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Abstract

Diffusion models (DMs) create samples from a
data distribution by starting from random noise
and iteratively solving a reverse-time ordinary dif-
ferential equation (ODE). Because each step in
the iterative solution requires an expensive neural
function evaluation (NFE), there has been sig-
nificant interest in approximately solving these
diffusion ODEs with only a few NFEs without
modifying the underlying model. However, in the
few NFE regime, we observe that tracking the
true ODE evolution is fundamentally impossible
using traditional ODE solvers. In this work, we
propose a new method that learns a good solver
for the DM, which we call Solving for the Solver
(S4S). S4S directly optimizes a solver to obtain
good generation quality by learning to match the
output of a strong teacher solver. We evaluate S4S
on six different pre-trained DMs, including pixel-
space and latent-space DMs for both conditional
and unconditional sampling. In all settings, S4S
uniformly improves the sample quality relative to
traditional ODE solvers. Moreover, our method
is lightweight, data-free, and can be plugged in
black-box on top of any discretization schedule
or architecture to improve performance. Building
on top of this, we also propose S4S-Alt, which
optimizes both the solver and the discretization
schedule. By exploiting the full design space of
DM solvers, with 5 NFEs, we achieve an FID
of 3.73 on CIFARI10 and 13.26 on MS-COCO,
representing a 1.5 improvement over previous
training-free ODE methods.
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Figure 1. Abstraction of the S4S approach. In low-NFE environ-
ments, common off-the-shelf ODE solvers are unable to approx-
imate the true diffusion ODE trajectory and produce low-quality
samples. In S4S, we learn an optimal combination of solver coeffi-
cients and discretization steps that more closely match the output
of the true ODE trajectory.

1. Introduction

Diffusion models (DMs) are a class of powerful models that
have revolutionized generative modeling and achieve state-
of-the-art performance in a wide number of domains (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b).
Abstractly, DMs learn a score network that approximates the
time-dependent score function of a diffusion process (Song
et al., 2021b; Chen et al., 2023). Sampling from them often
involves solving an ordinary differential equation (ODE)
referred to as the diffusion ODE, where the dynamics are
determined by the score network (Song et al., 2021b;a).
This ODE typically requires a large number of neural func-
tion evaluations (NFEs) to numerically solve, and conse-
quently is quite slow (Ho et al., 2020; Karras et al., 2022).
This is directly at odds with many exciting applications of
DMs for which low-latency inference is essential, such as
robotics (Chi et al., 2024) or game engines (Valevski et al.,
2024). Therefore, there is a tremendous amount of interest
in understanding how the number of NFEs may be reduced
without sacrificing performance.

Methods for enabling DMs to use fewer NFEs generally fall
under one of two categories: learning an entirely new model
that distills multiple score network evaluations into a sin-
gle step (training-based), or designing efficient diffusion
ODE samplers while keeping the score network unchanged
(training-free). From a practical standpoint, training-based
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methods, such as progressive distillation (Salimans & Ho,
2022; Meng et al., 2023) and consistency models (Song
et al., 2023) require access to original data samples and sub-
stantial computational resources, which may not be avail-
able or feasible. Additionally, training-based methods often
optimize objectives that fundamentally alter the model’s
interpretation as a score function, making them unsuitable
for tasks that rely on score-based modeling, such as guided
generation (Ho & Salimans, 2021), composition (Du et al.,
2023), and inverse problem solving (Xu et al., 2024).

For these reasons, we focus on training-free approaches,
which requires selecting a discretization of the diffusion
ODE and determining both the optimal evaluation time-
steps and synthesis strategy to accurately approximate the
continuous trajectory. The majority of the literature has
focused on choosing a good time-step schedule in this low
NFE regime—i.e., choosing when to spend our budget of
NFEs (Watson et al., 2021; Sabour et al., 2024; Tong et al.,
2024; Xue et al., 2024; Chen et al., 2024). Yet, in prac-
tice, it is equally important to choose a good solver—this
corresponds roughly to choosing how to synthesize these
different function evaluations. Most works still rely on tradi-
tional “textbook” ODE solvers such as single-step (SS) (Lu
et al., 2022a;b) or linear multi-step (LMS) methods (Lu
et al., 2022b; Zhang & Chen, 2023). While there is some
literature that explores going beyond these solvers (Zheng
et al., 2023; Zhang et al., 2023; Zhou et al., 2024a), these
approaches only explore narrow components of the sampler
design space.

At their heart, off-the-shelf solvers (and much of the prior
work on optimizing samplers) seek to approximate the path
of the true ODE in discrete time, which can be done given
a sufficiently fine discretization (i.e. many NFEs). These
methods are carefully crafted so that each step yields an
accurate low-degree Taylor approximation of the ODE solu-
tion over a small time window. Our key observation is that
in the low NFE regime, this is the wrong thing to target!, as
analytic tools such as low-degree approximation simply do
not make sense in the setting where the step-size is gigantic.

We propose to abandon this formalism, and rather to di-
rectly optimize a solver to improve performance of the diffu-
sion model. A similar observation was made independently
by Shaul et al. (2024b); however, among other issues, the
method they derived seeks to completely generalize all pre-
viously known solvers. As a result, their solver incorporates
large amounts of irrelevant information and optimizes a very
complex objective, and is thus unable to match state-of-the-
art performance in many settings. In contrast, we give a
cleaner, more direct approach for obtaining an optimized
solver and demonstrate that our method uniformly improves
upon traditional solver performance in virtually all settings
we tested.

1.1. Contributions

Below we summarize the contributions, breaking them into
a description of our efforts on developing a novel method
for learning the solver, and a novel method for alternating
between learning solver coefficients and the time discretiza-
tion.

1.1.1. SOLVING FOR THE SOLVER (S45)

The first contribution is a new method for finding numerical
solvers for DMs in the low NFE regime. Rather than using
any fixed set of pre-existing methods, we instead take the
approach of learning a good solver for the diffusion model.
We call our approach Solving For the Solver, or S4S.

Crucially, we seek to find a solver that is good at approxi-
mating the overall diffusion process, rather than attempting
to discretize any ODE. Indeed, as we demonstrate in Ap-
pendix H.2.4, any attempts at maintaining the “standard”
invariants that guarantee that traditional solvers track the
continuous-time ODE trajectory actively hurt performance.
This reinforces our intuition that we must break from this
standard approach to obtain the best results.

In somewhat more detail, S4S uses a distillation-style objec-
tive for learning solver coefficients. Here, a base “teacher”
ODE solver that takes small step sizes—and thus requires
many NFEs—provides trajectories that give high sample
quality. In turn, a “student” solver with learnable coeffi-
cients, given the same noise latent, learns to produce equiva-
lent images with a smaller number of steps. We explain our
method in more detail in Section 3.1. Our method has the
following advantageous properties.

Universal improved performance. In our experiments, we
demonstrate that in every setting we tried, our method uni-
versally improves the FID achieved compared to previous
state-of-the-art solvers.

Plug-in, black-box improvement. Relatedly, our method
can easily be plugged-in in a black-box manner on top of any
discretization schedule, and for any architecture. Notably,
the gains we achieve from optimizing the solver are orthog-
onal to the gains from optimizing these other axes, e.g. even
with a carefully optimized discretization schedule, plugging
in S4S will achieve a noticeable improvement in FID. Thus,
our method offers a simple way for any practitioner to in-
stantly improve the performance of their generative model.

Lightweight and data-free. Our method is lightweight,
with minimal computational expense which is comparable
to (and often less than) alternative methods for optimizing
aspects of the solver, often taking less than an hour on a
single A100. Our method is also completely data-free, thus
coming at no additional statistical cost to the user.
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1.1.2. SOLVING FOR THE FULL SAMPLER: S4S-ALT

While S4S by itself already presents uniform and substantial
improvements across the board, we find that much of the
power of S48 is truly revealed when it is effectively com-
bined with methods for choosing a good discretization. By
doing so, we are able to fully exploit the design space of
the ODE sampler, something which appears to have been
poorly explored in the literature previously. We propose
an alternating minimization-based approach that iteratively
updates either the coefficients or the discretization schedule
one at a time. We call this approach S4S-Alt.

While S4S already improves upon previous baselines, by
using S4S-Alt to jointly optimize the discretization schedule
as well as the solver, we are able to dramatically improve
upon state-of-the methods across the board, often by a factor
of 1.5 — 2 or more (see e.g., Table 3 and the tables in the
appendix). For example, with only five NFEs, we achieve
FID scores of 3.89 on AFHQ-v2, 3.73 on CIFAR-10, 6.25
on FFHQ, 4.39 on class-conditional ImageNet, and 13.26 on
MS-COCO with Stable Diffusion. Notably, these numbers
are substantially better than what can be achieved by just
optimizing the discretization schedule or S4S, separately.

2. Background and Related Work

We review background on diffusion models and ODEs,
solvers for diffusion ODEs, and learning-based samplers.

2.1. Background: Diffusion Models

Let xo € R? be a random variable from an unknown
data distribution py(xp). DMs define a forward process
{X¢}tefo,r) with T' > 0 that starts from xo and progres-
sively adds Gaussian noise to converge to a marginal distri-
bution, pr(xr), that approximates an isotropic Gaussian,
ie. pr(xr) ~ N(x7;0,5I) at time T for some & > 0
(Ho et al., 2020; Song et al., 2021b). Given x(, we can
characterize the process of adding Gaussian noise by the
transition kernel po:(x:|xg) = N(Xt; atx07at21), for all
t € [0,T], where ay,0: > 0 are selected such that the
signal-to-noise ratio (SNR), o /o?, decays as t increases.
Remarkably, Song et al. (2021b) demonstrated that this for-
ward process shares the same marginal distribution p, as
the probability flow ODE, a reverse-time ODE starting at
x7 ~ pr(xr) given by

1
dx; = f(t)xt—igz(t)vxlogmxt) at, (1)

where f(t) = dloga;/dt and g(t) = (do?/dt) —
2(dlog o /dt)o? (Kingma et al., 2021). Since the score
function V log p;(x;) in Eq. (1) is unknown, DMs learn it
using a noise prediction neural network to minimize

£(6) = E [w(t)leolxi.t) - €]

where xg ~ p(xg), € ~ N(0,I), t ~ U[0,T], w(t) is a
time-dependent weighting function, and x; = ;X + o€
is a noisy sample at time ¢ (Ho et al., 2020; Lu et al.,
2022a). By Tweedie’s formula, €g(x;,t) learns to approxi-
mate —oyVy log pi(z), thereby defining the diffusion ODE

2

o o 58

) eo(xe, t)} dt, )

with initial condition x7 ~ pp(xr). To exactly solve the
diffusion ODE at x; given an initial value x,, where ¢ <
s, Lu et al. (2022a) reparametrizes Eq. (2) in terms of the
log signal-to-noise ratio \; := log(ay /o), yielding

At
ati ‘ N ~
Xti = Xt7'71 - ati / € 60(X>\) A)dAa (3)
At

1

where X and €g (X, A) denote the reparametrized forms
of x; and €g(x¢,t) in the A domain.

2.2. Background: Solving the Diffusion ODE

Sampling from a DM requires numerically solving the dif-
fusion ODE in Eq. (2). Given a decreasing sequence of N
discretization steps {t;}}¥, from ty = T to tx = 0, we
iteratively compute a sequence of estimates {X;, }1¥ , start-
ing from %;, = x7 ~ N (x7;0,52I) such that the global
truncation error between X;,, and the true solution x;,, is
low. The standard approach of controlling this error is to
bound the local truncation error between x;, and x;, at each
t;. Since Eq. (3) gives the exact solution of the diffusion
ODE given an initial value X;, ,, an accurate approximation
of the integral in turn provides an accurate approximation
X¢, for the true solution at time ¢;_1. One can take a Taylor
expansion of ég (X, A) about \;, , in Eq. (3), yielding

k—1
= ;- ~ X
Xt; = o - Xt — O, Z 6(971) (X>\t,‘_1 ) )\ti—l)l/)n(h)
i1 n=0

+ O, 4)

for some v, (h) depending on n, A;,, and A,_,; see Ap-
pendix B.1 for further details. Computing such k-th order
approximation requires accurate estimates of the derivatives
égn) up to order n = k — 1. Existing methods use two main
approaches from ODE literature: single-step methods (Lu
et al., 2022a;b; Zheng et al., 2023; Zhao et al., 2023; Zhang
& Chen, 2023; Karras et al., 2022), which use k& — 1 interme-
diate points in (¢;,t;_1), and linear multi-step methods (Lu
et al., 2022b; Zheng et al., 2023; Zhao et al., 2023; Zhang
& Chen, 2023; Liu et al., 2022), which use information
from k — 1 previous steps. For low order methods (k < 4),
under appropriate regularity conditions (see Appendix B.2)
and when hyy,q, := max;<;<n h; is bounded by O(1/N),
these methods achieve local truncation error of O(hF™)
and therefore global error of O(hE,, ).
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When the number of NFEs is large and thus A4, is small,
local truncation error control yields high quality samples
(Lu et al., 2022a;b; Zhang & Chen, 2023). However, with
few NFEs and large h,,,4:, the higher-order Taylor errors
dominate, leading to large global error. In contrast, our
approach in Eq. (6) directly minimizes the global error.

