DRIFT: Debug-based Trace Inference for Firmware
Testing

Changming Liu
Northeastern University
Boston, MA, USA

Alejandro Mera
Northeastern University
Boston, MA, USA

Abstract—Binary firmware fuzzing has garnered attention in
recent years. Compared to source-code-based approaches, binary
approaches require less semantic information and are there-
fore more applicable. This is particularly relevant in firmware
analysis, as most firmware vendors distribute only binaries,
withholding source code due to proprietary concerns.

Pivoting away from the traditional hardware-in-the-loop (HiL)
methodology, researchers are exploring more efficient ways to
engage real hardware for fuzzing. However, existing approaches
have inherent drawbacks, such as reliance on high-end hardware
features, inability to recover complete coverage, and slow execu-
tion speeds. We propose DRIFT, a novel approach for on-device
binary firmware testing that follows the semihosting methodology.
DRIFT addresses all the aforementioned drawbacks. The core
insight of DRIFT is to use the Debug Monitor (DM) for
firmware fuzzing. DM is a Arm Cortex-M CPU feature that
allows triggering interrupt when a breakpoint is hit. Through
chaining the DM interrupts, DRIFT is able let firmware to trace
itself. This self-tracing approach minimizes interference from the
workstation, significantly boosting fuzzing performance.

We designed DRIFT to be highly flexible, accommodating a
number of hardware resource limitations. When applied to new
firmware, DRIFT discovered three previously unknown bugs
that were not identified by existing binary fuzzing techniques.
Furthermore, DRIFT outperforms all state-of-the-art binary
firmware fuzzers in terms of speed and fidelity, trailing only
SHiFT, an approach that requires source code.

I. INTRODUCTION

Fuzzing, a highly successful dynamic analysis approach for
desktop programs, faces challenges when applied to embedded
systems. This is primarily because of embedded system’s
diverse hardware configurations and, more importantly, con-
strained hardware. As a result, researchers have customized
and developed a number of fuzzing approaches [19], [9], [17],
[L5], [22], [7], [6] for firmware, its software component.

The challenges of firmware fuzzing can be summarized
as follows: physical embedded systems are too resource-
constrained to host fuzzing infrastructure, while emulated sys-
tems fail to reproduce faithful hardware behavior. Emulation-
based approaches, which avoid dependence on physical plat-
forms, must emulate both the processor and its peripherals.
While processor emulation is relatively mature thanks to
decades of development, peripheral emulation is far more diffi-
cult due to the enormous diversity of hardware. Consequently,
prior work has proposed heuristics to approximate generalized
peripheral behavior and thereby enable fuzzing [3]], [9], [19].
However, these approaches often suffer from low fidelity []]
and high false-positive rates [[17]. In contrast, hardware-based

Meng Xu
University of Waterloo
Waterloo, ON, Canada

Engin Kirda
Northeastern University
Boston, MA, USA

approaches [21]], [15], [L7], [7], [14] avoid these drawbacks.
Yet, because embedded platforms lack computational power,
their workload must be minimized. As a result, these methods
depend on intensive communication over I/O ports, which in
turn becomes a major performance bottleneck [23], [L7], [12].

While the main focus of the research community has
been on improving the efficiency of firmware fuzzing, other
work has approached the problem from an orthogonal angle:
increasing bug detection capability. This question was first
raised by Wycinwyc [18]], which observed that in embedded
systems—whether physical or emulated—a significant portion
of triggered bugs were detected only much later, or not at all.
To mitigate this issue, simple heuristics have been employed,
such as timeouts [7l], crash or interrupts [14]]. More recently,
SHiFT introduced the use of sanitizers, which substantially
improved bug detection capability [[17], albeit with the draw-
back of requiring access to firmware source code.

This work proposes a novel design that addresses the
performance bottleneck of hardware-based approaches, while
simultaneously leveraging interrupt-based mechanisms for bug
detection. In comparison with recent related work, CO3 [15]]
and SHiFT [17] achieve state-of-the-art performance, but
require access to source code. This limitation is particularly
restrictive in firmware research, where a large portion of
firmware is distributed in binary-only form. By contrast,
uAFL [14], SAFIREFUZZ [21], and GDBFuzz [7] operate
without source code. However, uAFL depends on a rarely
available tracing unit—the ARM Embedded Trace Macrocell
(ETM)—to extract coverage information, and still suffers from
severe I/O bottlenecks that degrade performance. SAFIRE-
FUZZ dynamically rewrites ARMv7-M firmware binaries for
execution on ARM Cortex-A platforms, but this approach
requires substantial manual effort and risks peripheral fidelity
loss.

GDBFuzz, the work most closely related to ours, proposes
the use of a debugging probe to algorithmically set breakpoints
in order to infer code coverage of firmware running on
physical hardware. However, the debugging probe has been
shown to be cumbersome and disruptive to the real-time
requirements on which firmware typically depends [15], [17].
Moreover, the breakpoint deployment algorithm in GDBFuzz
is fundamentally limited. It distributes a small number of
hardware breakpoints randomly and infers only partial block
coverage through dominance analysis. As a result, it cannot
provide complete edge coverage, which severely undermines

its fuzzing capability. As demonstrated in our evaluation (Sec-
tion [VI-B), this restriction in coverage significantly hampers
GDBFuzz’s effectiveness, rendering it inferior to both SHiFT
and DRIFT.

This paper proposes using the Debug Monitor (DM) B
a hardware feature available on nearly all ARM Cortex-M
processors, to eliminate the cumbersome debugging proto-
col and achieve full edge coverage. To leverage DM for
firmware fuzzing, we introduce Debug-based tRace Inference
for Firmware Testing (DRIFT). The core insight of DRIFT
is to implement the fuzzing infrastructure directly within
the DM handler. This design removes the need for both
firmware source code and external debugging probes. Because
DM operates in close proximity to the CPU core, DRIFT
achieves a significant performance advantage over probe-based
approaches such as uAFL and GDBFuzz. Furthermore, with
a carefully designed mechanism, we chain DM interrupts to
allow the firmware to trace its own execution. Specifically,
DRIFT first performs static analysis of the firmware binary to
extract its control-flow (CF) information. This information is
then embedded into the DM handler, enabling self-tracing of
the firmware and supporting complete edge coverage during
fuzzing.

Putting DRIFT to work requires simple static analysis and
binary rewriting. Users can select their preferred greybox
fuzzer (e.g., AFL or AFL++) to initiate the fuzzing campaign.
Our experimental results demonstrate that, in terms of over-
all fuzzing performance, DRIFT outperforms all binary-only
fuzzing approaches, including uAFL (the tracing-unit-based
approach), P2IM, Fuzzware (the emulation-based approaches),
and GDBFuzz (the halt-mode-debug-based approach), while
trailing only SHiFT, the source-code-based approach.

In summary, we make the following contributions:

« We introduce a novel binary firmware fuzzing approach
DRIFT, featuring in the utilization of DM, a widely-
available hardware feature.

o DRIFT significantly enhances binary firmware fuzzing
performance, surpassing all state-of-the-art methods, trail-
ing only SHiFT, an approach that requires the firmware
source code to be available.

o Leveraging the unique characteristics of DRIFT, we
successfully identified three new bugs in two real-world
firmware samples that were undetected by other binary
firmware testing approaches.

II. BACKGROUND

In this section, we begin by providing background in-
formation on microcontrollers (MCUs), which serve as the
primary hardware platform for firmware. Given the resource-
constrained nature of MCUs, prior research has explored vari-
ous hardware features to recover coverage information during
the fuzz testing of firmware executed on these devices. We
then systematically analyze the existing mechanisms, outlining

Uhttps://docs.zephyrproject.org/latest/services/debugging/debugmon.html

their advantages and limitations. Finally, we introduce the DM
feature as a novel contribution to the field of firmware fuzzing.

