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Abstract

Deep learning techniques have enabled vast improvements in
computer vision technologies. Nevertheless, these models are
vulnerable to adversarial patch attacks which catastrophically
impair performance. The physically realizable nature of these
attacks calls for certifiable defenses, which feature provable
guarantees on robustness. While certifiable defenses have been
successfully applied to single-label classification, limited work
has been done for multi-label classification. In this work, we
present PatchDEMUX, a certifiably robust framework for multi-
label classifiers against adversarial patches. Our approach is a
generalizable method which can extend any existing certifiable
defense for single-label classification; this is done by consid-
ering the multi-label classification task as a series of isolated
binary classification problems to provably guarantee robustness.
Furthermore, in the scenario where an attacker is limited to a
single patch we propose an additional certification procedure
that can provide tighter robustness bounds. Using the current
state-of-the-art (SOTA) single-label certifiable defense Patch-
Cleanser as a backbone, we find that PatchDEMUX can achieve
non-trivial robustness on the MS-COCO and PASCAL VOC
datasets while maintaining high clean performance'.

1. Introduction

Deep learning-based computer vision systems have helped trans-
form modern society, contributing to the development of tech-
nologies such as self-driving cars, facial recognition, and more
[18]. Unfortunately, these performance boosts have come at a
security cost; attackers can use adversarial patches to perturb
patch-shaped regions in images and fool deep learning systems
[4, 30]. The patch threat model presents a unique challenge for
the security community due to its physically-realizable nature;
for instance, even a single well-designed patch that is printed
out can induce failure in the wild [4, 12, 26].

The importance of adversarial patches has made the design
of effective defenses a key research goal. Defense strategies

'Our source code is available at https: //github.com/inspire—
group/PatchDEMUX
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typically fall into one of two categories: empirical defenses
and certifiable defenses. The former leverages clever observa-
tions and heuristics to prevent attacks, but can be vulnerable to
adaptive attacks which bypass the defense through fundamental
weaknesses in design [5, 14, 25]. As a result, certifiable de-
fenses against patch attacks have become popular for computer
vision tasks such as single-label classification and object detec-
tion [6, 17, 24, 29, 31-35, 37]; these methods feature provable
guarantees on robustness under any arbitrary patch attack.

Despite these successes, progress on certifiable defenses
against patch attacks has been limited for multi-label classi-
fication. Multi-label classifiers provide important capabilities
for simultaneously tracking multiple objects while maintaining
scalability. Many safety-critical systems depend on the visual
sensing capabilities of multi-label classifiers, such as traffic pat-
tern recognition in autonomous vehicles [ 16], video surveillance
[10], and product identification for retail checkout [13]. Some
of these applications have become mainstream in industry (i.e.,
Waymo robotaxis, Just Walk Out checkout, etc.).

To address this challenge we propose PatchDEMUX, a certi-
fiably robust framework against patch attacks for the multi-label
classification domain. Our design objective is to extend any
existing certifiable defense for single-label classification to the
multi-label classification domain. To do so, we leverage the
key insight that any multi-label classifier can be separated into
individual binary classification tasks. This approach allows us
to bootstrap notions of certified robustness based on precision
and recall; these are lower bounds on performance which are
guaranteed across all attack strategies in the patch threat model.
We also consider the scenario where an attacker is restricted
to a single patch and propose a novel certification procedure
that achieves stronger robustness bounds by using constraints in
vulnerable patch locations.

We find that PatchDEMUX achieves non-trivial robustness
on the MS-COCO and PASCAL VOC datasets while maintain-
ing high performance on clean data. Specifically, when using
the current SOTA single-label certifiable defense PatchCleanser
as a backbone, PatchDEMUX attains 85.276% average preci-
sion on clean MS-COCO images and 44.902% certified robust
average precision. On the PASCAL VOC dataset PatchDE-
MUX achieves 92.593% clean average precision and 56.030%



certified robust average precision. For reference, an undefended

model achieves 91.146% average precision on clean MSCOCO

images and 96.140% average precision on clean PASCAL VOC
images. Overall, the key contributions of our work can be
summarized as follows:

* We address the challenge of patch attacks in the multi-label
domain via a general framework that can interface with any
existing/future single-label defense. To the best of our knowl-
edge, our approach is the first of its kind.

