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Abstract

Instruction tuning has been widely adopted
to ensure large language models (LLMs) fol-
low user instructions effectively. The result-
ing instruction-following capabilities of LLMs
heavily rely on the instruction datasets used for
tuning. Recently, synthetic instruction datasets
have emerged as an economically viable solu-
tion to provide LLMs diverse and high-quality
instructions. However, existing approaches typ-
ically assume that larger or stronger models
are stronger teachers for instruction tuning, and
hence simply adopt these models as response
generators to the synthetic instructions. In this
paper, we challenge this commonly-adopted as-
sumption. Our extensive experiments across
five base models and twenty response gener-
ators reveal that larger and stronger models
are not necessarily stronger teachers of smaller
models. We refer to this phenomenon as the
Larger Models’ Paradox. We observe that ex-
isting metrics cannot precisely predict the ef-
fectiveness of response generators since they
ignore the compatibility between teachers and
base models being fine-tuned. We thus de-
velop a novel metric, named as Compatibility-
Adjusted Reward (CAR) to measure the effec-
tiveness of response generators. Our experi-
ments across five base models demonstrate that
CAR outperforms almost all baselines.

1 Introduction

Instruction tuning (Figure 1) has been widely
adopted to tailor the behavior of base Large Lan-
guage Models (LLMs) to align with specific tasks
and user intents (Zhang et al., 2023). This approach
leverages instruction datasets, consisting of sam-
ples pairing an instruction with a corresponding
response. The success of instruction tuning de-
pends on the availability of high-quality instruction
datasets. Initially, constructing these datasets re-
quired large human effort in generating and curat-
ing instruction-response pairs (Databricks, 2023;
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Figure 1: This figure demonstrates the process of in-
struction tuning and the scope of this paper.

Zheng et al., 2024; Zhao et al., 2024), which is time-
consuming and labor-intensive (Liu et al., 2024b).

To reduce the reliance on human-curated
datasets, synthetic datasets generated by LLMs
have surfaced as a viable solution (Adler et al.,
2024). Recent works, such as (Sun et al., 2023;
Taori et al., 2023; Wang et al., 2023; Xu et al.,
2024; Chen et al., 2024), have shown the strong
potential of synthetic datasets in instruction tun-
ing. While current research has primarily focused
on using LLMs to create large, diverse, and high-
quality instructions (Liu et al., 2024b), the selection
of appropriate LLMs for generating correspond-
ing responses remains largely unexplored. The
common approach relies on distilling from state-of-
the-art models that excel in benchmark evaluations
(Fourrier et al., 2024; Chiang et al., 2024) to gener-
ate responses for instruction tuning. For instance,
Llama-3.2-3B-Instruct uses responses generated by
Llama-3.1-405B-Instruct (i.e., the largest model
in Llama-3.1 family) for instruction tuning (Meta,
2024b). Additionally, most of the existing open
synthetic datasets (Teknium, 2023; Xu et al., 2023a;
Ding et al., 2023; Gallego, 2023; Chen et al., 2024)
depend on expensive, closed-source models like
GPT-4 (Achiam et al., 2023) and Gemini (Google,
2024) to produce responses.

Is it always better to use the larger or stronger

models as teachers? In this paper, we investi-
gate the choice of the teacher model that gener-
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ate responses during synthetic dataset generation,
which we refer to as response generators, influ-
ence the instruction-following performance of the
instruction-tuned LLMs. Specifically, given a base
model and a set of high-quality instructions, we
investigate the following research questions:

RQ1: Which models are the most effective re-

sponse generators for instruction tuning?

To answer RQ1, we conduct extensive experi-
ments with five base models, and fine-tune them
on datasets generated by 20 response generators
across seven model families: Qwen2, Qwen2.5,
Llama 3, Llama 3.1, Gemma 2, Phi-3, and GPT-4.
Our findings challenge common assumptions in the
field, revealing a surprising result which we term
the Larger Models’ Paradox: larger response gen-
erators (e.g., Llama-3.1-405B-Instruct) do not al-
ways enhance a base model’s instruction-following
capabilities compared to their smaller counterparts
within the same model family (e.g. Llama-3.1-

70B-Instruct). Moreover, we find that open-source
models (e.g., Gemma-2-9b-it and Qwen2.5-72B-

Instruct) outperform GPT-4 as response generators.
These findings question established practices and
suggest more efficient and accessible approaches
to create high-quality instruction datasets.

To further explore the Larger Models’ Paradox,
we investigate statistical metrics to reveal potential
factors influencing the effectiveness of response
generators. Here, we pose our second research
question:

RQ2: How can we determine the most effec-

tive response generators for a certain base model

without instruction tuning?

This question is crucial due to the significant
computational costs associated with instruction tun-
ing across multiple datasets generated by diverse
response generators. Our investigation reveals that
existing metrics in alignment data selection, includ-
ing quality (Dubey et al., 2024), difficulty (Li et al.,
2024d), and response length (Liu et al., 2023), fail
to consider the compatibility between the base
model being fine-tuned and the response generator,
thus results in their inability to explain the Larger
Models’ Paradox. To bridge this gap, we formulate
the task of finding the most effective response gen-
erators as a risk-return problem. We solve this by
calculating an Compatibility-Adjusted Reward
(CAR), where compatibility serves as the risk fac-
tor. This compatibility is quantified by the average
loss of responses on the base model being fine-
tuned, with higher average loss indicating lower

compatibility and thus higher risk. Our compar-
ison of the proposed CAR with existing metrics
demonstrates that it outperforms all baselines in
predicting the effectiveness of response generators.