2.3. Related Work: Learned Samplers

In practice, no single pair of ODE solver and a time dis-
cretization generates high quality samples universally across
various datasets and model architectures, e.g. Appendix H.4
and Tong et al. (2024). This inspired learning-based meth-
ods for deriving ODE solvers and time discretizations
adapted to the given task and architecture. We give a brief
survey here and discuss in detail in Appendix A. One pop-
ular approach exclusively learns the discretization steps
(Watson et al., 2021; Sabour et al., 2024; Xue et al., 2024,
Tong et al., 2024; Chen et al., 2024). Our approach S4S
learns the solver coefficients, complementing the gains of
such methods and universally improving the performance
in all scenarios, as seen in Table 2 and comprehensively
in Appendix H.4. Another line of research focuses on op-
timizing only the solver coefficients (Zheng et al., 2023;
Zhang et al., 2023), or jointly optimizing both solver coeffi-
cients and time discretizations (Zhou et al., 2024a; Zheng
et al., 2023; Liu et al., 2023; Shaul et al., 2024a). However,
these methods are designed to minimize the local approxi-
mation error through the same methods as in Eq. (4) or by
closely matching the entire trajectory of the teacher solver.
Instead, by minimizing the global error by matching the
end of the teacher trajectory, as in Eq. (6), S4S significantly
improves over these approaches. Closest to our approach
is BNS (Shaul et al., 2024b), which learns both the solver
coefficients and time discretizations to minimize global er-
ror. We provide comparisons in Table 4 and explain our
improvements over BNS in Appendix A.3.

3. Learning Diffusion Model Samplers

We detail our strategy for creating DM samplers that pro-
duce high-quality samples using a small number of NFEs.
We exploit the full design space of diffusion model solvers
by learning both the coefficients and discretization steps
of the sampler, as both necessarily interact with one an-
other. We first characterize this design space by providing
a general formulation for three general types of diffusion
ODE solvers: single-step (SS), linear multi-step (LMS),
and predictor-corrector methods (PC). We then describe the
objective we minimize to directly control the global error.
Next, given a pre-specified set of discretization steps, we
introduce our algorithm for learning only the solver coef-
ficients; this uniformly improves performance over hand-
crafted solvers for an equivalent number of NFEs. Finally,

we describe our method for learning both the solver coeffi-
cients and the discretization steps.

3.1. S4S: Learning Solver Coefficients

For a learned score network and initial noise latent x ~
N(0,52I), one can sample from diffusion ODE using an
appropriate sequence of pre-determined discretization steps
{t;}X, and an ODE solver ¥ determined by its coefficients
¢ and the number of steps k it uses. For SS and LMS
solvers, we write their estimate of the next step as

Xi = . Xt — Oty (ehi - 1)A1(¢)7 ©)
i—1

where A;(¢) represents the increment of the solver as a
function of the coefficients ¢. We explicitly define A;(¢)
in Table 1. A PC solver further refines this initial prediction,
by subsequently applying Eq. (5) again with new coeffi-
cients. We provide the intuition behind this formulation in
Appendix B.1 and equivalent examples for a data predic-
tion model in Appendix C. To denote the fact that a learned
solver uses k steps of information, we abuse notation and
refer to it as having order k.

We propose Solving for the Solver (S4S) in Algorithm 1
to learn these coefficients to adapt to the problem instance
of the given score network. Consider the outputs from a
“teacher” solver, ¥*(x7 ), which accurately solves the dif-
fusion ODE. We aim to minimize the global error between
the sample ¥, (x7) generated by sequentially applying ¥,
from tg = T to t; = 0 and the sample from the teacher:

L@)=min B d(Vg(xr), ¥ (xr))). 6
where d(-, -) is an appropriate distance function that is dif-
ferentiable, non-negative, and reflexive. For now, {u}fio
is a pre-determined discretization schedule, though we also
propose learning the discretizations in Section 3.2. We em-
phasize the importance of learning a solver with respect
to the global error: although some existing works try to
match the teacher solver’s trajectory, many teacher trajec-
tories contain pathologies that are subsequently distilled
into the student; see Appendix B.3 for further discussion.
While this method, as stated, already improves performance
out-of-the-box, we now detail two optimizations that further
improve our performance.

3.1.1. TIME-DEPENDENT COEFFICIENTS

Traditional methods for solving ODEs (e.g. Adams-
Bashforth or Runge-Kutta) are often defined by a constant
set of coefficients, regardless of what time step along the
ODE they are estimating. While this is not uniformly the
case for diffusion ODE solvers, many keep coefficients
fixed across steps of solving the reverse-process; see Ap-
pendix C.2. This fails to fully capture the complexity of
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Solver Type | A (D) I | NFEs per Step # Params.
k
LMS Z bj’iEg()N(ti_j,tifj) {bj,i} 1 k‘(2N + 1-— k)/2
j=1
k j—1
SS ijyiﬁj, Kj = €g ()N(tl—l + Za]ﬂ-,ml, ti—1 + Cjﬂ‘) {bjﬂ‘, Ajil, Cj?i} k (kz + k- 1)N
j=1 =1
k
LMS + PC > asieo(Re; tiog) {b.i} +{a5.} 1 k(2N +1 —k)
j=1

Table 1. We apply S48S to three types of diffusion ODE solvers; we show their increment (A;), learnable parameters, number of NFEs per
step, and total parameter count over N + 1 steps. By default, we use a linear multi-step predictor for the PC method, so {af ;} refer to
coefficients during the correction step, and the total set of learnable parameters accounts for the underlying multi-step predictor.

Algorithm 1 S4S

Require: Coefficient parameters ¢, student solver U, teacher solver ¥*, distance metric d, and r.
1: D« {(xp,x7, ¥*(x1)) | x7 ~ N(0,6%1),x} = x1} // Generate data D

2: while not converged do
3 (X xp, ¥*(xp)) ~D

L(¢,x) = d(¥e(x), ¥*(x7)) subject to X/, € B(xp,ror)
Update ¢ and x/- using the corresponding gradients VL (¢, x/)

r xfT—xT
137 —x |2
Update D with the new X/

4
5
6:  xXp < xp + 1||xp — x7ll2 > 1] -
7:
8: end while

// Projected SGD

diffusion ODE:s: the score network increasingly suffers from
prediction error as the marginal distribution p;(x;) resem-
bles Gaussian noise less and less, while estimation error that
occurs at a noisy time step propagates through the estimated
trajectory differently than at a “cleaner” step. Accordingly,
as an additional optimization, S4S learns time-dependent
coefficients, as exemplified by the dependence on the cur-
rent iteration ¢ in Table 1. We ablate the design decision
to use time-dependent coefficients in Appendix H.2; time-
dependent coefficients significantly outperform the use of
fixed coefficients.

3.1.2. RELAXED OBJECTIVE

For each student solver ¥ 4, the number of both NFEs and
learnable parameters is determined by the type of solver,
the number of discretization steps, and the step parameter
k of the solver, as displayed in Table 1. Accordingly, when
the target solver uses few NFEs, the number of learnable
parameters may be very low, e.g. 6 parameters for LMS
when N = k = 3. This can make optimizing Eq. (6) dif-
ficult: indeed, given an initial condition x7, our objective
tries to ensure that ¥4 (x7) = U*(x7). Given the small
number of learnable parameters, however, the student solver
will almost always produce an output with non-trivial trun-
cation error. As a result, though our learned coefficients
may be successful at reducing the global error, they might

nonetheless underfit the objective and fail to fully achieve
the expected performance improvements.

Instead, similar to Tong et al. (2024), we propose a relax-
ation of our training objective that is easier to optimize with
a limited number of parameters. In particular, rather than
forcing the student solver to exactly reproduce the teacher’s
output for x, we instead only require the existence of an
input x/- sufficiently close to xr (i.e. within a bounded
radius) such that U, (x7.) = ¥*(xr). As a result, so long
as x/ is appropriately close to x, the average global error
of the learned student model can still be quite low, while
mitigating the difficulty of the objective. Concretely, our
relaxed objective is expressed as

£reax = mij E J ) ;
w@)=min B (e )

7
AUy (o). U ()

J(xr,x7) = min
XL €By(xT)

where B,.(x) := {x' | ||lx — x/||2 < r&} is the Ly ball of
radius r& about x. This objective has several appealing prop-
erties. First, in Appendix D.2, we empirically verify, similar
to Tong et al. (2024), that this objective is easier to solve
than our original objective, which we recover when r = 0.
Moreover, under appropriate assumptions on the solver, we
can ensure that distribution generated by the learned solver,
De(X0), and that of the teacher solver, p*(x¢), are sufficient
close; see Appendix D.1 for details. Finally, although we
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minimize this objective during training, at inference time,
we only use the initial condition x ~ pp(x7) rather than
finding and using X/, ~ B,.(xr) as an initial condition.

3.2. S4S-Alt: Coefficients and Time Steps

While learning the solver coefficients alone improves the
quality of samples, the choice of discretization steps remains
crucial for achieving optimal performance. In that vein, we
present S4S-Alt, which learns both solver coefficients and
discretization steps by using alternating minimization over
objectives for the coefficients or the discretization steps.

3.2.1. DISCRETIZATION STEP PARAMETRIZATION

When sampling from a DM, the choice of discretization
steps determines (1) the expected amount of signal-to-noise
present in an estimated sample, (2) the error present in the
score network’s prediction, and (3) the amount of error
propagated by using estimated trajectory points as input to
the score network. We take these consequences into account
when parametrizing a learned set of discretization steps
by separating the learned steps into two parts. First, we
use a set of time steps, {tf f-V:ng, that is parametrized by a
learnable vector & € RV *1! used for determining the step
size and SNR parameters, thereby accounting for (1). We
explicitly parameterize tf such that it is a monotonically
decreasing sequence of parameters between 0 and 7, i.e.
tg =T > tf > e > tf\, = 0; see Appendix E.1 for an
explicit description of this parametrization. Second, we use
a modified set of time steps as input to the score network to
mitigate (2) and (3). Specifically, we use a set of decoupled
steps {t¢ = tf + €6}, as input to the score network,
where £¢ € RV*1; we describe the construction of £€ in
Appendix E.2. Under this parametrization, the update step
of the k-step LMS in Eq. (5) and Table 1 is:

i ats

p
< J— 7 < hrl L. < C
X = Xti—l_o—tf(e _1) E b],169<xt1,7k+j’tifk+j)
i—1 j=0

where h; = tf - tfﬁl. For simplicity, we denote the col-
lection of learnable time parameters as 2 := {&,£°}. Con-
sequently we represent a solver with learnable coefficients
and time steps as ¥y = and its outputs as \I’¢’E(XT).

3.2.2. ALTERNATING OPTIMIZATION

We next consider how to optimize both the solver as well
as the discretization schedule. We propose an iterative ap-
proach, S4S-Alt, that alternates between optimizing the time
steps and the solver coefficients. Formally, at iteration k,

we solve the objectives

= = arg min E
= x7~N(0,52I)

[d(\pq—”k—l Bkt (XT)7 \P*(XT))L

[d(Yg, = (xT), V" (x7))].
(8)

In the first objective, we learn only Ej, using the LD3 ob-
jective (Tong et al., 2024) from a student solver with coeffi-
cients and time steps initialized at ¢»;,_1 and E_1, respec-
tively. In the second, we learn ¢y, from a solver initialized
at the newly learned time steps Zj,_1 and coefficients ¢y _1.

= arg min E
d)k gd) XTNN(O,&QI)

A natural alternative to this approach would be to optimize
the coefficients and time steps simultaneously. However,
in our experiments, we found that optimizing both simul-
taneously presents several challenges, namely that the op-
timization landscape becomes significantly more complex
due to the interaction between the solver coefficients and
time steps. Additionally, we found that learning both jointly
has a greater risk of over-fitting. We found that S4S-Alt
performed significantly better in practice, as seen in Table 6.

3.3. Implementation Details

Below, we discuss the practical details used for S4S. For
ease of notation, we first ground our explanation in the
version of S48 that only learns coefficients before discussing
details specific to our S4S-Alt. We direct explicit queries
about hyperparameters, etc. to Appendix G.2.