* Our framework provably guarantees lower bounds on perfor-
mance irrespective of the chosen patch attack (i.e., the patch
can contain an optimized attack, random noise, etc.).

* We instantiate a version of our defense framework with the
current SOTA single-label defense and achieve strong robust
performance on popular benchmarks.

We hope that future work will integrate with the PatchDEMUX

framework and further strengthen the robustness of multi-label

classifiers to adversarial patches.

2. Problem Formulation

In this section, we provide a primer on the multi-label classifica-
tion task along with standard metrics for evaluation. We next
outline the adversarial patch threat model and its relevance in
the multi-label setting. Finally, we discuss the concept of certi-
fiable defenses and how they have been used so far to protect
single-label classifiers against the patch attack.

2.1. Multi-label classification

Multi-label classification is a computer vision task where images
X € X C R¥*"7 with width w, height h, and number of
channels ~ contain multiple objects simultaneously, with each
object belonging to one of ¢ classes [38]. A classifier is then
tasked with recovering each of objects present in an image. Note
that this contrasts single-label classification, where exactly one
object is recovered from an image.

More rigorously, each input datapoint is a pair (x,y) where
x € X corresponds to an image and y € Y is the associated
image label. Each label y € Y C {0,1}* is a bitstring where
¥[i] =1 means class ¢ is present and y[:] =0 means class i is
absent; this implies that the set of labels ) is 2° in size, ie.,
exponential. A multi-label classifier F: X — ) is then trained
with a loss function such that the predicted label § :=F(x) is
equivalent to y. One popular loss function used for training is
asymmetric loss (ASL) [3].

To evaluate the performance of a multi-label classifier, it is
common to compute the number of true positives (i.e., classes
i where yl[i] = §[i] = 1), the number of false positives (ie.,
classes ¢ where y[i] =0 and §[z] =1), and the number of false
negatives (i.e., classes ¢ where y[i]=1 and §[i]=0). These can
be summarized by the precision and recall metrics [38]:

TP TP
TP+FP TP+FN

The values TP, FP, and FN represent the number of true
positives, false positives, and false negatives respectively.

precision= recall = (1)
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2.2. The patch threat model

Theoretical formulation. In the patch threat model, attackers
possess the ability to arbitrarily adjust pixel values within a
restricted region located anywhere on a target image x € X'; the
size of this region can be tuned to alter the strength of the attack
[4]. As discussed in Sec. 1, defending against this threat model
is critical due to its physically realizable nature [4, 12, 26]. In
this paper, we primarily focus on defending against a single
adversarial patch as it is a popular setting in prior work [6, 17,
24, 31-33, 35]. However, our baseline certification methods can
also handle multiple patches, provided the underlying single-
label defense strategy already has this capability [33].

We can formally specify patch attacks for an image xe &
as follows. Define R C{0,1}“*" as the set of binary matrices
which represent restricted regions, where elements inside the
region are 0 and those outside the region are 1 [33]. Then, the
associated patch attacks are:

Sxgr:={rox+(1-r)ox'[x' e X,reR} )
The o operator refers to element-wise multiplication with broad-
casting to ensure shape compatibility. Note that this formulation
demonstrates how the patch attack can be considered a special
case of the £g5-norm threat model [17].

Adversarial patches in the multi-label setting, Patch attacks
in multi-label classification aim to induce class mismatches be-
tween a ground-truth label y € Y and prediction ¥ € J. Unlike
single-label classification, different types of mismatches are
possible in this setting; for instance, patches can increase the
number of false negatives and/or the number of false positives
predicted by the classifier F. In general, adversarial patches are
generated by representing the desired objective as an optimiza-
tion problem and then applying an iterative technique such as
projected gradient descent (PGD) over Sx r [21].

2.3. Certifiable defenses against patch attacks

At a high-level, certifiable defenses against patch attacks
(CDPA) provide provable guarantees on performance for deep
learning-based computer vision systems F: X — J against all
possible attacks in the patch threat model [6, 17, 24, 29, 31—
35, 37]. This ensures that defense robustness will not be com-
promised by future adaptive attacks.

