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Abstract—The rapid rise of computation- & data-intensive ap-
plications, such as machine learning training and inference, poses
significant challenges for joint communication, computation, and
caching (3C) scheduling over the network. In this work, we
study a cache-enabled computation network, where each node
can forward packets, cache data, and compute tasks. Each task
produces non-cacheable results and requires two types of input
data: (i) cacheable data orchestrated by the cloud server and
(ii) non-cacheable, user-specific data uploaded together with the
request from the user. Existing joint 3C scheduling approaches
either assume restrictive network topologies or neglect the size of
user-specific input data, resulting in the widely used symmetric
routing assumption, where computation results always return to
the user following the reverse path of the corresponding requests.
We propose our joint 3C framework, MICS, a distributed frame-
work that incorporates user-specific data size into the model
and jointly schedules network operations to minimize convex
flow and computation costs over arbitrary network topologies.
By breaking the symmetric routing, MICS significantly reduces
system costs. In MICS, a dual subgradient-based control plane
ensures ergodic convergence of the 3C variables under the Slater
condition, while the data plane executes practical 3C operations.
Simulations demonstrate up to a 32.1% improvement in average
request satisfaction time compared to baseline methods.

I. INTRODUCTION

The rapid growth of computation- and data-intensive appli-

cations poses significant challenges for efficiently allocating

the limited computation and network resources. To address

these challenges, computation offloading has been widely ex-

plored in various domains, including scientific computing [1]

and machine learning [2]. To further reduce the latency,

caching techniques have been incorporated to enable data

reuse. In particular, pull-based network architectures, such

as Named Data Networking (NDN) [3], have been adopted

for data-intensive applications [4], leveraging name-based in-

network caching to enhance performance.

Optimally utilizing processing, storage, and bandwidth re-

sources in the network through intelligent communication,

computation, and caching (3C) scheduling is, therefore, a

fundamental challenge for achieving efficient data-intensive

computation. Toward this direction, numerous joint optimiza-

tion frameworks have also been proposed recently.

Works in [5], [6] study the joint 3C scheduling algorithm

in a wireless edge network, but both works are restricted to

the specific tree-topology edge network and can only cache

at the wireless access points or users. The work in [7]

designs the joint 3C algorithm for throughput optimality across

arbitrary network topologies, but can only centrally schedule

routing, computing, and caching operations. DECO [8], de-

veloped from VIP [9] jointly and distributively optimizes 3C

scheduling for throughput optimality with an arbitrary multi-

hop topology. Works in [7] and [8] both achieve throughput

optimality according to the Lyapunov-drift theory, but do

not minimize network costs. The LOAM framework in [10]

distributively minimizes the nonlinear forwarding, caching,

and computation costs with elastic caching capabilities, but

it neglects the size of user-specific input data.

To the best of our knowledge, this is the first paper that

distributively minimizes the nonlinear convex costs associated

with traffic flow and computation workloads over a cache-

enabled arbitrary topology network with a general 2-input-

1-output (2I1O) computation model. In the 2I1O model,

computation tasks output non-cacheable computation results

to the requesting node and input two types of data to start:

(a) cacheable network-stored data (also referred to as content)

from cloud storage or cache nodes and (b) non-cacheable user-

specific uploaded data accompanying computation requests

from requester nodes. For example, the content may represent

machine learning models or public datasets, while user-specific

data could include task parameters or uploaded camera images

in VR applications.

This work is based on the pull-based computation schedul-

ing architecture, NDN. Take DECO [8] as an example, the

computation tasks are remotely called in the following way in

NDN. As illustrated by the symmetric routing case in Figure 1,

a computation remote call begins with a user client sending

a Computation Interest Packet (CIP). The description of the

computation request, including the function name, input data

names, and estimated computation cost, together with the user-

specific input data, is carried by Computation Interest Packets

(CIPs). These CIPs target clouds that storing input content

as the final destinations, but can also be opportunistically

accepted and executed by any node receiving them. If a node

decides to compute the task locally, it will send Content

Data Interest Packets (DIPs) to retrieve the network-stored

data (content) as part of the computation input. DIPs can be

satisfied by the cloud node storing the corresponding content,

or by the nodes that cache it. The returned Content Data

Packets (DPs) will go through the reverse path of the corre-

sponding DIPs. The forwarding nodes can cache DPs during

forwarding for possible reuse. After receiving all input data,

the computation execution node starts the computation. When

the computation finishes, the computation results return to the



requester in Computation Data Packets (CDPs), following the

reverse path of CIPs. Since CIPs are assumed to be user-

specific, unlike network-stored data, the returned CDPs are

assumed to be noncacheable since results are user specific.
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Fig. 1: The computation network with symmetric and asym-

metric routing cases.