We believe that our findings on the Larger Mod-
els’ Paradox and the proposed CAR can effectively
guide future instruction tuning of LLMs. Instead
of selecting response generators solely based on
benchmark performance (e.g., GPT-4), practition-
ers should prioritize those with higher compatibility
to better enhance the instruction-following capabil-
ities of their LLMs.

2 Related Work

Synthetic Data Generation for Instruction Tun-
ing. While human-crafted instruction datasets
(Databricks, 2023; Zheng et al., 2024; Zhao et al.,
2024) have been used for LLM instruction tuning,
they are time-consuming and labor-intensive. Con-
sequently, synthetic dataset generation has emerged
as a promising alternative. Early approaches (Wang
et al., 2023; Taori et al., 2023; Xu et al., 2023a,b;
Wang et al., 2024b; Luo et al., 2023; Sun et al.,
2023) focused on prompting LLMs to generate
synthetic instructions, starting with a small set of
human-annotated seed instructions and expanding
these through few-shot prompting (Li et al., 2024a).
Another line of work (Ding et al., 2023; Li et al.,
2024a) summarized world knowledge to generate
more diverse synthetic datasets. Recent advance-
ments (Xu et al., 2024; Chen et al., 2024) further
simplified the process by leveraging single prompts
to sample instructions directly from LLMs, requir-
ing minimal human oversight. While existing work
primarily focused on generating large, diverse, and
high-quality instructions, the impact of response
generators is often overlooked.

Metrics for Data Selection. Instruction tun-
ing data selection involves determining which
instruction-response pairs to be included in the
training dataset and how to sample them (Albalak
et al., 2024). The most widely-used metric for se-
lecting instruction data is quality, which is often
assessed using LLM evaluators (Chen et al., 2023;
Liu et al., 2024a), reward models (Dubey et al.,
2024; Xu et al., 2024), gradient similarity search
(Xia et al., 2024a), or a combination of these meth-
ods (Cao et al., 2024). Another key metric is dif-
ficulty, where higher difficulty is considered more
valuable for learning. For instance, Li et al. (2024d)
introduces IFD, which measures the instruction-
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following difficulty of specific instruction-response
pairs. Li et al. (2024c) further refines IFD by utiliz-
ing GPT-2 for efficient estimation. Approaches like
Deita (Liu et al., 2023) consider both quality and
difficulty when selecting datasets. Token length
is also adopted as a metric, as discussed in (Xia
et al., 2024b; Liu et al., 2023). Selective Reflection-
Tuning Li et al. (2024b) approach selects and re-
fines existing instruction-following datasets to ad-
dress the inconsistency between teacher and stu-
dent models.

Our investigation complements existing research
on alignment data selection by shifting the focus to
the response generation process itself, as illustrated
in Figure 1. While prior studies have concentrated
on selecting the most effective instruction-response
pairs with an existing instruction dataset, we ex-
plore the crucial role that response generators play
in influencing the quality of instruction tuning.

3 Which Models are the most effective
teachers for instruction tuning?

3.1 Preliminaries
Instruction Datasets. An instruction dataset can
be represented as D = (xi, yi)

|D|
i=1, where each

sample (xi, yi) consists of an instruction xi and
its corresponding response yi. In this paper, we
investigate how the response generator, denoted as
M, impacts the instruction-following capabilities
of models fined-tuned with D with yi = M(xi).

Supervised Fine-Tuning. Supervised fine-
tuning (SFT) is widely adopted to enhance
instruction-following capabilities of LLMs. The
SFT updates the parameters ✓ of a pre-trained
language model to minimize the negative log-
likelihood loss over the instruction dataset D. The
SFT loss can be formally expressed as:

LSFT(✓) = � 1

|D|
X

(xi,yi)2D

log p✓(yi|xi). (1)

3.2 Experimental Setup
Instruction Sets. To construct diverse and high-
quality instructions, we sample from the Magpie-
Air-3M dataset (Xu et al., 2024), and obtain a sub-
set of 100K high-quality instructions, denoted as
Magpie-100K. A detailed categorization of instruc-
tion tasks is provided in Appendix A.1. Addition-
ally, we extracted another 100K high-quality in-
structions from multiple sources, including Ultra-
Feedback (Cui et al., 2023), WildChat (Zhao et al.,

Table 1: Overview of 20 response generators used in
our study.