We formulate a CDPA as having an inference procedure
and a certification procedure; additional security parameters,
denoted by o, manage the trade-off between robust perfor-
mance and inference time [33]. The inference procedure
INFERf ) : X — Y takes an image x € X as input and
outputs a prediction ¥ € ). The quality of prediction ¥ with
respect to the ground-truth label y can be evaluated using a
performance metric (e.g., precision, recall), which we denote
by p: Y x Y —R. In addition to the inference procedure, the
certification procedure CERTr ) : X x Y x P(R) — R (P()
denotes power set) takes image X, ground-truth label y, and the
threat model represented by the set of allowable patch regions
R to determine the worst possible performance of IN FER on
image x. The certification procedure is only used for evaluation.



Formally, for a performance metric p and a patch threat model
Sy r we will have

p(INFERp s (x),y)>7¥x' €Sx®r (3)
Here, 7 := CERT[r +](X,y,R) is the lower bound of model
prediction quality against an adversary who can use any patch
region r € R and introduce arbitrary patch content. Datapoints
with a non-trivial lower bound are considered certifiable.

We can summarize these concepts as follows.

Definition 1 (CDPA). A certifiable defense against patch attacks
(CDPA) for model F: X — Y is a tuple of procedures DEF :=
(INFERg, : X = Y,CERT[g, : X x Y x P(R) — R)
where the former is the inference procedure, the latter is the
certification procedure, and o C{0,1}* are security parameters.
Certifiable datapoints satisfy Eq. (3) for a performance metric
p:YxY—R

We note that we have different p for different tasks. For in-
stance, CDPAs for single-label classifiers ensure that the output
label is preserved for certifiable datapoints’.

Definition 2 (Single-label CDPA). A single-label CDPA is a
CDPA for single-label classifiers Fs : X — {1,2,...,c}. The
performance metric is p(y1,y2) == [y1 =yo). The certification
procedure C ERT evaluates to 1 for certifiable datapoints and
0 otherwise.

For multi-label classification, we consider the interpretation
where the performance metric is p(y1,y¥2) = X{_4[y1[f] =
1Nyz[] = 1] and CERT lower bounds the number of true
positives. This helps bootstrap robust metrics such as certified
precision and recall (see Sec. 3.3).

2.4. Certifiable defenses for single-label classifiers
against patch attacks

A variety of CDPA have been developed for single-label classi-
fiers [6, 17, 24, 29, 31-33, 35]. Current techniques roughly fall
into one of two categories: small receptive field defenses and
masking defenses. With regards to the former, the general prin-
ciple involves limiting the set of image features exposed to the
undefended model and then robustly accumulating results across
several evaluation calls. Some examples of this approach include
De-randomized Smoothing [17], BagCert [24], and PatchGuard
[31, 32]. On the other hand, masking defenses curate a set of
masks to provably occlude an adversarial patch regardless of
location. PatchCleanser, the current SOTA certifiable defense,
uses such a method [33]. Our proposed framework PatchDE-
MUX is theoretically compatible with any of these techniques.

3. PatchDEMUX Design

In this section we propose PatchDEMUX, a certifiably robust
framework for multi-label classifiers against patch attacks. We
first outline the key property that any multi-label classification

2We use Iverson bracket notation for convenience
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problem can be separated into constituent binary classification
tasks. Next, we use this observation to construct a generalizable
framework which can theoretically integrate any existing single-
label CDPA. We then describe the inference and certification
procedures in more detail along with robust evaluation metrics.
Finally, we propose a novel location-aware certification method
which provides tighter robustness bounds.

3.1. An overview of the defense framework

Isolating binary classifiers in multi-label classification. As
discussed in Sec. 2.1, labels y € {0,1}° in multi-label classi-
fication are bitstrings where y[z] € {0,1} corresponds to the
presence/absence of class i €{1,2,...,c}. Note that predictions
for each class y/[i] are independent of each other; therefore, the
multi-label classification task can be represented as a series of
isolated binary classification problems corresponding to each
class. This motivates a defense formulation for multi-label clas-
sifiers in terms of “isolated” binary classifiers, where each class
is individually protected by a single-label CDPA. Given a multi-
label classifier’ F: X — ), we use the notation F[i]: X — {0,1}
to refer to the isolated classifier for class i.

In practice, defining the isolated classifier is complicated
as some single-label CDPA designs require architectural re-
strictions [24, 31, 32]. Nevertheless, a workaround is possible;
specifically, we can initialize the multi-label classifier F: X — )
as an ensemble of ¢ binary classifiers which each satisfy the
required architecture. Then, for each class 7 € {1,2,...,c} we
can define the isolated classifier F[i] as the associated ensem-
ble model. Other defenses are architecture-agnostic [33]. In
these cases we can use any off-the-shelf multi-label classifier
F: X — Y and for each class i € {1,2,...,c} define the isolated
classifier IF[z] as having outputs F[z](x) :=F(x)[:] for all x € X.

