
ROISD: RIS and O-RAN Assisted Intelligent

Sensing for UAV Detection

Xiaochan Xue∗, Shucheng Yu†, Saurabh Parkar∗, Yao Zheng∗

∗Department of Electrical and Computer Engineering, University of Hawai’i at Mānoa, HI 96822, USA
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Abstract—The growing proliferation of unmanned aerial ve-
hicles (UAVs) has intensified security concerns, particularly
from high-speed unauthorized flights in restricted airspaces.
Conventional detection methods based on radar, acoustic, vision,
and RF sensing, facing inherent limitations in cost, scalability,
and environmental robustness, and lack the coordination neces-
sary for wide-area coverage against fast maneuvering threats.
To address these limitations, we propose a RIS and O-RAN
assisted framework within the Integrated Sensing and Com-
munication (ISAC) paradigm, adapted for the 3.7 GHz Citizens
Broadband Radio Service (CBRS) band. The system leverages
programmable RIS to improve signal observability and employs
O-RAN distributed intelligence for multi-stage UAV detection.
A composite OFDM–FMCW waveform provides high-resolution
range–Doppler sensing, and a GRU-based predictive controller
enables low-latency RIS adaptation. Experimental results, con-
ducted under realistic deployment constraints, demonstrate that
a single sensing node achieves reliable detection sufficient to
trigger stage transitions. These results confirm the feasibility of
integrating RIS and O-RAN for high-speed UAV sensing.

Index Terms—UAV detection, Open Radio Access Network
(O-RAN), 6G, beyond 5G, Reconfigurable Intelligent Surfaces
(RISs), multi-beam design, Integrated sensing and communica-
tion (ISAC), machine learning, intelligent controller, adaptive
coordination, resource management.

I. INTRODUCTION

The rapid proliferation of Unmanned Aerial Vehicles

(UAVs) across civilian, commercial, and military sectors has

transformed modern applications, enabling new capabilities

in aerial surveillance, package delivery, environmental mon-

itoring, and disaster response. However, this growth also

introduces critical security concerns. Unauthorized or mali-

cious UAVs intruding into restricted airspaces near airports,

government facilities, or critical infrastructure can cause severe

disruptions, including flight cancellations, security breaches,

and privacy violations. High-speed UAVs further intensify

these risks, as their mobility and unpredictable trajectories

can overwhelm conventional monitoring systems and hinder

timely response. Consequently, developing reliable, timely,

and scalable UAV detection systems has become a central

research priority in next-generation wireless networks.

Despite progress in UAV detection, all existing approaches

face fundamental limitations that hinder robust and scalable

deployment [1, 2]. Radar systems provide accurate range and

velocity estimates but demand significant infrastructure and

incur high operational costs. Acoustic and vision methods are

highly sensitive to environmental conditions such as noise,

weather, and lighting. Radio frequency (RF) approaches suf-

fer from line-of-sight restrictions and limited adaptability to

evolving UAV technologies. Most critically, these approaches

operate in isolation and lack the coordination necessary for

wide-area coverage, underscoring the urgent need for scalable,

adaptive, and collaborative detection solutions.

Two emerging technologies offer promising opportunities

to address these challenges. Reconfigurable Intelligent Sur-

faces (RIS) enable programmable manipulation of electromag-

netic propagation through reflection, refraction, and scatter-

ing, extending coverage, and mitigating line-of-sight (LoS)

constraints. Their flexible, actively reconfigurable control of

wavefronts allows dynamic beam steering and adaptive cover-

age shaping, providing cost-effective deployment while main-

taining resilience against evolving threats. Open Radio Ac-

cess Networks (O-RAN) provide a complementary foundation

through an open, disaggregated, and AI-native architecture that

enables distributed intelligence and inter-node collaboration,

supporting hierarchical detection from coarse surveillance to

fine-grained localization.

The convergence of RIS and O-RAN naturally points

toward Integrated Sensing and Communication (ISAC) as

the next stage of wireless evolution, enabling spectrum

and infrastructure sharing between communication and sens-

ing. However, realizing RIS-assisted UAV detection within

ISAC frameworks requires moving beyond communication-

centric designs. Traditional Orthogonal Frequency-Division

Multiplexing (OFDM) based RIS implementations lack the

range–Doppler resolution and channel tracking capabilities

required for reliable moving target detection. Advanced wave-

form designs, such as composition of OFDM and Frequency

Modulated Continuous Wave (FMCW) signals and modified

OFDM variants, are needed to overcome RIS hardware con-

straints and enable dual-purpose operation for both communi-

cation and UAV sensing under dynamic conditions.

In this work, we present a RIS and O-RAN assisted ISAC

framework for UAV detection and trajectory tracking in the

Citizens Broadband Radio Service (CBRS) band at 3.7 GHz.

The CBRS spectrum provides a good balance between cov-

erage and sensing resolution, and supports flexible spectrum

access under FCC regulation. Our system combines RIS-based

signal control with O-RAN-enabled distributed processing to

enable scalable and adaptive sensing. A state-machine-guided

detection strategy allows the system to switch between wide-



area scanning and focused tracking, depending on UAV motion

and detection confidence. With real-time coordination and

prediction integrated into the O-RAN control process, the

system achieves stable performance across different flight

patterns and sensing conditions. Our main contributions are

summarized as follows:

• We introduce a RIS and O-RAN assisted ISAC frame-

work that addresses the limitations of current UAV de-

tection technologies through adaptive sensing, predictive

control, and distributed coordination.