Practical Objective. Despite formulating our relaxed ob-
jective in Eq. (7), optimizing it in practice is still unclear.
To do so, we treat our optimization problem as jointly opti-
mizing both ¢ and x’., using projected SGD to enforce the
constraint that x» remain close to x7. Concretely, this is
/ / *

Lretax (¢, X7) := xTNJ\IF(O,&H [d(V g (x7), ¥ (x1))], ©

subj. to x7 € B,.(xr).

In practice, we use LPIPS as our distance metric, a com-
mon loss for distillation-based methods (Salimans & Ho,
2022; Song et al., 2023); for other modalities, alternatively
appropriate distance metrics should be used. We ablate the
decision to use LPIPS in Section 4.2.

Algorithm Details. The algorithm for S4S learning coeffi-
cients is displayed in Algorithm 1. First, we collect a dataset
from a sequence of noise latents used to create samples from
the teacher solver W*(x7). Initially, we use the same ini-
tial condition for both the student and teacher solver, i.e.
x’T = x7. At each iteration, for a given batch, we compute
the loss between the output of our learned solver U (x/)
and U*(xr), and use backpropagation to get the gradients
of this loss with respect to ¢» and x/.. To enforce our con-
straint on x/., we use projected SGD to ensure it remains
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inside of B,.(xr); for coefficients, we can use an arbitrary
method for applying the gradients, although momentum-
based methods work best empirically. Notably, after we
update x/., we keep it with its original (xg, ¥*(xr)) pair,
and update the dataset with the new noise latent. We also op-
timize our computation of the gradient computation graph;
see Appendix F.2 for more details.

Initialization. A natural question to consider is how the
student ODE solver coefficients may be initialized. Since
our approach generally subsumes common diffusion ODE
solvers, including the best-performing methods like DPM-
Solver++ (Lu et al., 2022b), iPNDM (Zhang & Chen, 2023),
and UniPC (Zhao et al., 2023), we can initialize ¢ with
the same coefficients as these methods. This can be in-
terpreted as wrapping one of these traditional solvers in
our lightweight approach; in this setting where just coef-
ficients are learned, we refer to this as e.g. iPNDM-S4S.
Alternatively, we could consider initializing the coefficients
according to a Gaussian. We ablate this decision in Ap-
pendix H.2.1, finding that solver initialization outperforms
Gaussian initialization.

Algorithms for Learning Coefficients and Time Steps.
In practice, when learning both time steps and solver coef-
ficients for a student solver ¥ 4 =, S4S optimizes an equiv-
alent, alternating version of Eq. (9) (and equivalently for
jointly learning coefficients); likewise, the pseudocode for
doing so is quite similar, which we detail in Appendix F.1.
Nonetheless, in practice, learning ¥ 4 = generally requires
a larger dataset compared to just learning the coefficients,
largely attributable to a larger number of parameters. We
ablate performance with dataset size in Appendix H.2.3.

4. Experiments

We evaluate S4S on a number of pre-trained diffusion mod-
els trained on common image datasets. We use pixel-space
diffusion models for CIFAR-10 (32x32), FFHQ (64x64),
and AFHQV2 (64x64), each having an EDM-style back-
bone (Karras et al., 2022). We also use latent diffusion
models, including LSUN-Bedroom (256x256) and class-
conditional ImageNet (256x256) with a guidance scale of
2.0. Finally, we present both qualitative and quantitative
results for Stable Diffusion v1.4 at 512x512 pixels with a
variety of guidance scales. We provide precise experimental
details in Appendix G for all sets of experiments, includ-
ing choice of teacher solver, dataset size, and selection of
noise radius r. We use the Frechet Inception Distance score
(FID) as a metric for image quality on all datasets using 30k
samples generated from MS-COCO captions for evaluating
Stable Diffusion and 50k samples for all other datasets.

First, we show the benefits of S4S as a standalone wrap-

Schedule Method | NFE=4 NFE=6 NFE=8
CIFAR-10
UniPC 5063 1947  9.68
UniPC-S4S | 4430 17.80  9.05
EDM iPNDM 2950 975 524
iPNDM-S4S | 25.74 881  4.98
DPM-v3 | 3439 1844 739
UniPC 1583 355 287
UniPC-S4S | 1346 317  2.67
LD3 iPNDM 1093 540 275
iPNDM-S4S | 930 476  2.61
DPM-v3 | 2986 1069  3.59
ImageNet
UniPC 5322 1097 553
. UniPC-S4S | 4553 1009  5.19
t-Unif
iPNDM 3623 1615 793
iPNDM-S4S | 31.81 1485  7.53
UniPC 1133 474 487
b3 UniPC-S4S | 10.56  4.54 458
iPNDM 645 470 491
iPNDM-S4S | 6.05 457  4.68

Table 2. FIDs on CIFAR-10 and ImageNet show that common
diffusion ODE solvers can be improved by S4S initialized at that
solver for almost all NFEs and schedules.

per around learnable third-order multi-step versions of the
best current ODE solvers: UniPC (Zhao et al., 2023) and
iPNDM (Zhang & Chen, 2023). Here, we initialize our stu-
dent solver to have the same coefficients as their unlearned
counterparts before optimizing our relaxed objective. When
possible, we also compare with DPM-Solver-v3 (Zheng
et al., 2023), which learns coefficients, but only to attain a
guarantee on local truncation error. We evaluate our learned
solvers on seven discretization schedule methods, ranging
from common heuristics to modern step-selection methods,
with further details in Appendix G.1. We also characterize
the performance of S4S on learnable single-step methods,
which can be found in Appendix H.1.

Next, we evaluate S4S-Alt against several methods of learn-
ing sampler attributes, including AMED-Plugin (Zhou et al.,
2024a) and BNS (Shaul et al., 2024b), in sample quality
and computational efficiency. We instantiate S4S-Alt as a
LMS method initialized with iPNDM coefficients and LD3
discretization; this limits the amount of overfitting to the
training data due to fewer parameters relative to SS and PC
methods. Finally, we ablate key design decisions in S4S.

4.1. Main Results

When used as a wrapper for learning solver coefficients,
S4S almost uniformly improves image generation quality
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Method \ NFE=4 NFE=6 NFE=8
CIFAR-10 \

Best DPM-v3 17.88 7.32 3.59
Best Trad. (LD3) 10.93 3.55 2.75
Best S4S 8.25 3.17 2.61
S4S Alt \ 6.35 2.67 2.39
MS-COCO \

DPM-v3 23.90 15.22 12.10
Best Trad. (LD3) 20.22 12.33 11.30
Best S4S 19.14 11.97 10.82
S4S Alt \ 16.05 11.17 10.68

Table 3. S4S-Alt consistently offers significant improvements in
FID over best-performing alternatives at a given number of NFEs.

Method | CIFAR MS-COCO

| NFE FID | NFE  FID

S4S-Alt | 7 252 6 11.17

S48 10 218 8 10.84

LD3 10 232 8 12.28

DPM-v3 10 232 8 12.10

BNSf 8 273 | 12 2067
PDf 8 257 - -
ECM' 2 2.20 - -
iCT-deep’ 1 251 - -

Table 4. Number of NFEs required to match/beat S4S-Alt perfor-
mance on CIFAR and MS-COCO. f denotes that results were taken
from original papers. PD refers to Progressive Distillation (Sali-
mans & Ho, 2022), ECM to Easy Consistency Models (Geng et al.,
2025), iCT-deep to Improved Consistency Training (Song & Dhari-
wal, 2024). Red cells are methods that cannot match S4S-Alt in
our experiments w/ our NFE settings or in recorded experiments.

across datasets, solver types, and discretization methods
in the few-NFE regime. Our full results are available in
Appendix H.4, while we present a selection of results on
CIFAR-10 and ImageNet in Table 2. We observe that the
size of the improvement that S4S provides is dependent
on the underlying discretization schedule and solver type,
and while S4S always improves performance for any dis-
cretization schedule, the amount of the improvement varies
across different choices of schedule. When we both opti-
mize the solver and the schedule, i.e., with S4S-Alt, we
obtain significantly greater improvements compared to prior
state-of-the-art. We display some of these results in Table 3,
where we compare against methods that learn a single di-
mension of the sampler: the best “traditional” ODE solver
using the learned LD3 discretization schedule, the best FID
DPM-Solver-v3 across all schedules, and the best S4S solver
across all schedules; see Appendix H.4 for the full set of FID
values across our experiments. S4S-Alt achieves extremely
strong performance relative to simple learned methods. We

(a) PCA of learned S4S coef-
ficients at each discretization (b) PCA of learned S4S coeffi-
step. cients at each epoch of training.

Figure 2. PCA of learned S4S coefficients at a each point of the
reverse process or at b each training epoch; darker points refer
to earlier values in the reverse process or training. We initialize
S48 coefficients at iPNDM and learn a solver with 5 NFEs and
order 3. In a, we take the PCA of the combined set of final learned
coefficients {(b1,;, b2.;, b3,;) }3_1 across the three training random
seeds used. We also include the iPNDM coefficients in the PCA,
using a total of 16 vectors in R3. In b, we concatenate the learned
coefficient vectors at the end of each epoch, resulting in a vector
of dimension R*® for each epoch. We again perform PCA on a
collection of 16 of these vectors, again including iPNDM as a
reference point.

also provide qualitative comparisons in Appendix H.5.

Finally, we provide a detailed comparison of S4S-Alt to
methods that learn aspects of the solver, as well as training-
based distillation methods, in Appendix H.3 and briefly in
Table 4. S4S-Alt outperforms the vast majority of learnable
solver methods and achieves competitive performance to
training-based methods for a fraction of the compute.

4.2. Ablations

Table 5 shows ablation on the solver order in learned LMS
models. In both versions of S4S, excessively large order
tends to decrease performance; despite setting r proportion-
ally to the larger number of parameters, using information
from distant time steps hurts output sample quality. We also
characterize the importance of our alternating minimization
objective for S4S-Alt. As an alternative, we consider learn-
ing both the solver coefficients and discretization steps si-
multaneously using the same objective; see Appendix H.2.2
for an explicit description. We present our results in Table 6.
Finally, we characterize many more design decisions made
over our solver; see Appendix H.2.

5. Conclusion

We introduce S4S, a method for learning DM solvers in the
low NFE regime. Our approach matches the output of a
teacher solver while simplifying the optimization landscape
for learning a student solver. While we achieve superior
results, there are nonetheless limitations and opportunities
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Method ~ Order | NFE=4 NFE=6 NFE=8

3 14.24 5.45 3.55

S4S 13.94 5.68 3.61

- 6.11 3.89
10.63 4.62 3.15

10.21 4.40 3.24
- 4.83 3.42

| 16.68 6.19 3.75

4
6
3
S4S-Alt 4
6
3

Baseline

Table 5. Effect of solver order on FID for FFHQ. Both S4S meth-
ods are LMS initialized with iPNDM, and standalone S4S uses
LD3 schedule. Cells that have worse performance than traditional
iPNDM with LD3 are highlighted in red. Excessively high order
degrades quality in both versions of S48S.

Method Order | NFE=4 NFE=6 NFE=8

S4S-Alt 3 6.35 2.67 2.39
Joint Obj. 3 6.81 3.8 291
Joint Obj.  Eq-NFE | 6.42 3.37 3.76

iPNDM-S4S 3 9.30 4.76 2.61
iPNDM 3 10.93 5.40 2.75

Table 6. Using a joint objective for learning both coefficients and
time steps, and the interaction of the joint objective with the order
of the underlying LMS method vs. S4S-Alt on CIFAR-10. Eg-
NFE denotes having an order equal to the number of NFEs used,
e.g. order 6 at 6 NFEs. Orange indicates worse performance than
S4S on iPDNM; red indicates worse than traditional iPNDM.

for future work: 1) we only experimented on ODE solvers,
2) coefficients must be learned for each number of NFEs
and cannot be re-used, and 3) we learn dataset-level coeffi-
cients rather than sample-level coefficients. Our low-NFE
performance also lags behind the very best training-based
approaches.

Impact Statement

In terms of broader impact, the techniques in this work may
be used to improve samples produced for beneficial pur-
poses, such as private data synthesis; moreover, the efficient
generation that S4S provides helps reduce the energy us-
age in this era of modern machine learning. Nonetheless,
these models could also be used to generate highly realistic
images, audio, or videos that could be used for harmful
purposes. We believe technical innovations such as ours
should be balanced with safety measures.
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A. Comparisons with Existing Works

Here, we provide a detailed discussion of similar works to our method, accentuating limitations in existing methods and
noting how our approach improves upon them.