A. MCU Architecture

MCUs are compact, self-contained computers that operate
within constraints of computing power, hardware features,
and data storage. Despite these limitations, they excel in per-
forming mission-critical tasks, meeting real-time constraints,
and operating efficiently in battery-powered scenarios. Typ-
ically, an MCU integrates peripherals into the processor’s
address space via memory-mapped I/O. These peripherals
provide essential functionalities that firmware depends on. For
instance, an MCU is commonly equipped with timers and
watchdogs for time-sensitive operations, USART and I12C for
data communication, and a Cyclic Redundancy Check (CRC)
accelerator to ensure communication correctness and integrity.
DRIFT leverages these essential hardware components, which
are commonly available on MCUs, to create a functional and
efficient fuzzing environment for firmware testing.

Previous work [18] has classified embedded systems based
on the type of operating system (OS) they run. In this paper,
we focus on Type-II and Type-III embedded systems, which
are real-time OS-based and bare-metal designs, respectively.
Type-1 embedded systems, which run general-purpose oper-
ating systems, already have fully functional fuzzing environ-
ments available, and are therefore outside the scope.

B. Recover Coverage for on-device Firmware

ARM Cortex-M processors are by far the most widely
adopted architecture for MCUs [10]. As discussed in the
introduction, MCUs lack the computational resources to host
an entire fuzzing infrastructure. Among the most critical
components of this infrastructure is coverage feedback. While
such feedback is often taken for granted in workstation fuzzers,
it becomes a major challenge in MCU environments. On desk-
top systems, the operating system provides rich mechanisms
that allow fuzzers to easily extract detailed information from
target programs. In contrast, MCUs operate on fundamentally
different hardware with far fewer resources. Furthermore, the
physical connection between a desktop host and the MCU is
typically constrained by the limited connectivity of the MCU,
which falls far short of workstation-grade interfaces.

As a result, researchers have to utilize debugging features

on the Cortex-M processors to extract coverage information,
and feed it back to the fuzzer running on the desktop. The
most notable debugging features are the halt-mode debugging
and the tracing unit.
Halt-Mode Debug (e.g., JTAG or SWD): This is the most
widely-used and straightforward mechanism in existing work.
It relies on the JTAG or SWD protocols supported by the
MCU. In essence, these protocols expose the MCU as a GDB
server, allowing a fuzzer to attach through a GDB client over
a physical channel (e.g., serial or USB). Once the connection
is established, the GDB client can issue commands to halt the
MCU processor and perform various debugging operations.

https://docs.zephyrproject.org/latest/services/debugging/debugmon.html

Cortex-M0O Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7 Cortex-M23 Cortex-M33 Cortex-M55
ETM X X X WX WX X N X
DM X X v v v v v v

X: unavailable, v: available, VX: optional

TABLE I: Comparison of availability between ARM ETM and DM.

Vendor Series W/ ETM | W/O ETM | Total
Mainstream 117 325 442
STM Wireless 7 58 65
High Performance 451 0 451
Ultra Low Power 236 212 448
K32 2 16 18
LPC 348 421 769
NXP MCX 8 56 64
MK 152 433 585
Total 1321 1521 2842

TABLE II: ETM’s availability of STM32 and NXP 32-bit
Microcontrollers

Since halt-mode debug is the primary mechanism used by
firmware developers during development, it is supported by
virtually all MCU vendors. It provides a rich set of operations,
including: 1) setting breakpoints, 2) single-stepping through
instructions, 3) examining and modifying CPU registers, and
4) reading from or writing to memory locations.

While halt-mode debug is the most popular mechanism

adopted by several firmware fuzzers (e.g.,[23], [6l, [7]), its
limitations are also well-recognized. The primary bottleneck
lies in the low-bandwidth physical channel available on most
MCUs, which makes communication with the workstation
sluggish. This slowness severely undermines fuzzing perfor-
mance, as firmware often depends on real-time operations
that the GDB protocol struggles to sustain. Consequently,
some works attempt to accelerate the debug channelll2],
while others sacrifice coverage completeness in exchange for
speed [7]].
Tracing Unit (e.g., the ETM): Compared with the halt-mode
debugging, this tracing unit provides a much more high-
end and powerful functionality: real-time tracing. First used
by uAFL for fuzzing, this on-chip unit, captures firmware
execution in real-time, and generates a continuous data stream.
The high volume of this data stream necessitates the use of an
expensive high-end debug probe [| for connectivity. Once the
data stream is decoded on the workstation, users can recover
code coverage information to facilitate fuzzing.

The primary drawback of ETM-based fuzzing is its limited
availability. To demonstrate this, we surveyed the popular
ARM Cortex-M processors, as shown in Table [[| to compare
the availability between ETM and DM that DRIFT relies on.
According to this table, although both DM and ETM are not
available on Cortex-MO and Cortex-M1 series, DM is available
on all the other series while ETM is optional. Therefore, it is
up to the MCU vendor to decide whether to include ETM in
their products.

To minimize cost, MCU vendors typically only incorporate

Zhttps://shop-us.segger.com/product-category/debug-probes/jtrace/

the ETM in their high-end MCU series. To better understand
ETM availability, we surveyed the datasheets for all ARM-
based MCUs of two prominent MCU vendors, NXP and
STM. This survey covered datasheets for 2842 32-bit MCUs.
We considered an MCU to have ETM if the datasheet: 1)
Highlighted ETM as part of the MCU'’s features, 2) Depicted
ETM in the MCU’s block diagram, or 3) Mentioned ETM in
a (sub)section. The result, summarized in Table [II| reveals that
more than half of the surveyed MCUs lack ETM support. This
lack of availability makes ETM-based solutions impractical for
widespread adoption.

The second disadvantage of using ETM for fuzzing is also

the speed: since it captures the whole trace of the firmware
execution on the MCU, it transmits verbose information. As
a result, filtering the transmitted data becomes necessary.
However, the speed is still undesirable even after filtering was
applied [14]].
Monitor-Mode Debug: As we can see from these two mech-
anisms, both of them have apparent downsides for firmware
debugging and fuzzing. From the ARM Cortex-M processor’s
perspective, to address the drawbacks of halt-mode debugging
(i.e., slow operation and disruption of real-time operations), it
provides an alternative debugging mechanism: debug monitor
Mode. This processor’s feature utilizes a dedicated exception
handler, the DM exception, within the Cortex-M proces-
sor [[16], [S]. When it is enabled, hitting a breakpoint no longer
halts the processor core. Instead, it triggers the DM interrupt,
allowing a user-defined Interrupt Service Routine (ISR) to
handle the event. The ISR associated with the DM exception
provides a controlled environment for performing debugging
operations. Users can program the routine to replicate the
functionalities of halt-mode debugging without pausing the
processor’s core operations.

Compared with the server—client structure of halt-mode
debug, DM offers the potential for a substantial performance
boost in fuzzing due to its close integration with the processor
core. This improvement allows coverage recovery algorithms
to be designed without compromise. Moreover, since DM
raises interrupts internally, it avoids the need to establish a
GDB connection with the workstation. As a result, no external
debug probe or debugging protocol is required. Instead, a
simple serial port suffices for data communication, eliminating
the reliance on facilities such as a GDB server or hardware
debug probes. We build DRIFT on top of this DM-based
debugging capability.

ITII. RELATED WORK
A. Emulation-based Firmware Fuzzing

Emulation-based firmware fuzzing has attracted significant
attention in recent years. Its primary strengths are hardware in-

https://shop-us.segger.com/product-category/debug-probes/jtrace/

dependence and scalability. This approach can be categorized
by the layer of the system it attempts to emulate.

Notably, P2IM [9], Fuzzware [19]], and PRETENDER [11]
focus on emulating the underlying hardware. Each introduces
distinct heuristics to infer and replicate hardware behavior.
However, the design of these heuristics involves an inherent
tradeoff. On one hand, they aim to approximate the behavior
of real hardware as closely as possible; on the other, they must
maximize code coverage to make fuzzing effective. These two
objectives are often in fundamental tension with one another.