Model Family Release Date Model ID Size

Qwen2
(Yang et al., 2024) Jun, 2024

Qwen2-1.5B-Instruct 1.5B
Qwen2-7B-Instruct 7B
Qwen2-72B-Instruct 72B

Qwen2.5
(Team, 2024) Sept, 2024

Qwen2.5-3B-Instruct 3B
Qwen2.5-7B-Instruct 7B
Qwen2.5-14B-Instruct 14B
Qwen2.5-32B-Instruct 32B
Qwen2.5-72B-Instruct 72B

Llama 3
(Meta, 2024c) Apr, 2024 Llama-3-8B-Instruct 8B

Llama-3-70B-Instruct 70B

Llama 3.1
(Meta, 2024c) Jul, 2024

Llama-3.1-8B-Instruct 8B
Llama-3.1-70B-Instruct 70B
Llama-3.1-405B-Instruct 405B

Gemma 2
(Team et al., 2024) Jun, 2024

Gemma-2-2b-it 2B
Gemma-2-9b-it 9B

Gemma-2-27b-it 27B

Phi-3
(Abdin et al., 2024) Jun, 2024

Phi-3-mini-128k-instruct 3.8B
Phi-3-small-128k-instruct 7B

Phi-3-medium-128k-instruct 14B

GPT-4
(Achiam et al., 2023)

Since
Mar, 2023 GPT-4 & GPT-4 Turbo -

2024), Lmsys-Chat-1M (Zheng et al., 2024), and
Alpaca-GPT-4 (Gallego, 2023). This instruction
set, denoted as Mix-100K, contains both human-
written and synthetic instructions, ensuring a com-
prehensive representation of instruction types.

Response Generators. Our study considers 20
response generators across 7 model families for
response generation. The model families include
Qwen2 (Yang et al., 2024), Qwen2.5 (Team, 2024),
Llama 3 (Meta, 2024c), Llama 3.1 (Meta, 2024c),
Gemma 2 (Team et al., 2024), Phi-3 (Abdin et al.,
2024), and GPT-4 (Achiam et al., 2023). A com-
prehensive overview of the response generators
is presented in Table 1. By combining the in-
structions with corresponding responses generated
by these teacher models, we construct instruction-
response pairs for instruction-tuning. By default,
we use greedy decoding to generate responses. The
datasets used in our experiments can be found
here1.

Base Models. We consider five base language
models from different developers of varying sizes
as students, including Qwen2-1.5B (Yang et al.,
2024), Gemma-2-2b (Team et al., 2024), Llama-
3.2-3B (Meta, 2024a), Qwen2.5-3B, (Team, 2024)
and Llama-3.1-Minitron-4B-Width-Base (Llama-
3.1-Minitron-4B) (Muralidharan et al., 2024).

1https://huggingface.co/datasets/Magpie-Align/Magpie-
100K-Generator-Zoo
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Evaluation Benchmarks. To evaluate the
instruction-following capabilities of the instruction-
tuned models, we use two widely-used instruction-
following benchmarks: AlpacaEval 2 (AE2) (Li
et al., 2023) and Arena-Hard (AH) (Li et al.,
2024e). Specifically, AE2 contains 805 representa-
tive instructions from real user interactions. AH
contains 500 challenging user queries. AE2 and
AH use GPT-4-Turbo (1106) and GPT-4-0314

as the baselines to assess the performance of
instruction-tuned models, respectively. Both
benchmarks compare responses generated by the
model of interest with those generated by baselines,
and employ GPT evaluators to automatically
annotate which response is preferred.

Evaluation Metrics. Similar to existing studies,
we adopt two metrics to measure the performance
of fine-tuned SLMs. The first metric, used by
both benchmarks, is the win rate (WR), which
calculates the fraction of responses that are favored
by the GPT evaluator. The second metric, used
by AE2, is the length-controlled win rate (LC)
(Dubois et al., 2024). LC accounts for response
length to reduce its impact on WR. Additionally,
we report the Average Performance (AP), com-
puted as the mean of AE2’s LC and AH’s WR.

Instruction-Tuning and Evaluation Setup. We
use SFT and implement a cosine learning rate
schedule with a max learning rate of 2 ⇥ 10�5 to
fine-tuning the base models for 2 epoches (Touvron
et al., 2023). The detailed hyper-parameters and
experimental platform can be found in Appendix
A.2. We follow the official instruction templates
of each model. To ensure reproducibility of our
empirical analysis, we implement greedy decoding
for both AE2 and AH benchmarks.

3.3 Empirical Evaluation
This section evaluates the instruction-following ca-
pabilities of models fine-tuned over datasets whose
responses are generated by various response gen-
erators. By default, we utilize the Magpie-100K
dataset as our primary instruction set. Figure 2 pro-
vides a comprehensive overview of the AP across
different base models and response generators, and
the detailed benchmark scores of AE2 and AH are
deferred to Table 7 in Appendix B.1. Evaluations
on larger base model (Llama-3.1-8B) with differ-
ent response generators are presented in Table 6
in Appendix B.2. We analyze the effect of data
randomness on average performance in Table 8.

Figure 2: Average performance of five base models
fine-tuned on various response generators across six
model families. We use different colors to distinguish
between model families, with darker bars indicating
larger response generators within each family.

We observe that the Gemma-2 and Qwen2
families consistently demonstrate superior perfor-
mance across all base models evaluated. No-
tably, Gemma-2-9b-it and Qwen2.5-72B-Instruct
emerge as the two best response generators, as ev-
idenced by their consistently high AP scores. In
addition, we report the following key findings.
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Finding 1: [Larger Models’ Paradox] Larger
response generators 6=) improved instruction-
following capabilities.