Our framework. At a high-level, the PatchDEMUX defense
framework takes advantage of the isolation principle to extend
any existing single-label CDPA to the multi-label classification
task. The PatchDEMUX inference procedure consists of three
stages (see Fig. 1). In the input stage, it preprocesses the input
image x € X. In the demultiplexing stage it isolates binary
classifiers for each class 7 € {1,2,...,c} and applies the un-
derlying single-label CDPA inference procedure. Finally, in
the aggregation stage we return the final prediction vector by
pooling results from the individual classes. The PatchDEMUX
certification procedure works similarly. It separately applies
the underlying single-label CDPA certification procedure to
each isolated classifier and then creates a lower bound for true
positives by accumulating the results.

3.2. PatchDEMUX inference procedure

The PatchDEMUX inference procedure is described in Algo-
rithm 1. We first take the inference procedure SL-INFER
from a single-label CDPA and prepare it with security parame-
ters o. On line 2, we initialize a preds € {0,1}¢ array to keep
track of individual class predictions. Finally, on line 4 we run
SL-IN FER with the isolated binary classifier F[z] on input

3From here on, ) will denote a multi-label label set with ¢ classes
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Figure 1. A diagram which illustrates the defense framework from PatchDEMUX. In the input stage, the (potentially attacked) image is preprocessed.
In the demultiplexing stage, the SL-IN FE R inference procedure from a single-label CDPA is applied to each individual class in the multi-
classification task. This is done by considering the multi-label classifier F as a series of isolated binary classifiers F[1] for i € {1,2,...,c}. Finally, in
the aggregation stage the individual outputs are returned as a single label.

Algorithm 1 The inference procedure associated with PatchDE-
MUX

Algorithm 2 The certification procedure associated with
PatchDEMUX

Input: Image x € X, multi-label classifier F : X — ),
inference procedure SL-IN FER and security parameters
o from a single-label CDPA, number of classes ¢

Output: Prediction preds € {0,1}¢

procedure DEMUXINFER(x,F,SL-INFER,0.c)

I:

2. preds+{0}¢ &> Set predictions to zero vector
3 fori<—1tocdo > Consider classes individually
4 preds]i] +SL-INFERg[4] 41(X)

5: end for

6: return preds

7: end procedure

image x and update preds for class i.

Remark. If the time complexity for SL-INFER is
O(f(n)), the time complexity for Algorithm 1 will be O(c-
f(n)). However, in practice it is possible to take advantage
of relatively negligible defense post-processing and effectively
reduce the time complexity to O(f(n)). See Supplementary
Material, Appendix G.

3.3. PatchDEMUX certification procedure

The PatchDEMUX certification procedure is outlined in Al-
gorithm 2. We first initialize the certification procedure
SL-CERT from a single-label CDPA with security param-
eters o. On line 2, we create the K array to store certifiable
classes. On line 5, we run SL-CERT with the isolated binary
classifier F[z] on datapoint (x,y[i]) and place the result in k[z];
recall from Definition 2 that SL-C'ERT returns 1 for protected
datapoints and 0 otherwise. Finally, on lines 7— 10 we count
a successful true positive for classes with y[¢]=1 and k[f] =1.
Otherwise, we assign a false negative or false positive as we can-
not guarantee the accuracy of these classes. We now establish
the correctness of these bounds.
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Input: Image x € X, ground-truth y € ), multi-label
classifier F: X — Y, certification procedure SL-CERT
and security parameters o from a single-label CDPA, patch
locations R

Output: Certified number of true positives 1" Pjoyer, false
positives upper bound F'Pypp.r, false negatives upper
bound F'Nypper, class certification list &

1: procedure DEMUXCERT(x,y,F,SL-CERT ,0,R)
2 c+len(y)
3: K+ [0]°
4 fori<—1tocdo & Certify each class separately
5: K,[z] (—SL—CERT[]F[,;] o] (X,y[i] JR)
6 end for
7: > Compute robust metrics
& T-Plower :Fpupper:FNupper <_01010
9: T Piower + X5 [k[)]=1Nny[i]=1]
10: FP,pper + X5_1 [k[]]=0Ny][i] =0]
11: FNypper —X¢_, [[1]=0Ny[i]|=1]
12: return T‘P.Eower:FPupper:FNupper:ﬁ

13: end procedure

Theorem 1 (Algorithm 2 Correctness). Suppose we have an im-
age data point (x,y) € X x Y, a single-label CDPA SL-DEF,
and a multi-label classification model F: X — ). Then, under
the patch threat model Sx r the bounds returned by Algorithm 2
are correct.