We extend DECO’s model by considering nonnegligible

user-specific data and breaking the symmetric routing assump-

tion, which is widely adopted in existing joint 3C scheduling

algorithms [8], [10]–[12]. The CIPs and CDPs in our model

can be routed along different paths, as shown in the asymmet-

ric routing case in Figure 1. This work is the first to theoreti-

cally demonstrate that when the sizes of the user-specific input

data and the computation results are nonnegligible, breaking

the symmetric routing rule helps further minimize network

costs compared to the symmetric case.

Our algorithm, named “MIn-cost joint Communication,

Computation, and Caching Scheduling with asymmetric rout-

ing (MICS)” introduces a two-layer network structure, similar

to DECO, consisting of a control plane and an actual plane.

A distributive dual-subgradient algorithm runs in the control

plane. The dual-subgradient method converges to the dual

optimal solutions with suitable step sizes in each iteration.

By appropriate weighted averaging of the primal variables

generated in dual-subgradient iterations over the iteration

indices, we get the ergodic sequence, which converges to the

feasible optimal primal solutions when the Slater condition

holds [13]. In the actual plane, we perform random forwarding,

caching, and computation scheduling operations following the

values of ergodic sequence.

We summarize our contributions as follows:

• We design a distributive joint 3C scheduling algorithm for

arbitrary multi-hop network topologies to minimize the

aggregated continuously differentiable and monotone in-

creasing convex cost functions associated with link flows

and computation workloads, under the 2I1O scenario.

• We propose breaking the symmetric routing rules for

computation requests and results, and show that this could

further reduce network costs.

• We prove that the ergodic sequence of primal variables

generated via our MICS algorithm converges to the

optimal primal solutions if the Slater condition holds.

• In the numerical evaluation, our joint 3C scheduling im-

plementation outperforms several baseline policies over

different network topologies by up to 32.1% decrease in

request satisfaction time.

II. MODEL

A. Network Model

Consider a time-slotted joint 3C scheduling system over a

multi-hop wireline network. The network topology is repre-

sented as a directed graph G = (N ,L), where N is the

1-indexed set of N nodes, and L is the set of L directed

links. There are two kinds of nodes in our model, the cloud

and the non-cloud nodes. Each node n ∈ N can forward

packets, cache received data, and execute computation tasks.

The network resources have multiple capacity restrictions,

where Ln ≥ 0 is the cache capacity (in bits) at node n,

Cn ≥ 0 is the computation capacity in instructions per slot

(IPS) at node n, and Cab > 0 is the link capacity (in bits per

slot) of the link (a, b) ∈ L.

MICS performs forwarding and caching operations over K
types of network stored contents, which forms a 1-indexed

content set K. We assume the size of content k is zk in bits,

and at least one node src(k) ∈ N in the network serves

as the data source for the content. Such data sources are

the destination of the corresponding requests. Nodes can also

cache content to satisfy data requests opportunistically. Let

M be the 1-indexed set of function types. Each computation

request can be identified by the tuple (m, k) ∈ M×K with

computation function m, and input content k. A (m, k) request

admitted into the network at node θ ∈ N , will be further

categorized and identified with the triplet (m, k, θ).
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Fig. 2: Flow Dynamics with Nodes a → n → b.

B. Flow Dynamics

In this section, we present the flow dynamics of our time-

slotted computation network model, inspired by pull-based

Remote Procedure Call (RPC) protocols [14]. Figure 2 shows

the flow dynamics at node n, which is connected to the

neighboring nodes a and b. The exogenous request arrival

rates for task (m, k) at node θ are λm,k
θ (in requests per

slot). The CIPs will be admitted together with the necessary

computation parameters and user-specific input data. Assume

the size of the uploaded data for each (m, k) task is zm,k bits.