Meanwhile, HALucinator [4], Para-rehosting [13], and
SAFIREFUZZ [21]] emulate the hardware abstraction layer
(HAL) interface, thereby abstracting away the firmware’s
direct peripheral accesses. This approach improves fuzzing
performance but comes with significant limitations. It de-
pends heavily on error-prone binary function matching and,
by design, cannot expose bugs that lie below the HAL—a
substantial portion of many firmware codebases.

SAFIREFUZZ [21] extends the HALucinator concept by
migrating code above the HAL from ARM Cortex-M to
ARM Cortex-A, leveraging the fact that both belong to the
same instruction set family. While this migration improves
performance relative to HALucinator, it also inherits all of
its fundamental drawbacks.

B. Hardware-based Firmware Fuzzing

Avatar [23] pioneered the hardware-in-the-loop design, in
which on-device firmware communicates register-level states
to the fuzzer through a debugging protocol. However, it was
quickly recognized that the debug connection constituted a
major performance bottleneck.

Subsequent work, such as Inception [6] and SURRO-
GATES [12], attempted to overcome this limitation by ac-
celerating communication with customized FPGA hardware.
While these solutions improved throughput, their high degree
of specialization and associated cost severely limited their
practicality and broader adoption.

Moving forward, researchers observed that exchanging reg-
ister states via a debugging protocol is both expensive and
unnecessary for fuzzing. uAFL [14] addressed this by lever-
aging the ARM ETM to collect execution traces. However,
as discussed in Section ETM is far less available than
DM or halt-mode debug. It also introduces heavy computation
and communication overhead, leading to significantly reduced
performance.

More recent approaches, such as SHiFT [17] and CO3 [15]],
employ compile-time instrumentation to gather program states.
Rather than relying on standard debugging protocols, they
define lightweight custom protocols that transmit only the
information relevant to fuzzing. This design achieves state-
of-the-art performance while still supporting the full firmware
stack running on the MCU. The drawback, however, is that
these approaches require access to source code, which is often
unavailable in real-world scenarios.

In comparison, GDBFuzz [7|] continues to rely on the de-
bugging protocol. Instead of synchronizing at the register level,

Basic Block1 /
Y’ N

/
[Basic Block2 | ?

Basic Block4 [£:)

Fig. 1: the drawback of dominance analysis

~
[Basic Block3 | ?

however, the workstation communicates with the firmware
at the fuzzing iteration level, which significantly reduces
communication overhead. The key idea is to randomly insert
hardware breakpoints and observe which ones are triggered.
From these observations, the tester can partially infer basic
block coverage using graph dominance analysis

This approach leverages the MCU’s built-in debugging
facilities without requiring source code access. Its limitation,
however, is that it only provides partial basic block cov-
erage. Complete edge coverage is generally more valuable
for fuzzing, as it carries richer contextual information about
execution paths E] As an example, suppose that, in a simplistic
control flow graph shown in Figure [T} a breakpoint is placed
in basic block (BB) 4. Through dominance analysis, we are
only able to infer that BB1 is guaranteed to be hit based on the
fact that BB4 is hit. However, from BB1 to BB4, the control
flow must travel through either BB2 or BB3. Dominance
analysis is unable to recover this information, undermining the
fuzzer’s mutation capability. Furthermore, using the debugging
protocol is still slow and breaks the real-time operations of the
firmware.

Generally, DRIFT offers several benefits compared to GDB-
Fuzz:

« Full recovery of the code coverage.

« No physical debug probe is required.

« No debugging protocol is used and no halting is needed.
This ensured a smoother execution and faster speed.

C. Firmware Bug Detection Capability

The research challenges discussed above have largely de-
fined the focus of the firmware fuzzing community. Wycin-
wyc [18] highlighted an additional problem: due to the absence
of key hardware features (e.g., a memory management unit)
and a full-fledged operating system, many classes of bugs that
would be easily observable on a workstation remain hidden
on MCUs.

As a result, firmware fuzzers often rely on coarse indicators
such as hangs [7] or crashes [9] to infer that a bug has been
triggered. To improve on that, uAFL [14]], as an example, uses
processor’s fault handler as a signal, leveraging built-in error
detection mechanisms to catch more failures.

The only approaches that go beyond these primitive methods
are SHiFT and CO3, which embed sanitizers directly into the
firmware. This enables much more fine-grained bug detection,
but comes at the cost of requiring source code, making it
impractical for binary-only scenarios.

3https://en.wikipedia.org/wiki/Dominator_(graph_theory)
4https://github.com/google/ AFL/blob/master/docs/technical _details.txt#1.58

https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://github.com/google/AFL/blob/master/docs/technical_details.txt#L58

lAnalysis|— Static __y
4 Analysis H

Binary Patching—— 3| i
Binary] ry” ------ 9--._.....\ Modified
under : Static : Binary
HashMap :

Seed
Input
AFL/
o AFL++
||Serial
Port

Workstation

Fig. 2: System Block Diagram of DRIFT

IV. DRIFT DESIGN
A. Workflow Overview

We present an overview of DRIFT in Figure 2] At a
high level, DRIFT takes the binary-under-analysis as input.
Through a simple control flow (CF) static binary analysis (de-
tailed in Section[[V-B), we generate key-value pairs containing
the necessary information about how to collect code coverage
from the binary. Due to the tight hardware budget on the MCU,
only a limited number of pairs are stored in a static hashmap,
which is subsequently embedded into the binary. All key-value
pairs are provided to the fuzzer for use at runtime. Finally, the
binary is further flashed onto the board for testing.

During online testing, we establish a connection with the
communication channel used by the firmware and link it to
the fuzzer. The fuzzer initiates a fuzzing campaign by sending
an input to the MCU. The firmware, in return, operates in
one of three action modes (illustrated in the MCU block
in Figure [2] and detailed in Section [[V-D) to collect code
coverage information during its execution. After completing
execution, the firmware transmits the error status and the
collected coverage information back to the fuzzer, thereby
concluding a fuzzing iteration.

B. DRIFT Core Design

The main focus of DRIFT is to utilize DM to recover
coverage information. To do that, given a firmware binary, we
need to first enumerate all its control-flow (CF) instructions.
Then, for each identified CF instruction, we utilize the DM
interrupt to dynamically recover its coverage information.
For example, when DRIFT statically identifies a conditional
branch at address Addrl. Through static analysis, DRIFT
will know its only two targets are at Addr2 and Addr3. At
runtime, when the interrupt is triggered Addr1, DRIFT will
place two DRIFT breakpoints at Addr2 and Addr 3. Through
knowing which breakpoint is hit next, DRIFT is able to recover
this coverage information.

Next, we expand the same idea to all possible CF instruc-
tion. We list all of them in Table As it turns out, only two
hardware breakpoints are required to recover the control flow
(CF) for all CF instructions, except call/link instructions. To
illustrate: For conditional branches, two hardware breakpoints

Action

Place a breakpoint at the jump target
Place two breakpoints at both branches
Single step the indirect jump instruction

1. Place a breakpoint at the return address
2. Push the return address to shadow stack
. Place a breakpoint at the start of callee
. Place a breakpoint at the return address
. Push the return address to shadow stack
. Single Step the call instruction

Pop the return address from shadow stack
. If hitting the end address, reset

CF Type

1. Unconditional Jump
2. Conditional Jump
3. Indirect Jump

4. Direct Call

5. Indirect Call

B =W =W

6. Hitting return address

TABLE III: Interrupt-based Actions for different control flows

are needed to monitor both potential targets. For unconditional
branches, only one breakpoint is required at the single tar-
get address. For indirect branches (e.g., the bx instruction),
no breakpoints are needed. Instead, we leverage the single-
stepping capability of the DM to step through that instruction
and record its target.

Handling call/link instructions involves more complexity
because they not only trigger control flow (CF) transfers,
but also modify the call stack. Thus, DRIFT is required to
memorize where to return to when a function exits. To manage
this, DRIFT needs a shadow call stack and an additional
hardware breakpoint: The shadow call stack maintains the re-
turn addresses of on-stack functions. This additional hardware
breakpoint is dynamically updated to the value at the top of
the shadow call stack (i.e., the return address of the current
function). This setup ensures that whenever a function returns,
a breakpoint is placed at the return address, enabling the caller
to resume its CF collection.

