MICS: Min-cost Joint 3C Scheduling with
Asymmetric Routing

Yuanhao Wu, Edmund Yeh
Northeastern University, Boston, MA, USA
wu.yuanh@northeastern.edu, eyeh@ece.neu.edu

Abstract—The rapid rise of computation- & data-intensive ap-
plications, such as machine learning training and inference, poses
significant challenges for joint communication, computation, and
caching (3C) scheduling over the network. In this work, we
study a cache-enabled computation network, where each node
can forward packets, cache data, and compute tasks. Each task
produces non-cacheable results and requires two types of input
data: (i) cacheable data orchestrated by the cloud server and
(ii) non-cacheable, user-specific data uploaded together with the
request from the user. Existing joint 3C scheduling approaches
either assume restrictive network topologies or neglect the size of
user-specific input data, resulting in the widely used symmetric
routing assumption, where computation results always return to
the user following the reverse path of the corresponding requests.
We propose our joint 3C framework, MICS, a distributed frame-
work that incorporates user-specific data size into the model
and jointly schedules network operations to minimize convex
flow and computation costs over arbitrary network topologies.
By breaking the symmetric routing, MICS significantly reduces
system costs. In MICS, a dual subgradient-based control plane
ensures ergodic convergence of the 3C variables under the Slater
condition, while the data plane executes practical 3C operations.
Simulations demonstrate up to a 32.1% improvement in average
request satisfaction time compared to baseline methods.

I. INTRODUCTION

The rapid growth of computation- and data-intensive appli-
cations poses significant challenges for efficiently allocating
the limited computation and network resources. To address
these challenges, computation offloading has been widely ex-
plored in various domains, including scientific computing [1]
and machine learning [2]. To further reduce the latency,
caching techniques have been incorporated to enable data
reuse. In particular, pull-based network architectures, such
as Named Data Networking (NDN) [3], have been adopted
for data-intensive applications [4], leveraging name-based in-
network caching to enhance performance.

Optimally utilizing processing, storage, and bandwidth re-
sources in the network through intelligent communication,
computation, and caching (3C) scheduling is, therefore, a
fundamental challenge for achieving efficient data-intensive
computation. Toward this direction, numerous joint optimiza-
tion frameworks have also been proposed recently.

Works in [5], [6] study the joint 3C scheduling algorithm
in a wireless edge network, but both works are restricted to
the specific tree-topology edge network and can only cache
at the wireless access points or users. The work in [7]
designs the joint 3C algorithm for throughput optimality across
arbitrary network topologies, but can only centrally schedule

routing, computing, and caching operations. DECO [8], de-
veloped from VIP [9] jointly and distributively optimizes 3C
scheduling for throughput optimality with an arbitrary multi-
hop topology. Works in [7] and [8] both achieve throughput
optimality according to the Lyapunov-drift theory, but do
not minimize network costs. The LOAM framework in [10]
distributively minimizes the nonlinear forwarding, caching,
and computation costs with elastic caching capabilities, but
it neglects the size of user-specific input data.

To the best of our knowledge, this is the first paper that
distributively minimizes the nonlinear convex costs associated
with traffic flow and computation workloads over a cache-
enabled arbitrary topology network with a general 2-input-
I-output (2/1/0) computation model. In the 2110 model,
computation tasks output non-cacheable computation results
to the requesting node and input two types of data to start:
(a) cacheable network-stored data (also referred to as content)
from cloud storage or cache nodes and (b) non-cacheable user-
specific uploaded data accompanying computation requests
from requester nodes. For example, the content may represent
machine learning models or public datasets, while user-specific
data could include task parameters or uploaded camera images
in VR applications.