The time-averaged exogenous arrival rates of CIPs (m, k, θ)
in bits at node n is rm,k,θ

n ≜ I(n = θ)zm,kλ
m,k
n , where I is

the indicator function.

After being admitted into the network, if not computed

locally, the CIPs will be forwarded to the next hop together



with the necessary computation parameters and user-specific

input data. The transmission rate of CIP flows for tasks

(m, k, θ) through the link (a, b) is fm,k,θ
ab ≥ 0 (in bits per

slot). In the network, at least one computation cloud stores

content k and has considerable computation resources. Such

clouds are the destinations for the corresponding CIPs. A CIP

reaching the destination will no longer be forwarded. Along

the forwarding path to the clouds, nodes receiving CIPs can

also opportunistically accept and compute the tasks.

If a node n decides to compute the tasks with type (m, k, θ),
the corresponding assigned computation rate at node n is

hm,k,θ
n ≥ 0 in instructions per slot (IPS). The sum of the

assigned computation rates at node n should be restricted by

the local computation capacity Cn, i.e.,
∑

m∈M,k∈K,θ∈N

hm,k,θ
n ≤ Cn (1)

Assume that each task with type (m, k) needs qm,k com-

putation resources (in instructions) to finish, and then the

service rate in bits for CIPs of type (m, k, θ) at node n is

zm,kh
m,k,θ
n /qm,k. Due to the CIP (m, k, θ) flow conservation

at each node n, we have the constraint dm,k,θ
n ≜

rm,k,θ
n +

∑

a∈N

fm,k,θ
an −

∑

b∈N

fm,k,θ
nb −

zm,kh
m,k,θ
n

qm,k

≤ 0. (2)

It means that the difference between the CIP arrival rates and

the service rates is non-positive.

As Figure 1 shows, CIP flows at node n will be converted

into both CDP and DIP flows if the computation is scheduled

locally. The computation result size of task (m, k) is zresm,k bits.

If node n = θ (i.e., the requester node), the CDPs of type θ at

node n are are not forwarded further and eliminated. If n ̸= θ,

the transmission rate of CDPs of type θ through the link (n, b)
is gθnb ≥ 0 (in bits per slot). Due to CDP flow conservation,

for any CDP of type θ at any node n, if n ̸= θ, we have dθn ≜

∑

m∈M,k∈K

zresm,kh
m,k,θ
n /qm,k +

∑

a∈N

gθan −
∑

b∈N

gθnb ≤ 0. (3)

DIPs retrieve cacheable content, which is returned as DPs

to complete the computation inputs. For the DIPs and DPs,

we keep the symmetric routing feature, requiring the DPs to

go through the reverse path of the corresponding DIPs, since

we assume the content Interest Packet sizes are negligible.

The DIPs at node n for content k can be served by either

a local cache or forwarded to next hops. The overall cache

status at node n can be represented by an indicator vector

sn = [s1n, s
2
n, ..., s

K
n ]T . A cache vector sn is feasible if

sn ∈ {0, 1}K , zT
sn ≤ Ln, ∀n ∈ N , ∀n ∈ N , (4)

where z = [z1, ..., zK ]T . The restrictions indicate (i) any

element skn = 1 if the content k is cached by the node

n during slot t; otherwise, skn = 0; (ii) cached data can-

not exceed the cache space limit. The speed of data read

and duplication after cache hits is γn (in bits/slot) at node

n. Our model allows the cached content at each node to

dynamically adapt for opportunistic cache hits. We define

the probability of content k being cached at node n: ykn ≜
∑

sn:sn∈{0,1}K∧
∑

k∈K
sk
n
zk≤Ln

I(skn = 1)P (sn) Therefore,

the vector yn ≜ [y1n, ..., y
K
n ]T is inside the convex hull of

cache status vectors at node n such that

yn ∈ Co(sn). (5)

If forwarded, the transmission rate of DIPs for content k ∈ K
through the link (n, b) is fk

nb ≥ 0 (in bits per slot). Due to DIP

flow conservation, for any type k at any node n ̸= src(k), we

have the constraint dkn ≜

∑

m∈M,θ∈N

zkh
m,k,θ
n

qm,k

+
∑

a∈N

fk
an −

∑

b∈N

fk
nb − γny

k
n ≤ 0. (6)