In summary, DRIFT requires three hardware breakpoints.
According to our survey, all MCUs with DM mode provide at
least four hardware breakpoints, thus DRIFT is applicable to
all of them.

C. Hashmap Generation

DRIFT’s core design reveals that, the DM interrupt essen-
tially is embedded with a lookup table for each CF instruction.
The key to the lookup table is each CF’s instruction’s address,
the value of the entry is where to put the breakpoints. Thus,
each entry can be generalized as following:

o (1 byte) the Type information which corresponds to the

CF Type in Table

« (2 byte) first breakpoint to be placed, can be empty, which

is denoted by 0x00.

« (2 byte) second breakpoint, same as above.

Since this look-up operation occurs frequently during a
fuzzing iteration (i.e., at the basic block level), it is crucial to
use an efficient data structure for faster access. To achieve this,
we choose the hashmap. Since we already know all the entries
beforehand, when constructing the hashmap, we try different
hash parameters (e.g., hash seeds and hashmap capacity) and
pre-arrange the layout of the hashmap for improved space and
time efficiency.

Despite our efforts to optimize the hashmap’s space and
time efficiency by pre-arranging its layout, a major bottleneck

remains: a fuzzing iteration usually just exercises a small
portion of the hashmap. This issue arises because the firmware
binary includes the entire software stack. As a result, hosting
all of the code in hashmap is wasteful for the MCU’s con-
strained memory as well as compute. We thus need a more
flexible way to decide what to host in the hashmap by letting
the user define the code of interest to test.

D. Enabling User-defined Hashmap

To enable this flexibility, we introduce two additional action
modes in the design of the DM handler routine. Together, these
three action modes are depicted in the MCU block of Figure 2]

The new hashmap generation starts with the user specifying
the entry point to the code that needs testing. Then, the
static analysis recursively explores through the call graph and
generates entries for all traversed functions. However, there
is a well-known limitation of binary static analysis — namely,
its inability to accurately resolve indirect call targets or even
conditional branch targets. The former causes the indirectly
called functions to be not traversed and, consequently, missing
from the hashmap; while the latter causes the the static analysis
result to be wrong.

To dynamically amend the static hashmap, we introduce a
dynamic hashmap. This dynamic hashmap addresses the two
issues above: 1. when the MCU encounters a basic block that
is not covered by the static hashmap, the MCU will request
its entry from the workstation on-the-fly. The workstation,
with the complete static analysis result, is able to provide any
requested basic block information. 2. when the static analysis’s
result is wrong, which is detected when the current breakpoint
trigger does not belong to any of the two addresses that were
set by the previous breakpoint, the MCU is able to mark the
previous breakpoint as bad.

When the MCU encounters a bad breakpoint, or the MCU
runs out of space to request more entry, DRIFT will switch
to the third mode, i.e., the single-step mode. In this mode,
the MCU simply single-steps the each instruction and triggers
DM interrupt for each. The interrupt will simply record the CF
flow as it goes. More specifically, it checks if each instruction
is a CF instruction. If it is a CF instruction, its target is
recorded and added to the code coverage. If it is not, the
system skips to the next instruction. Thanks to ARM’s RISC-
based design, determining whether an instruction is a CF
instruction is straightforward [°| For instance, to identify if a
current instruction is a 16-bit conditional branch, we only need
to check if the first 4 bits are 1101, or if the first 5 bits are
11100. If either is true, it is a conditional branch instruction.

In summary, DRIFT searches for key-value entries from
both the static hashmap on FLASH and the dynamic hashmap
on RAM to guide the handling of each encountered breakpoint.
If an entry is bad or missing, it falls to single-step. This design
makes DRIFT’s memory requirements highly flexible: with
a limited memory budget, no entries need to be hosted and
DRIFT just single-step; with an abundant memory budget,
entries can be preloaded to accelerate performance.

Shttps://developer.arm.com/documentation/ddi0403/latest/

E. Creating a Functional Fuzzing Environment

With the ability to trace execution and recover code cov-
erage for firmware as described above, we now discuss how
to transmit this critical information back to the fuzzer on the
workstation to enable a fully functional fuzzing process.

Coverage Feedback To provide coverage feedback to the
fuzzer, DRIFT supports two types: bitmap and trace. Bitmap
is an efficient construct widely adopted by popular openbox
fuzzers, such as AFL. In this type, each encountered edge is
mapped, via a hash function, to an entry in a bitmap. The key
is the edge hash, and the value is the number of times the
edge has been executed. SHiFT [17] uses this construct but
optimizes it by transmitting only non-zero entries instead of
the entire 64KB bitmap, based on the observation that most
entries remain empty. DRIFT incorporates a similar design
to improve efficiency. However, bitmaps inherently suffer
from hash collisions, which can lead to the loss of coverage
information. This issue is particularly pronounced on MCUs,
as they typically cannot afford the use of computationally
expensive hash functions like those employed on workstations.

To address this limitation, DRIFT also supports trace as a
form of coverage feedback. Specifically, we draw inspiration
from the ETM, and use a similar encoding strategy to represent
the entire trace. A single bit is used to encode the destination
of a conditional branch, and eight bits are used to encode the
target of an indirect branch. Since the start and end addresses
are specified by the user, the entire trace can be reconstructed
from this encoding in a straightforward manner. The fuzzer can
then apply a more computationally expensive hash function on
the workstation to reconstruct the bitmap. Experimental results
in Section demonstrate that while this trace mode offers
similar functionality to ETM-based fuzzers, it is significantly
faster and leaner.

Error Handling In addition to code coverage, the fuzzer
requires information about triggered errors as feedback, as
these signify the detection of real bugs. To achieve this, we
modify the error handler (e.g., the hard fault handler) within
the firmware to send a message whenever an error is triggered.

Moreover, hitting the hard fault handler typically indicates
that the firmware has entered an irreversibly corrupt state. To
ensure the firmware can recover from such a state automati-
cally, we utilize a watchdog timer. The watchdog timer is a
basic peripheral available even on the most low-end MCUs
(e.g., STM32L0 series). It resets the board automatically if a
timeout exceeds a preset threshold. This functionality is critical
to maintaining the availability of the firmware, even in the
event of a fatal crash. In our implementation, we also leverage
this functionality to ensure the firmware remains operational
during testing, even if the testing causes it to crash.

V. IMPLEMENTATION

A. MCU Runtime

DRIFT’s design is not dependent on any RTOS like SHiFT
or CO3 does. Therefore, it has better support for baremetal em-
bedded devices. DRIFT interacts with the peripherals through

https://developer.arm.com/documentation/ddi0403/latest/

the vendor-specific HAL. Thus, to support other MCUs within
the same vendor, one can just copy-paste the source code to
the target compilation environment and compile to generate the
binary code; to support the MCUs of different vendors, besides
copy-pasting, one should replace the vendor-specific HAL too.
As a result, the MCU runtime comprises 945 lines of C code
and the optional 132 lines of murmur hash implementation
when the user choose not to use the hardware hash.

B. Static Analysis and Hashmap

As part of GDBFuzz’s implementation, it has a Ghidra
component to linearly scan the firmware to identify all its
CF instructions. Expanding on this basic functionality, we
further analyze all identified CF instructions to categorize
them according to DRIFT’s design (e.g., to check if they are
conditional jump or indirect jump), identify their jump targets,
and subsequently generate the static and global hashmap
in the form of C code with a balanced trade-off between
space and computation efficiency. The static hashmap is used
together with other DRIFT’s MCU runtime, to generate the
final firmware binary. The global hashmap is subsequently
used to generate the fuzzer running on the workstation.

C. Binary Patching

After obtaining the binary code, we implant it into the target
firmware by first compiling the DRIFT runtime as a static
library with position-independent code and then appending its
symbols into the binary using Ghidra’s patching functionality.
We subsequently locate the DM handler and the fault handler
in the binary’s interrupt vector table and overwrite their
entries so that they point to the injected functions, ensuring
that the firmware invokes the implanted handlers whenever a
breakpoint is triggered or a fault is detected.