This work is based on the pull-based computation schedul-
ing architecture, NDN. Take DECO [8] as an example, the
computation tasks are remotely called in the following way in
NDN. As illustrated by the symmetric routing case in Figure 1,
a computation remote call begins with a user client sending
a Computation Interest Packet (CIP). The description of the
computation request, including the function name, input data
names, and estimated computation cost, together with the user-
specific input data, is carried by Computation Interest Packets
(CIPs). These CIPs target clouds that storing input content
as the final destinations, but can also be opportunistically
accepted and executed by any node receiving them. If a node
decides to compute the task locally, it will send Content
Data Interest Packets (DIPs) to retrieve the network-stored
data (content) as part of the computation input. DIPs can be
satisfied by the cloud node storing the corresponding content,
or by the nodes that cache it. The returned Content Data
Packets (DPs) will go through the reverse path of the corre-
sponding DIPs. The forwarding nodes can cache DPs during
forwarding for possible reuse. After receiving all input data,
the computation execution node starts the computation. When
the computation finishes, the computation results return to the

requester in Computation Data Packets (CDPs), following the
reverse path of CIPs. Since CIPs are assumed to be user-
specific, unlike network-stored data, the returned CDPs are
assumed to be noncacheable since results are user specific.

Forwarding
Node

. Computation _—
L Capacity [User
— Link coP
{3 cloud R)
CDP.
IAsymmetric Routing N

Fig. 1: The computation network with symmetric and asym-
metric routing cases.

We extend DECO’s model by considering nonnegligible
user-specific data and breaking the symmetric routing assump-
tion, which is widely adopted in existing joint 3C scheduling
algorithms [8], [10]-[12]. The CIPs and CDPs in our model
can be routed along different paths, as shown in the asymmet-
ric routing case in Figure 1. This work is the first to theoreti-
cally demonstrate that when the sizes of the user-specific input
data and the computation results are nonnegligible, breaking
the symmetric routing rule helps further minimize network
costs compared to the symmetric case.

Our algorithm, named “MlIn-cost joint Communication,
Computation, and Caching Scheduling with asymmetric rout-
ing (MICS)” introduces a two-layer network structure, similar
to DECO, consisting of a control plane and an actual plane.
A distributive dual-subgradient algorithm runs in the control
plane. The dual-subgradient method converges to the dual
optimal solutions with suitable step sizes in each iteration.
By appropriate weighted averaging of the primal variables
generated in dual-subgradient iterations over the iteration
indices, we get the ergodic sequence, which converges to the
feasible optimal primal solutions when the Slater condition
holds [13]. In the actual plane, we perform random forwarding,
caching, and computation scheduling operations following the
values of ergodic sequence.

We summarize our contributions as follows:

o We design a distributive joint 3C scheduling algorithm for
arbitrary multi-hop network topologies to minimize the
aggregated continuously differentiable and monotone in-
creasing convex cost functions associated with link flows
and computation workloads, under the 2110 scenario.

o We propose breaking the symmetric routing rules for
computation requests and results, and show that this could
further reduce network costs.

o We prove that the ergodic sequence of primal variables
generated via our MICS algorithm converges to the
optimal primal solutions if the Slater condition holds.

o In the numerical evaluation, our joint 3C scheduling im-
plementation outperforms several baseline policies over
different network topologies by up to 32.1% decrease in
request satisfaction time.

II. MODEL
A. Network Model

Consider a time-slotted joint 3C scheduling system over a
multi-hop wireline network. The network topology is repre-
sented as a directed graph G = (N, L), where N is the
1-indexed set of N nodes, and £ is the set of L directed
links. There are two kinds of nodes in our model, the cloud
and the non-cloud nodes. Each node n € N can forward
packets, cache received data, and execute computation tasks.
The network resources have multiple capacity restrictions,
where L, > 0 is the cache capacity (in bits) at node n,
C, > 0 is the computation capacity in instructions per slot
(IPS) at node n, and Cy; > 0 is the link capacity (in bits per
slot) of the link (a,b) € L.

MICS performs forwarding and caching operations over K
types of network stored contents, which forms a 1-indexed
content set C. We assume the size of content k is z; in bits,
and at least one node src(k) € AN in the network serves
as the data source for the content. Such data sources are
the destination of the corresponding requests. Nodes can also
cache content to satisfy data requests opportunistically. Let
M be the 1-indexed set of function types. Each computation
request can be identified by the tuple (m,k) € M x K with
computation function m, and input content k. A (m, k) request
admitted into the network at node 6 € AN, will be further
categorized and identified with the triplet (m, k,).