The assigned forwarding rates, in bits, for the traffic flows

should also satisfy the link capacity constraints. For any link

(a, b) ∈ L, the transmission rates follow the inequality
∑

k∈K

fk
ba +

∑

m,k,θ

fm,k,θ
ab +

∑

θ

gθab ≤ Cab. (7)

Here, we use the reverse node pair (b, a) for DIP flow

summation instead of (a, b) since, as mentioned above, the

size of the Interests for DIPs is neglected compared to the

returned content, and we reserve the link bandwidth for the

returned content when we forward DIPs.

C. Problem Formulation

For each directed link (a, b) ∈ L, we define the flow

cost function Dab(Fab). Dab(Fab) is a continuously differ-

entiable, monotone increasing, and strictly convex function

associated with the total flow through link (a, b). Define

Fab ≜
∑

k∈K fk
ba +

∑

m∈M,k∈K,θ∈N fm,k,θ
ab +

∑

θ∈N gθab to

be the total flows in bits per slot through link (a, b).
For each node n, we define the computation workload cost

function Gn(hn). Gn(hn) is a continuously differentiable,

monotone increasing, and strictly convex function associated

with the aggregated computation workloads hn at node n,

where hn ≜
∑

m∈M,k∈K,θ∈N hm,k,θ
n is the total workloads

assigned at node n in instructions per second.

Cost functions Dab and Gn can take various forms de-

pending on the control objectives. A commonly used cost

function represents the time-averaged waiting queue size in an

M/M/1 queue, expressed as D(F ) = F/(C − F ) [15], where

F denotes the total scheduled traffic flow or computation

workload, and C represents the link or computation capacity.

The primal optimization problem (PP) is cast as

min
f ,g,h,y

∑

(a,b)∈L

Dab(Fab) +
∑

n∈N

Gn(hn) (PP)

sbj. to (a) nonnegative orthant constraints (nc)

fm,k,θ
ab ≥ 0, fk

ab ≥ 0, gθab ≥ 0, hm,k,θ
n ≥ 0,

∀m ∈ M, k ∈ K.(a, b) ∈ L, θ ∈ N ,

(b) capacity constraints(1), (4), (5), (7), (cc)

(c) flow conservation constraints(2), (3), (6), (fc)



where f ,g,h,y are vectors of variables, defined as

f ≜ (fm,k,θ
ab )a,b,θ∈N ,m∈M,k∈K ⊕ (fk

ab)a,b∈N ,k∈K,

g ≜ (gθab)a,b,θ∈N , h ≜ (hm,k,θ
n )n,θ∈N ,m∈M,k∈K,

y ≜ (ykn)n∈N ,k∈K, and ⊕ denotes vector concatenation

III. ALGORITHM

A. Asymmetric Routing

When we formulate Problem PP, we allow asymmetric

routing. We now formally establish its benefits.

Theorem 1: Asymmetric routing can potentially reduce the

optimal cost values, and also enlarge the feasible region of

problem PP compared to the symmetric case.

Proof: Please refer to [16].

B. Dual Subgradient Method

In the following sections, we will use a dual subgradient

method to distributively solve the problem PP in the control

plane of the computation network. We first write the corre-

sponding dual problem (DP).

max
u,v,w

q(u,v,w), sbj. to u,v,w ≥ 0, (DP)

where u ≜ (um,k,θ
n )n,θ∈N ,m∈M,k∈K, v ≜ (vθn)n,θ∈N ,

w ≜ (wk
n)n∈N ,k∈K. The dual function value q(u,v,w)

is obtained via solving the Lagrange function minimization

problem LMP(u,v,w) given the dual variables. That is

min
f ,h,g,y

∑

(a,b)∈L

Dab(Fab) +
∑

n∈N

Gn(hn) +
∑

n∈N ,k∈K

wk
nd

k
n

+
∑

n,θ∈N ,m∈M,k∈K

um,k,θ
n dm,k,θ

n +
∑

n,θ∈N

vθnd
θ
n (LMP)

subject to (a) nonnegative orthant constraints (nc) and (b)

capacity constraints (cc). Here vθn ≡ 0 if n = θ and wk
n ≡ 0

if n ∈ src(k). dm,k,θ
n , dθn, d

k
n come from definitions in (2), (3),

and (6) but can be positive as we relax the constraints.