• We develop a hierarchical detection scheme with state-

machine guidance and GRU-based trajectory prediction,

enabling dynamic transitions from wide-area exploration

to focused tracking.

• We implement cross-layer resource management under

spectrum-sharing constraints, leveraging O-RAN’s Near-

RT and Non-RT control architecture to support scalable

and low-latency RIS reconfiguration.

• We validate the proposed framework through system-level

simulations, demonstrating significant improvements in

detection accuracy, responsiveness, and robustness under

diverse UAV dynamics.

The remainder of this paper is organized as follows. Sec-

tion II reviews related work. Section III introduces the tech-

nical background. Section IV presents the detection scheme,

followed by results in Section V. Section VI concludes the

paper and provides future direction.

II. RELATED WORK

This section reviews prior work in four key areas: UAV

detection technologies, composite waveform designs for ISAC,

RIS-assisted sensing, and O-RAN for distributed intelligence.

We highlight the gaps that motivate our integrated approach.

Traditional UAV detection relies on single-sensor modali-

ties, each with distinct strengths and limitations [1, 2]. Acous-

tic methods [3–7] exploit propulsion noise and can operate in

non-line-of-sight (NLOS), however, the performance degrades

under ambient noise, wind, and adverse weather. Vision-

based systems [8–13] use deep learning but remain vulnerable

to low illumination, occlusion, and limited range. RF-based

detection [14–18] passively monitors control links; However,

the performance declines as autonomous UAVs reduce RF

dependence or fly RF-silent. Radar provides precise range

and velocity via Doppler, although dedicated infrastructure

and heavy processing hinder large-scale deployment [19–

21]. Multi-modal fusion combines complementary cues and

improves robustness [22–24]; however, most implementations

remain isolated, single-node designs without distributed co-

ordination, which is problematic for fast UAVs whose rapid

maneuvers demand high temporal resolution and collaborative

multi-node tracking.

Reconfigurable Intelligent Surfaces (RIS) have received

growing attention in wireless communications for their ability

to enable programmable beam steering, enhance coverage, and

manage interference [25]. A RIS consists of an array of con-

trollable tiles that adjust the phase of incoming signals to form

desired beam patterns and reshape the wireless environment. In

addition to traditional communication functions, recent studies

have explored using RIS for sensing tasks such as target lo-

calization, angle-of-arrival (AoA) estimation, and channel state

information enhancement [8, 26]. However, standard passive

RIS hardware remains limited in functionality. Individual tiles

typically lack circuitry for demodulation, waveform-specific

filtering, or adaptive control. Although active RIS designs can

support these features, they often introduce considerable power

and computational overhead, which challenges scalable de-

ployment. Current RIS implementations are unable to separate

sensing and communication waveforms at the surface level

without interference.

To address these limitations, ISAC waveform design pro-

vides multiple methods to dual functionality. Modified OFDM

variants embed sensing features into communication resources

so that a single signal serves both roles [27, 28]. A com-

plementary approach is the composite OFDM–FMCW sig-

nal, which combines an FMCW component with OFDM to

couple fine range–Doppler sensing with data delivery. Recent

work demonstrates thefeasibility with favorable bandwidth

efficiency and low implementation overhead [29]. These ap-

proaches enable dual-purpose RIS operation without additional

hardware [30], allowing tiles or time slots to be assigned

to sensing or communication with separation handled in

baseband. Meanwhile, hardware advances are pushing RIS

beyond purely passive designs: relay-type RIS [31, 32] and

amplifying-and-filtering RIS (AF-RIS) [33] incorporate simple

analog modules (e.g., amplifiers, bandpass filters, low-power

processors) in selected tiles. These enhancements improve

local signal quality, reduce latency, and support limited edge

processing even without full base-station coordination. As a

result, RIS is evolving from a passive reflector into a low-

power, intelligent node that can actively contribute to ISAC

operations in future wireless networks.

O-RAN provides an open, disaggregated, AI-native ar-

chitecture that enables distributed intelligence and real-time

coordination [34]. With RAN Intelligent Controllers (RIC)

operating at near real-time (Near-RT) and non real-time (Non-

RT) timescales, O-RAN can manage short and long term data

to adaptively control RIS across heterogeneous cells. Near-RT

RICs run xApps that adjust RIS phase shifts, beam directions,

and scheduling hooks in response to channel dynamics, user

mobility, and network load [35–38], while Non-RT RICs

perform policy optimization, model training, and analytics that

guide Near-RT decisions [39, 40]. This hierarchical control

loop supports continuous RIS adaptation, balancing immediate

performance (e.g., throughput, latency) with longer-term goals

(e.g., energy, reliability). ML-based applications on the RIC

further enhance flexibility by jointly optimizing throughput,

fairness, and security using real-time and historical data.

Studies indicate that software-driven RIS management enables

user tracking, beam steering, and resource allocation, laying

the groundwork for scalable, cooperative UAV sensing with

RIS-enhanced propagation.