R0 2 T(n = O)A™F 2,k

\ [Ga—

k0
far \

k0
J7m k"

pmokd
n
. 0 Node b
vozkhy ™ e |k
.......................... 1. k fM)
RER g nSn &,
i
------ == >
ﬁ’o_de n —
» DIPs (in bits/s)
@ Cache

Computation rate (in IPS)

Fig. 2: Flow Dynamics with Nodes a — n — b.

B. Flow Dynamics

In this section, we present the flow dynamics of our time-
slotted computation network model, inspired by pull-based
Remote Procedure Call (RPC) protocols [14]. Figure 2 shows
the flow dynamics at node n, which is connected to the
neighboring nodes a and b. The exogenous request arrival
rates for task (m,k) at node 0 are)\;”’k (in requests per
slot). The CIPs will be admitted together with the necessary
computation parameters and user-specific input data. Assume
the size of the uploaded data for each (m, k) task is 2, j bits.
The time-averaged exogenous arrival rates of CIPs (m, k,0)
in bits at node n is r7*? £ T(n = 0)z,, AT*, where T is
the indicator function.

After being admitted into the network, if not computed
locally, the CIPs will be forwarded to the next hop together

with the necessary computation parameters and user-specific
input data. The transmission rate of CIP flows for tasks
(m, k,6) through the link (a,b) is f7"*® > 0 (in bits per
slot). In the network, at least one computation cloud stores
content k£ and has considerable computation resources. Such
clouds are the destinations for the corresponding CIPs. A CIP
reaching the destination will no longer be forwarded. Along
the forwarding path to the clouds, nodes receiving CIPs can
also opportunistically accept and compute the tasks.

If a node n decides to compute the tasks with type (m, k, 6),
the corresponding assigned computation rate at node n is
h™*:% > 0 in instructions per slot (IPS). The sum of the
assigned computation rates at node n should be restricted by
the local computation capacity C,, i.e.,

>

meM,keK,0eEN

m,k,0 <
hn = CTL (])

Assume that each task with type (m,k) needs ¢, com-
putation resources (in instructions) to finish, and then the
service rate in bits for CIPs of type (m,k,0) at node n is
Zm %0 /g, 1. Due to the CIP (m, k,6) flow conservation

at each node n, we have the constraint dﬁ’k’e £
m,k,0
k.0 k0 e ko Zm el "
(M E an E nb ——=<0. (2
qm,k

aeN beN

It means that the difference between the CIP arrival rates and
the service rates is non-positive.

As Figure 1 shows, CIP flows at node n will be converted
into both CDP and DIP flows if the computation is scheduled
locally. The computation result size of task (m, k) is 2,73, bits.
If node n = 0 (i.e., the requester node), the CDPs of type 6 at
node n are are not forwarded further and eliminated. If n £ 6,
the transmission rate of CDPs of type 6 through the link (n, b)
is g%, > 0 (in bits per slot). Due to CDP flow conservation,
for any CDP of type 6 at any node n, if n # 6, we have d? =

S S g+ Y ghn = > g0 <0.

meM, kek aeN beN

DIPs retrieve cacheable content, which is returned as DPs
to complete the computation inputs. For the DIPs and DPs,
we keep the symmetric routing feature, requiring the DPs to
go through the reverse path of the corresponding DIPs, since
we assume the content Interest Packet sizes are negligible.
The DIPs at node n for content k& can be served by either
a local cache or forwarded to next hops. The overall cache
status at node n can be represented by an indicator vector
1, s KIT_ A cache vector s, is feasible if