Algorithm 1 Dual Projected Subgradient Method

1: Initialization: set u(0) = 0, v(0) = 0, w(0) = 0.

2: General step: for any t = 0, 1, ... execute following steps:

3: (a) set a harmonic series step size γ(t) = α
β+t

, α, β > 0;

4: (b) for ∀a, b, n, θ ∈ N , k ∈ K,m ∈ M, set fm,k,θ
ab (t),

gθab(t), f
k
ab(t), h

m,k,θ
n (t), yn(t) according to the solutions

in section III-C;

5: (c) set u(t+ 1),v(t+ 1),w(t+ 1) as followings:

6: at any node n ∈ N , for any θ ∈ N ,m ∈ M, k ∈ K, set

um,k,θ
n (t+ 1) =

(

um,k,θ
n (t) + γ(t)dm,k,θ

n (t)
)+

7: at any node n ∈ N , for any θ ∈ N , set vθn(t + 1) =
(

vθn(t) + γ(t)dθn(t)
)+

8: at any node n ∈ N , for any n ∈ N , k ∈ K, set wk
n(t+1) =

(

wk
n(t) + γ(t)dkn(t)

)+

9: Here, (x)+ ≜ max{x, 0}.

We will run Algorithm 1, the dual subgradient method [13],

distributively over the network nodes to solve the optimization

problem. The dual subgradient method includes updates for

both the primal and dual variables. In Algorithm 1 part (a),

we set the step sizes over the network based on the iteration

indices t. In part (b), for each iteration t, the Lagrangian func-

tion will be distributively minimized over the network nodes

to solve the LMP problem and update primal variables with

these solutions. After updating primal variables in part (b),

Algorithm 1 part (c) updates the dual variables distributively

across network nodes using a projected subgradient method.

Ignoring the overhead from synchronizing iteration indices

across the network, the per-iteration computational complexity

of Algorithm 1 at node n is O(MKN2) + O(KLn), if the

dynamic programming method is used to solve the caching

knapsack problem, which will be further discussed in the

following section.

C. Solve LMP problem.

Forwarding Solution: For ease of exposition, we first

define δm,k,θ
ab as the difference of the duality variables for node

pair (a, b):

δm,k,θ
ab ≜ {um,k,θ

a − um,k,θ
b }, ∀m ∈ M, k ∈ K, θ ∈ N

δ0,0,θab ≜ {vθa − vθb}, ∀θ ∈ N , δ0,k,0ab ≜ {wk
b − wk

a}, ∀k ∈ K.

Notice that since we reserve bandwidth for the returned

content, δ0,k,0ab is the dual variable difference for DIP flows in

the reverse direction of link (a, b). Next, define the maximum

dual variable difference δm
∗,k∗,θ∗

ab for link (a, b)

δm
∗,k∗,θ∗

ab = ∆ab ≜ max
(m,k,θ)∈Φ

{

δm,k,θ
ab

}

, (8)

where Φ = M ∪ {0} × K ∪ {0} × N ∪ {0}/{(0, 0, 0)} and

the maximum difference tuple is determined with ties broken

arbitrarily. Then, at any node n ∈ N , run algorithm 2.

Algorithm 2 Forwarding assignment given u(t),v(t),w(t)

1: For any b s.t. (n, b) ∈ L, get (m∗, k∗, θ∗) and ∆ab as (8)

2: D′
nb is the derivative of the flow cost function

3: if D′
nb(0)−∆nb ≥ 0 then

xm,k,θ
ab (t) = 0, ∀(m, k, θ) ∈ Φ

4: else Denote D′−1
nb as the inverse function of the first-order

derivative of Dnb, and PX as the projection operation to

the set X. Then, xm,k,θ
nb (t) =

{

P[0,Cnb]

(

D′−1
nb (∆nb)

)

, if(m, k, θ) = (m∗, k∗, θ∗)

0, otherwise

5: end if

6: For any m ∈ M, k ∈ K, θ ∈ N , set fm,k,θ
nb (t) =

xm,k,θ
nb (t), gθnb(t) = x0,0,θ

nb (t), fk
bn(t) = x0,k,0

nb (t).