Additionally, in order to initialze DRIFT’s runtime (e.g.,
place a breakpoint at the entry address and force the
binary to execute in DM mode) we effectively prepare a
trampoline for the main function. Specifically, we add an-
other function which does the aforemention initialization and
then calls main. We then only need to overwrite b1 main
instruction inside the Reset_Handler to call a trampoline.

Furthermore, users might also be interested in testing the
privileged code (e.g., the ISRs). Different from a normal
function call, a given interrupt can be raised at any time during
the firmware execution. DRIFT will not be aware when such
an interrupt is raised. To support the potentially interesting
interrupts, we also use the trampoline. Specifically, given an
ISR (e.g., USART2_IRQHandler) that needs tracking, we
simply overwrite its interrupt vector table’s entry to point to
the following trampoline:

DRIFT_USART2_IRQHandler () :
uintptr bl = read_breakpoint (1);
uintptr b2 = read_breakpoint (2);
uintptr b3 = read_breakpoint (3);
write_breakpoint (1, USART2_IRQHandler) ;
call USART2_IRQHandler () ;
write_breakpoint (1,bl);

write_breakpoint (2,b2);
write_breakpoint (3,b3);

As one can see from the code above, in order to make sure
that the interrupt does not destroy the breakpoint context of
the function that is being interrupted, we save the breakpoint
context into the system stack. In doing so, when the interrupt
finishes, the interrupted function can continue its CF recovery
normally. Moreover, in order to make sure that the interrupt
does not destroy DRIFT’s internal state, we disable all inter-
rupts when the DM handler was executed and re-enable before
it exits.

D. AFL Proxy

Once the modified binary is flashed to the MCU, as shown
in Figure [2| depending on how the data is consumed on the
board, DRIFT needs to set up the same input channel used
by the firmware. This is done by setting up an afl proxy El
From the perspective of the fuzzer, this afl proxy is the target
program under test. What this proxy does under the hood is
that it serves as an intermediary between the fuzzer and the
MCU. It first receives input from the fuzzer and writes to
the input channel used by the firmware. Subsequently, it also
receives the feedback from the MCU to reconstruct the bitmap
needed for fuzzer’s input mutation.

VI. EVALUATION

In this section, we systematically evaluation DRIFT to
answer the following research questions:

e RQ1: In order to put DRIFT to work, what are the
overhead that an user should expect?

e RQ2: Compare with other SoTA hardware-based solu-
tions, how does DRIFT’s fuzzing performance in terms
of speed and code coverage?

¢ RQ3: Due to DRIFT’s unique hardware-based error
detection mechanism, what types of bugs can DRIFT
detect?

o RQ4: What are the bug-detection capabilities of DRIFT
compared with the existing SOTA? Is DRIFT able to find
new bugs that other solutions cannot find?

We conducted experiments on a workstation equipped with
Intel Core 19-12900H processor and 32 GB RAM. In terms
of the MCU boards, as listed in Table we ported DRIFT
to MCUs from STM32 |’} Microchip [°} and NXP El We chose
these vendors because they are among the most prominent
ARM MCU providers [2].

We chose uAFL and GDBFuzz as the primary comparison
targets, since similar to DRIFT, they are both hardware-based
binary firmware fuzzing approaches. When it comes to uAFL,

Shttps://github.com/AFLplusplus/AFLplusplus/blob/stable/utils/afl_proxy/a
fl-proxy.c

’STM32 MCU Selector, https://www.st.com/content/st_com/en/stm32-mcu
-product-selector.html

$Microchip Product Selection Tool, https://www.microchip.com/en-us/pr.
oducts/selection-tools

INXP Product Selector, https://www.nxp.com/products/product-selector:
PRODUCT-SELECTOR.

https://github.com/AFLplusplus/AFLplusplus/blob/stable/utils/afl_proxy/afl-proxy.c
https://github.com/AFLplusplus/AFLplusplus/blob/stable/utils/afl_proxy/afl-proxy.c
https://www.st.com/content/st_com/en/stm32-mcu-product-selector.html
https://www.st.com/content/st_com/en/stm32-mcu-product-selector.html
https://www.microchip.com/en-us/products/selection-tools
https://www.microchip.com/en-us/products/selection-tools
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR.
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR.

Vendor MCU CPU Connectivity FLASH RAM HASH Watchdog
STM32 | FIO3RB | Cortex-M3 @ 36 MHz |UART @ 7.5 Mbauds | 128KB 20KB Hardware CRC x2
STM32 | F429Z1 |Cortex-M4 @ 180 MHz | UART @ 7.5 Mbauds| 2MB 260KB Hardware CRC X2
STM32 | L4R5ZI |Cortex-M4 @ 120 MHz| USB 2.0 @ 12Mbps 2MB 640KB Hardware CRC X2
STM32 | L4S5VIT6 | Cortex-M4 @ 120 MHz | USB 2.0 @ 12Mbps | 2MB 640KB |Hardware SHA-256 x2
STM32 | H743ZI |Cortex-M7 @ 480 MHz| USB 2.0 @ 12Mbps 2MB 1024KB| Hardware CRC x2
NXP K66F |Cortex-M4 @ 180 MHz | USB 2.0 @ 12Mbps | 2MB 256KB | Hardware SHA-I x1
Microchip | SAMDS51 | Cortex-M4 @ 120 MHz | USB 2.0 @ 12Mbps | 512KB 256KB | Hardware SHA-1 x1

TABLE IV: List of MCU platforms

however, due to its dependency on the expensive high-end de-
bug probe |'Y] dependency on specific OpenOCD version, and
unreliable setup, we ran into a similar problem as described in
GDBFuzz [7] when trying to reproduce uAFL’s experiment.
As a result, we are only able to use the result reported from
its original paper (i.e., for the Console and Fibonacci
firmware). Besides these on-device binary fuzzing approaches,
to figure out where DRIFT situates in firmware fuzzing in
general, we also compare with other state-of-the-art firmware
fuzzers. In particular, we compare with SHiFT, a source-code-
dependent fuzzer that runs the firmware on the MCU and
demonstrates state-of-the-art performance, and Fuzzware, a
cutting-edge emulation-based firmware fuzzer.

When it comes to choosing the benchmark firmware, we
surveyed the availability, practicability and variety of the
firmware evaluated in the literature on firmware testing. We
found a balanced collection of firmware samples from P2IM,
SHiFT, CO3 since they offered a well-documented firmware
samples, with varying degrees of complexity. For a fair com-
parison, we also adopt the same seed inputs. DRIFT managed
to find three new bugs in two new firmware samples, thus
we also added them to the benchmark. They are oled, a
OLED-based display driver and UVC-VGA, a webcam adapter
which translates webcam signal to the computer. To demon-
strate this benchmark’s variety, we present three metrics for
these firmware, namely, number of basic blocks, number of
hardware peripherals that each firmware accesses, and the
number of indirect calls each firmware makes. The former
two showcase the general complexity of the firmware with
number of basic blocks being a general indicator of how
complex the code is and the number of hardware peripherals
gives a sense of the peripherals involves. We also present
the number of indirect calls each firmware makes since this
poses challenges to the static binary analysis of DRIFT. This
challenge is especially true considering function pointers are
pervasive in firmware. Fortunately, DRIFT handles such cases
via switching to single-stepping.

A. RQI: On-board Overhead

Applying DRIFT to the binary-under-analysis requires over-
writing existing interrupt handlers and instructions by using
trampolines. These newly added code increases the memory
footprint for the given firmware. To understand the overhead,
we compiled DRIFT for all the firmware samples across
different vendors. The result is shown in Figure [3]

10https://shop-us.segger.com/product-category/debug-probes/jtrace/

As shown in Table we break down the memory overhead
into the trampolines, which are essential to the functionality
of DRIFT, and the software hash components, which are
configurable and vary from firmware to firmware. In terms of
the trampolines, the code itself consists of 3.6KB throughout
all the evaluated benchmarks. It further adds 1.1KB to the
read-only section, which is primarily static strings, and only
0.1 KB to RAM which comprises the shadow stack and other
global variables.