Sn = (85,85, ey Sy

s, €{0,1}5 275, < L,,VneN,¥ne N, 4

where z = [z1,...,2x|T. The restrictions indicate (i) any
element s¥ = 1 if the content k is cached by the node
n during slot ¢; otherwise, s’; = 0; (i) cached data can-
not exceed the cache space limit. The speed of data read
and duplication after cache hits is ~, (in bits/slot) at node

n. Our model allows the cached content at each node to

dynamically adapt for opportunistic cache hits. We define
the probability of content k being cached at node n: y* =
Zs“:s"e{o,l}KAEkE,c ok ap <L, I(sk = 1)P(s,) Therefore,
the vector y, = [yl,...,yX]T is inside the convex hull of
cache status vectors at node n such that

Yn € Co(sy). (35)

If forwarded, the transmission rate of DIPs for content k € K
through the link (n,) is f%, > 0 (in bits per slot). Due to DIP
flow conservation, for any type k at any node n # src(k), we
have the constraint d¥ £

Z Zkhmk9+z

meM,0EN Im.k aEN

= =k <00 (6
beN

The assigned forwarding rates, in bits, for the traffic flows
should also satisfy the link capacity constraints. For any link
(a,b) € L, the transmission rates follow the inequality

Zfba+2f;zk0+zgab<cab 7)

ke m,k,0

Here, we use the reverse node pair (b,a) for DIP flow
summation instead of (a,b) since, as mentioned above, the
size of the Interests for DIPs is neglected compared to the
returned content, and we reserve the link bandwidth for the
returned content when we forward DIPs.

C. Problem Formulation

For each directed link (a,b) € L, we define the flow
cost function Dgp(Fup). Dap(Fap) is a continuously differ-
entiable, monotone increasing, and strictly convex function
assoc1ated with the total flow through 11nk (a,b). Define

Fub 2 Yrex fiu + Smertnenoen fap " + Loenr 9y 10
be the total flows in bits per slot through link (a,b).

For each node n, we define the computation workload cost
function G,,(h,). Gy(h,) is a continuously differentiable,
monotone increasing, and strictly convex function associated
with the aggregated computation workloads h,, at node n,
where hy 2 Y i rercoen haF? is the total workloads
assigned at node n in instructions per second.

Cost functions D, and G,, can take various forms de-
pending on the control objectives. A commonly used cost
function represents the time-averaged waiting queue size in an
M/M/1 queue, expressed as D(F) = F/(C — F) [15], where
F' denotes the total scheduled traffic flow or computation
workload, and C represents the link or computation capacity.

The primal optimization problem (PP) is cast as

i > Dap(Fu) + Y Gul (PP)
(Db)EL neN
sbj. to (a) nonnegative orthant constraints (nc)
™0 = 0, fhy = 0,98 2 0, A7 2 0,
Vm € M,k € K.(a,b) € L,0 € N,
(b) capacity constraints(1), (4), (5), (7), (co)
(c) flow conservation constraints(2), (3), (6), (fc)

where f,g, h,y are vectors of variables, defined as

k.0
f Aé (fap)a,b,é)eN,miM,keIC & (fE)apen ke
g = (0)aveens b = (BP0 pen mer ek
Y = (Y¥)nenrrex, and @ denotes vector concatenation

ITII. ALGORITHM
A. Asymmetric Routing

When we formulate Problem PP, we allow asymmetric
routing. We now formally establish its benefits.

Theorem 1: Asymmetric routing can potentially reduce the
optimal cost values, and also enlarge the feasible region of
problem PP compared to the symmetric case.

Proof: Please refer to [16]. [|

B. Dual Subgradient Method

In the following sections, we will use a dual subgradient
method to distributively solve the problem PP in the control
plane of the computation network. We first write the corre-
sponding dual problem (DP).

max ¢(u,v,w), sbj.to wu,v,w >0, (DP)
w,v,Ww
A A
where u = (U;Ln’k’e)n,GEN,meM,kGIC’ v = (Ug)nﬂe/\/’

w = (wF),enrex. The dual function value q(u,v,w)
is obtained via solving the Lagrange function minimization
problem LMP(u, v, w) given the dual variables. That is

k gk
an S Dalhs X s Y b
(a,b)eL neN neN, ke
+ Z u™ k Qdm k,0 + Z ,Un o (LMP)
n,0eEN meM,keck n,0eN

subject to (a) nonnegative orthant constraints (nc) and (b)
capacity constraints (cc). Here v) = 0 if n = 6 and wf = 0
if n € src(k). %9 d% d* come from definitions in (2), (3),
and (6) but can be positive as we relax the constraints.