Integration of RIS and O-RAN within ISAC frameworks has



received limited attention. Most prior work assumes idealized

RIS behavior and simplified sensing tasks, without addressing

hardware constraints or high mobility scenarios requiring

fine range-Doppler resolution. Shared spectrum environments

such as the CBRS band also remain underexplored, despite

their practical importance. Existing UAV detection approaches

lack distributed coordination for wide-area surveillance, and

RIS hardware limits are rarely considered in waveform and

functional design. The potential of O-RAN for collabora-

tive sensing is largely unexplored, as most studies remain

communication-centric. Moreover, comprehensive frameworks

that jointly address waveform design, resource allocation, and

hierarchical detection under spectrum sharing are still absent.

III. SYSTEM MODEL

In this section, we establish the system model (Fig. 1) for

RIS-assisted UAV detection under the ISAC framework. The

transmitted signal is composed of a composite ISAC wave-

form, where the FMCW component serves the sensing func-

tionality while coexisting with communication signals such

as OFDM. We focus on the FMCW-based sensing process,

which enables range, angle, and velocity estimation of UAV

targets when reflected by the RIS. The following subsections

describe the measurement model and link budget analysis that

characterize the received signal and its propagation dynamics.

A. RIS-Assisted FMCW Sensing and Measurement

Relative Position: At each discrete sensing time slot tk,

the RIS-assisted O-RAN system utilizes FMCW signaling to

perform UAV detection and characterization. FMCW wave-

forms enable simultaneous range and velocity estimation by

analyzing the beat frequency and Doppler shift of reflected

signals. Let p(tk) ∈ R
3 and v(tk) ∈ R

3 denote the position

and velocity vectors of the UAV at time tk, and let pRIS ∈ R
3

denote the known position of the RIS. The relative position

vector is defined as

r(tk) = p(tk)− pRIS, (1)

where r(tk) = [rE(tk), rN (tk), rU (tk)]
T represents the rel-

ative position in the 3D East-North-Up (ENU) coordinate

system.

Distance: The FMCW-based measurements are obtained as

follows. The range is estimated from the beat frequency as

dk =
c

2B
fb,k, (2)

where fb,k is the dechirped beat frequency, B is the sweep

bandwidth, and c is the speed of light. Here, fb,k directly

reflects the round-trip propagation delay and serves as the

key intermediate observable that maps the time delay into a

measurable range.

Angles: The spatial bearing of the UAV relative to the RIS is

characterized by the azimuth angle

θk = arctan 2(rE(tk), rN (tk)) , (3)

and the elevation angle

ϕk = arctan 2

(

rU (tk),
√

r2E(tk) + r2N (tk)

)

. (4)

Figure 1. Illustration of a RIS-assisted ISAC system for UAV detection. The
gNB communicates with the UE through a reflectarray while leveraging the
reflected waveform for UAV sensing.

The radial velocity, corresponding to the UAV’s motion along

the LoS direction, is expressed as

vr,k =
r(tk)

Tv(tk)

∥r(tk)∥2
, (5)

where the subscript r denotes the radial component, and is

directly related to the Doppler shift via fD,k =
2vr,k
λ

, where

λ is the carrier wavelength.

B. Link Budget and Path Loss

To account for propagation effects, we adopt a radar link

budget formulation. The received power in the monostatic

FMCW setting is

Pr,k =
PtGtGrλ

2σk

(4π)3d4kLsys

, (6)

where Pt is the transmit power, Gt and Gr are the an-

tenna gains, σk is the radar cross section (RCS), and Lsys

captures system losses. When a RIS is configured to assist

the sensing process, the cascaded propagation via the trans-

mitter–RIS–UAV–receiver path introduces an additional gain

factor GRIS, which depends on the number of reflecting tiles,

their phase alignment, and reflection efficiency. The per-slot

signal-to-noise ratio is then

SNRk =
Pr,kGint

kBT0FNB
, (7)

where Gint denotes the coherent integration gain, kB is

Boltzmann’s constant, T0 the noise temperature, FN the re-

ceiver noise figure, and B the sweep bandwidth. This SNRk

directly influences the estimation accuracy of range, angle, and

velocity, and its dependence is embedded in the measurement

noise covariance matrix. The complete measurement vector at

time slot k is therefore expressed as

zk =
[

dk, θk, ϕk, vr,k, SNRk

]T
+ nk, (8)

where nk ∼ N (0,Rk) represents estimation errors due to

noise, clutter, and multipath. The covariance matrix Rk is

parameterized as a decreasing function of SNRk, ensuring

consistency with estimation theory.



(a) (b)

Figure 2. Illustration of O-RAN based RIS configuration and resource allocation. (a) O-RAN based RIS initial configuration via ML control and beam
management. (b) Adaptive tile level coordination for dynamic RIS resource allocation across sensing and communication tasks.