Caching Solution: We will solve the caching subproblem

at each node n

max
∑

k∈K

wk
n(t)y

k
n(t), sbj. to yn(t) ∈ Co(sn)

sn ∈ {0, 1}K , zT
sn ≤ Ln, ∀n ∈ N , ∀n ∈ N



This is a linear programming problem over a convex poly-

hedron. Thus, the optimal solution must lie at the extreme

points (vertices). Also, because the feasible set is a closed

convex hull Co(sn), the extreme points of the convex hull

must form a subset of the feasible cache vectors {sn | sn ∈
{0, 1}K , zT

sn ≤ Ln}. This means that, although y is a vector

with continuous real number elements, an optimal solution can

always be found at a vertex of the convex hull, which must be

a feasible sn. Therefore, this caching maximization problem

can be converted into a knapsack problem with capacity Ln

and K contents, where content k has value wk
n(t) and size zk.

This can be solved in pseudo-polynomial time with dynamic

programming. In a simple case, with equal-sized content,

∀k ∈ K, we cache the contents with the largest wk
n(t) values

Computation Solution: At each node n ∈ N , we define

δm,k,θ
n ≜

um,k,θ
n zm,k − vθnz

res
m,k − wk

nzk

qm,k

δm
∗,k∗,θ∗

n = ∆∗
n ≜ max

m∈M,k∈K,θ∈N
δm,k,θ
n ,

where the ties are broken arbitrarily. Then on each node n at

iteration t, set

hm,k,θ
n (t) =

{

h∗(t), if(m, k, θ) = (m∗, k∗, θ∗).

0, otherwise

where

h∗(t) =







0, if G′
n(0)−∆m∗,k∗,θ∗

n (t) ≥ 0,

P[0,Cn]

(

G′
n

−1
(

∆m∗,k∗,θ∗

n

))

, otherwise.

Here, G′
n is the first derivative of the function Gn with

respect to the total computation workload hn, and G′
n
−1

is

the inverse function of G′
n.

Theorem 2: The above forwarding, caching, and computa-

tion solutions solve the LMP problem.

Proof: Please refer to [16].

D. Ergodic Sequence

Define z(t) as the vector consisting of all primal variables at

iteration t. Then, the ergodic sequence for the primal variables

is set as follows. Let α ≥ 0 be a non-negative constant and

z̄(1) = z̄(0) = z(0) and if t ≥ 2

z̄(t) =

∑t−2
i=0(i+ 1)αz̄(t− 1) + tαz(t− 1)

∑t−1
i=0(i+ 1)α

.

E. Primal Convergence

To express the convergence analysis clearly, first define Z∗

as the set of feasible optimal solutions of Problem PP.

Theorem 3 (Convergence): Suppose the Slater condition

holds for the programming problem PP. Then

min
v∈Z∗

∥v − z̄(t)∥2 → 0, as t → ∞,

where Z∗ is a nonempty, closed, and convex set.

Proof: Refer to [16] for proof.
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Fig. 3: Simulations on LHC, and GEANT. With arrival rates 30
and 10 respectively, the diagrams show the per-request latency

achieved by MICS and the baseline policies.

F. 3C Scheduling in the Actual Plane

Although the ergodic sequence converges, the constraints

can be violated after a finite number of iterations. Here,

we propose a practical implementation for scheduling oper-

ations in the actual network. We perform our optimization

algorithm with one iteration per slot and get the updated

ergodic sequence. At each node n, whenever a CIP, CDP, or

DIP is received, the forwarder at the node will perform the

forwarding and computation scheduling operations randomly

according to the probability derived from the current ergodic

sequence values z̄(t). Use .̄ denoting the ergodic sequence

variables. When a CIP(m, k, θ) arrives, it may be forwarded

to the neighboring node b with probability proportional to

the weight
(

f̄m,k,θ
nb (t)− f̄m,k,θ

bn (t)
)+

, or be scheduled for

local computation with probability proportional to the weight

zm,kh̄
m,k,θ
n (t). If all weights mentioned above are zero, we

will schedule forwarding direction b with probability propor-

tional to
∑

θ

(

f̄m,k,θ
nb (t)− f̄m,k,θ

bn (t)
)+

. If all weights above

are zero, we will try to use the In the worst case, if both

methods fail, we forward the CIPs along the shortest path.