A.1. Upper Bounds: Comparison with AYS and DMN

First, we discuss our relationship with Align Your Steps (AYS) (Sabour et al., 2024) and DMN (Xue et al., 2024), two
methods for learning optimized discretization schedules for DMs by minimizing upper bounds of various forms of error;
however, minimizing these upper bounds provides no guarantee of actually minimizing the true global error. Additionally,
because these methods only focus on selecting discretization schedules, they fail to fully explore the full design space of the
DM sampler.

DMN In DMN, Xue et al. (2024) minimizes an upper bound for the global error by optimizing only over the discretization
schedules without considering the influence of the ODE solver method or the neural network; this bound is constructed
solely by the chosen schedules for o; and o that govern the SNR. Moreover, it makes a strong assumption that the prediction
error of the score network is uniformly bounded by a small constant, which often fails to be the case (Zhang & Chen, 2023).

AYS In AYS, Sabour et al. (2024) constructs an upper bound on the KL divergence between the true diffusion SDE solution
distribution and the observed sampling distribution. They minimize this bound through an expensive Monte Carlo procedure
and require bespoke numerical solutions, such as early stopping and a large batch size, to ensure stable optimization. More
generally, both methods optimize an upper bound to their specific notions of error, which fails to guarantee minimization of
the actual global error.

A.2. Local Truncation Error: Comparison with DPM-Solver-v3, GITS, AMED-Plugin, ITA, and Bespoke Solvers

Here, we provide discussion of a variety of works, which learn discretization schedules (Chen et al., 2024), solver
coefficients (Zheng et al., 2023; Zhang et al., 2023), or a combination of both (Zhou et al., 2024a; Shaul et al., 2024a) by
minimizing various forms of local truncation error. As previously discussed, we emphasize that such an optimization pattern
is insufficient in ensuring that the global error is minimized, as well as method-specific differences or pathologies.

DPM-Solver-v3 DPM-Solver-v3 (Zheng et al., 2023) is descended from a remarkable family of exponential integrator-
based work (Lu et al., 2022a; Zheng et al., 2023). Notably, DPM-Solver-v3 computes empirical model statistics, or EMS,
that define coefficients that minimize the first-order discretization error produced from a Taylor expansion of their solver
formulation. Interestingly, while these methods only minimize the first-order error, they are also used in higher-order
versions of DPM-Solver-v3. Crucially, however, the EMS are calculated to ensure local truncation error control and
ultimately provide global error control of the form O(h*) given an k-th order predictor and maximum step size h. As a
result, DPM-Sovler-v3 suffers from the same pathologies as other traditional solvers that aim to control the local truncation
error when the step size becomes large. Additionally, Zheng et al. (2023) only learns the solver coefficients, leaving half of
the sampler design space on the table.

GITS Similarly, GITS (Chen et al., 2024), a method that uses DP-based search to select and optimized sequence of
discretization steps for a DM, seeks to minimize the local truncation error of a student sampler. However, as discussed in
Section 2.2, minimizing the local truncation error provides no guarantees for a bound on the global error, particularly in the
low NFE regime; their algorithm reflects as much, as it assumes scaling of the local truncation error in order to obtain an
estimate of the global error. Additionally, their method of selecting the discretization steps is agnostic to the specific choice
of ODE solver used by the student sampler.

AMED-Plugin AMED-Plugin (Zhou et al., 2024a) is a recently proposed approach that learns both coefficients and time
step for existing solvers by selecting intermediate time steps within an existing discretization schedule and applying a
learned scaling factor when using the intermediate point in an ODE solver; they do so by learning an additional “designer”
neural network on top of the bottleneck feature extracted from a UNet-based score network. A reasonable interpretation of
AMED-Plugin is that it learns half of the time steps used in a sampling procedure that can be used on top of many common
solvers; accordingly, it does not take full advantage of the sampler design space, e.g. selecting all solver coefficients and
time steps. Moreover, the neural network used in AMED-Plugin is also trained to minimize truncation error by matching
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teacher trajectories along intermediate points, resulting in the same limitations as in Section 2.2. It also requires longer
training time, which is likely attributable to the more expressive number of parameters being learned.

IIA TIIA (Zhang et al., 2023) is an approach that learns specific solver coefficients of different traditional solvers by
minimizing the MSE between a student trajectory, requiring relatively minimal optimization costs. Similar to earlier
critiques, matching the teacher trajectory can still learn pathologies along the teacher trajectory that are corrected with the
benefit of additional NFEs but are ill-suited for the sutdent solver. Moreover, this approach only learns coefficients, failing
to exploit the full design space; as a result, their quantitative performance is not as good as S4S.

Bespoke Solvers Bespoke solver (Shaul et al., 2024a) is a solver distillation method that effectively learns both time steps
and coefficients by constructing and minimizing an upper bound for the global error; in practice, this bound essentially just
results in minimizing the sum of the local truncation error from a teacher solver. As a result, though it makes use of the full
sampler design space, it also seeks to minimize a sub-optimal objective.

A.3. Minimizing Global Error: Comparison with BNS and LD3

Finally, we discuss two approaches that seek to directly minimize the global error, either by learning discretization steps (Tong
et al., 2024) or by learning both time steps and solver coefficients (Shaul et al., 2024b). While both of these objectives are
aligned with our approach, they fail to achieve optimal performance in particular ways.

BNS Bespoke Non-stationary Solvers (BNS) (Shaul et al., 2024b) directly minimizes the global error, in this case PSNR,
based solely on the outputs of the student and teacher DM sampler. While this is aligned with our approach, they have three
key limitations. First, their solvers, which are essentially learned versions of linear multi-step methods, have maximal order;
that is, they allow the earliest predictions of the diffusion model to serve as gradient information even at very late time
steps. Essentially, these solvers are /N-step methods that leverage information from the full trajectory. Past work (Zheng
et al., 2023) and our own ablations demonstrate that attempting to use methods with too much influence from past steps can
result in instability in the ODE trajectories. Second, in the low NFE regime, BNS still has a relatively small number of
parameters, which makes their objective difficult to optimize and results in solvers that likely are underfitted; we rectify
such issues with our relaxed objective. Third, BNS optimizes all parameters simultaneously, which results in a complex
optimization landscape irrespective of the whether the student model is adequately parametrized. In contrast, our approach
uses alternating minimization to improve the stability of our overall optimization and iteratively solve optimization problems
with easier loss landscape.

LD3 LD3 (Tong et al., 2024) uses a gradient-based method for learning a discretization schedule that minimizes the global
error. Moreover, they also make use of a relaxed objective that makes their optimization problem easier when using a
relatively small number of parameters. However, LD3 similarly fails to make use of the second half or the DM sampler
design space, which yields a significant improvement in performance.

B. Local Error Control in ODE Solvers

For completeness, we provide some details truncation error control for traditional ODE solver methods; significantly more
details can be found in Lu et al. (2022a).

B.1. Taylor Series Derivation

Here, we provide brief details of the derivation of the Taylor series and its low-order derivative terms, as referenced in
Section 2.2. For further details and the most informative description of the relationship of diffusion ODE solvers to the
low-order Taylor approximation, see Lu et al. (2022a;b); our explanation is essentially derived from their analysis. Recall
that an exact solution for the diffusion ODE in its A parametrization can be given by

At
Xy, = — Xy, — oy, / e Mg (X, \)d\, (10)
A,

1
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where X and €g(Xy, A) denote the reparametrized forms of x; and €g(x;,t) in the A domain. To compute x;,, we must
approximate the integral in Eq. (10); to do so, consider a Taylor expansion of ég (X, A) as

k—1
s /\_)‘1‘71 nAn ~
tolin, ) = 3" AT e ) O = A )

n! -7
n=0

Additionally, define the functions

b aess O
or(z) = /0 e = 1)!d5, wo(z) = e*,
which are common terms in exponential integrator methods (Hochbruck & Ostermann, 2010). Note that we have that

1 (0) = 1/k! with recurrence relation g 11(k) = (pr(2) — pr(0))/z. Substituting the Taylor expansion into Eq. (10) and
defining h := Ay, — Ay, _, gives:

At;
Xp, = by, - ozti/ e ep (%, \)dA
Oty Aty
At k—1 n
Qg ti Y (/\ - /\tq‘,—l) ~(n) /4 k
—ay MZ ) A O (hF) ] dx
Oty i o ~/>\t,-1 ’ <n;0 n! €o (thi—1 t’—l) + ( )
k—1
_ ati _ & h71,+1 h A(’ﬂ) S )\ O hk-‘,—l
- Xti_1 A, Z ¢n+1< )69 (X/\t,i—17 ti—l) + ( )
Oty O, n—0
k—1
(6T A(n) /A
= at L Xt;1 — Ot Z hn+190n+1(h’)6(gl) (X)\ti—l ) )\ti—l) + O (hk+1)
-1 n=0

Taking 1, (h) = h" 1,11 (h) yields the expression in Eq. (4). Moreover, note that

h h h 2
e —1 e"—h—-1 e’ —h?/2-1
@1( ) h ’ 902( ) 12 ) 303( ) h3 3
and accordingly we factor out an e — 1 to receive
k-1
Q. ~(n) /4
Xt = o = Xtio1 — ati(eh - 1) Z Cﬂ(h’)eg )(X)\ti—l’)\ti—l) +0 (hk+1) .
tiz1 n=0

where ¢(h) captures the appropriate coefficient of each één). This essentially captures the desired formulation we provide: a

given ODE solver method approximates the éfgn) terms, we capture this approximation using A; and ignore the higher-order
Taylor terms.
B.2. Regularity Conditions for Local Truncation Error Control

In general, three regularity conditions (Lu et al., 2022a;b; Zheng et al., 2023) are required for ensuring that the local
truncation error can be bounded in common diffusion ODE solvers:

1. The derivatives é(en) in Eq. (4) exist and are continuous for all 0 < n < k.

2. The score network €g is Lipschitz in its first parameter x.

3. The maximum step size Ay qz is O(1/N), where N is the number of discretization steps.

These assumptions break down in the following ways:
1. The derivatives of the noise prediction model éé") cannot be guaranteed to exist or be continuous, since neural networks
trained with standard optimizers like SGD or Adam do not enforce smoothness constraints on the learned function.

While techniques like spectral normalization (Miyato et al., 2018) can help control Lipschitz constants, they do not
ensure differentiability.
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Solver Type | A () 1) | NFEs per Step # Params.
k
LMS > biixe(Re, i tio;) {b;.} 1 k(2N +1—k)/2
j=1
k j—1
SS ijyiﬁj, Kj = Xo <>~(ti—1 + Zaj,i,l/ilytifl + Cjﬂ;) {bj,i, Qj.i,l, Cj,i} k (kQ +k— 1)N
j=1 =1
k
LMS + PC > a5 ixe(Re,_;tioj) {bji} +{a5.} 1 k(2N +1 —k)
i=1

Table 7. We apply S48S to three types of diffusion ODE solvers; we show their increment (A;), learnable parameters, number of NFEs per
step, and total parameter count over N + 1 steps. By default, we use a linear multi-step predictor for the PC method, so {af ;} refer to
coefficients during the correction step, and the total set of learnable parameters accounts for the underlying multi-step predictor.

2. The Lipschitz condition on €g is typically violated in practice, as modern score networks use architectures like U-Nets
that can have very large Lipschitz constants. Even with normalization techniques, these constants often scale poorly
with network depth and width.

3. The step size restriction e, = O(1/N) forces a trade-off between computational cost and numerical accuracy that
may be unnecessarily conservative in many regions of the trajectory where the ODE is well-behaved.

These theoretical limitations help explain why practical implementations often deviate from the idealized analysis. In
particular, alternative methods for local truncation error control (Zhang & Chen, 2023; Chen et al., 2024) can achieve good
empirical performance despite violating these assumptions, suggesting that weaker conditions may be sufficient in practice.

B.3. Local Error Control

A number of related works (Chen et al., 2024; Zhang et al., 2023; Shaul et al., 2024a) recommend matching the trajectory of
the teacher solver. In our setting, given an intermediate point X; from the teacher solver, this would require optimizing an
objective of the form:

min [ d(%?, %)

for all ¢ in [IV], either simultaneously or iteratively for each i. Nonetheless, across many teacher trajectories, many solvers
have pathological behavior that is corrected in regimes with large numbers of NFEs. For example, Figure 9 in Zhou
et al. (2024b) demonstrates such an example: as the guidance scale increases, the teacher trajectories become increasingly
pathological, but benefit from correcting errors made in early steps. However, by training a student solver with few NFEs to
match such a trajectory on overlapping points with the teacher solver, it can learn these same pathologies that are resolved in
the teacher by a larger number of NFEs.