C. UAV Detection

Successful radar detection of UAVs depends on their elec-

tromagnetic visibility, commonly characterized by the radar

cross section (RCS). The RCS is the effective area that reflects

incident energy back to the radar and is defined in [41] as:

σ = lim
R→∞

4πR2 |Es|
2

|Ei|2
(9)

Where: σ is expressed in m2 or logarithmically in dBsm,

R is the distance in meters, Ei is the incident electric field

strength, and Es is the scattered electric field strength. Com-

mercial UAVs exhibit low and frequency dependent RCS in

the CBRS band, typically ranging from about -24 to -5 dBsm

depending on aspect angle and materials (e.g., plastics, carbon

fiber composites). The dominant scattering contributions arise

mainly from metallic components such as batteries, printed

circuit boards, and motors, whose effective reflectivity varies

significantly with the aspect angle between the UAV and the

radar line-of-sight [42–44].

Furthermore, the RCS is also dependent on factors such as

the transmitted power Pt, wavelength of operating frequency

λ, the transmit gain Gt and the receive gain Gr as shown in

Eq. 6. Based on these Eq. 6 and Eq. 9, the target RCS can be

derived based on the received power and vice versa, enabling

the setup of SNR thresholds for accurate detection of UAVs.

Utilizing a noise removal or clutter elimination algorithm such

as covariance-based filtering, extensive cancellation algorithms

(ECA), or their adaptive variants helps to suppress static

reflections and direct-path interference before thresholding.

The detection process can then be performed by applying a

SNR based thresholding besides a constant false-alarm rate

(CFAR) on the processed range–Doppler map [44–47].

IV. SCHEME

The detection, identification, and tracking of fast UAVs

rely on collaborative sensing, which requires continuous co-

ordination among multiple geographically distributed gNBs

to establish an adaptive UAV sensing corridor while simul-

taneously ensuring communication services. In this section,

we propose a resource aware scheme under the O-RAN

framework that leverages multiple RIS-assisted sensing to

collaboratively detect high-speed, maneuverable low altitude

UAVs as shown in Fig. 2. Through RIS configuration and

waveform adaptation, the proposed approach achieves efficient

sensing while preserving reliable communication for user

equipment (UE).

Figure 3. State machine for adaptive UAV sensing. Equipped with backward
transitions enabled for re-verification or uncertainty handling.

A. Multi-Stage State Machine for Adaptive Detection

The core of our solution is a multi-stage state machine

S = {S0, S1, S2, S3} as shown in Fig. 3, which provides

adaptive logic for RIS beam scheduling and waveform adapta-

tion. Each state corresponds to progressively refined detection

objectives with increasing sensing and resource demands:

Stage 0 (Idle): Continuous wide-angle surveillance with min-

imal resource usage, serving as the baseline monitoring mode

to ensure coverage of the sensing region.

Stage 1 (Initial Detection): Coarse UAV detection through

low-resolution FMCW sweeps, enabling rapid identification

of potential targets across a broad area.

Stage 2 (Classification): Target-focused sensing with refined

angle and velocity estimation, used to discriminate UAVs from

birds, ground clutter, or other moving objects.

Stage 3 (Identification): High-resolution sensing with narrow

beams and enhanced SNR, providing precise characterization

of UAV features such as trajectory, size, and motion dynamics.

State transitions are driven by detection confidence γi,

configurable thresholds τi, and real-time resource availability:

P (Si → Sj) =











f(γi, τi, cavail, Qi, zk), if j = i+ 1,

g(γi, ttimeout, Qi, ϵcov), if j < i,

0, otherwise

(10)

where γi is the detection confidence at stage Si (derived from

accumulated SNR and track consistency), τi is the transition

threshold for advancing from Si to Si+1, cavail denotes the

set of RIS configurations available under current resource and



QoS constraints, Qi is the communication QoS metric (e.g.,

latency, throughput), zk is the FMCW measurement vector

in eq. (8), and ϵcov is a constraint ensuring the integrity

of the collaborative sensing. The forward transition function

f(·) promotes to the next stage when detection confidence

exceeds the threshold and sufficient resources are available.

The downward transition g(·) reverts to a previous stage due

to timeout, low confidence, or QoS violations.

B. RIS Configuration Space

We define a discrete RIS configuration space C =
{c1, c2, . . . , cM} where each configuration ci includes

the programmable phase shift matrix Φi = [ϕmn]N×N

for the N × N RIS tiles, beam pattern descriptor

bi = [θcenter, ϕcenter,∆θ,∆ϕ] specifying beam center and

beamwidth, and sensing power allocation Psens,i for the

FMCW component, represented as ci = {Φi,bi, Psens,i}. The

subset of available configurations cavail ⊆ C appearing in (10)

is determined dynamically based on hardware actuation lim-

its and communication QoS requirements. The configuration

space is strategically partitioned according to detection stages:

• CS0
uses minimal phase control for continuous surveil-

lance with ultra-wide beams;

• CS1
uses coarse phase granularity for wide-area detection

with broad beams;

• CS2
employs medium granularity for focused classifica-

tion with medium beams;

• CS3
applies fine granularity for high-precision identifica-

tion with narrow beams.

This partitioning enables efficient resource allocation while

maintaining sensing integrity. The intersection CSi+1
∩ cavail

represents the set of feasible configurations for transitioning

to the next detection stage.