In terms of the software hash components, the code itself is
1.1KB. Note that the user can avoid this overhead by using the
hardware hash if it is available on the MCU. The read-only
section directly corresponds to the size of the static hashmap
and heavily depends on the firmware. Thus, we drew a boxplot
for the different sizes of the static hashmaps in Figure As
it shows, the median of the static hashmap is 1.9KB across all
the benchmarks. The RAM overhead is allocated for hosting
the dynamic hashmap. We thus empirically set it to 0.5KB
which we deem to be reasonable across all the tested MCUs.

In summary, DRIFT imposes minimal memory overhead
on the MCU. The essential part supports tracing with single
stepping and only requires 4.7KB of FLASH and 0.1KB
of RAM. To make it work more efficiently by leveraging
the hashmap, an additional 3KB of FLASH and 0.5KB are
typically needed.

Mem |Seg | Trampolines|SW Hash* 31
text| 3.6 KB 1.1 KB
FLASHI 01 11kB | 19 KB ¥ 21
RAM |data] 0.1 KB 0.5 KB
1,
(a) DRIFT memory overhead. * marks the 1
part that varies depending on the configu- ro hashmap
ratio_n and ﬁrmware. # cgrresponds to the (b) Static hashmap
median static hashmap size. footprint

Fig. 3: DRIFT memory footprint.

B. RQ2: Fuzzing Performance

Speed One of DRIFT’s main design goals is to boost
fuzzing speed, which serves as a fundamental metric for
evaluating fuzzing performance. We thus ran DRIFT with
other works against all the collected firmware samples and
evaluated their fuzzing speed.

As Table E shows, DRIFT maintains a clear speed advan-
tage over the direct competitors (i.e., UAFL and GDBFuzz).
When it comes to the outreaching competitors, DRIFT also has

https://shop-us.segger.com/product-category/debug-probes/jtrace/

. DRIFT SHiFT uAFL Fuzware GDBFuzz
Ref # | Firmware Board BB HW acc Ind Call | /" p” pp | [/s] TP FP|[r/s] TP FP |[r/s] TP FP|[r/s] TP FP
pam o] L |PLC H743 i3 7 33 870 4 0 |3100 4 0 |n/a nja nja| 33 4 2|67 4 0
2 | Console H743 95 2 24 453 0 02800 0 0|23 0 0 |35 0 0[48 0 0

3| Synthetic 0743 64 3 29 [1840 10 0 |4800 13 0 |n/a n/a nja| 87 0 10| 35 2 0

SHiFT [17] 4 |AT parser SAMDS51 89 3 9 103 0 0276 0 0 |n/a n/a nfa| 54 0 2|55 0 |1
5 | Commandline K66F 48 4 36 87 0 0233 0 0 |n/a nfa nfa|332 0 1 [248 0 4

03 (1] O |CANopen — LARS 04 5 23 63 0 0 |144 3 0 |n/a n/a nja| 46 0 0] 12 0 1
17 | Blde F429 240 11 89 32 2 0103 2 0|nj/a nfa nfal 12 0 0|15 1 3
GDBFuzz [1] § |Hup L4S5VIT6 166 4 il 78 0 0198 0 0 |nja nfa nfa| 35 0 0|2 0 0
bRIFT O | Oted F103 46 3 13 22 1 0|24 1 0 |n/a nf/a nja| 34 0 4|22 1 2
10 |UVC-VGA F429 119 6 21 43 2 0[319 2 0 |n/a nfa nfa| 14 0 1]19 0 0

TABLE V: 24-hour fuzzing campaigns of DRIFT compared to the SoTAs. BB: Number of basic blocks in the firmware, HW
acc: How many peripherals are accessed in the firmware, Ind Call: How many indirect calls exists in the firmware, SU: DRIFT
SpeedUp (average), TP: True Positives (median), FP: False Positives (median), NB: No Bootstrap.

—— Fuzzware —— SHIFT

PLC Console

—— GDBfuzz —— DRIFT

Commandline

400

200

Synthetic

AT Parser

102 10°

bldc

40

201

0+ |
10

UVC-VGA

Number of BBs

100

100

50+

10° 102 10°

102

102

10°

102

10°

Time [s]

Fig. 4: Comparing basic block coverage. The solid lines are the median block coverage across all runs and the dotted lines

represent the 95% confidence interval.

a clear speed advantage over the emulation-based approach,
losing only to SHiFT, an source-code-instrumentation-based
approach.

Specifically, when it comes to uAFL, DRIFT outperforms
it by two orders of magnitude in the console firmware.
As reported from uAFL [14], its low speed is mainly due
to the high demand for trace communication and filtering.
DRIFT also generally outperforms GDBFuzz by one to two
orders of magnitude. GDBFuzz halts the processor to deploy
breakpoints and engage the gdb protocol for every fuzzing run.
This speed gap between the serial GDB communication and
the CPU causes performance issue. In comparison, DRIFT
uses interrupt to deploy breakpoints and does not halt the
processor. The only exception comes from the Commandline
where GDBFuzz is faster than both DRIFT and SHiFT.
This is because Commandline contains simple logic (e.g.,
comparing the input characters with hard-coded ones and
it is composed of about 40 basic blocks). As a result, all
works saturated the firmware early in the fuzzing campaign.
Consequently, GDBFuzz does not have to distribute more
breakpoints while SHiFT and DRIFT were still paying for the
overhead of the injected runtime. This eventually averaged out

with GDBFuzz coming to the top. Such a phenomenon was
not seen in other firmware samples.

Besides the hardware-based approaches, DRIFT also out-
performs Fuzzware, the emulation-based approach by one
order of magnitude. We attribute this to DRIFT’s design goal
of following a semihosting-based design. Unlike emulation-
based approaches, semihosting-based approaches run as much
fuzzing infrastructure as possible on the board. Doing so
avoids the heavy lifting of the binary code and peripheral
modeling which are required by the emulation. While this is
true for all firmware samples, we observed one outlier which
is Commandline where Fuzzware is significantly faster. We
noticed that, this is due to the early failure caused by the
Fuzzware emulation. As a result, Fuzzware never reached the
entry point of the Commandl ine main logic. Since the failure
is in the early stage of the firmware booting, Fuzzware ended
up only exercising a small portion of the firmware, making
each execution fast but not in a meaningful way.

When comparing with SHiFT, both SHiFT and DRIFT use
similar mechanisms for collecting on-device code coverage.
SHiFT uses software instrumentation to collect coverage,
whereas DRIFT runs similar functionality inside the DM han-

dler. As a result, the disadvantages of DRIFT are 1. for every
hit breakpoint, DRIFT needs to switch to the DM interrupt.
This involves a necessary context switch; whereas SHiFT
directly embeds the instrumentation code inside the source
code, avoiding this overhead. 2. besides the context switch,
DRIFT also needs to perform a hashmap lookup to look for
the execution plan for each hit breakpoint; whereas SHiFT
just performs direct memory access without any lookup. As
these two factors happen for each encountered basic block, the
overhead eventually adds up and causes a speed disadvantage.

In summary, DRIFT maintains an apparent fuzzing speed
advantage over the hardware-based binary approaches thanks
to its proximity to the CPU core. However, it is still slower
than the source-code-based approach due to the inevitable
overhead incurred by performing the same functionality in
source code versus binary code.

Code Coverage In the same experiment, we also ran each
fuzzing campaign ten times for twenty-four hours to follow the
best practice of evaluating code coverage [20]. While DRIFT
and other works support edge coverage by design, GDBFuzz is
only able to support the coarser-grained basic block coverage
as feedback [7]. For a fair comparison, we chose basic block
coverage as the feedback metric for all evaluated systems. We
aggregate the results and plot the median basic block coverage
and its 95% confidence interval in Figure] Additionally,
we conducted Mann-Whitney U test on the sequence of each
number of basic blocks, the calculated critical value meets
satifies the significance level of o = 5%, showing that the
collected data demonstrated statistical significance.