C. Generalized Formulation of Diffusion ODE Solvers
C.1. Data Prediction Solver Instantiation

While we focus in the main paper on generalized versions of ODE solvers in terms of noise prediction, we also provide a
general expression in terms of the data prediction model. Note that the general form of the exact solution to the diffusion
ODE under parametrization by the data prediction model is

At
x; = Ltx, + at/ e %g(%r, \)dA
A

s S

Therefore, we just need to take a Taylor approximation of the integral, as we did in Appendix B.1. This results in a general

expression for a diffusion ODE as
- Ot; - —h,
X, = : X1 — ati(e M — 1)A;{(¢)

i—1

We display the equivalent definitions for A¥(¢) in Table 7.
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C.2. Constant Coefficients in Diffusion ODE Solvers

Coefficients in diffusion model solvers are not “inherently” constant; whether they are constant or not depends on the
choice of discretization schedule and design decisions in the solver. For example, the iPNDM solver (Zhang & Chen, 2023)
demonstrates this principle clearly - after its initial warmup period, it settles into using constant coefficients for subsequent
steps. This design choice provides computational efficiency while maintaining numerical stability. The solver achieves
this by carefully transitioning from variable coefficients during the warmup phase to fixed values that work well across the
remaining time steps.

Similarly, DPM-Solver++ (Lu et al., 2022b) multi-step methods can be viewed through the lens of constant coefficients,
particularly in their higher-order variants. This perspective helps explain their computational efficiency, as the coefficients
don’t need to be recalculated at each step, while still maintaining high-order accuracy in solving the diffusion ODE.

D. Relaxed Objective

D.1. Theoretical Guarantee

Here, we briefly restate the theoretical guarantee for the relaxed objective presented in Eq. (7); this guarantee was provided
by Tong et al. (2024).

Theorem D.1. Let V. and ¥, be a teacher and student ODE solver each with noise distribution N'(0,0?1) € R?, and
with, respectively, distributions q and pg. Assume both W, and V 4 are invertible. Let v > 0, if the objective from Equation
(6) has an optimal solution ¢* for r with objective value 0, we have

DiL(g(x) | pg= (%)) < 5 +7Vd +1 4 Exoga[|C(Va(x)) = C(Tg- (x))], (1D

r
2
where C(V 4-(x)) = log | det Jy,,. (\11;1 (x))].

Below, we provide a provide a brief overview of the proof; see Tong et al. (2024)[A.1] for further details.

Proof. We proceed in several steps:

Step 1: Initial Setup. By assuming the invertibility of the solvers and the loss of Equation (6) having an optimal (zero
loss and satisfying all ro7-ball constraints) solution ¢*, we have for every x ~ ¢(x) exactly one b with ¥ (x) = b and
exactly one corresponding a with \11;1 (x) = a. Moreover, since a is an optimal and therefore feasible solution, we have
a € B(b,ror) and thus ||a — b||2 < ror.

Step 2: KL Divergence Expansion. Using the density function of the normal distribution, we can write:

q(x)
IEqu(x) |:10g < >:| = EXNQ(X)

Pe(x)

‘det b) ‘

—_

(6]
& d‘ll¢* (a) |~

’det

= Eyxq(x) [log(N (b)) + log (‘det d¥.(b)

db

AV 4-(a)

det
¢ da

. ) ~ log(N(a)) — log (

Step 3: Normal Distribution Terms. The normal distribution terms can be written explicitly:

)
)

)

b3

o

[\J\»—A

d
ITi—s JT\/geXp<

x~q(x) d 1a
=1 7rvEr P ( 2

»qqm‘s © »qm

Step 4: Clever Substitution. We rewrite a; = b; + ¢; for ¢; € R. This gives:

d d
1
Exmqx) [ E > (2e;b; +€2)| = —J% Exmq(x) |Ji 1 €;b;

d
2
+ 552 Ex~ax) lz 611

i=1
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Step 5: Final Bound on First Term. Since ||a — b||2 < ror, we have that Z?:1(ai —b;)? <r?c%and with a; = b; + ¢;,
d 2 2 2
we have Y 0 €7 <ro7.
Therefore:
1 d 1 r2
2 2 27
720_% ]Equ(x) [Z Ei‘| < ‘20_% Equ(x) [7" UT] - 5
i=1

Step 6: Independence and Cauchy-Schwarz. The last equality follows from the independence of random variables in the
multivariate distribution. Applying the Cauchy-Schwarz inequality:

p oy vz o, o, 1/2
1 2 2

Z €:b; | < g x~q(x) Z € Z bz

=1 1=1

i=1

A
=

1
—FEoo(x
J% x~q(x)

IN

d 1/27
1 2
O.TEXNQ(X) ror (Z bz>
T i=1

4 1/27
_r 2
= EEbNN(O,a%I) (; bi)

Step 7: Chi-squared Distribution. Since b; N (0, 02), the sum of squares follows a Chi-squared distribution scaled by
2.

O'T.
d
2 2.2
E by ~orXg

i=1

This allows us to write:

éIE (i bf) - _ g [UT\/XE} :ro’TIE{ Xg] - rﬁrr(zg)

ar

Step 8: Gautschi’s Inequality. Applying Gautschi’s inequality:

This gives us:
T(atL
3 F<<3)) < var
2

Step 9: Final Bound. Combining all terms from Equation (8), we obtain our final bound:

2

Dxi(4(x) [| pg-(x)) < % FrVd+ 14 By [|C(P4(x)) = C(Pg- (x)) ]

where C'(W g+ (x)) = log | det Jy,,. (\I/:/,1 (x))]. O
Evaluating whether the solver is invertible is difficult to characterize in practice. We note, however, that LMS solvers can at
least be represented in matrix form, as they scale a linear combination of previous evaluations of the model. Accordingly, if
only the coefficients are learned, then the LMS solver can be made invertible by the transform A — A + €I for a sufficiently

small, non-zero |e].
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Relaxed Objective

r=0.0 r=0.1 r=0.2 r=0.5 r=1.0

Figure 3. Values of L.« as we expand r. As r increases, the objective becomes easier to optimize, thereby validating the utility of the
relaxed objective in making an easier optimization problem for learning solver coefficients.

D.2. Easier Objective

We also hope to verify that the relaxed objective is indeed easier to optimize. We characterize this by running an experiment
on CIFAR-10: we optimize the S4S coefficients initialized at iPNDM with logSNR discretization and characterize the
empirical loss of Eq. (7) as r increases. We affirmatively verify this in Figure 3.

E. Parametrization of Solver Discretization Steps

We parameterize the two versions of our time steps, tf and ¢, in two distinct stages described below.

E.1. General Time Steps

Given a learnable vector & € RV *1, we construct each time step tf through a two-stage process. First, we apply a cumulative
softmax operation to ensure strict monotonicity:

N
Té(l) = Z softmax(&)[n]

We then apply a linear rescaling to map these values to the interval [¢y,, T):

Te() = T o
tf = ,£ £,7mm (T - tmin) + tmin
T¢ max — T¢,min

This construction ensures that t§ = T > tf > > tf\, = tmin, and ultimately provides the foundation for determining step
sizes and signal-to-noise ratio parameters, as described in the main text.

E.2. Decoupled Time Steps
Following the parameterization of {tf}ﬁ\fol, we now construct the decoupled time steps {t5}¥ ; that are used as input to the

score network. Specifically, we define each decoupled time step ¢ as
=15 + &

where £¢ € RN*! is a learnable offset vector. For numerical stability, we constrain the magnitude of the decoupled
offsets £€¢. Let At; = \tf 1~ tf| be the gap between consecutive time steps. We define the maximum allowed offset as
0 = amin; At;, where a > 0 is a hyperparameter. The final decoupled time steps are then given by:

oLt ifi € {0, N}
T ) #8 + clip(€¢,[—6,0])  otherwise
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where clip(z, [a, b]) clamps the value of x to the interval [a,b]. This ensures that the endpoints remain fixed while
intermediate steps can only shift by a fraction of the smallest step size.

F. Additional Implementation Details

F.1. Pseudocode for S4S-Alt

Here, we describe the pseudocode for S4S-Alt, which strongly resembles that of S4S. However, we emphasize that we use
the same value of r that bounds the allowed deviation of the initial noise condition in both optimization objectives. We
do this because both objectives must share the same allowable distribution of the noise; otherwise, starting from different
initial conditions in different parts of the overall optimization makes learning the effective parameters much more difficult.
Additionally, using S4S-Alt generally requires significantly more examples relative to S4S, as we hope to ensure that both
sets of parameters do not begin to overfit.

Algorithm 2 S4S-Alt

Require: Coefficient parameters ¢, discretization step parameters =, student solver V4 =, teacher solver ¥*, distance
metric d, number of alternating steps K, and r.
1: D+ {(xp,x7,V*(x7)) | x7 ~ N(0,5%1),x/r = x1} // Generate data Dy,
2: k+1
3:fork=1,..., K do
4 while not converged do
5: (X, %, U*(x1)) ~ D
6: L(¢,x7}) = d(Vp=(x}), U (xr)) subject to X € B(xr,ror)
7.
8
9

Update ¢ and x’. using the corresponding gradients VL(¢, x/)
X xp + 1||xp — x7|l2 > 7] - ro——r // Projected SGD

" T —xrl2
: Update D with the new x/,
10:  end while

11:  while not converged do

12: (xp, %, U*(x1)) ~ D

13: L(Z,x7) = d(Vg =(xT), U*(x1)) subject to X € B(xr,ror)
14: Update = and x/. using the corresponding gradients VL(E, x/)
15: X = xp + 1[||xp — %72 > 7] - TH):(,TIT_;XXTTH? // Projected SGD
16: Update D with the new x/

17:  end while

18: end for

F.2. Efficient Computational Techniques

To optimize memory usage during training, we employ gradient rematerialization when computing V¢ ¥ 4 (x7-). Rather than
storing all intermediate neural network activations, which would incur O(N') memory overhead with respect to the number
of parameters, we recompute them on the fly during backpropagation. This approach follows Tong et al. (2024) and Watson
et al. (2021), trading increased computation time for reduced memory requirements. Specifically, we rematerialize calls to
the pretrained score network €g while maintaining the chain of denoised states in memory, allowing our method to scale to
large diffusion architectures while maintaining reasonable batch sizes.

G. Experiment Details
G.1. Discretization Heuristics and Methods

We use four time discretization heuristics and three methods for adaptively selecting the discretization steps. Here, we
consider time interval from 7T to € over which the ODE is solved with IV + 1 total time steps; here, solving the ODE to ¢
rather than O helps with numerical stability.
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G.1.1. DISCRETIZATION HEURISTICS

Time Uniform and Time Quadratic Discretization In the Time Uniform discretization schedule, we split the interval
[T, €] uniformly; this gives discretization schedule:

th =T+ %(G—T)

for n € [N]. Alternatively, the Time Quadratic schedule assigns each time step as
2
th =T+ (%) (e —T).
These schedules are popular for variance preserving-style DMs (Ho et al., 2020; Song et al., 2021a; Lu et al., 2022a).

Time EDM Discretization Karras et al. (2022) propose a change of variables to x; = «% and creating a discretization

schedule according to
P
o= 5 (=)

where t,; is the inverse of ¢ — x;, which exists as k; is strictly monotone by the construction of oy, ay.

Time log-SNR Discretization Alternatively, Lu et al. (2022a;b) propose a change of variables to A\; = log(a:/o+)
log-SNR domain and discretizing uniformly over the interval, i.e.

tn, = ta(Ar + %(/\6 —Ar))

where ¢ is the inverse mapping of ¢ — A, which again exists because of strict monotonicity.

G.1.2. DISCRETIZATION SCHEDULE SELECTION METHODS

DMN DMN (Xue et al., 2024) constructs an optimization problem that creates an upper bound on the global error.
Concretely, they model sequentially solving the diffusion ODE in terms of Lagrange approximations, construct an upper
bound of the error on the assumption that the score network prediction error is uniformly upper bounded by a constant, and
select a sequence of \; that minimizes the derived upper bound.

GITS GITS (Chen et al., 2024) is a method that uses DP-based search to select an optimized sequence of discretization
steps for a DM that minimizes the deviation the diffusion ODE. They do so by calculating the local error incurred from
estimating the next time step ¢; from the current step ¢;,_; on a finely discretized search space of possible time steps. Once a
cost matrix of all pair-wise costs is calculated, they then use a DP algorithm to select the lowest-cost sequence of steps given
a number of NFEs. Intuitively, this approach seeks to take steps that are relatively large in regions of low curvature and
smaller steps in regions with high curvature where the discretization error might be high.