C. GRU-Based Predictive RIS Configuration

To support fast and proactive RIS reconfiguration, we design

a Gated Recurrent Unit (GRU)–based model that predicts the

next RIS configuration using state machine status, FMCW

measurements, and system history. GRUs are selected for their

efficiency and ability to learn patterns over time while meeting

the sub-100,ms response requirement of the Near-RT RIC.

ĉ[k + 1] = GRU(c[k −W : k], s[k], z[k], γ[k];θGRU) (11)

where ĉ[k + 1] is the predicted RIS configuration for the

next time slot, c[k − W : k] is the sliding-window history

of configurations over W slots, s[k] ∈ {S0, S1, S2, S3} is

the current state machine stage, z[k] is the current FMCW

measurement vector, γ[k] is the detection confidence at time

k, and θGRU represents trainable GRU parameters. The GRU

architecture processes temporal sequences to predict both the

next optimal beam direction and the required phase shift ma-

trix Φ̂k+1. Training emphasizes diverse operational scenarios

including varied weather conditions (rain, fog affecting path

loss), multipath-rich urban environments with RCS variations,

and high-speed maneuvers to ensure robust generalization

across real-world drone behaviors.

D. O-RAN Integration Architecture

The predictive RIS control framework is integrated into the

O-RAN architecture through three standardized interfaces that

coordinate near-real-time inference, long-term policy updates,

and hardware control.

Near-RT RIC (xApp): The GRU-based controller operates

as an xApp in the Near-RT RIC, supporting fast adaptation

with control loops on the order of 100 ms. It receives FMCW

measurement vectors from the DU via the E2 interface, along

with the current state s[k], detection confidence γ[k], and QoS

metrics Qi. Based on this information, the xApp performs

inference to predict the next RIS configuration ĉ[k + 1] and

issues control decisions.

Non-RT RIC (Policy and Training): Long-term model up-

dates and system policies are managed by the Non-RT RIC via

the A1 interface. This includes parameter tuning for the pre-

dictive model θGRU, configuration thresholds {τ0, τ1, τ2, τ3},

and balancing strategies between sensing and communication

resource usage.

O1 Interface (Execution): The predicted configuration ĉ[k+
1] is applied through the O1 interface using NETCONF/YANG

protocols, translating into RIS phase shifts Φk+1, waveform

parameters such as bandwidth B and chirp duration, and power

allocation directives.

This architecture supports closed-loop control by combining

real-time sensing with longer-term optimization. It enables

intelligent RIS adaptation with minimal latency, scalable co-

ordination across network elements, and seamless integration

of ML-based decision-making into O-RAN.

Figure 4. UAV trajectory in a 3D East-North-Up (ENU) coordinate system.

V. EVALUATION

This section evaluates the proposed RIS and O-RAN en-

abled UAV detection framework through simulation-based

experiments that emulate realistic deployment conditions. We

first describe the experimental setup, then demonstrate the

multi-stage detection process, and finally validate the GRU-

based trajectory prediction for adaptive beam control.

A. Experimental Setup

Fig. 4 shows a gNB is placed at the origin at a height of

30 m, with a RIS deployed 18 m away at a height of 15 m.



Signal Processing and Angle Estimation: The azimuth θk
and elevation ϕk are estimated with 2D Multiple Signal Clas-

sification (MUSIC). This algorithm exploits the orthogonality

between the array steering vectors corresponding to the true

directions of arrival (DoA) and the noise subspace of the

received signal covariance matrix. By scanning a 2D az-

imuth–elevation grid and evaluating the MUSIC pseudospec-

trum yields sharp peaks at the actual DoAs, enabling super-

resolution beyond conventional beamforming.

(a) (b) (c)

Figure 5. RIS array configuration and directivity patterns. (a) An 8 × 2

RIS array in 3D. (b) and (c) show simulated directivity patterns for different
azimuth/elevation combinations, illustrating beamforming capabilities.

UAV and Waveform Modeling: The RIS is modeled as a

hybrid relay-type RIS capable of limited telemetry and local

signal processing, such as estimating the angle of arrival

(AoA) at the RIS itself. The UAV is modeled as a moving

target with a mean RCS of −14 dBsm (0.04 m2), providing

sufficient detection margin for small to medium-sized drones

according to values specified in [44]. Uniform acceleration is

applied in 3D space to emulate realistic flight trajectories.

A composite OFDM–FMCW waveform is transmitted at 3.7

GHz under free-space path loss. The FMCW component is

filtered and reflected by the RIS in the ENU plane for UAV

detection. The 8× 2 RIS lies in the x–z plane with boresight

along +y, providing broad coverage for Stage 0 (Fig. 5a).

Each tile is spaced at half the carrier wavelength, satisfying

the Nyquist criterion to avoid spatial aliasing and grating

lobes. The resulting array directivity patterns are illustrated in

Fig. 5b and 5c. The horizontal aperture provides fine angular

resolution in azimuth, while the vertical extension enhances

elevation sensitivity for discriminating vertically separated

targets. Despite its compact size, the 8×2 configuration offers

a favorable trade-off between angular resolution, hardware

complexity, and computational cost.

B. Multi-Stage Detection

The proposed framework operates through four stages, each

with increasing sensing resolution and resource allocation, as

defined in the state machine (Section IV).