From the figure we can see that, DRIFT outperforms both
GDBFuzz and Fuzzware by a considerable margin. Fuzzware,
in particular, achieved greater coverage on AT Parser and
OLED, however, we categorize this phenomenon to its forceful
code coverage strategy in modeling the peripherals. As a
result, the peripheral modeling yields unrealistic values which
boosts up the coverage. In terms of GDBFuzz, it consistently
underperforms due to its slow speed and partial basic block
coverage.

When comparing SHiFT and DRIFT, these two systems
have similar behaviors in Synthetic, Console, and AT
Parser. This is because, compared with other works, the
way both systems use to collect coverage is similar. On a
high level, although the detailed timing and behavior might
be different due to fuzzing randomness, SHiFT uses source
code instrumentation to collect coverage while DRIFT runs
the same logic in the form of an interrupt.

C. RQ3: Types of Bugs Detected

As stated in Section DRIFT detects crashes and
time-outs based on the fault handlers of the MCU. This bug
detection mechanism is inherently much more coarse-grained
and not as powerful, compared with the software-based sani-
tizers (e.g., the AddressSanitizer used by SHiFT). Since most
of the existing firmware fuzzers utilize the emulator’s rich
mechanisms for bug-detecting purposes, less is known in terms
of what can be expected when it comes to utilizing MCU’s

10

Synthetic
& UVC-VGAN\ L=

Synthetic

& CANopen HLe

J
4

\ Synthetic,

Bldc & OLED

[0 SHIFT

[0 DRIFT

Fuzzware GDBFuzz

Fig. 5: Intersection of identified bugs by different works.

on-chip mechanisms to detect bugs. For example, GDBFuzz
only uses hang to signify when a bug is detected. To bridge
this gap, SHiFT proposed a Synthetic benchmark that
enumerates thirteen different commonly seen bugs with simple
triggering conditions. This benchmark also categorized each
bug according to how it can be detected, i.e., if the bug can
be detected through the 1. memory protection unit (MPU), 2.
Cortex-M fault handlers, or 3. software sanitizers. We also use
this benchmark to quantify how many bugs DRIFT can detect.

When running DRIFT on this benchmark, naturally, all the
bugs marked detectable by Cortex-M fault handlers can also
be detected by DRIFT. These bugs are divide-by-zero, invalid
instruction, privilege violation, null pointer dereference, and
unaligned access. DRIFT cannot detect MPU-specific bugs
since DRIFT does not rely on the MPU. This includes seg-
mentation fault. When it comes to the sanitizer-detected bugs,
DRIFT also detects all bugs (except stack overflow) marked
detectable by ASAN while failing to detect all UBSAN
bugs. The ASAN-detected bugs are use-after-free, double-free,
invalid-free, heap-overflow, and the UBSAN-detected bug is
integer overflow. We categorized the fact that DRIFT is able
to detect ASAN bugs to that, these detectable bugs use 1ibc
functions. Once the bugs are triggered, it leads to corruption
inside the 1ibc functions and was subsequently captured by
hard fault.

D. RQ4:Bugs Detected

In the process of running all related works based on the
benchmark, we also evaluated their bug detection capability
against the existing bugs documented in the previous papers,
as well as the new bugs that DRIFT found in the new firmware
samples. The results are shown in Table [V and Figure [5]

Thanks to DRIFT’s efficient and high-fidelity fuzzing for
firmware, after we applied it to the real-world firmware
samples collected from the Internet, DRIFT was able to
trigger three new bugs that other binary works did not find.
The first bug is in the oled firmware that drives a oled

display. It implements a library for easier drawing on a stm32-
based screen. This bug arises due to a poor boundary check
when writing to a global buffer, which put the firmware in a
corrupted state and triggered a hard fault. Fuzzware failed to
detect this because the firmware utilizes on-chip peripherals to
interact with the display. However, Fuzzware misclassified the
peripheral’s registers, which led to an unrealistic program path.
Meanwhile, GDBFuzz struggled with reaching that buggy part
of the code due to its limited exploration capability, which was
undermined by its partial feedback. A similar situation arises,
when it comes to UVC-VGA firmware where DRIFT identified
a heap overflow and a null pointer dereference. However, in
this case, Fuzzware was stalled before it hit the buggy part of
code. In both cases, the bugs are confirmed by the developers
after we report to them responsibly.

When it comes to detecting the existing documented bugs,
DRIFT cannot detect the undefined behaviors inside CANopen
since it bears no noticeable behavior. Meanwhile, it is able to
detect the other bugs that were made noticeable by triggering
the fault handlers. Fuzzware, in comparison, struggled with
reaching to the main processing loop of the firmware and
triggering false bugs as seen in Commandline and Bldc.
GDBFuzz, at the same time, primarily suffered from low speed
and limited fuzzer mutation while having a better false positive
rate compared with Fuzzware since it runs the firmware on
the real MCU. We drew a venn diagram to visualize the true
findings made by each work in[5] As one can see, SHiFT is
able to detect all the true findings due to its sanitizer-based
design, while DRIFT comes as a close second. GDBFuzz and
Fuzzware, in comparison, suffers from their limitations and
thereby are only able to discover a fraction of the findings,
with GDBFuzz being relatively better since it uses the real
hardware.

VII. DISCUSSION

A. Architectural Limitations

DRIFT is built upon the DM mode provided by ARM
Cortex-M, which is by far the most popular MCU processor
family [1]. However, what DRIFT primarily depends on is
the processor’s ability to handle triggered breakpoints inde-
pendently, without interference from the workstation. This
capability, combined with the pre-knowledge of the firmware,
makes DRIFT both lightweight and fast.

Although we do not support other MCU architectures out-
of-the-box, it is not uncommon for other architectures to offer
similar capabilities for minimally intrusive debugging. For
example, RISC-V supports minimally intrusive debuggin
which allows the execution of specific instructions during de-
bugging without interference from the workstation. Similarly,
PowerPC offers a debug interrup which triggers a debug
exception when specific events occur. The design principles
behind DRIFT provide a paradigmatic framework that can be

https://riscv.org/wp-content/uploads/2024/12/riscv-debug-release.pdf
2https://www.st.com/resource/en/user_manual/um0434-e200z3- powerpc-c
ore-reference-manual-stmicroelectronics.pdf|

11

adapted when porting to these architectures, a task we leave
for future work.

B. Tracking the Interrupt

In the implementation, we discuss how DRIFT supports
tracking interrupts. However, since MCUs strictly arbitrate
interrupt handling based on priority (i.e., high-priority in-
terrupts always preempt lower-priority ones), tracking high-
priority interrupts (i.e., those with higher priority than the DM)
becomes impossible. Although we could technically set the
priority of the DM interrupt to the highest value, we recognize
that this is not the intended use of the DM and could negatively
affect the firmware’s original behavior, thus impacting its
fidelity. Note that high-priority interrupts are typically used
for system services, while user-defined interrupts usually have
lower priorities. This distinction makes our approach still
valuable in most practical cases.

C. Inaccurate Static Analysis Result

Accurate static analysis results are fundamental to the
DRIFT’s design. However, static binary analysis remains an
open research question and suffers from inaccuracy.

We argue that this is less of a problem for DRIFT since
1. ARM Cortex-M is a RISC-based architecture: unlike x86
whose instruction can be from 2 to 15 bytes longs, ARM
can only be from 2 or 4 bytes. This significantly reduces
the complexity of static analysis. 2. DRIFT does not involve
complex binary data analysis; only primitive CF analysis is
needed. This does not even involve chaining different CF
together—only analyzing each individual CF instruction is
needed. 3. For the identified inaccurate basic blocks, we have
a design in place to automatically switch to single-step mode.

Given these, we acknowledge that DRIFT cannot handle
extreme cases such as obfuscated code or even self-modifying
code, which we leave to future work.