LD3 LD3(Tong et al., 2024) seeks to learn a sequence of coefficients using the same parameterization as in Appendix E.
They similarly try to minimize an objective over the global discretization error, often LPIPS.

G.2. Practical Implementation

Here, we discuss important practical details that we use for both S4S and S4S-Alt. Most crucial is our choice of  when
optimizing our relaxed objective in both S4S and S4S-Alt. Let m denote the total number of parameters learned in the
student solver. Then in both S4S and S4S-Alt, we set r occ —. This helps balance the solver’s ability to learn the relaxed

m5/2 "

objective with the number of parameters that it has available./

In practice, for CIFAR-10, FFHQ, and AFHQv2, we use 700 samples for learning coefficients in S4S with a batch size of
20; when learning coefficients and time steps in S4S-Alt, we generally use 1400 samples as training data with a batch size
of 40. We use 200 samples and 400 samples as a validation data set, respectively. For latent DMs, we use 600 samples for
learning S4S with a batch size of 20 using gradient accumulation, and use a dataset of 1000 samples with batch size of 40
for S4S-Alt. We again use 200 samples and 400 samples as a validation data set, respectively. In both settings, we run S4S
for 10 epochs, and S4S-Alt for K'=8 alternating steps.
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Method Order | NFE=3 NFE=4 NFE=6 NFE=8

DPM-Solver (2S) 2 - 239.41 65.24 28.06
DPM-Solver-S48S (2S) 2 - 66.82 3491 24.73
DPM-Solver-S48S (3S) 3 89.75 - 42.02 -
3

iPNDM-S4S (3M) | 48.19 21.58 8.91 4.33

Table 8. FID of SS methods for S48 initialized at DPM-Solver. Although DPM-Solver-S4S achieves significant gains in FID, especially
relative to its unlearned counterpart, it lags behind the simpler and much easier to optimize LMS methods.

For teacher solvers, in general we follow Tong et al. (2024) and select the best-performing solver at 20 NFE. This is UniPC
with 20 NFE and logSNR discretization for CIFAR-10, FFHQ, and AFHQv2; UniPC with 20 NFE and time uniform
discretization for LSUN Bedroom, UniPC with 10 NFE and time uniform discretization for Imagenet, and UniPC with GITS
discretization at 10 steps for MS-COCO.

H. Additional Results
H.1. Single-Step Solvers

While in the main text we mainly focus on LMS methods, we also consider SS solver methods, in particular focusing on
DPM-Solver (Lu et al., 2022a). In particular, we consider learnable equivalents of DPM-Solver (2S), a second-order method
which uses a single intermediate step uq as well as X;, , to estimate X;,, and DPM-Solver (3S), which uses two intermediate
steps w1 and us and is therefore a third-order method. Note that while the practical algorithmic approach for learning the SS
coefficients is the same as that in the LMS setting, there are significantly more parameters that can be learned as compared
to LMS or even PC methods. Consequently, the allowable radius r of our relaxed objective is much smaller than its LMS
counterparts.

Table 8 demonstrates our results on FFHQ using the logSNR discretization schedule. We compare against iPNDM-S4S
as a baseline for LMS methods as well as to traditional DPM-Solver (2S). Here, we find that S4S similarly leads to
significant gains for SS solvers, in fact even larger than the gains seen for LMS solvers. Nonetheless, despite the significant
improvements attained by learning the solver coefficients, SS methods still lag behind their LMS counterparts. Intuitively,
this is because SS methods have significantly more parameters to optimize. If r is not chosen properly, then there is a
significant chance that S4S overfits to the training dataset but fails to generalize well to the original noise distribution.
Moreover, SS methods suffer from the fact that their effective step size is larger than that of LMS methods, i.e. for an equal
number of NFEs, the step size of a k-step LMS method is 1/k the step size of the k-step SS method. As a result, for the core
remaining parts of our experiments, we focus on LMS methods.

H.2. Additional Ablations

We ablate several of the design decisions in our approach in Table 9. Specifically, we characterize the importance of
time-dependent coefficients, the choice of LPIPS as our distance metric, and the use of the relaxed objective. We find
that time-dependent coefficients significantly improves the performance of S4S and S4S-Alt; this is somewhat expected,
since using a fixed set of coefficients for several iterations significantly decreases the number of learnable parameters.
Additionally, we find that we still attain strong performance when using the Lo loss in lieu of LPIPS. Finally, using our
relaxed objective greatly improves performance, particularly in S4S with few NFEs, though with more NFEs the benefit
decays as the optimization problem becomes less underparametrized.

H.2.1. S4S INITIALIZATION

A natural question to consider is the importance of the initialization heuristic used for S4S. Here, we consider the results of
initializing an LMS method according to a standard Gaussian. We evaluate this initialization on CIFAR-10 and FFHQ with
the logSNR discretization schedule; Table 10 contains our results for this evaluation. Although S4S initialized with standard
Gaussian coefficients achieves meaningful improvements, it is nonetheless outperformed by initializing at existing solver
methods.
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| Setting NFE=4 NFE=5

Full 19.39 9.08
Glob. ¢ r=20 19.62 10.17
Lo 33.25 15.13

548
Full 33.34 19.39
Time Dep. ¢ | r=0 33.75 19.50
Ly 56.49 21.65
Full 27.99 13.32
Glob. ¢ r=0 30.52 14.20
S4S-Alt Lo 26.01 16.33

Full 30.94 16.76
Time Dep. ¢ | r=0 31.04 17.64
Lo 38.73 21.97

Table 9. Ablations of model design decisions on CIFAR-10. To show the largest range of effects as a result of S4S, we use the EDM
discretization schedule.

Dataset Method | NFE=3 NFE=4 NFE=5 NFE=6
Gaussian-S4S (3M) 91.84 42.17 25.61 11.93
CIFAR-10 iPNDM-S4S (3M) 75.88 30.12 17.97 10.61

DPM-Solver-++-S4S (3M) | 93.58 40.18 2221 11.04
Gaussian-S4S (3M) 81.44 4491 24.83 15.01

FFHQ iPNDM-S4S (3M) 76.81 36.23 24.16 16.15
DPM-Solver-++-S4S (3M) | 86.39 45.89 22.52 13.78

Table 10. FID of LMS methods initialized with standard Gaussian coefficients and optimized using S4S compared against initialization at
iPNDM or DPM-Solver++. We use the logSNR discretization heuristic for all samples. Gaussian-initialized S4S outperforms traditional
ODE solvers, but nonetheless improves less than its solver-initialized counterparts.

H.2.2. JOINT OPTIMIZATION OBJECTIVE AND DETAILS

Below, we describe the optimization objective and implementation details for learning the joint optimization objective,
which learns both the solver coefficients and the time steps simultaneously. The pseudocode is essentially a restatement of
that of S4S, but propagating the gradients to both sets of learnable coefficients. We use the same batch size

H.2.3. TRAINING DATASET SI1ZE

We also ablate the significance of the training dataset size in S4S-Alt. We display these results for CIFAR-10 with 6 NFEs
in Figure 4.

H.2.4. ENSURING CONSISTENCY IN SINGLE-STEP SOLVERS

Although in general we abandon the notion of maintaining notions of local error control in our diffusion solvers, we consider
an additional ablation for enforcing consistency in single-step solvers. That is, we ablate requiring the b; ; in single-step
solvers sum to 1 for every i. We display these results in Table 11 — rather than consistency resulting in better global error, it
in fact worsens our gobal error performance.

H.3. Comparisons with Existing Learning-Based Methods

We continue our comparison of S4S and S4S-Alt against alternative learning-based methods. In Table 12, we characterize
the computational requirements needed for each method for learning the solver, as well as its corresponding FID and number
of NFEs needed to beat S4S-Alt.
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Algorithm 3 Joint Optimization Algorithm

Require: Coefficient parameters ¢, discretization step parameters &, student solver W4 =, teacher solver ¥'*, distance
metric d, and r.
I: D« {(x}p,x7, ¥*(x7)) | x7 ~ N(0,5%1), %}, = x7} // Generate data D
2: while not converged do
3 (%, xp, ¥ (xp)) ~ D
4 L(¢, B, x}) =d(¥e=(xT), T*(xr)) subject to X7 € B(xr,ror)
5:  Update ¢, E, and x/. using the corresponding gradients VL(¢, 2, x/)
6: X xp+ 1[||x — x7ll2 > 7] - T”:/Ti // Projected SGD
7
8:

—xT|]2

. Update D with the new x7,
end while

11U V> vata JicE, 243 A1

200 400 600 800 1000 1200 1400 1600
Data Size

Figure 4. FID vs. Training Dataset Size in S4S-Alt.

| CIFAR MS-COCO
| NFE FID GPU Type Time | NFE FID  GPU Type Time
S4S-Alt ‘ 7 2.52 A100 < 1 hour ‘ 6 11.17 A100 4.2 hours

Method

S48 10 218 A100 < 1 hour 8 10.84 A100 1.4 hours

LD3 10 232 A100 < 1 hour 8 12.28 A100 < 1 hour

DPM-v3 10 232 A40 28 hours 8 12.10 A40 88 hours
BNST 8 273 - - 12 20.67 - -
pPD' 8 257 TPU 192 hours - - - -
ECMT 2220 A100 192 hours - - - -
iCT-deep’ 1 251 - - - - - -

Table 12. Number of NFEs required to match/beat S4S-Alt performance on CIFAR and MS-COCO. { denotes that results were taken
from original papers. PD refers to Progressive Distillation (Salimans & Ho, 2022), ECM to Easy Consistency Models (Geng et al.,
2025), iCT-deep to Improved Consistency Training (Song & Dhariwal, 2024). Red cells are methods that cannot match S4S-Alt in our
experiments w/ our NFE settings or in recorded experiments.
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S48S: Solving for a Fast Diffusion Model Solver

Method Order | NFE=4 NFE=6 NFE=8

DPM-Solver-S48S (2S) 2 66.82 3491 24.73
Consistent DPM-Solver-S4S (2S) 2 75.82 39.14 31.69

Table 11. FID of SS methods initialized at DPM-Solver-S4S on FFHQ with logSNR discretization. Enforcing consistency in the single-step
model decreases performance rather than achieving better global error.
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S48S: Solving for a Fast Diffusion Model Solver

H.4. Full FID Tables

Schedule Solver 3 4 5 6 7 8 9 10
DPM-Solver++ (3M) 82.45 37.52 30.08 1840 1231 8.95 7.40  3.69
DPM-Solver++-S4S (3M) 7543 3448 2824 17.55 11.75 8.66 7.06  3.51

DMN iPNDM (3M) 76.99 33.13 26.10 16.00 10.20 10.19 8.84 3.56
iPNDM-S4S (3M) 69.79 30.58 2426 15.18 9.81 9.83 8.36 3.36

UniPC (3M) 70.52 3032 23.04 1446 8.55 6.78 5.15 3.12

UniPC-S4S (3M) 63.84 2843 21.66 13.88 8.24 6.53 4.84 298

DPM-Solver++ (3M) 43.47 1952 1336 9.67 7.92 6.64 5.08 4.20
DPM-Solver++-S4S (3M) 3990 18.32 12.55 9.11 7.61 6.37 486 3.96

Time EDM iPNDM (3M) 38.33  15.30 8.80 6.24 4.52 3.85 3.33 3.04
iPNDM-S4S (3M) 35.56 14.23 8.32 5.97 4.37 3.77 312 2.88

UniPC (3M) 4477 2355 1583 1030 8.46 7.83 6.78 6.38

UniPC-S4S (3M) 4148 21.82 14.73 9.68 8.12 7.52 6.47 6.06

DPM-Solver++ (3M) 30.74 17.73  13.57 9.91 6.99 5.31 426 3.62
DPM-Solver++-S4S (3M) 2820 1641 12.74 934 6.64 5.11 4.08 3.42

GITS iPNDM (3M) 26.55 13.88 9.60 6.10 4.85 3.72 343 3.02
iPNDM-S4S (3M) 2436 12.75 9.12 5.83 4.66 3.58 3.26 2.90

UniPC (3M) 25.14  12.63 9.64 7.27 4.75 4.25 3.27 3.04

UniPC-S4S (3M) 2336 11.56 9.13 6.85 4.55 4.08 313 295

DPM-Solver++ (3M) 24.11 13.95 7.46 5.66 4.00 3.61 2.75 3.04
DPM-Solver++-S4S (3M) 21.11  12.58 6.75 5.29 3.76 3.48 2.64 290