As shown in Table I, the FMCW waveform uses a 50 MHz

sweep bandwidth and 11 µs sweep duration, supporting de-

tection ranges up to 300 m and speeds up to 350 km/h,

covering typical commercial and survey-class UAV operations.

A coherent processing interval (CPI) of 64 sweeps over

0.705 ms provides the temporal resolution for Doppler-based

velocity estimation. This sets up the initial surveillance for

Table I
FMCW RADAR SPECIFICATIONS

Parameter Value

Operating Frequency (Fc) 3.7 GHz
Sweep Duration (T ) 11 µs
Sweep Bandwidth (B) 50 MHz
Range Resolution 3 m
Max Target Range (Rmax) 300 m
Max Target Speed 350 km/h

Figure 6. SNR threshold-based detection for UAV.

target detection in Stage 0. The sweeps are transmitted in an

ENU setting and cover a wide area for coarse target sensing

in the environment for Stage 1. Upon detection, the system

increases sensing priority (power and, when permitted, sweep

bandwidth) and applies SNR threshold-based identification per

CPI for UAV classification. The incident angles (θk, ϕk) and

radial velocity vr,k are estimated to drive the RIS steering state

machine in Stage 2. For thresholding, we use an upper RCS

bound of −5 dBsm (0.32 m2) to represent favorable line-of-

sight aspects and a lower bound of −24 dBsm (0.004 m2)

for unfavorable orientations. Subsequent CPIs then operate

with the increased sweep bandwidth to refine 3D tracking.

In Stage 3, selected RIS tiles are steered toward the target

for fine tracking, while the remaining tiles continue wide-area

scanning to discover new targets.

(a) (b)

Figure 7. Comparison of velocity estimation: (a) raw Doppler response from
dataset; (b) post-processed result showing enhanced target visibility.

The expected SNR bounds over the coverage area for

UAV classification are shown in Fig. 6. Here, our simulated

UAV is detected with a SNR of 38.6 dB with a difference

of 1.2 dB as compared to the expected SNR of 37.4 dB.

This difference is likely due to the slight mismatch in range

estimation. The range–velocity map for a single CPI is shown

in Fig. 7a. Over a 2 ms CPI duration, the target response



appears smeared around the true range bin (actual: 78.26 m,

estimated: 79.07 m) and radial velocity (actual: 11.65 m/s,

estimated: 11.74 m/s). As responses from multiple CPIs are

accumulated, the object movement becomes clearer: the range

map shows concentration between 78–88 m and the radial

velocity clusters around –11 to –14 m/s (negative indicates the

target is moving away from the RIS), capturing the simulated

acceleration over a 90 ms interval as illustrated in Fig. 7b.

Figure 8. Groud truth and predicted trajectory of UAV2.

C. GRU-Based Prediction

The near-RT RIC offers cloud-native control with 1 ms–1 s

response, enabling real-time coordination of RIS for sensing.

To predict motion for beam steering, we adopt a GRU model.

After each sweep, 3D coordinates are derived from range and

angle estimates; sequences over a 64-length window feed the

GRU for trajectory prediction.

Table II
TRAJECTORY PREDICTION METRICS FOR DIFFERENT UAVS

ID UAV1 UAV2 UAV3 UAV4 UAV5

MAE 0.017 0.006 0.022 0.009 0.112
RMSE 0.176 0.007 0.026 0.013 0.130

Table II reports the mean absolute error (MAE) and root

mean square error (RMSE) for five simulated UAV trajectories

with varying initial velocities and acceleration profiles. The

GRU model consistently captures both linear position progres-

sion and subtle curvature induced by acceleration. UAV2, high-

lighted in the table and visualized in Fig. 8, achieves the best

performance and demonstrate the model’s ability to accurately

predict smooth, accelerated trajectories. Across all trajectories,

the GRU model achieves a training RMSE of 0.0663 and a

validation RMSE of 0.1363, indicating strong generalization

across diverse motion regimes. The slightly higher error for

UAV5 reflects more aggressive maneuvers, however, remains

within acceptable bounds for beam steering. These results

confirm the effectiveness of GRU-based modeling for UAV

trajectory prediction in RIS-assisted ISAC systems, enabling

the Near-RT RIC xApp to proactively adapt RIS configurations

and maintain continuous tracking through state transitions.

VI. CONCLUSION

This paper presents a ISAC framework with RIS and

O-RAN assisted for UAV detection in the CBRS band. It

integrates RIS-enhanced sensing, GRU-based trajectory pre-

diction, and O-RAN coordination. The system scales, responds

with low latency, and adapts under dynamic spectrum sharing.

The sensing pipeline is hierarchical and state driven. It moves

smoothly from wide-area scanning to focused tracking. Joint

resource management keeps the system responsive to diverse

UAV behaviors. Experiments show robust performance and

real-time potential across varied trajectories. To strengthen

airspace security over cities and critical infrastructure, we will

validate on real UAV flight datasets and conduct field trials

on a production O-RAN testbed. We will extend to multi-

UAV scenarios with cooperative RIS nodes and online-learning

xApps, targeting robust NLoS sensing, stable CBRS coexis-

tence, and scalable deployment across dense urban corridors.
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[17] Alexandru Marţian, Florin-Lucian Chiper, Razvan Craciunescu,

C. Vlădeanu, O. Fratu, and I. Marghescu. Rf based uav detection
and defense systems: Survey and a novel solution. 2021 IEEE In-

ternational Black Sea Conference on Communications and Networking

(BlackSeaCom), pages 1–4, 2021. doi: 10.1109/BlackSeaCom52164.
2021.9527871.