VIII. CONCLUSION

Based on a widely-available Arm Cortex-M feature, the
DM, DRIFT designs and implements a simple yet powerful
binary firmware fuzzing framework.

Based on the evaluation comparing with on-device binary
firmware fuzzing systems as well as the current state-of-the-art
source-code-based and emulation-based approaches, DRIFT
maintains a considerable advantage over the directly related
binary firmware approaches and emulation-based approaches,
losing only to the source-code approach.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
feedback. This research is sponsored in part by NSF Award
2031390, NSERC (RGPIN-2022-03325), and NCC (2024-
1488).

https://riscv.org/wp-content/uploads/2024/12/riscv-debug-release.pdf
https://www.st.com/resource/en/user_manual/um0434-e200z3-powerpc-core-reference-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um0434-e200z3-powerpc-core-reference-manual-stmicroelectronics.pdf

[1]

[2]
[3]

[4]

[5]
[6]

[7]

[8]

(10]
[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

REFERENCES

The current state of embedded development. https://www.embedded.c
om/wp-content/uploads/2023/05/Embedded- Market- Study-For- Webin
ar-Recording- April-2023.pdf.

Microcontroller Market Size, Share & Trends Report 2030. https://ww
w.grandviewresearch.com/industry-analysis/microcontroller-market.
Michael Chesser, Surya Nepal, and Damith C Ranasinghe. Multifuzz: A
multi-stream fuzzer for testing monolithic firmware. In USENIX Security
Symposium, USENIX Security, 2024.

Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul
Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh
Bagchi, and Mathias Payer. {HALucinator}: Firmware Re-hosting
Through Abstraction Layer Emulation. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1201-1218, 2020.

Chris Coleman. Step-through debugging with no debugger on cortex-m.
URL: https://interrupt.memfault.com/blog/cortex- m-debug-monitor,
Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. In-
ception: System-wide security testing of real-world embedded systems
software. In 27th USENIX Security Symposium (USENIX Security 18),
pages 309-326, 2018.

Max Eisele, Daniel Ebert, Christopher Huth, and Andreas Zeller.
Fuzzing Embedded Systems using Debug Interfaces. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 1031-1042, Seattle WA USA, July 2023. ACM.
Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexander
Bulekov, Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francillon,
Long Lu, Nick Gregory, Davide Balzarotti, and William Robertson.
SoK: Enabling Security Analyses of Embedded Systems via Rehosting.
In Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security. Association for Computing Machinery, May
2021.

Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing. In 29th USENIX Security Symposium (USENIX Security 20), pages
1237-1254, 2020.

Barr Group. Embedded Systems Market Surveys, June 2016.

Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind
Machiry, Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon,
Yung Ryn Choe, Christophe Kruegel, and Giovanni Vigna. Toward
the analysis of embedded firmware through automated re-hosting. In
22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019), pages 135-150, Chaoyang District, Beijing,
September 2019. USENIX Association. URL: https://www.usenix.o
rg/conference/raid2019/presentation/gustafson.

Karl Koscher, Tadayoshi Kohno, and David Molnar. SURROGATES:
Enabling near-real-time dynamic analyses of embedded systems. In
Proceedings of the 9th USENIX Conference on Offensive Technologies,
WOOT’ 15, page 7, Washington, D.C., August 2015. USENIX Associa-
tion.

Wengiang Li, Le Guan, Jinggiang Lin, Jiameng Shi, and Fengjun
Li. From library portability to para-rehosting: Natively executing
microcontroller software on commodity hardware. URL: http://arxi
v.org/abs/2107.12867, larXiv:2107.12867,doi:10.14722/nds
5.2021.24308.

Wengiang Li, Jiameng Shi, Fengjun Li, Jinggiang Lin, Wei Wang, and
Le Guan. uAFL: Non-intrusive feedback-driven fuzzing for microcon-
troller firmware. In Proceedings of the 44th international conference on
software engineering, ICSE 22, 2022.

Changming Liu, Alejandro Mera, Engin Kirda, Meng Xu, and Long Lu.
Co3: Concolic co-execution for firmware. In 33th USENIX Security
Symposium (USENIX Security 24), 2024.

Zephyr Project members and individual contributors. Cortex-m debug
monitor — zephyr project documentation. https://docs.zephyrproject.org
/latest/services/debugging/debugmon.html; 2024.

Alejandro Mera, Changming Liu, Ruimin Sun, Engin Kirda, and Long
Lu. SHiFT: Semi-hosted Fuzz Testing for Embedded Applications. In
33th USENIX Security Symposium (USENIX Security 24), 2024.
Marius Muench, Jan Stijohann, Frank Kargl, Aurelien Francillon, and
Davide Balzarotti. What You Corrupt Is Not What You Crash: Chal-
lenges in Fuzzing Embedded Devices. In Proceedings 2018 Network
and Distributed System Security Symposium, San Diego, CA, 2018.
Internet Society. URL: https://www.ndss-symposium.org/wp-c

12

[19]

[20]

[21]

[22]

(23]

ontent/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf,
doi:10.14722/ndss.2018.23166l

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Mar-
ius Muench, Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and
Ali Abbasi. Fuzzware: Using Precise MMIO Modeling for Effective
Firmware Fuzzing. In 31st USENIX Security Symposium (USENIX
Security 22), 2022.

Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias
Scharnowski, Addison Crump, Arash Ale-Ebrahim, Nicolai Bissantz,
Marius Muench, and Thorsten Holz. SoK: Prudent Evaluation Practices
for Fuzzing . In 2024 IEEE Symposium on Security and Privacy (SP),
pages 1974-1993, Los Alamitos, CA, USA, May 2024. IEEE Computer
Society. URL: https://doi.ieeecomputersociety.org/10.1109/SP54263.20
24.00137,/doi:10.1109/SP54263.2024.00137.

Lukas Seidel, Dominik Maier, and Marius Muench. Forming faster
firmware fuzzers. In Proceedings of the 32nd USENIX Conference on
Security Symposium, SEC °23, pages 2903-2920, USA, August 2023.
USENIX Association.

Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: Facilitating
dynamic analysis of device drivers of mobile systems. In 27th USENIX
Security Symposium (USENIX Security 18), pages 291-307, 2018.
Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti.
Avatar: A Framework to Support Dynamic Security analysis of embed-
ded systems firmwares. In Proceedings 2014 Network and Distributed
System Security Symposium, San Diego, CA, 2014. Internet Society.

https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-Webinar-Recording-April-2023.pdf
https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-Webinar-Recording-April-2023.pdf
https://www.embedded.com/wp-content/uploads/2023/05/Embedded-Market-Study-For-Webinar-Recording-April-2023.pdf
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://interrupt.memfault.com/blog/cortex-m-debug-monitor
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
http://arxiv.org/abs/2107.12867
http://arxiv.org/abs/2107.12867
http://arxiv.org/abs/2107.12867
https://doi.org/10.14722/ndss.2021.24308
https://doi.org/10.14722/ndss.2021.24308
https://docs.zephyrproject.org/latest/services/debugging/debugmon.html
https://docs.zephyrproject.org/latest/services/debugging/debugmon.html
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://doi.org/10.14722/ndss.2018.23166
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00137
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00137
https://doi.org/10.1109/SP54263.2024.00137

	Introduction
	Background
	MCU Architecture
	Recover Coverage for on-device Firmware

	Related Work
	Emulation-based Firmware Fuzzing
	Hardware-based Firmware Fuzzing
	Firmware Bug Detection Capability

	DRIFT Design
	Workflow Overview
	DRIFT Core Design
	Hashmap Generation
	Enabling User-defined Hashmap
	Creating a Functional Fuzzing Environment

	Implementation
	MCU Runtime
	Static Analysis and Hashmap
	Binary Patching
	AFL Proxy

	Evaluation
	RQ1: On-board Overhead
	RQ2: Fuzzing Performance
	RQ3: Types of Bugs Detected
	RQ4:Bugs Detected

	Discussion
	Architectural Limitations
	Tracking the Interrupt
	Inaccurate Static Analysis Result

	Conclusion
	Acknowledgments
	References