LD3 iPNDM (3M) 23.64 9.06 5.00 3.44 2.78 2.87 2.85 2.62
iPNDM-S4S (3M) 20.65 8.25 4.61 3.21 2.61 2.76 2.71 2.51

UniPC (3M) 22.02 1084 6.10 3.65 3.44 3.32 244 287

UniPC-S4S (3M) 19.38 9.69 5.61 3.40 3.27 3.19 232 2.69

DPM-Solver++ (3M) 60.83 27.58 1792 10.72 6.14 431 3.63 3.15
DPM-Solver++-S4S (3M) 55.88 2545 16.88 10.08 5.90 4.18 3.41 2.99

Time LogSNR  iPNDM (3M) 52.63 2299 15.58 9.45 5.92 4.51 3.71 3.14
iPNDM-S4S (3M) 48.19 21.58 14.57 8.91 5.64 4.33 3.48 2.98

UniPC (3M) 9493 3370 1295 8.30 5.12 4.62 4.47 3.80

UniPC-S4S (3M) 88.13 31.23 1218 791 4.85 4.47 426 3.62
DPM-Solver++ (3M) 113.09 68.88 4236 3099 2482 21.04 18.66 1693
DPM-Solver++-S4S (3M) 103.66 63.86 39.78 2943 23.66 20.54 17.70 16.07
Time Quadratic iPNDM (3M) 102.48 53.71 32.09 23.86 2036 1822 16.62 1523
iPNDM-S4S (3M) 94.08 49.39 2995 22,56 19.65 17.71 15.57 14.32
UniPC (3M) 111.79 66.50 41.62 30.69 2442 20.64 1820 16.54
UniPC-S4S (3M) 101.64 62.03 39.30 29.17 23.63 19.89 17.05 15.77
DPM-Solver++ (3M) 169.39 153.47 143.52 134.39 125.18 115.83 106.83 98.18
DPM-Solver++-S4S (3M) 155.10 143.47 13498 12598 120.75 111.54 101.13 92.01

Time Uniform  iPNDM (3M) 178.95 159.28 139.32 12494 113.44 102.81 9246 8291
iPNDM-S4S (3M) 163.79 146.77 129.81 117.56 107.45 99.27 87.04 77.95
UniPC (3M) 169.33 153.52 14345 134.15 124.70 115.25 106.06 97.28
UniPC-S4S (3M) 156.96 14290 13529 127.33 12044 111.11 99.53 91.49

S4S-Alt 1471  6.52 3.89 2.70 2.56 2.29 218 2.18

Table 13. FID scores on AFHQ-v2 64 x64. Numbers in column headers indicate NFE counts. Bold: best within schedule; shaded: best
overall.
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S48S: Solving for a Fast Diffusion Model Solver

Schedule Solver 3 4 5 6 7 8 9 10
DPM-Solver++ (3M) 8373 3932 2289 1238 723 700 520 2.69
DPM-Solver++-S4S (3M) 70.89 34.00 20.53 1130 6.63 671 498 253

DMN iPNDM (3M) 5931 2808 1676 924 577 759 585 3.7
iPNDM-S4S (3M) 50.05 2421 1499 835 537 720 557 3.02
UniPC (3M) 66.45 2633 1295 8.11 4.96 5.79 4.01 2.38
UniPC-S4S (3M) 5644 2307 11.63 744 466 553 379 226
DPM-Solver-v3 (3M) 5848 17.88 1231 732 486 472 349 232
DPM-Solver++ (3M) 70.06 5040 3201 1841 1158 839 648  5.18
DPM-Solver++-S4S (3M) 59.61 43.17 2811 1652 10.87 801 6.07 4.96

Time EDM iPNDM (3M) 4802 2950 1657 975 693 524 434 370
iPNDM-S4S (3M) 4127 2574 1472 881 635 498 407 347
UniPC (3M) 5785 50.63 3427 1947 1265 968 784  6.16
UniPC-S4S (3M) 4840 4430 3060 17.80 11.62 9.05 746  5.86
DPM-Solver-v3 (3M) 4464 3439 3320 1844 1050 739 591 472
DPM-Solver++ (3M) 7047 3123 17.19 1076 779 563 397 352
DPM-Solver++-S4S 3M) 60.14 2675 1541 970 720 529 372 337

GITS iPNDM (3M) 4391 1649 1083 697 580 430 310 278
iPNDM-S4S (3M) 3775 1411 963 633 532 404 297 262
UniPC (3M) 5343 2193 1540 1047 788 569 441 370
UniPC-S4S 3M) 4512 1894 1371 953 739 542 422 350
DPM-Solver-v3 (3M) 60.14 2446 1615 11.06 820 590 388 299
DPM-Solver++ (3M) 3338 27.08 1242 924 440 400 387 3.33
DPM-Solver++-S4S (3M) 27.73 22.85 1081 8.14 408 374 365 3.16

D3 iPNDM (3M) 3264 1093 564 540 536 275 379 232
iPNDM-S4S (3M) 2639 930 484 476 490 261 359 218
UniPC (3M) 3262 1583 1314 355 467 287 330 273
UniPC-S4S (3M) 2663 1346 1135 3.7 422 267 309 256
DPM-Solver-v3 (3M) 84.42 29.86 1483 10.69 551 359 278 256
DPM-Solver++ (3M) 110.06 4649 2498 1206 679 456 343  3.00
DPM-Solver++-S4S (3M) 9358 40.18 2221 11.04 634 434 325 285

Time LoeSNR  PNDM (3M) 88.39 34.88 2049 1161 750 553 424 358

© iPNDM-S4S (3M) 7588 30.12 1797 10.61 691 524 399 343
UniPC (3M) 15531 4393 2390 1298 654 438 348  3.07
UniPC-$4S (3M) 13337 3805 2142 1169 6.02 410 333 294
DPM-Solver-v3 (3M) 8449 29.87 1485 1071 552 359 278  2.56
DPM-Solver++ (3M) 223.06 170.85 12472 91.51 69.90 54.84 4438 37.00
DPM-Solver++-S4S (3M) 188.15 149.60 110.20 8292 6423 5147 41.63 3491

Time Quadratic iPNDM (3M) 199.73 139.72 96.56 68.68 5222 37.64 2737 23.28
iPNDM-S4S (3M) 167.85 121.49 8583 6241 48.65 3596 2574 22.26
UniPC (3M) 22029 164.80 11749 8538 6544 51.80 4229 3534
UniPC-S4S (3M) 187.89 141.66 103.61 78.11 6121 4921 39.65 33.29

DPM-Solver-v3 (3M) 299.55 249.40 188.77 129.51 9093 65.13 5030 41.07

DPM-Solver++ (3M) 305.04 28299 263.61 249.52 237.94 227.53 217.62 208.19
DPM-Solver++-S4S (3M) 259.33 244.55 23470 225.57 219.83 218.06 205.34 197.85

Time Uniform iPNDM (3M) 287.80 266.13 242.76 229.10 216.95 205.06 194.64 185.30
iPNDM-S4S (3M) 24396 227.78 215.84 208.27 199.97 192.03 186.11 175.26
UniPC (3M) 304.86 282.77 263.43 249.18 237.56 226.95 216.85 207.23
UniPC-84S (3M) 25532 246.58 235.16 226.52 222.79 214.66 203.80 194.92

DPM-Solver-v3 (3M) 313.89 321.04 317.36 310.77 31246 304.90 294.57 285.39

S4S-Alt 1695 635 373 2.67 252 239 231 218

Table 14. FID scores on CIFAR-10 32x32. Numbers in column headers indicate NFE counts. Bold: best within schedule; shaded: best
overall.
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Schedule Solver 3 4 5 6 7 8 9 10
DPM-Solver++ (3M) 8221 4023 2630 1474 978 10.10 8.63  4.63
DPM-Solver++-S4S (3M)  68.64 34.69 2355 1323 9.05 952 809 444

DMN iPNDM (3M) 6176 3128 2093 1212 862 1095 981 529
iPNDM-S4S (3M) 5245 2751 1883 11.03 807 1029 920  5.06
UniPC (3M) 65.07 2580 1332 948 7.27 6.78 5.57 3.66
UniPC-S4S (3M) 5458 2232 1179 857 6.69 639 530 3.50
DPM-Solver++ (3M) 6258 3952 2366 1516 11.10 961 9.06 699
DPM-Solver++-S4S (3M) 5321 3447 2093 1375 1020 9.07 852  6.62

Time EDM iPNDM (3M) 4597 2907 1726 1131 856 683 572 495
iPNDM-S4S (3M) 3845 2490 1510 1037 801 642 542 475
UniPC (3M) 59.88 4773 2654 1507 1120 11.65 1091 8.89
UniPC-S4S (3M) 5037 41.83 2343 1356 1036 11.04 1028 848
DPM-Solver++ (3M) 5342 29.07 1754 1274 974 770 630 499
DPM-Solver++-S4S (3M) 45.10 2500 1572 1141 900 730 598 477

GITS iPNDM (3M) 33.09 18.04 1291 938 757 576 476 397
iPNDM-S4S (3M) 2828 1570 11.60 846 711 541 452  3.76
UniPC (3M) 43.63 2138 1434 1222 995 802 620 446
UniPC-S4S (3M) 3659 1830 1268 11.19 920 7.56 583  4.24
DPM-Solver++ (3M) 4986 2867 1439 770 501 421 356 341
DPM-Solver++-S4S (3M) 4143 2392 1232 695 457 394 342 324

LD3 iPNDM (3M) 4305 1668 941 619 462 375 341 313
iPNDM-S4S (3M) 3512 1424 814 545 420 355 323 297
UniPC (3M) 4027 18.04 1085 8.04 433 346 353 330
UniPC-S4S (3M) 3333 1509 934 7.09 391 323 334 312
DPM-Solver++ (3M) 8639 4589 2252 1378 847 606 471 412
DPM-Solver++-S4S (3M) 74.18 39.69 1975 1266 791 572 456 3.88

Time LogSNR  iPNDM (3M) 7681 3623 2416 1615 1107 793 627 530
iPNDM-S4S (3M) 6527 31.81 2133 1485 1038 753 589 507
UniPC (3M) 12600 5322 20.02 1097 697 553 453  3.89
UniPC-S4S (3M) 10540 4553 1773 1009 648 519 428  3.72
DPM-Solver++ (3M) 131.14 9428 7033 5502 4474 3745 3226 2846
DPM-Solver++-S4S (3M) 11250 8278 61.65 49.58 4176 3504 30.81 26.94

Time Quadratic iPNDM (3M) 10590 7159 51.72 3921 3140 2652 2342 2130
iPNDM-S4S (3M) 90.71 6294 4563 3577 2899 2512 2234 2032
UniPC (3M) 128.38 89.94 66.09 5136 4154 3476 2998 26.55
UniPC-S4S (3M) 107.65 77.61 5890 46.69 3875 3251 2848 25.04
DPM-Solver++ (3M) 195.55 179.13 16548 153.52 142.81 133.12 124.36 116.46
DPM-Solver++-S4S (3M) 167.46 157.05 147.30 14123 134.10 127.40 117.91 108.99

Time Uniform  iPNDM (3M) 177.99 160.85 14631 133.60 12228 11225 103.46 95.78
iPNDM-S4S (3M) 15272 140.92 129.90 119.79 114.77 10573 98.98 90.75
UniPC (3M) 19524 17873 165.03 15295 142.09 132.28 123.39 115.35
UniPC-S4S (3M) 164.34 154.02 14630 13821 13336 12543 117.83 109.96

S4S-Alt 19.86 10.63 625 4.62 345 315 3.00 291

Table 15. FID scores on FFHQ 64 x64. Numbers in column headers indicate NFE counts. Bold: best within schedule; shaded: best
overall.
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Schedule Solver 3 4 5 6 7 8
DPM-Solver++ (3M) 58.17 20.03 7.14 504 4.69 453
DPM-Solver++-S4S (3M) 55.18 1940 6.87 4.88 4.63 4.28

DMN iPNDM (3M) 2473 815 474 438 451 442
iPNDM-S4S (3M) 2372 7.84 4.63 425 446 4.18
UniPC (3M) 4895 15.05 546 4.60 483 4.52
UniPC-S4S (3M) 4699 1436 533 443 480 431
DPM-Solver++ (3M) 123.72 60.70 1840 7.71 542 529
DPM-Solver++-S4S (3M) 117.96 57.69 17.77 742 536 5.04

Time EDM iPNDM (3M) 88.53 33.84 11.50 7.25 545 4.84
iPNDM-S4S (3M) 8546 3250 1121 699 536 4.53
UniPC (3M) 121.64 5732 16.05 692 545 547
UniPC-S4S (3M) 117.82 5551 1553 6.72 529 5.11
DPM-Solver++ (3M) 99.24 39.63 2821 1579 6.98 520
DPM-Solver++-S4S (3M) 9526 37.86 27.17 1535 6.84 4.96