Our evaluation reveals a counterintuitive find-

ing: increasing the model size of response genera-
tors does not necessarily improve the instruction-
following capabilities of base models within the
same model family. This finding is universal,
evidenced across multiple model families. For
example, Gemma-2-9b-it demonstrates superior
performance compared to its larger counterpart,
Gemma-2-27b-it, in SFT across almost all base
models examined. Similar observations are made
in other model pairs: Phi-3-Small outperforms
Phi-3-Medium, Llama-3.1-70B-Instruct surpasses
Llama-3.1-405B-Instruct, Qwen2-7B-Instruct out-
performs Qwen2-72B-Instruct, and Qwen2.5-7B-

Instruct exceeds Qwen2.5-32B-Instruct. We re-
fer to this finding as the Larger Models Para-
dox: larger language models, despite their supe-
rior performance, may not always generate better
responses for fine-tuning smaller language mod-
els within the same model family compared to re-
sponses generated by medium-sized models.

We believe the key to explain this paradox is
the compatibility between the response genera-
tors and base models. For example, a high-quality
textbook (responses from large size response gen-
erators) written for college students may be chal-
lenging for primary school students (smaller base
models). We will investigate this paradox in Sec-
tion 4 with more detailed statistics and metrics to
evaluate the compatibility.

Finding 2: [Family’s Help] Learning from re-
sponse generators within the same model family
leads to higher performance.

We observe higher AP when base models are
fine-tuned using responses generated by mod-
els within the same family. This is evidenced
when Qwen2-1.5B, Qwen2.5-3B, and Gemma 2-
2B serve as base models. In these instances, the
relative performance of using intra-family response
generators surpasses that observed when tuning
other base models.

Furthermore, while not practically applicable,
we observe a significant performance boost when
fine-tuning a base model using responses generated
from its own instruction-tuned version. A prime
example of this is the Gemma 2-2B base model,

Table 2: This table compares the performance of GPT-4
and other state-of-the-art open source LLMs as the re-
sponse generator. All models are supervised-fine-tuned
on the Llama-3.1-Minitron-4B base model.

Response AlpacaEval 2 Arena-Hard AP
Generator Model LC (%) WR (%) WR (%) (%)

Gemma-2-9b-it 16.09 13.70 13.7 14.90
Gemma-2-27b-it 13.93 13.31 12.4 13.17

Llama-3-70b-Instruct 10.55 10.68 6.7 8.62
Llama-3.1-70b-Instruct 9.52 10.10 8.3 8.91
Qwen2.5-7B-Instruct 13.50 14.33 10.6 12.05
Qwen2.5-72B-Instruct 19.20 21.01 13.1 16.15

GPT-4 6.63 5.70 4.8 5.72

which achieves best performance when tuned with
responses from Gemma-2-2b-it, outperforming all
other response generators. These two phenom-
ena underscore the importance of compatibility
between the base model and the response gener-
ator in instruction tuning.

Finding 3: [Open-Source > Close-Source]
Open-source LLMs can outperform close-
source LLMs as response generators.

Table 2 compares the instruction-tuning per-
formance when utilizing GPT-4 and open-source
LLMs (e.g., Gemma 2, Llama 3, Llama 3.1 and
Qwen2.5) as response generators. For this eval-
uation, we employ the Mix-100K dataset as our
instruction source. Notably, our findings reveal
that all open-source LLMs significantly outperform
GPT-4. We hypothesize that this is because the re-
sponse length of GPT-4 is less than open-source
LLMs, thus less favored by the evaluators. These
results suggest the potential for using cost-effective
open-source LLMs for synthetic data generation in
instruction-tuning tasks.

Finding 4: Higher temperature and top-p en-
hance instruction-following capabilities.

Figure 3 illustrates the effects of different sam-
pling hyper-parameters when generating responses
using Gemma-2-9b-it model. We observe that
higher temperature and top-p value can lead to bet-
ter performance in instruction following. We hy-
pothesize that this enhancement in performance is
because higher temperature and top-p values yield
more diverse and contextually rich outputs.

Finding 5: Reject sampling slightly increases
instruction-tuning performance.

Table 3 quantifies the impact of reject sampling
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Table 3: This table investigates the impact of reject
sampling on model performance.

Base Model Method AlpacaEval 2 Arena-Hard AP
LC (%) WR (%) WR (%) (%)

Llama-3.1-
Minitron-4B

Best-of-N 15.94 15.14 11.9 13.92
Worst-of-N 13.02 12.66 11.0 12.01
Sampling 15.71 14.81 11.8 13.755
Greedy 16.13 14.51 11.0 13.565

Qwen2.5-
3B-Instruct

Best-of-N 13.83 13.57 21.0 17.415
Worst-of-N 12.37 12.54 17.9 15.135
Sampling 13.43 13.29 20.1 16.765
Greedy 13.78 13.57 19.4 16.59

on synthetic data generation using Gemma-2-9b-

it model. Specifically, we generate 5 responses
per instruction with temperature T = 0.8, evaluate
them using the ArmoRM-Llama3-8B-v0.1 reward
model (Wang et al., 2024a), and select the highest
and lowest-rated responses to create two distinct
datasets: Best-of-N and Worst-of-N. We also com-
pare them with responses sampled at T = 0.8 and
greedy decoding (T = 0). The results presented in
Table 3 demonstrate a slight improvement in per-
formance when utilizing reject sampling compared
to standard sampling techniques.

In what follows, we summarize the conclusion
for RQ1.

RQ1. Which models are the most effective
response generators for instruction tuning?