Algorithm 1 Dual Projected Subgradient Method
1: Initialization: set «(0) = 0, v(0) = 0, w(0) = 0.
2: General step: for any ¢ = 0, 1, ... execute following steps:
3: (a) set a harmonic series step size y(t) = ﬁ, a, B > 0;
4 (b)forVaanGNkElCmeM set fmR0(1),
g%, (1), & (1), hR0(t), y,(t) according to the solutions
in sectlon 1I-C;
5: (c) set u(t+1),v(t+1),w(t+ 1) as followings:
6: at any node n € N, for any # € N,m € M,k € K, set
w MO+ 1) = (u RO (8) + () d R (1)
7: at any node n € N, for any 0 € N, set v2(t + 1) =
+
(vn(t) +~(t)d5, (1))
8 atany node n € N, foranyn € N,k € K, set wk (t+1) =
+
(wys (t) +(8)d5 (1))
9: Here, (z)* £ max{x,0}.

We will run Algorithm 1, the dual subgradient method [13],
distributively over the network nodes to solve the optimization
problem. The dual subgradient method includes updates for

both the primal and dual variables. In Algorithm 1 part (a),
we set the step sizes over the network based on the iteration
indices t. In part (b), for each iteration ¢, the Lagrangian func-
tion will be distributively minimized over the network nodes
to solve the LMP problem and update primal variables with
these solutions. After updating primal variables in part (b),
Algorithm 1 part (c) updates the dual variables distributively
across network nodes using a projected subgradient method.
Ignoring the overhead from synchronizing iteration indices
across the network, the per-iteration computational complexity
of Algorithm 1 at node n is O(MKN?) + O(K L,,), if the
dynamic programming method is used to solve the caching
knapsack problem, which will be further discussed in the
following section.

C. Solve LMP problem.

Forwarding Solution: For ease of exposition, we first
define 63})’k’9 as the difference of the duality variables for node
pair (a,b):

gkl & fymak0 O o e Mok e K0 e N

5000 & (0 — 08} V0 € N, 6%F0 & {wh — wh}, Vk € K.

Notice that since we reserve bandwidth for the returned
content, 52;;“0 is the dual variable difference for DIP flows in
the reverse direction of link (a b) Next, define the maximum
dual variable difference 4, SR for link (a,b)

m,k,0

max {on*01, ®)

(m,k,0)€d

where ® = M U {0} x KU {0} x N U{0}/{(0,0,0)} and
the maximum difference tuple is determined with ties broken
arbitrarily. Then, at any node n € A, run algorithm 2.

m*,k*,0"
Op =Ny 2

Algorithm 2 Forwarding assignment given u(t), v(t), w(t)

1: For any b s.t. (n,b) € L, get (m*,k*,0%) and A,y as (8)
: D}, is the derivative of the flow cost function
3: if D;Lb(O) — A, > 0 then

TR0 () = 0,¥(m, k,0) € ®

[

4: else Denote D’ ;bl as the inverse function of the first-order
derivative of D,,;,, and Px as the projection operation to
the set X. Then, 2" (t) =

{P[o,cm] (D (Aw)), if(m.k,0) = (m", 4, 67)
0, otherwise

5: end if

6: For any m € M,k € K,0 € N, set fmke()
m,k,0 ,0 : k,
ZI5E0(), g0,(8) = 2200(0), FE(8) = 200).