Proof. See Supplementary Material, Appendix A. H

Thus, using Algorithm 2 we have established the lower bound
on true positives (1" Pjgwer) and the upper bound on both false
positives (¥ P,pper) and false negatives (F" Nypper) Wwhen using
Algorithm 1. This allows us to bootstrap notions of certified
precision and certified recall by referencing Eq. (1):



certifiedprecision= TPrower+ F Popper (
TBO‘UJ&T
tifiedrecall = 5
o Zfz " T-P!O'LDBT +FNupper { )

Note by construction that both metrics provide lower bounds for
precision and recall on a datapoint (x,y) irrespective of any at-
tempted patch attack; the real-world performance of our defense
will always be higher. Therefore, an empirical evaluation of
existing multi-label attack vectors is not necessary [1, 2 23]
Furthermore, micro-averaging these metrics across datapomts
provides lower bounds on precision and recall for an entire
dataset [38].

3.4. Location-aware certification

We now discuss an improved method called location-aware
certification which extends Algorithm 2. This method works in
the scenario where an attacker is restricted to a single patch. The
general intuition is that if we track vulnerable patch locations
for each class, we can use the constraint that an adversarial
patch can only be placed at one location to extract stronger
robustness guarantees. For instance, suppose we have an image
with a dog, a bicycle, and people (see Fig. 2). If we directly
apply Algorithm 2, it is possible that each of these classes would
individually fail to be certified. However, this method does not
account for the fact that different classes may be vulnerable at
different locations; for example, the “dog” and “bicycle” classes
might be at risk in the bottom left corner of the image, while the
“people” class is at risk near the top. Because the patch cannot
exist in two places simultaneously, at least one class must be
robust and the actual certified recall will be 1/3.

3.4.1. Tracking vulnerable patch locations

We now give a formal treatment of our core idea. Suppose we
have a single-label CDPA SL-DEF'. For many existing single-
label defenses, it is possible to relate the certification procedure
SL-CERT to the complete list of patch locations R from
Eq. (2) [6, 17, 24, 29, 31-33, 35]. In these cases, we extend
Definition 2 and allow SL-CERT to return a vulnerability
status array, which we denote by A € {0,1}/%]. A value of 1
implies the image x € X’ is protected from attacks located in
reR, while 0 means it is not.

This provides a convenient formulation with which to express
our improved method. Consider a multi-label classifier F: ' —
Y. We first obtain vulnerability status arrays A for each class in
Algorithm 2 that could not be certified; this is done by isolating
the associated binary classifiers. We then note that given &
classes of a common failure mode (ie., F'N or FP), the sum
of the inverted arrays 1— X will represent the frequency of the
failure type at each patch location. The key insight is that the
maximum value, vop:, from the combined array will represent
the patch location rqp; € R of the image most vulnerable to a
patch attack; an attacker must place an adversarial patch at this
location to maximize malicious effects. Note however that it is
possible vop; < k. Then, as per the construction of each A these
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k —vope > 0 classes will be guaranteed robustness under the
optimal patch location.

3.4.2. Proposing our novel algorithm

Algorithm 3 Location-aware certification for FN

Input: Image x € X, ground-truth y € ), multi-label
classifier F: X — Y, certification procedure SL-CERT
and security parameters o from a single-label CDPA, patch
locations R
Output: Certified number of true positives T'Pp,y, false
negatives upper bound F Ny,
procedure LOCCERT(x,y,F,SL-CERT,0,R)

> Pass all args to DEMUXCERT(...)

TP,FPFN k+ DEMUXCERT(...)