A1. Gemma-2 and Qwen2 families con-
sistently demonstrate superior performance
across all base models evaluated, and even
outperform GPT-4. Notably, Gemma-2-
9b-it and Qwen2.5-72B-Instruct emerge
as the two best response generators, as evi-
denced by their consistently high AP scores.
We also found that larger models do not
always generate responses for enhanced
instruction-following capabilities.

4 How can we determine the most
effective response generators without
instruction tuning?

4.1 Measure the Effectiveness of Response
Generators

It is computationally expensive to brute-force all
response generators to identify the most effective
one for a given base model. In this section, we
investigate how to measure the effectiveness of
response generators for a given base model without

Figure 3: This figure demonstrates the impact of dif-
ferent sampling hyper-parameters when generating re-
sponses. We use Gemma-2-9b-it as the response gen-
erator. All models are supervised-fine-tuned on the
Llama-3.1-Minitron-4B base model.

training or fine-tuning. Specifically, we study the
following research question:

Definition 4.1 (Effectiveness Measure of Response
Generators). Given a base language model and a
set of synthetic instruction datasets D1,D2, ...,Dn,
where each Di contains responses generated by a
distinct response generator Mi, measure the ef-
fectiveness of these response generators without
performing the actual fine-tuning process.

Evaluation Metric. To assess the accuracy when
measuring effectiveness of response generators, we
employ Spearman’s rank correlation coefficient (⇢)
(Zar, 2005). This coefficient evaluates the mono-
tonic relationship between two ranking variables.
In our context, we compute ⇢ between two ranks:
the ground truth rank RAP , obtained by fine-tuning
the model on each synthetic instruction dataset
and measuring the Average Performance (AP), and
an estimated rank REST , predicted without fine-
tuning. Spearman’s ⇢ is calculated as:

⇢ = 1� 6
P

d2i
n(n2 � 1)

(2)

where di is the difference between the two ranks
for each observation and n is the number of ob-
servations. ⇢ ranges from -1 to 1, with 1 indicat-
ing a perfect positive correlation. Our objective is
to maximize ⇢, thereby achieving the closest pre-
diction between predicted and actual performance
rankings. We employ the empirical results obtained
in Section 3 as the ground truth.
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4.2 Baseline Methods

In this section, we introduce commonly-used met-
rics for alignment data selection: quality, difficulty,
and response length, for predicting the performance
rank of instruction-tuned models.

Response Quality. Following Meta (2024a); Xu
et al. (2024), we assess response quality using re-
ward models and calculate the Average Reward
(AR) of all responses. To mitigate potential se-
lection bias, we employ three state-of-the-art re-
ward models from RewardBench (Lambert et al.,
2024): ArmoRM-Llama3-8B-v0.1 (Wang et al.,
2024a), Skywork-Reward-Llama-3.1-8B (Liu and
Zeng, 2024), and Skywork-Reward-Gemma-2-27B

(Liu and Zeng, 2024).

Instruction-following Difficulty. Instruction-
following difficulty is another widely-used metric
in alignment data selection (Meta, 2024a; Liu
et al., 2023; Li et al., 2024d,c; Xu et al., 2024). To
assess the difficulty of responses, we employ the
following two metrics:

1. Response Perplexity (PPL). For a given
instruction-response pair (xi, yi), the re-
sponse perplexity is defined as:

PPL(yi|xi) =

exp(� 1

N

NX

j=1

log p✓(yi,j |xi, yi,1:j�1)),

where N is the token length of yi and yi,j is its
j-th token, and ✓ is the parameter of the base
model. We use GPT-2 model and each corre-
sponding base model for evaluation, denoted
as PPL-GPT2 and PPL-Self respectively.

2. Instruction Following Difficulty (IFD) (Li
et al., 2024d). IFD is defined as:

IFD(yi|xi) =
PPL(yi|xi)

PPL(yi)
,

where PPL(yi) is the unconditional perplexity
of response yi. We follow Li et al. (2024c)
and employ GPT-2 and the base model respec-
tively, denoted as IFD-GPT2 and IFD-Self.

For each metric, we compute the average value
across the entire dataset Di.

Response Length. According to Liu et al. (2023)
and Xia et al. (2024b), the response length pos-
itively correlates with the final alignment perfor-
mance. We use the tiktoken library (OpenAI,
2024) to count the number of response tokens for
each pair, and report the average response length
for each Di.

4.3 Baseline Methods Fails to Measure the
Effectiveness of Response Generators

In what follows, we demonstrate that the effective-
ness of response generators indicated by baseline
methods does not match the performance of models
fine-tuned on various synthetic instruction datasets.

As shown in Figure 4, AR consistently increases
with model size within model families (except Phi-
3 family). However, this trend fails to explain the
"Larger Models Paradox" discussed in Section 3.
Notably, since AR measures human preference,
this discrepancy suggests that responses preferred
by humans are not necessarily optimal for aligning
language models.

Figure 4: This figures demonstrates the response quality
measured by three reward models.

Similarly, metrics representing instruction-
following difficulty (IFD and Perplexity) and re-
sponse length show no strong correlation with
model instruction-following capabilities. We de-
ferred the results and analysis of these metrics to
Appendix B.4. These findings highlight the inade-
quacy of existing metrics in accurately measuring
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Table 4: Spearman’s rank correlation coefficient (⇢) for different measurement metrics. Here RM1, RM2 , RM3

are reward models ArmoRM-Llama3-8B-v0.1, Skywork-Reward-Llama-3.1-8B, and Skywork-Reward-Gemma-2-27B

respectively. We observe that our proposed CAR shows the highest correlation between the effectiveness of the
response generator and the instruction-following capabilities of fine-tuned base models.