GITS iPNDM (3M) 69.12 2222 20.73 11.79 5.64 451
iPNDM-S4S (3M) 66.42 21.11 20.07 1148 549 432
UniPC (3M) 8537 24.59 1608 8.68 4.93 433
UniPC-S4S (3M) 82.13 23.61 1542 8.53 4.79 4.11
DPM-Solver++ (3M) 5228 1771 6.81 489 476 491
DPM-Solver++-S4S (3M) 48.04 16.69 643 476 4.67 4.61

LD3 iPNDM (3M) 1793 645 486 470 4.73 491
iPNDM-S4S (3M) 1648 6.05 4.68 457 4.64 4.68
UniPC (3M) 4325 1133 525 474 479 487
UniPC-S4S (3M) 4024 1056 5.05 4.54 471 4.58
DPM-Solver++ (3M) 11135 5520 1446 632 539 5.00
DPM-Solver++-S4S (3M) 105.11 52.55 14.00 6.18 5.32 4.70

Time LogSNR  iPNDM (3M) 93.77 38.81 1479 7.70 5.61 4.85
iPNDM-S4S (3M) 89.31 3699 1443 7.3 555 4.62
UniPC (3M) 109.14 50.60 1229 640 578 5.11
UniPC-S4S (3M) 103.63 4895 11.94 6.18 5.67 4.89
DPM-Solver++ (3M) 91.57 4027 17.77 851 573 486
DPM-Solver++-S4S (3M) 88.59 38.48 17.38 8.26 5.65 4.65

Time Quadratic iPNDM (3M) 63.67 2265 1132 660 502 448
iPNDM-S4S (3M) 60.36 21.87 1098 639 491 428
UniPC (3M) 82.66 28.84 11.06 573 4.65 4.37
UniPC-S4S (3M) 7847 27.66 10.77 5.61 4.62 4.09
DPM-Solver++ (3M) 6892 2634 995 6.12 527 5.06
DPM-Solver++-S4S (3M) 6590 2521 971 599 5.16 4.81

Time Uniform  iPNDM (3M) 3279 863 523 467 4.66 4.69
iPNDM-S4S (3M) 31.58 829 513 452 4.61 4.50
UniPC (3M) 6378 20.14 758 534 506 5.02
UniPC-S4S (3M) 6141 1950 7.27 520 491 4.80
S4S-Alt 1326 5.13 430 4.09 4.06 4.06

Table 16. FID scores on ImageNet 256 x256. Numbers in column headers indicate NFE counts. Bold: best within schedule; shaded: best
overall.
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Schedule Solver 3 4 5 6 7 8
DPM-Solver++ (3M) 136.53 7929 39.67 22.66 17.18 15.19
DPM-Solver++-S4S (3M) 11646 7136 35.82 2142 16.56 14.48

DMN iPNDM (3M) 76.56 4573 30.09 20.57 18.02 18.70
iPNDM-S4S (3M) 66.77 40.05 27.40 1924 17.17 17.70
UniPC (3M) 12655 68.04 31.75 1946 1527 14.81
UniPC-S4S (3M) 110.11 60.68 29.18 1840 14.57 13.90
DPM-Solver-v3 (3M) 96.83 4295 19.82 12.81 11.10 12.59
DPM-Solver++ (3M) 213.95 14137 80.75 46.62 30.78 22.73
DPM-Solver++-S4S (3M) 186.70 126.09 73.06 43.20 29.55 21.57

. iPNDM (3M) 126.55 88.04 5294 37.81 3141 26.39

Time EDM .
iPNDM-S4S (3M) 109.90 77.86 48.79 3527 30.26 24.78
UniPC (3M) 211.69 13541 7579 4478 30.13 22.20
UniPC-S4S (3M) 183.16 121.59 70.02 4248 2873 21.10
DPM-Solver-v3 (3M) 159.55 114.26 43.56 23.64 19.59 15.68
DPM-Solver++ (3M) 169.26 12124 90.64 72.89 64.37 61.41
DPM-Solver++-S4S (3M) 148.05 108.86 83.25 67.94 61.69 58.83

GITS iPNDM (3M) 126.10 109.43 94.83 75.52 64.55 59.71
iPNDM-S4S (3M) 108.68 97.21 8543 71.03 61.71 56.04
UniPC (3M) 150.08 103.39 86.62 71.78 61.22 56.08
UniPC-S4S (3M) 129.69 91.15 79.82 67.24 59.50 53.15
DPM-Solver-v3 (3M) 166.97 129.41 92.66 64.21 50.95 47.19
DPM-Solver++ (3M) 144.81 77.15 4205 23.09 1562 1245
DPM-Solver++-S4S (3M) 121.66 66.97 38.19 21.57 15.11 11.72

LD3 iPNDM (3M) 73.94 3558 20.55 14.99 1237 1145
iPNDM-S4S (3M) 61.83 30.82 18.69 13.84 11.76 10.85
UniPC (3M) 130.65 59.89 31.89 17.33 13.33 10.53
UniPC-$4S (3M) 110.02 52.03 28.69 1629 1275 9.92
DPM-Solver-v3 (3M) 11047 5281 23.85 1508 1111 9.73
DPM-Solver++ (3M) 227.26 113.01 63.69 41.60 32.96 27.31
DPM-Solver++-S4S (3M) 198.27 101.50 57.33 39.04 31.62 25.61

Time LoeSNR  PNDM (3M) 19247 9655 6297 4545 3594 2928

© iPNDM-S4S (3M) 167.90 85.62 57.38 4241 34.80 27.86
UniPC (3M) 223.84 106.68 6232 43.15 34.15 26.99
UniPC-S4S (3M) 195.09 9594 57.50 40.87 33.21 25.52

DPM-Solver-v3 (3M) 193.57 86.05 36.58 22.02 19.16 17.16

DPM-Solver++ (3M) 159.24 93.01 56.11 39.58 30.28 26.43
DPM-Solver++-S4S (3M) 139.02 82.74 51.65 37.37 29.10 25.35

Time Quadratic iPNDM (3M) 110.97 71.14 5242 42.89 34.06 28.76
iPNDM-S4S (3M) 95.17 63.24 48.46 40.36 33.04 27.18

UniPC (3M) 147.85 7828 4740 36.08 28.10 24.16

UniPC-54S (3M) 127.10 70.17 43.36 33.58 27.28 22.69

DPM-Solver-v3 (3M) 136.22 64.17 3896 2596 23.31 20.50

DPM-Solver++ (3M) 155.60 8495 39.63 22.84 1536 12.25
DPM-Solver++-S4S (3M) 134.61 75.20 36.64 21.28 14.86 11.55

Time Uniform iPNDM (3M) 86.76  34.61 19.56 15.85 13.52 12.17
iPNDM-S4S (3M) 75.52 3095 17.69 14.99 1295 11.40

UniPC (3M) 150.76  73.74 31.62 18.22 12.66 10.31

UniPC-S84S (3M) 131.51 6559 28.62 17.05 12.20 9.69

DPM-Solver-v3 (3M) 11045 5281 23.85 15.08 11.12 9.73

S4S-Alt 37.65 20.89 13.03 1049 10.03 9.64

Table 17. FID scores on LSUN-Bedroom 256x256. Numbers in column headers indicate NFE counts. Bold: best within schedule;
shaded: best overall. Curiously, despite using essentially the same replication code as in Zheng et al. (2023) and Tong et al. (2024) for
LSUN-Bedroom generation, we were persistently unable to achieve the FID stated in many papers; accordingly, we present this mainly as
demonstrating the overall trend for S4S on LSUN-Bedroom.
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Schedule Solver 3 4 5 6 7 8
DPM-Solver++ (3M) 6543 2654 2040 1536 14.42 13.14
DPM-Solver++-S4S 3M) 60.26 24.81 1950 14.92 13.96 12.44

DMN iPNDM (3M) 66.77 27.16 19.42 1426 11.74 11.85
iPNDM-S4S (3M) 61.37 2545 18.68 13.88 11.40 11.13
UniPC (3M) 60.75 24.18 1821 14.59 14.26 14.03
UniPC-$4S (3M) 5642 2247 1751 14.12 13.97 1324
DPM-Solver-v3 (3M) 107.07 59.43 49.97 30.55 23.10 18.98
DPM-Solver++ (3M) 61.90 33.61 4091 28.52 1672 12.35
DPM-Solver++-84S 3M) 57.01 3159 39.10 27.51 16.46 11.63

! iPNDM (3M) 46.66 2848 19.66 14.77 12.28 11.45

Time EDM .
iPNDM-S4S (3M) 4348 2659 18.90 14.05 11.87 10.72
UniPC (3M) 62.90 36.93 53.93 49.19 33.00 19.59
UniPC-$4S (3M) 57.67 34.68 51.46 46.84 32.40 18.54
DPM-Solver-v3 (3M) 9731 6457 7771 65.88 34.62 17.82
DPM-Solver++ (3M) 39.62 2057 19.18 13.64 1252 11.72
DPM-Solver++-S4S (3M) 36.87 1953 18.04 13.03 12.23 11.00

GITS iPNDM (3M) 43.06 2329 1640 1233 11.56 11.36
iPNDM-S4S (3M) 39.54 2178 15.69 11.97 11.23 10.82
UniPC (3M) 3942 2022 2225 14.63 1240 11.30
UniPC-S4S (3M) 36.94 19.14 2128 1396 12.08 11.14
DPM-Solver-v3 (3M) 70.07 3545 27.86 1531 1331 12.10
DPM-Solver++ (3M) 3432 20.64 1547 1426 14.07 13.67
DPM-Solver++-S4S 3M) 31.77 19.21 14.83 13.89 13.75 13.01

D3 iPNDM (3M) 4373 26.14 1733 13.19 12.31 1228
iPNDM-S4S (3M) 40.75 24.60 1627 12.63 11.89 11.69
UniPC (3M) 33.94 2127 1627 1455 1449 13.03
UniPC-$4S (3M) 31.03 1970 1530 13.95 14.23 12.26
DPM-Solver-v3 (3M) 49.07 2392 1735 1522 1443 14.11
DPM.-Solver++ (3M) 6146 36.02 27.02 1931 13.86 11.76
DPM-Solver++-84S 3M) 5623 33.93 2549 18.56 13.48 11.16

) iPNDM (3M) 5227 3047 20.11 15.18 12.65 11.60

Time LogSNR b\ DM-$45 (3M) 4828 28.88 18.98 1471 12.48 10.94
UniPC (3M) 61.08 3731 3295 2720 19.12 14.30
UniPC-84S (3M) 57.23 3456 3141 26.11 18.58 13.73
DPM-Solver-v3 (3M) 99.16 6439 44.02 33.51 24.23 15.99
DPM-Solver++ (3M) 63.33 2833 17.00 13.57 12.34 11.82
DPM-Solver++-S4S (3M) 58.16 26.61 1625 1321 11.89 11.35

Time Quadratic TNPM GM) 59.94 2793 16.65 13.03 11.84 11.48
iPNDM-S4S (3M) 5475 26.19 1576 12.42 11.67 10.84
UniPC (3M) 60.51 2647 1649 1341 1226 11.74
UniPC-$4S (3M) 56.50 24.95 15.67 13.05 11.87 11.07
DPM-Solver-v3 (3M) 103.62 60.78 34.99 21.88 16.17 13.42
DPM-Solver++ (3M) 34.57 2124 17.09 1554 14.82 14.50
DPM-Solver++-84S 3M)  31.67 20.05 16.03 14.85 14.57 13.68

! ) iPNDM (3M) 4829 2875 18.52 14.40 13.00 12.78

Time Uniform
iPNDM-S4S (3M) 44.89 2727 1745 14.00 12.77 1211
UniPC (3M) 3533 2142 17.31 1539 14.65 14.36
UniPC-$4S (3M) 33.04 2032 1657 14.83 1430 13.78
DPM-Solver-v3 (3M) 49.07 23.92 1737 1522 1443 14.11
S4S-Alt 2544 16.05 1326 11.17 10.83 10.68

Table 18. FID scores on MS-COCO 512x512. Numbers in column headers indicate NFE counts

best overall.
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H.5. Qualitative Model Samples

We provide qualitative samples below.

(c) iPNDM-S48S, 5 NFE, LD3, 4.84 FID (d) S4S-Alt, 5 NFE, 3.73 NFE

Figure 5. Examples from CIFAR-10 32x32
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(c) S4S, 6 NFE, LD3, 5.45 FID (d) S4S-Alt, 6 NFE, 4.62 FID

Figure 6. Examples from FFHQ 64 x 64

32



S48S: Solving for a Fast Diffusion Model Solver

Figure 7. Examples from AFHQv2 64 x64
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