Additionally, we pre-compute the LU matrix of in (33) to minimize the computation time for central agent evaluations.

Furthermore, a potential bottleneck for FedECADO’s runtime can be attributed to the adaptive server step sizes routine in

Algorithm 2. This routine is initiated by the step size from the prior communication round and in practice, does not require

multiple iterations to satisfy the LTE conditions in equation (34) and (35).

FedECADO FedNova FedProx FedExp FedDecorr FedRS

Normalized

Runtime

1.06 1.0 1.02 1.04 1.02 1.0

Table 6: Normalized per-epoch runtime (normalized to FedProx) of a centralized server step for training VGG model on

CIFAR-10 dataset distributed across 100 clients.

F. Comparison with ECADO

FedECADO uses the distributed optimization method from ECADO (Agarwal and Pileggi, 2023) as a basis to derive insights

for the unique challenges of federated learning including heterogenous dataset distributions and varying client computational

capabilities (i.e., learning rates). However, ECADO is not equipped to handle the heterogenous challenges of federated

learning, and is prone to model drifts, an issue demonstrated in (Wang et al., 2020). Nonetheless, the unique perspective

of an equivalent circuit model of the federated learning process allows us to derive intuitive methodologies. For example,

the challenge of heterogeneous client learning rates is clearly identified as a challenge of asynchronous communications

in the continuous-time representation. From the circuit perspective which views the distributed computation as splitting a

large circuit, the immediate solution to this problem is using an interpolation/extrapolation operator to synchronize client

computations, as described in Section 4.2.

As a result of these improvements, we observe that FedECADO improves the convergence of ECADO in the federated

learning setting. The difference is shown in in Table 7, where we observe a significant improvement in performance when

training distributed CIFAR-100 dataset with non-IID data distributions and varying client learning rates.

Classification Acc. FedECADO ECADO

Mean (std) % 81.3 (4.8) 76.5 (2.1)

Table 7: Classification accuracies for training a ResNet-34 model on CIFAR-100 dataset distributed across 100 clients with

Dirichlet data distribution and random learning rates for 200 epochs.
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