[18] Y. Xie, Ping Jiang, Yi Gu, and Xiao Xiao. Dual-source detection
and identification system based on uav radio frequency signal. IEEE

Transactions on Instrumentation and Measurement, 70:1–15, 2021. doi:
10.1109/TIM.2021.3103565.

[19] Yuan He, Jia Zhang, Rui Xi, Xin Na, Yimiao Sun, and Beibei Li. De-
tection and identification of non-cooperative uav using a cots mmwave
radar. ACM Transactions on Sensor Networks, 20:1 – 22, 2024. doi:
10.1145/3638767.

[20] A. De Maio, Jibin Zheng, T. Su, V. Carotenuto, and A. Aubry. An
adaptive radar signal processor for uavs detection with super-resolution
capabilities. IEEE Sensors Journal, 21:20778–20787, 2021. doi: 10.
1109/jsen.2021.3093779.

[21] Chenxing Wang, Jiangmin Tian, Jiuwen Cao, and Xiaohong Wang. Deep
learning-based uav detection in pulse-doppler radar. IEEE Transactions

on Geoscience and Remote Sensing, PP:1–12, 2021. doi: 10.1109/TGRS.
2021.3104907.

[22] Yuan Wei, Tao Hong, and Chaoqun Fang. Research on information
fusion of computer vision and radar signals in uav target identification.
Discrete Dynamics in Nature and Society, 2022. doi: 10.1155/2022/
3898277.

[23] Alan Frid, Y. Ben-Shimol, E. Manor, and S. Greenberg. Drones detection
using a fusion of rf and acoustic features and deep neural networks.
Sensors (Basel, Switzerland), 24, 2024. doi: 10.3390/s24082427.

[24] Yiyao Wan, Jiahuan Ji, Fuhui Zhou, Qihui Wu, and Tony Q. S. Quek.
Vision-radar fusion-based dynamic sparse intrusion uav detection for
low-air security. In 2024 16th International Conference on Wireless

Communications and Signal Processing (WCSP), pages 560–565, 2024.
doi: 10.1109/WCSP62071.2024.10827393.

[25] Cunhua Pan, Gui Zhou, Kangda Zhi, Sheng Hong, Tuo Wu, Yijin Pan,
Hong Ren, Marco Di Renzo, A Lee Swindlehurst, Rui Zhang, et al.
An overview of signal processing techniques for ris/irs-aided wireless
systems. IEEE Journal of Selected Topics in Signal Processing, 16(5):
883–917, 2022.

[26] Huayang Chen, Yechao Bai, Qiong Wang, Hao Chen, Lan Tang, and
Ping Han. Doa estimation assisted by reconfigurable intelligent surfaces.
IEEE Sensors Journal, 23:13433–13442, 2023. doi: 10.1109/JSEN.2023.
3273862.

[27] K. B. Serge Angelo Dapa, Guillaume Point, Saleh Bensator, and
Fouzia Elbahhar Boukour. Vehicular communications over ofdm radar
sensing in the 77 ghz mmwave band. IEEE Access, 11:4821–4829, 2023.
doi: 10.1109/ACCESS.2023.3235199.

[28] K. B. Serge Angelo Dapa, Fouzia Elbahhar Boukour, Guillaume Point,
and Saleh Bensator. Parametrizations of a 77 ghz ofdm joint radar
communication. IEEE Access, 13:153140–153148, 2025. doi: 10.1109/
ACCESS.2025.3596870.

[29] Xiaochan Xue, Saurabh Parkar, Shucheng Yu, and Yao Zheng. Ai-
assisted composite isac for mmwave respiration pattern recognition. In
Proceedings of the IEEE Annual Congress on Artificial Intelligence of

Things (AIoT), page Art. no. 1762147323265. IEEE, December 2025.
to appear.

[30] Fan Liu, Yuanhao Cui, Christos Masouros, Jie Xu, Tony Xiao Han,
Yonina C. Eldar, and Stefano Buzzi. Integrated sensing and communi-
cations: Toward dual-functional wireless networks for 6g and beyond.
IEEE Journal on Selected Areas in Communications, 40(6):1728–1767,
2022. doi: 10.1109/JSAC.2022.3156632.

[31] Nhan Thanh Nguyen, Quang-Doanh Vu, Kyungchun Lee, and Markku
Juntti. Hybrid relay-reflecting intelligent surface-assisted wireless com-
munications. IEEE Transactions on Vehicular Technology, 71(6):6228–
6244, 2022. doi: 10.1109/TVT.2022.3158686.

[32] Yifei Yuan, Dan Wu, Yuhong Huang, and Chih-Lin I. Reconfigurable
intelligent surface (ris) relay: Lessons of past and strategies for its
success. IEEE Communications Magazine, PP:1–7, 12 2022. doi:
10.1109/MCOM.003.2200193.