© Initialize array with list of F'N indices

c+len(y)
|ﬁ! =0ny[i]=1})

fnldz+list({1< <z<c
> Isolate each F'IN classifier

fnCertFails « [0]FV*

fork«1to FN do
Fo+F[fnldz|k]]
A4~ SL-CERT, ,1(x,y|fnldz[k],R)
fnCertFails[k|=1—XA

end for

fnTotal +sum( fnCertFails,dim=0)

FNpew=max( fnTotal) & Pick worst location

TPhew=TP+(FN—F Npew)

16: return TP, ,F Npew

17: end procedure

=== R = N

_ e =
ok Wy o

These insights are encapsulated by Algorithm 3, the location-
aware certification method for false negatives.* It works by
first computing robustness bounds for data point (x,y) via
Algorithm 2. On line 5 we determine the false negative classes
that failed certification in Algorithm 2. During the for loop on
lines 8—12, we extract the vulnerability status array A for each
false negative by isolating the associated binary classification
task. Finally, we sum the inverted arrays 1—A on line 13 and
pick the patch location with the largest value; this is the max
number of false negatives an attacker can induce at test time.
We then alter the lower bound for true positives on line 16.

We now demonstrate that Algorithm 3 provides superior
bounds to Algorithm 2.

Theorem 2 (Algorithm 3 Correctness). Suppose we have an im-
age data point (x,y) € X x Y, a single-label CDPA SL-DEF,
and a multi-label classification model F: X — ). If SL-CERT
returns the vulnerability status array A associated with each
r R, then under the patch threat model Sx r the bounds from
Algorithm 3 are correct and stronger than Algorithm 2.

Proof. See Supplementary Material, Appendix A. O

An analogue to Theorem 2 also exists for F' P bounds, and
can be proved using a modified version of Algorithm 3 that
tracks F'P indices.

4Obl:ajnjng F P ey is similar, with line 5 changed to track F' P indices
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Figure 2. A diagram which illustrates the key intuition for the location-aware approach. In the sample image we assume all three objects (i.e., “dog”,
“bicycle”, “people”) are false negatives. Thus, for each F'N we extract the vulnerability status over all patch locations (orange means vulnerable)
and accumulate them to find the most vulnerable patch location; this happens to be in the bottom left corner of the image. However; the “people”
class by itself is not vulnerable to this location; thus, we can claim stronger robustness bounds than initially suggested by Algorithm 2.

4. Main Results
4.1. Setup

In this section, we discuss our evaluation setup. The associ-
ated source code is available at https: //github.com/
inspire—-group/PatchDEMUX.

Backbone initialization and parameters. Recall from
Sec. 3.1 that PatchDEMUX requires an underlying single-label
CDPA to operate. For our experiments we choose PatchCleanser,
as it is the current SOTA single-label CDPA and is architecture-
agnostic (i.e., it is compatible with any off-the-shelf multi-label
classifier) [33]. PatchCleanser works by using a novel double-
masking algorithm along with a specially generated certification
mask set to provably remove adversarial patches [33]. The mask
generation process has two security parameters. The first is
the number of masks for each image dimension k; x ko: using
more masks leads to longer inference time but results in stronger
robustness, effectively serving as a “computational budget” [33].
The second is the estimated size of the patch p in pixels. Our
experiments with PatchDEMUX use 6 x 6 masks and assume
the patch is ~2% of the overall image size, which are the default
settings in Xiang et al. [33]; we vary these parameters in Sec. 5.
For more details on how PatchCleanser fits into the PatchDE-
MUX framework see Supplementary Material, Appendix B.

We note that PatchCleanser can also provide protection
against multiple patches [33]. Because our baseline certification
method provably extends single-label guarantees to multi-label
setting, it will also feature resistance against multiple patches.
In our experiments, we focus on the single patch setting for
simplicity.

Dataset and model architectures. We evaluate our defense
on two datasets: MS-COCO [19] and PASCAL VOC [11].
The former is a challenging collection of images that feature
“common objects in context” [19], while the latter focuses on
“realistic scenes™ [11]. For our experiments we test on the MS-
COCO 2014 validation split, which contains ~41,000 images
and 80 classes, and the PASCAL VOC 2007 test split, which
has ~5,000 images and 20 classes. Both of these splits are
commonly used in the multi-label classification community
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[3, 20, 27, 36].