Base Models
Reward Difficulty Response

Length CAR
RM1 RM2 RM3 IFD-GPT2 IFD-Self PPL-GPT2 PPL-Self

Qwen2-1.5B 0.5526 0.7895 0.8754 0.7088 0.7719 0.1473 0.5596 0.5404 0.8842
Gemma 2-2B 0.5526 0.7982 0.8842 0.8281 0.8930 0.1614 0.4351 0.6298 0.9000
Qwen2.5-3B 0.4526 0.7351 0.7456 0.7386 0.8088 0.0456 -0.0614 0.6088 0.8105

Llama 3.2-3B 0.6088 0.8105 0.9088 0.7632 0.8579 0.0456 0.6018 0.5877 0.9053
Llama-3.1-Minitron-4B 0.6632 0.8860 0.9386 0.7491 0.8555 0.1579 0.6263 0.5807 0.9439

Average 0.5660 0.8039 0.8705 0.7575 0.8374 0.1116 0.4323 0.5895 0.8888

the effectiveness of response generators in enhanc-
ing performance of instruction-tuned models.

4.4 A Compatibility-Aware Metric to
Measure Effectiveness

In this section, we present a new metric to measure
the effectiveness of response generators, making
the "Larger Models Paradox" explainable. Our key
insight to capture the compatibility of response
generators with base models. To reflect such
compatibility, we use the loss of the response ri
in the base model being fine-tuned as the key met-
ric. Intuitively, a lower loss of response yi on the
base model indicates that the response aligns well
with the base model’s existing knowledge and ca-
pabilities, thus is more learnable compared to the
response with higher loss.

While compatibility is crucial, it alone cannot
fully measure effectiveness. Consider a scenario
where a response generator consistently produces
simple, low-quality responses for every question.
In such cases, although these responses might be
highly compatible with the base model, their over-
all quality and would be low. Therefore, to bridge
this gap between quality and compatibility, we for-
mulate the task of finding the most effective re-
sponse generator as a risk-return problem (Fama
and MacBeth, 1973). We propose an adjusted re-
ward value that incorporates both the potential ben-
efit (return) and the compatibility risk. Specifically,
we define our Compatibility-Adjusted Reward
(CAR) as follows:

CAR(Di, ✓) =
r(Di)

1 + � · L(Di, ✓)
(3)

where r(Di) is the average reward measured by
the reward model, representing the potential return,
and L(Di, ✓) = � 1

|Di|
P

yi2Di
log p✓(yi) is the av-

erage loss for responses in Di on the base model

parameterized by ✓. � is a tunable parameter that
controls the impact of compatibility on the adjusted
reward. CAR penalizes the average reward from
the reward model with the compatibility risk mea-
sured by the loss. This balanced approach enables
quantitative assessment of the trade-off between
the response quality and compatibility.

4.5 Experimental Results
Table 4 compares the Spearman’s ⇢ correlation co-
efficient of baseline metrics with our CAR when
using datasets generated by different response gen-
erators to fine-tune various base models. For CAR
calculation, we employ Skywork-Reward-Gemma-

2-27B as the reward model and set � = 3. The
results in Table 4 demonstrate that our proposed
CAR consistently outperforms other baseline met-
rics across almost all settings, indicating its poten-
tial to predict the effectiveness of different response
generators without instruction tuning.

RQ2. How can we determine the most effec-
tive response generators without instruction
tuning?

A2. Existing metrics in instruction data se-
lection are inadequate for accurate predic-
tion as they fail to consider the compati-
bility between the base model and the re-
sponse generator. To address this limitation,
we propose the Compatibility-Adjusted Re-
ward (CAR), which achieves better perfor-
mance in identifying effective response gen-
erators across various base models.

5 Conclusion and Future Work

This paper investigates the impact of response gen-
erators in synthetic dataset generation for instruc-
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tion tuning. We uncovered the Larger Models’
Paradox, wherein larger response generators do
not necessarily enhance a base model’s instruction-
following capabilities compared to their smaller
counterparts within the same model family. To
explain this phenomenon, we considered the com-
patibility between response generators and the base
model, and proposed the Compatibility-Adjusted
Reward (CAR). Our metric achieved better per-
formance in identifying the effectiveness of dif-
ferent response generators without the need for
fine-tuning, outperforming existing baselines in
alignment dataset selection.

We will explore several promising directions.
First, efficiently transforming existing datasets to
achieve better compatibility can lead to more ef-
fective use of available instruction tuning datasets.
Second, investigating theoretical foundations of
compatibility would enhance our understanding of
the underlying mechanisms of instruction tuning.
Lastly, studying the impact of different response
generators for preference tuning may help aligning
LLMs to better reflect human values.

Limitations

While our study provides valuable insights into the
effectiveness of response generators in instruction
tuning, we acknowledge that our research primar-
ily focuses on general instruction following tasks
and does not extensively explore the synthesis of
alignment datasets for specialized domains such
as mathematics or complex reasoning. As a result,
the applicability of the Larger Models’ Paradox to
these specific areas remains uncertain.

