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Conclusions:

Subwavelength confinement of electromagnetic energy of A (nm) e

plasmonic nanostructures amplifies light-matter interaction via TiO2 thickness (nm) TiIO, cavity layer offers resonance tunability and
localized surface plasmon resonance (LSPR), enabling advances FDTD Field Profile Results and Analysis electromagnetic field enhancement. Varied dielectric
in sensing, photonics, and more. We take inspiration from a » Field profiles demonstrate the tunability of the resonance mode by varying | thicknesses corresponded to different excitation
Fabry-Perot cavity, where optical waves are confined between two the thickness of the dielectric layer wavelengths and near-field intensities. Raman
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