For the multi-label classifier architecture, we evaluate two
options. The first is a ResNet-based architecture from Ben-
Baruch et al. [3] that uses convolution kernels and has an input
size of 448 x 448. The second is a vision transformer-based
(ViT) architecture from Liu et al. [20] that uses the self-attention
mechanism and has an input size of 384 x 384 [9, 20, 36].
These models are chosen as they perform well on the multi-label
classification task and have publicly available checkpoints. We
resize images to fit on each model and apply different defense
fine-tuning methods (i.e., Random Cutout [8], Greedy Cutout
[28]) to achieve stronger robustness guarantees.

Evaluation settings and metrics. Our results feature several
evaluation settings.

1. Undefended clean: This setting represents evaluation on
clean data without the PatchDEMUX defense.

2. Defended clean: This setting refers to evaluation on clean
data with the PatchDEMUX defense activated.

3. Certified robust: This setting represents lower bounds on
performance determined using Algorithm 2.

4. Location-aware robust: This setting represents the tighter cer-
tification bounds from Algorithm 3. We report performance
corresponding to the worst-case attacker (see Supplementary
Material, Appendix E).

The first two are clean settings, where precision and recall

metrics are empirically computed for each datapoint. The latter

two are certified robust settings, where certified precision and
certified recall metrics are computed using Algorithm 2 and

Algorithm 3. In all four evaluation settings we micro-average

metrics over the entire dataset [38]. In addition, we sweep model

outputs across a range of threshold values to create precision-
recall plots. The associated area-under-curve values aggregate
performance and are used to approximate average precision

(AP); more details are in Supplementary Material, Appendix C.

4.2. PatchDEMUX overall performance

In this section we report our main results for PatchDEMUX on
the MS-COCO 2014 validation dataset. We summarize the pre-
cision values associated with key recall levels in Tab. 1. Fig. 3



Table 1. PatchDEMUX performance with Vil architecture on the MS-COCO 2014 validation dataset. Precision values are evaluated at key recall
levels along with the approximated average precision. We assume the patch attack is at most 2% of the image area and use a computational budget

of 6 x 6 masks
(a) Clean setting precision values (b) Certified robust setting precision values
Architecture ViT Architecture ViT
Clean recall 25% 50% 75% AP Certified recall  25% 50% 5% AP
Undefended 99.930 99.704 96.141 91.146 Certified robust 95369 50.950 22.662 41.763
Defended 99.894 99223 87.764 85276 Location-aware  95.670 56.038 26.375 44.902
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Figure 3. PatchDEMUX precision-recall curves with Vil architecture over the MS-COCQO 2014 validation dataset. We consider the clean and
certified robust evaluation settings. We assume the patch artack is at most 2% of the image area and use a computational budget of 6 x 6 masks.

features precision-recall plots, while AP values are present in
Tab. 1. Because the ViT architecture outperforms the Resnet
architecture (see Supplementary Material, Appendix D) we fo-
cus on the ViT model here. Performance of the ViT architecture
on the PASCAL VOC 2007 test dataset is in Supplementary
Material, Appendix H.

High clean performance. As shown in Tab. 1a and Fig. 3a,
the PatchDEMUX inference procedure features excellent per-
formance on clean data. Specifically, the defended clean setting
achieves ~94% of the undefended model’s AP. These results
demonstrate that PatchDEMUX can be deployed at test time
with minimal loss in performance utility.

Non-trivial robustness. Tab. 1b and Fig. 3b also show that
PatchDEMUX attains non-trivial certifiable robustness on the
MS-COCO 2014 validation dataset. For instance, when fixed at
50% certified recall PatchDEMUX achieves 56.038% certified
precision. This performance remains stable across a variety of
thresholds, as evidenced by the 44.902% certified AP value.
Location-aware certification is a key factor in these results,
improving certified AP by almost 3 points compared to the
certified robust setting. Improvements are most notable in the
mid recall-mid precision region of the certified robust precision-
recall plot (Fig. 3b).

Interestingly, the defended clean precision-recall plot (Fig. 3a)
is concave in shape while the certified robust plots (Fig. 3b)
are slightly convex. This performance gap is likely due to
the sensitivity of PatchCleanser’s certification procedure to ob-

ject occlusion from the generated mask set. This limitation is
compounded by the fact that many MS-COCO images contain
objects that are small relative to the overall image size [19, 33].