Ethical Impact

This paper makes a counterintuitive observation, re-
ferred to as the Larger Models’ Paradox, showing
that stronger models are not stronger teachers for
instruction tuning. We further propose a new metric
to measure the effectiveness of teachers when gen-
erating responses for instruction datasets. This met-
ric informs the selection of response generators for
future fine-tuning processes to enhance language
models’ instruction-following capabilities. We do
not identify potential misuse and ethical concerns
in this paper.
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A More on Experimental Setups

A.1 Instruction Set Details
Figure 5 demonstrates the task category of instruc-
tions in our sampled Magpie-100K. We follow (Xu
et al., 2024) and use Llama-3-8B-Instruct to tag the
task categories. We note that this instruction set
covers wide range of instructions across different
task categories.
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Figure 5: Task categories of the Magpie-100K instruc-
tion set used in our study.

A.2 Supervised Fine-Tuning Setups
Table 5 demonstrates the detailed supervised fine-
tuning (SFT) hyper-parameters. We perform exper-
iments on a server with four NVIDIA A100-SXM4-
80GB GPUs, an AMD EPYC 7763 64-Core Pro-
cessor, and 512 GB of RAM. These experiments
were conducted using Axolotl2.

Table 5: This table shows the hyper-parameters for su-
pervised fine-tuning.

Hyper-parameter Value

Learning Rate 2⇥ 10�5

Number of Epochs 2
Number of Devices 4
Per-device Batch Size 1
Gradient Accumulation Steps 8
Effective Batch Size 32
Optimizer Adamw

Learning Rate Scheduler cosine

Warmup Steps 100
Max Sequence Length 4096

2
https://github.com/OpenAccess-AI-Collective/

axolotl

B More Experimental Results

B.1 Detailed Benchmark Scores of
Instruction-Tuned LLMs

Table 7 details the benchmark scores of AE2 and
AH when tuning base models with different re-
sponse generators. These results complement the
Average Performance shown in Figure 2.

B.2 Larger Models’ Paradox in Larger Base
Models

We summarize the benchmark scores of AE2 and
AH when tuning large base model (Llama-3.1-
8B) with diverse response generators in Table 6.
We observe that the Larger Models’ Paradox per-
sists when employing the Qwen2.5 and Llama-3.1
model families as response generators. We further
demonstrate that the Larger Model’s Paradox is not
an effect of data randomness in Table 8.

Table 6: This table presents benchmark scores of AE2
and AH when tuning large base model (Llama-3.1-8B)
with diverse response generators. The Larger Mod-
els’ Paradox persists when employing the Qwen2.5 and
Llama-3.1 model families as response generators.

Base Model Response Generator AE2 LC AE2 WR AH AP

Llama-3.1-8B

Qwen2.5-3B-Instruct 11.48 13.85 15.90 13.74
Qwen2.5-7B-Instruct 18.70 20.22 25.90 21.61
Qwen2.5-14B-Instruct 17.50 17.19 28.60 21.10
Qwen2.5-32B-Instruct 16.20 16.42 27.80 20.14
Qwen2.5-72B-Instruct 29.73 32.35 30.90 30.99
Llama-3.1-8B-Instruct 12.62 14.34 15.80 14.25
Llama-3.1-70B-Instruct 14.98 17.74 21.00 17.91
Llama-3.1-405B-Instruct 15.40 17.00 16.50 16.30
Gemma-2-2b-it 17.11 19.64 15.60 17.45
Gemma-2-9b-it 25.74 22.88 23.40 24.00
Gemma-2-27b-it 25.09 24.60 25.40 25.00

B.3 Impact of Data Randomness on
Evaluation

We sample 80K instructions from Magpie-100K
using different seeds and fine-tuned Llama-3.1-
Minitron-4B. The performance of fine-tuned mod-
els is shown in Table 8. We observe that the average
performance varies by only 2.89%, demonstrating
that our evaluation is robust across different in-
struction samples. This finding underscores the
consistency of our evaluation.

B.4 Visualization of baseline methods in
measuring the effectiveness of response
generators

Figure 6 presents the output length of synthetic
datasets for each response generator. Figure 7
visualizes the PPL-GPT2 and IFD-GPT2 across

4403

https://github.com/OpenAccess-AI-Collective/axolotl
https://github.com/OpenAccess-AI-Collective/axolotl


Table 7: This table details benchmark scores of AE2 and AH when tuning different base models with diverse
response generators.

Base Model Metric
Phi-3 Gemma 2 Llama 3 Llama 3.1 Qwen2 Qwen2.5

Mini Small Medium 2B 9B 27B 8B 70B 8B 70B 405B 1.5B 7B 72B 3B 7B 14B 32B 72B

Qwen2-1.5B
AE 2 WR 3.65 3.64 2.80 5.34 6.13 5.49 3.39 3.74 2.76 3.49 3.09 2.83 4.09 3.35 5.60 6.84 5.13 5.65 7.03
AE 2 LC 2.85 2.98 2.18 4.16 5.60 4.99 2.64 3.10 2.10 2.74 2.36 2.68 3.47 2.82 4.50 5.66 4.38 4.96 5.83