Caching Solution: We will solve the caching subproblem
at each node n

maXE wh (t)yk(

s, €{0,1}5 275, < L,,VneN,Vne N

), sbj. to y,(t) € Co(sy,)

This is a linear programming problem over a convex poly-
hedron. Thus, the optimal solution must lie at the extreme
points (vertices). Also, because the feasible set is a closed
convex hull Co(s,,), the extreme points of the convex hull
must form a subset of the feasible cache vectors {s,, | s, €
{0,1}%,2Ts,, < L, }. This means that, although y is a vector
with continuous real number elements, an optimal solution can
always be found at a vertex of the convex hull, which must be
a feasible s,,. Therefore, this caching maximization problem
can be converted into a knapsack problem with capacity L,
and K contents, where content & has value w’ (¢) and size 2.
This can be solved in pseudo-polynomial time with dynamic
programming. In a simple case, with equal-sized content,
Vk € K, we cache the contents with the largest w¥ (¢) values
Computation Solution: At each node n € A/, we define

m,k,0 _ 0 res _ .k
5m,k,egun Zme — UnZp k — Wik
n -

dm,k
. gk g N
o =Ar A max GmMO
meM, kEK,0eEN

where the ties are broken arbitrarily. Then on each node n at
iteration ¢, set

k.6 h’*(t)v lf(mvkae) = (m*ak*70*)'
h 0 (t) = ‘
0, otherwise
where
0, if G (0) — AR50 (1) > 0,
h(t) =

Plo.col (G;l_l (Ag*’k*ve*)) , otherwise.

Here, G), is the first derivative of the function G,, with
respect to the total computation workload h,,, and G;l_l is
the inverse function of G,.

Theorem 2: The above forwarding, caching, and computa-
tion solutions solve the LMP problem.

Proof: Please refer to [16]. [|

D. Ergodic Sequence

Define z(t) as the vector consisting of all primal variables at
iteration t. Then, the ergodic sequence for the primal variables
is set as follows. Let a > 0 be a non-negative constant and
zZ(1)=2(0) = z(0) and if t > 2

ST+ 1) E2 (- 1) Ftz(t - 1)
Yio(i+1)° '

2(t) =

E. Primal Convergence

To express the convergence analysis clearly, first define Z*
as the set of feasible optimal solutions of Problem PP.
Theorem 3 (Convergence): Suppose the Slater condition
holds for the programming problem PP. Then
min ||v — Z(t)||2 — 0, as t — oo,
vez*
where Z* is a nonempty, closed, and convex set.
Proof: Refer to [16] for proof.]

DECO DECO
MICS MICS 7
SYMICS SYMICS N\
RND RND
CAE - - {85.08 cEE.
CAC §3.01 CAC
0.0 20.0 40.0 60.0 80.0 100.0 00 20 40 60 80 100

Latency/10"2s Latency/10"2s
(a) LHC: A =30 (b) GEANT: A =10

Fig. 3: Simulations on LHC, and GEANT. With arrival rates 30
and 10 respectively, the diagrams show the per-request latency
achieved by MICS and the baseline policies.

F. 3C Scheduling in the Actual Plane

Although the ergodic sequence converges, the constraints
can be violated after a finite number of iterations. Here,
we propose a practical implementation for scheduling oper-
ations in the actual network. We perform our optimization
algorithm with one iteration per slot and get the updated
ergodic sequence. At each node n, whenever a CIP, CDP, or
DIP is received, the forwarder at the node will perform the
forwarding and computation scheduling operations randomly
according to the probability derived from the current ergodic
sequence values Z(t). Use - denoting the ergodic sequence
variables. When a CIP(m, k,) arrives, it may be forwarded
to the neighboring node b with proJPability proportional to
the weight (f;’;ke(t) - Zfl”k’e(t))
local computation with probability proportional to the weight
Zm ™ *:0(¢). I all weights mentioned above are zero, we
will schedule forwarding direction b with probability propor-

_ _ +
tional to 37, (fmM0 (1) — ;Z’k’g(t)) . If all weights above

, or be scheduled for

nb
are zero, we will try to use the In the worst case, if both

methods fail, we forward the CIPs along the shortest path.
CDPs and DIPs are forwarded in a similar way.