4.3. Ablation studies

We also perform a series of ablation studies for PatchDEMUX
using the MS-COCO 2014 validation dataset. We first empiri-
cally compare different attackers in the location-aware robust
setting and find that attacks targeting false positives are relatively
“weaker” (see Supplementary Material, Appendix E). We then
investigate the impact of different defense fine-tuning routines,
and find that variants of cutout fine-tuning (i.e., Random Cutout
[8], Greedy Cutout [28]) can boost model robustness (see Sup-
plementary Material, Appendix F); the strongest results for the
defended clean setting are featured in the previous section.

5. Security Parameter Experiments

As discussed in Sec. 4.1, the PatchCleanser backbone has two
security parameters: the number of masks desired in each dimen-
sion k1 x k2 (i.e., the “computational budget”) and the estimated
size of the patch p in pixels [33]. In this section, we study the
impact of these parameters on PatchDEMUX performance. To
isolate the effects of security parameter variation, we use ViT
checkpoints without defense fine-tuning. Experiments are done
on the MS-COCO 2014 validation dataset.
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Figure 4. The impact of varying PatchCleanser security parameters on PatchDEMUX performance. Experiments performed on MS-COCO 2014
validation dataset. We compute clean AP for the clean setting evaluations, and certified AP for the certified robust setting evaluations.

5.1. Impact of varying mask number

We present results when varying the mask number parameter
in Fig. 4a (the associated table is in Supplementary Material,
Appendix I). We assume the number of masks in each dimension
is the same (i.e., k:=k; = k) and evaluate with respect to k2.
We keep the patch size parameter its default value of ~2%.

Limited tradeoff between computational budget and ro-
bustness. We find that PatchDEMUX provides consistent de-
fended clean and certified robust performance even after greatly
reducing the number of masks. For instance, decreasing the
number of masks from 36 to 16 results in a maximum AP drop
of 2 points across all evaluation settings. At the extreme of
k% = 4 masks more substantial performance drops are notice-
able. This is expected, as the mask generation method from
PatchCleanser will create larger masks to compensate for re-
duced mask number; this leads to increased occlusion and fewer
certification successes [33].

5.2. Impact of varying patch size

We present results when varying the patch size estimate in
Fig. 4b (the associated table is in Supplementary Material, Ap-
pendix I). We keep the mask number at its default value of 6 x 6
masks.

Strong clean performance over different patch sizes. We
find that the defended clean performance of PatchDEMUX is
resilient to increasing patch size; indeed, clean AP only drops
from 85.731 in the smallest patch setting to 69.952 in the largest.
Thus, even in unlikely scenarios (i.e., a patch size of > 32%
would be easily detectable by hand) PatchDEMUX maintains
strong inference performance. For the certified robust settings,
PatchDEMUX provides relatively strong robustness guarantees
on smaller patches (i.e., <2%) and performance degrades for
larger patches (ie., > 8%); certified AP drops close to 0%
when a patch size of 32% is considered. These trends align
with experiments done by Xiang et al. [33] in the single-label
classification domain; the general intuition is that larger patch
sizes require PatchCleanser to generate larger masks, making

certification failures more likely [33].

5.3. Overall takeaways

Overall, we find that PatchDEMUX performance tradeoffs cor-
roborate with findings from Xiang et al. [33]. This illustrates a
key feature of our defense framework: PatchDEMUX success-
fully adapts the strengths of underlying single-label CDPAs to
the multi-label classification setting.

6. Related Work

Certifiable defenses against patch attacks. CDPAs have been
designed for various computer vision applications. In single-
label classification, defense strategies include bound propagation
methods [6], small receptive field methods [17, 24, 31, 32], and
masking methods [33]. CDPAs have also been proposed for
object detection [34] and semantic segmentation [37], although
notions of certifiable robustness are more difficult to define in
these domains.

Certifiable defenses in multi-label classification. Jia et al.
[15] proposed MultiGuard, a certifiably robust defense for multi-
label classifiers that generalizes randomized smoothing [7].
However, MultiGuard is designed to protect against £3-norm
attacks and does not address adversarial patches.

7. Conclusion

The threat of adversarial patch attacks has compromised real-
world computer vision systems, including those that depend on
multi-label classifiers. To this end we introduced PatchDEMUX,
a certifiably robust framework for multi-label classifiers against
adversarial patches. PatchDEMUX can extend any existing
single-label CDPA, including the current SOTA single-label
CDPA PatchCleanser, and demonstrates strong performance
on the MS-COCO and PASCAL VOC datasets. We hope that
future work will take advantage of our modular framework to
significantly mitigate the impact of adversarial patches.
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