AH 1.8 1.8 1.2 4.4 5.2 4.5 1.9 2.6 2.2 2.8 2.4 1.0 3.3 1.8 2.6 4.3 4.4 3.7 4.8

Gemma 2-2B
AE 2 WR 6.60 6.54 4.54 16.88 11.83 12.09 7.09 8.49 7.20 9.45 8.92 2.14 7.11 6.07 7.91 12.00 8.07 9.19 16.68
AE 2 LC 5.90 5.89 3.99 12.93 12.51 13.09 5.70 7.13 5.63 7.32 7.11 1.91 6.45 5.46 6.84 10.94 7.53 8.77 13.85

AH 3.3 4.1 2.6 12.9 9.3 9.9 5.2 5.6 4.9 5.8 5.8 0.9 5.7 3.4 6.5 7.1 8.4 6.9 9.6

Qwen2.5-3B
AE 2 WR 8.19 7.79 5.97 10.52 13.57 10.01 8.07 10.17 7.91 9.68 9.12 2.98 8.54 6.86 16.22 12.76 10.32 11.71 18.42
AE 2 LC 7.22 7.29 5.49 9.58 13.78 10.18 7.85 9.37 7.22 8.94 8.59 2.54 7.98 6.59 14.79 11.89 10.28 11.65 16.41

AH 10.5 11.0 8.3 11.8 19.4 19.6 9.7 11.4 10.9 13.8 12.7 2.1 14.4 10.6 24.8 20.4 17.9 19.9 21.2

Llama-3.2-3B
AE 2 WR 4.88 3.54 3.05 8.89 11.45 10.58 4.67 5.45 4.26 6.68 6.44 1.72 6.23 5.13 6.09 7.72 6.82 7.10 12.12
AE 2 LC 4.11 2.95 2.37 7.49 10.60 9.79 3.79 4.52 3.17 5.19 5.17 1.28 5.41 4.49 5.11 6.63 5.92 6.32 9.99

AH 3.3 4.1 2.6 9.0 10.9 8.5 5.1 6.5 3.6 5.7 5.3 0.6 5.6 4.0 7.2 9.8 9.5 8.9 10.8

Llama-3.1-
Minitron-4B

AE 2 WR 6.35 7.11 4.83 11.80 14.50 11.90 6.11 9.87 8.24 9.61 10.03 2.30 7.84 8.45 10.27 12.05 11.30 11.65 19.58
AE 2 LC 5.74 6.61 4.31 10.37 16.13 12.34 4.80 8.93 6.96 8.52 9.23 2.03 7.31 8.11 9.17 11.12 10.89 11.13 17.77

AH 3.9 4.5 3.6 10.7 11.0 11.9 4.7 6.0 6.0 5.6 6.2 0.9 6.4 5.1 8.3 9.2 11.1 10.2 12.2

different response generators. Figure 8 and 9 re-
ports PPL-Self and IFD-Self, respectively. We ob-
serve that although PPL-Self and IFD-Self have
higher correlation compared with measuring us-
ing GPT2, they still to fail to effectively predict
the effectiveness of different response generators,
with low Spearman’s rank correlation coefficients
demonstrated in Table 4.

Figure 6: Average Output Length of synthetic datasets
generated using different response generators (measured
in Tokens).

Figure 7: PPL-GPT2 and IFD-GPT2 of synthetic
datasets generated using different response generators.

Table 8: We sample 80K instructions from Magpie-
100K using different seeds and fine-tuned Llama-3.1-
Minitron-4B with the sampled data. We observe that
the average performance varies by only 2.89%, demon-
strating that our evaluation is robust across different
instruction samples. This finding underscores the con-
sistency of our evaluation.

Instruction Sample AE2 LC AE2 WR AH Average Performance

Magpie-80K (Seed = 42) 14.26 13.54 12.50 13.433
Magpie-80K (Seed = 123) 13.40 12.92 12.80 13.040
Magpie-80K (Seed = 456) 14.77 12.98 11.10 12.950
Magpie-80K (Seed = 789) 13.57 12.79 11.20 12.520

Average 14.00 13.058 11.90 12.986
Standard Deviation 0.634 0.331 0.876 0.375

B.5 Impact of Reward Models on the
performance of CAR

We perform ablation analysis on the choice of
reward models with a weaker reward model,
Skywork-Reward-Llama-3.1-8B, and calculate
CAR. The Spearman’s correlations are presented
in Table 9. We observe that CAR using the weaker
Skywork 8B reward model performs worse com-
pared to using the stronger Skywork 27B reward
model, indicating the reliance of CAR on a good
performing reward model. However, even with a
weaker reward model, CAR outperforms compared
with using the reward model alone.

Table 9: Spearman’s correlations when CAR uses differ-
ent reward models. CAR relies on a good reward model.
However, even with a weaker reward model, CAR out-
performs compared with using the reward model alone.

Base
Model

Skywork
8B

CAR
(Skywork 8B)

Skywork
27B

CAR
(Skywork 27B)

Qwen2-1.5B 0.7895 0.7474 0.8754 0.8842
Gemma 2-2B 0.7982 0.8018 0.8842 0.9000
Qwen2.5-3B 0.7351 0.7386 0.7456 0.8105
Llama-3.1-Minitron-4B 0.8860 0.8912 0.9386 0.9439
Llama-3.2-3B 0.8105 0.8105 0.9088 0.9053
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Figure 8: PPL-Self of five base models. Figure 9: IFD-Self of five base models.
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