For caching control, in each iteration ¢, treat the continuous
cache variables 7 as the cache score. When the content is
received at node n in the actual plane, do cache replacement
to maximize the total cache score for the contents in the cache
space. This has no theoretical guarantee, but is simple enough
and works well in our simulation.

IV. PERFORMANCE EVALUATION

31200 e — -

@ —/r Constr\algis Violat ===+ Costs |300
§ 1000 580
=

[(9]
S 800 2600
S ! S
(%]

£ 600 :' 240
© 1

2 ! 220
§ 4001

© 0 10000 20000 30000 40000

slotld

Fig. 4: GEANT: Costs & Constraints Violation over iterations.

We numerically evaluate our MICS algorithm across the
LHC and GEANT topologies [16] using a task-level simulator.

The clouds and data sources are PRD, MIT, FNL, and UFL
in LHC, and nodes 10 — 21 in GEANT. The Requester nodes
are WSC, VND, NBR, and UCSD in LHC, and nodes 0 — 9
in GEANT. For all topologies, the link capacity is 100 Gbps,
the cache capacity is 10 GB per node, the user-specific data
is 1 GB, the content is 2 GB, the computation result is 0.5
GB each, and the cache read-out speed is 20 GB/s. Each non-
cloud node has computation capacity (IPS) 2 x 108 in LHC
and 4 x 10® in GEANT, respectively. Each cloud node has
4 x 10° TIPS, and each task costs 10® instructions.

We evaluate 5 baseline policies, as shown in Figure 3.
In RND, every forwarding node schedules computation with
probability 0.5. In CAE, all tasks are computed at the edge.
In CAC, all tasks are computed in the cloud. RND, CAE,
and CAC use LFU as their cache eviction policy and shortest
path as their forwarding policy. In SYMICS, we run the same
control algorithm as MICS but force symmetric routing in the
actual data plane. In DECO, MICS and SYMICS, the slot
length is 0.2 seconds. We set the step size () = zo00; for
MICS and the ergodic average parameter o = 3.

For all the tests, we have 50 different tasks and contents,
respectively. Each requester generates computation requests
according to a Poisson Process at a given arrival rate .
Indices of the function and content are randomly picked
independently following the Zipf(1) distribution to generate
new computation requests. The tests generate new computation
requests during a 20-minute active period and wait for the
return of all the results. After all results are returned, we
calculate the computation satisfaction time per request. In
MICS and SYMICS, we run our algorithm in the control plane
for 3.6 x 10* iterations before the active period to preheat.

In Figure 3, we run LHC test with an arrival rate 30
requests/s per requester node and GEANT test with an ar-
rival rate 10 requests/s per requester node. We measure the
computation satisfaction time (latency) per request over the
whole network. Such latency is defined as the time between
when the requester generates a computation request and when
the computation result is returned to the requester. We show
the MICS delay in seconds and the percentage reduction in
delay compared to other policies. In numerical results, MICS
outperforms all the compared baseline policies by at least
25.7% decrease in latency in the LHC test and at least 32.1%
decrease in latency in the GEANT test. In Figure 4, we show
the convergence status of MICS in the GEANT test with
an arrival rate 10. We can see that the constraint violations
continue to decrease as the cost approaches certain values.

V. CONCLUSION

This work introduces a pull-based computation framework,
MICS, with a distributed control policy that jointly optimizes
the forwarding, caching, and computation scheduling under the
2110 computation scenario. We design a joint 3C optimization
algorithm in the control plane based on a dual subgradient
method to minimize the convex forwarding and computation
costs. We prove the primal convergence of the ergodic se-
quence of forwarding, caching, and computation scheduling

variables. We demonstrate the significance of asymmetric
routing in reducing costs compared to the symmetric case. We
also design a realistic actual plane implementation following
the result of the control plane, and show that MICS outper-
forms several baseline policies in the numerical evaluation
concerning the average computation request satisfaction time
and decreases the latency by up to 32.1% compared to all the
other policies.