[33] Lijie Wu, Qun Yan Zhou, Jun Yan Dai, Siran Wang, Junwei Zhang,
Zhen Jie Qi, Hanqing Yang, Ruizhe Jiang, Zheng Xing Wang, Huidong
Li, Zhen Zhang, Jiang Luo, Qiang Cheng, and Tie Jun Cui. A wideband
amplifying and filtering reconfigurable intelligent surface for wireless
relay. Engineering, 2025. ISSN 2095-8099. doi: https://doi.org/10.
1016/j.eng.2025.06.015.

[34] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni,
and Tommaso Melodia. Understanding o-ran: Architecture, interfaces,
algorithms, security, and research challenges, 2022.

[35] Salim El Ghalbzouri, Karim Boutiba, Adlen Ksentini, and Mustapha
Benjillali. Neural-driven control of ris in 6g networks: A gosimris and
xapp-based framework. IEEE Networking Letters, 7:1–5, 2025. doi:
10.1109/LNET.2025.3527683.

[36] Ali Fuat Sahin, Onur Salan, Ibrahim Hokelek, and Ali Gorcin. Ris meets
o-ran: A practical demonstration of multi-user ris optimization through
ric, 2025.

[37] Maria Tsampazi, Michele Polese, Falko Dressler, and Tommaso Melo-
dia. O-ris-ing: Evaluating ris-assisted nextg open ran. ArXiv,
abs/2502.18753, 2025. doi: 10.48550/arXiv.2502.18753.

[38] Shao-Yu Lien, Chih-Cheng Tseng, Wei-Cheng Hung, Cheng-You Tsai,
Ting-Yu Liu, Der-Jiunn Deng, Yuan-Chun Lin, Shih-Cheng Lin, Chia-
Chan Chang, and Sheng-Fuh Chang. Open radio access network ric
empowered reconfigurable intelligent surface: A physical-layer security
perspective. IEEE Transactions on Industrial Cyber-Physical Systems,
2:615–625, 2024. doi: 10.1109/TICPS.2024.3484372.

[39] Bouziane Brik, Karim Boutiba, and A. Ksentini. Deep learning for
b5g open radio access network: Evolution, survey, case studies, and
challenges. IEEE Open Journal of the Communications Society, 3:228–
250, 2022. doi: 10.1109/ojcoms.2022.3146618.

[40] Simona Marinova and Alberto Leon-Garcia. Intelligent o-ran beyond
5g: Architecture, use cases, challenges, and opportunities. IEEE Access,
12:27088–27114, 2024. doi: 10.1109/ACCESS.2024.3367289.

[41] E.F. Knott, J.F. Schaeffer, and M.T. Tulley. Radar Cross Section. Radar,
Sonar and Navigation Series. Institution of Engineering and Technology,
2004. ISBN 9781891121258.

[42] Chin-Che Tsai, Cheng-Tai Chiang, and Wen-Jiao Liao. Radar cross
section measurement of unmanned aerial vehicles. In 2016 IEEE

International Workshop on Electromagnetics: Applications and Student

Innovation Competition (iWEM), pages 1–3, 2016. doi: 10.1109/iWEM.
2016.7504915.

[43] Jan Farlik, Miroslav Kratky, Josef Casar, and Vadim Stary. Radar cross
section and detection of small unmanned aerial vehicles. In 2016 17th

International Conference on Mechatronics - Mechatronika (ME), pages
1–7, 2016.

[44] Ioannis K. Kapoulas, Antonios Hatziefremidis, A. K. Baldoukas, Evan-
gelos S. Valamontes, and J. C. Statharas. Small fixed-wing uav radar
cross-section signature investigation and detection and classification of
distance estimation using realistic parameters of a commercial anti-
drone system. Drones, 7(1), 2023. ISSN 2504-446X. doi: 10.3390/
drones7010039.

[45] Abigael Taylor and Dominique Poullin. Experimental uav detection
using 4g-lte-based passive radar. In 2023 IEEE International Radar

Conference (RADAR), pages 1–6, 2023. doi: 10.1109/RADAR54928.
2023.10371153.

[46] Sirish Deshmukh and K J Vinoy. Design and development of radar for
detection of drones and uavs. In 2022 IEEE Microwaves, Antennas,

and Propagation Conference (MAPCON), pages 1714–1719, 2022. doi:
10.1109/MAPCON56011.2022.10047163.

[47] Zhibo Tang, He Ma, Youmin Qu, and Xingpeng Mao. Uav detection
with passive radar: Algorithms, applications, and challenges. Drones, 9
(1), 2025. ISSN 2504-446X. doi: 10.3390/drones9010076.


	Introduction
	Related Work
	System Model
	RIS-Assisted FMCW Sensing and Measurement
	Link Budget and Path Loss
	UAV Detection

	Scheme
	Multi-Stage State Machine for Adaptive Detection
	RIS Configuration Space
	GRU-Based Predictive RIS Configuration
	O-RAN Integration Architecture

	Evaluation
	Experimental Setup
	Multi-Stage Detection
	GRU-Based Prediction

	Conclusion