CDPs and DIPs are forwarded in a similar way.

For caching control, in each iteration t, treat the continuous

cache variables ȳkn as the cache score. When the content is

received at node n in the actual plane, do cache replacement

to maximize the total cache score for the contents in the cache

space. This has no theoretical guarantee, but is simple enough

and works well in our simulation.

IV. PERFORMANCE EVALUATION
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Fig. 4: GEANT: Costs & Constraints Violation over iterations.

We numerically evaluate our MICS algorithm across the

LHC and GEANT topologies [16] using a task-level simulator.



The clouds and data sources are PRD, MIT, FNL, and UFL

in LHC, and nodes 10− 21 in GEANT. The Requester nodes

are WSC, VND, NBR, and UCSD in LHC, and nodes 0 − 9
in GEANT. For all topologies, the link capacity is 100 Gbps,

the cache capacity is 10 GB per node, the user-specific data

is 1 GB, the content is 2 GB, the computation result is 0.5
GB each, and the cache read-out speed is 20 GB/s. Each non-

cloud node has computation capacity (IPS) 2 × 108 in LHC

and 4 × 108 in GEANT, respectively. Each cloud node has

4× 109 IPS, and each task costs 108 instructions.

We evaluate 5 baseline policies, as shown in Figure 3.

In RND, every forwarding node schedules computation with

probability 0.5. In CAE, all tasks are computed at the edge.

In CAC, all tasks are computed in the cloud. RND, CAE,

and CAC use LFU as their cache eviction policy and shortest

path as their forwarding policy. In SYMICS, we run the same

control algorithm as MICS but force symmetric routing in the

actual data plane. In DECO, MICS and SYMICS, the slot

length is 0.2 seconds. We set the step size γ(t) = 500
500+t

for

MICS and the ergodic average parameter α = 3.

For all the tests, we have 50 different tasks and contents,

respectively. Each requester generates computation requests

according to a Poisson Process at a given arrival rate λ.

Indices of the function and content are randomly picked

independently following the Zipf(1) distribution to generate

new computation requests. The tests generate new computation

requests during a 20-minute active period and wait for the

return of all the results. After all results are returned, we

calculate the computation satisfaction time per request. In

MICS and SYMICS, we run our algorithm in the control plane

for 3.6 ∗ 104 iterations before the active period to preheat.

In Figure 3, we run LHC test with an arrival rate 30
requests/s per requester node and GEANT test with an ar-

rival rate 10 requests/s per requester node. We measure the

computation satisfaction time (latency) per request over the

whole network. Such latency is defined as the time between

when the requester generates a computation request and when

the computation result is returned to the requester. We show

the MICS delay in seconds and the percentage reduction in

delay compared to other policies. In numerical results, MICS

outperforms all the compared baseline policies by at least

25.7% decrease in latency in the LHC test and at least 32.1%
decrease in latency in the GEANT test. In Figure 4, we show

the convergence status of MICS in the GEANT test with

an arrival rate 10. We can see that the constraint violations

continue to decrease as the cost approaches certain values.

V. CONCLUSION

This work introduces a pull-based computation framework,

MICS, with a distributed control policy that jointly optimizes

the forwarding, caching, and computation scheduling under the

2I1O computation scenario. We design a joint 3C optimization

algorithm in the control plane based on a dual subgradient

method to minimize the convex forwarding and computation

costs. We prove the primal convergence of the ergodic se-

quence of forwarding, caching, and computation scheduling

variables. We demonstrate the significance of asymmetric

routing in reducing costs compared to the symmetric case. We

also design a realistic actual plane implementation following

the result of the control plane, and show that MICS outper-

forms several baseline policies in the numerical evaluation

concerning the average computation request satisfaction time

and decreases the latency by up to 32.1% compared to all the

other policies.
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