REFERENCES

[1] S. A. Makhlouf and B. Yagoubi, “Data-aware scheduling strategy for
scientific workflow applications in iaas cloud computing,” 2019.

[2] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE communications magazine, vol. 58, no. 1, pp. 19-25, 2020.

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66-73, 2014.

[4] Y. Wu, FE. V. Mutlu, Y. Liu, E. Yeh, R. Liu, C. Iordache, J. Balcas,
H. Newman, R. Sirvinskas, M. Lo er al., “N-dise: Ndn-based data
distribution for large-scale data-intensive science,” in Proceedings of
the 9th ACM Conference on Information-Centric Networking, 2022, pp.
103-113.

[5] Z. You, Q. Li, A. Pandharipande, X. Ge, R. Liu, and M. Shuai,
“Joint 3c scheduling with coordinated multi-point transmission,” in
2023 IEEE/CIC International Conference on Communications in China
(ICCC). IEEE, 2023, pp. 1-6.

[6] W. Wen, Y. Cui, T. Q. Quek, F.-C. Zheng, and S. Jin, “Joint optimal
software caching, computation offloading and communications resource
allocation for mobile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 7, pp. 7879-7894, 2020.

[7]1 Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Joint compute-
caching-communication control for online data-intensive service deliv-
ery,” IEEE Transactions on Mobile Computing, 2023.

[8] K. Kamran, E. Yeh, and Q. Ma, “Deco: Joint computation scheduling,
caching, and communication in data-intensive computing networks,”
IEEE/ACM Transactions on Networking, vol. 30, no. 3, pp. 1058-1072,
2021.

[91 E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “Vip: A
framework for joint dynamic forwarding and caching in named data
networks,” in Proceedings of the 1st ACM Conference on Information-
Centric Networking, 2014, pp. 117-126.

[10] J. Zhang and E. Yeh, “Loam: Low-latency communication, caching
and computation in data-intensive computing networks,” in 2025 23rd
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt). 1EEE, 2025, pp. 1-8.

[11] J. Zhang, Y. Liu, and E. Yeh, “Optimal congestion-aware routing and
offloading in collaborative edge computing,” in 2022 20th International
Symposium on Modeling and Optimization in Mobile, Ad hoc, and
Wireless Networks (WiOpt). 1EEE, 2022, pp. 121-128.

[12] J. Zhang and E. Yeh, “Delay-optimal service chain forwarding and
offloading in collaborative edge computing,” in ICC 2024-IEEE Inter-
national Conference on Communications. 1EEE, 2024, pp. 3931-3936.

[13] E. Gustavsson, M. Patriksson, and A.-B. Stromberg, “Primal conver-
gence from dual subgradient methods for convex optimization,” Mathe-
matical Programming, vol. 150, pp. 365-390, 2015.

[14] M. Krdl, K. Habak, D. Oran, D. Kutscher, and I. Psaras, “Rice: Remote
method invocation in icn,” in Proceedings of the 5th ACM Conference
on Information-Centric Networking, 2018, pp. 1-11.

[15] D. Bertsekas and R. Gallager, Data networks. Athena Scientific, 2021.

[16] Y. Wu and E. Yeh, “Joint 3¢ scheduling in
data-intensive ~ computing networks with asymmetric rout-
ing,” 2024. [Online]. Available: https:/drive.google.com/file/d/

14TeyfbYra6CO9YBNS5aCGImlIW4u2HD3XZ/view 2usp=sharing

https://drive.google.com/file/d/14TeyfbYra6C9YBN5aCGJmllW4u2HD3XZ/view?usp=sharing
https://drive.google.com/file/d/14TeyfbYra6C9YBN5aCGJmllW4u2HD3XZ/view?usp=sharing

	Introduction
	Model
	Network Model
	Flow Dynamics
	Problem Formulation

	Algorithm
	Asymmetric Routing
	Dual Subgradient Method
	 Solve LMP problem.
	Ergodic Sequence
	Primal Convergence
	3C Scheduling in the Actual Plane

	Performance Evaluation
	Conclusion
	References

