
TRANSFORMERS ARE EFFICIENT COMPILERS, PROVABLY

Xiyu Zhai
School of Computer Science and Engineering

University of Washington
xiyuzhai@cs.washington.edu

Runlong Zhou
School of Computer Science and Engineering

University of Washington
vectorzh@cs.washington.edu

Liao Zhang
University of Innsbruck

Czech Technical University
zhangliao714@gmail.com

Simon S. Du
School of Computer Science and Engineering

University of Washington
ssdu@cs.washington.edu

January 28, 2025

ABSTRACT

Transformer-based large language models (LLMs) have demonstrated surprisingly robust perfor-
mance across a wide range of language-related tasks, including programming language understand-
ing and generation. In this paper, we take the first steps towards a formal investigation of using
transformers as compilers from an expressive power perspective. To this end, we introduce a repre-
sentative programming language, Mini-Husky, which encapsulates key features of modern C-like
languages. We show that if the input code sequence has a bounded depth in both the Abstract Syntax
Tree (AST) and type inference (reasonable assumptions based on the clean code principle), then the
number of parameters required by transformers depends only on the logarithm of the input sequence
length to handle compilation tasks, such as AST construction, symbol resolution, and type analysis.
A significant technical challenge stems from the fact that transformers operate at a low level, where
each layer processes the input sequence as raw vectors without explicitly associating them with pre-
defined structure or meaning. In contrast, high-level compiler tasks necessitate managing intricate
relationships and structured program information. Our primary technical contribution is the develop-
ment of a domain-specific language, Cybertron, which generates formal proofs of the transformer’s
expressive power, scaling to address compiler tasks. We further establish that recurrent neural net-
works (RNNs) require at least a linear number of parameters relative to the input sequence, leading
to an exponential separation between transformers and RNNs. Finally, we empirically validate our
theoretical results by comparing transformers and RNNs on compiler tasks within Mini-Husky.

1 Introduction

Transformers [Vaswani, 2017] have demonstrated remarkable proficiency across various domains, achieving near-
expert performance in solving International Mathematical Olympiad problems [Google Deepmind, 2024] and ex-
celling in complex reasoning tasks in science, coding, and mathematics [OpenAI, 2024a]. They also handle routine
coding tasks with high precision and have been integrated into code editors to significantly boost programmers’ pro-
ductivity [cur, 2024, Taelin, 2023a]. Despite these advancements, the full extent of their underlying capabilities
remains only partially understood.

In this paper, we aim to deepen our understanding of transformers’ abilities to perform compilation tasks. Empiri-
cally, transformer-based LLMs have shown rapid progress in code generation and compilation. For example, Met-
aLL [Cummins et al., 2024] enables LLMs to optimize code by interpreting compiler intermediate representations
(IRs), assembly language, and optimization techniques. Gu [2023] highlights the ability of LLMs to generate high-
quality test cases for Golang compilers. Surprisingly, Taelin [2023b] demonstrates that models like Sonnet-3.5 can

a
rX

iv
:2

4
1
0
.1

4
7
0
6
v
2

[c

s.
P

L
]

 2
5
 J

a
n
 2

0
2
5

A PREPRINT - JANUARY 28, 2025

compile legacy code into modern languages like TypeScript, outperforming the now obsolete AgdaJS compiler [Agda
Development Team, 2024].

To formally study this problem in a controlled setup, we designed a C-like programming language called mini-husky,
which encapsulates key features of modern C-like languages such as [Flanagan, 2011] and Rust [Klabnik and Nichols,
2023]. We focus on three representative compilation tasks: abstract syntax tree (AST) construction, symbol resolution,
and type analysis. The AST is a recursive structure that represents the input as a tree. From the perspective of
programming language design, the AST is considered the true representation of the input, with the textual code serving
merely as a convenient interface for human users [Alfred et al., 2007]. All syntactic and semantic processing can then
be interpreted as specific operations on these trees. Symbol resolution involves verifying the validity of references
to entities and flagging errors for undefined symbols. Type analysis encompasses both type inference, which assigns
types to variables without explicit annotations, and type checking, which identifies mismatches between actual and
expected types.

We demonstrate that under the clean code principle [Martin, 2008], transformers can efficiently perform AST construc-
tion, symbol resolution, and type analysis, where efficiency means that these tasks can be conducted by transformers
with a number of parameters that scale logarithmically with the input code length. To the best of our knowledge, this
is the first theoretical demonstration that transformers can function as compilers in a parameter-efficient manner.

We further compare transformers and recurrent neural networks (RNNs). By connecting the type analysis task with
the associative recall, we show even under the clean code principle [Martin, 2008], RNNs require a memory size that
scales linearly with the input sequence length to successfully perform type analysis. Consequently, for type analysis in
compilation, transformers can be exponentially more efficient than RNNs. We also empirically validate our theoretical
findings by demonstrating the superiority of transformers in the type analysis task.

Technical Challenges and Our Technique.

Proving that transformers can perform compilation tasks presents several challenges:

• Transformers operate at too low a level. Transformers process sequences of floating-point vectors, akin to raw bits
in computers, and proving their ability to perform specific tasks is similar to writing specialized parallel machine
code. Previous work [Yao et al., 2021] often resorts to graphical illustrations for readability, even for basic tasks.

• Compilers are exceedingly high-level. Compilers are among the most complex programming endeavors of our
time. Compilation involves numerous sophisticated procedures, some of which are undecidable or computationally
expensive, such as code optimization [Alfred et al., 2007]) and type analysis [Pierce, 2002]. For example, type
analysis in complex type systems poses significant challenges, often requiring the development of advanced logical
frameworks [Dunfield and Krishnaswami, 2019].

To overcome these challenges, we design a domain-specific language (DSL) called Cybertron to serve as the proof
vehicle, i.e., a major part of our proof consists of reasoning about type-correct code in Cybertron that represents a trans-
former. Without using Cybertron, writing an equivalent natural language proof would be too complex and intractable.
Using code to prove propositions is not new to computer science; it is, in fact, the norm in interactive theorem proving
(ITP) [Harrison et al., 2014]. ITP focuses on generating computer-verifiable proofs through a combination of human-
guided instructions and software automation. For instance, the correctness of the Kepler conjecture [Hales et al., 2017]
is verified by the combination of the ITP theorem provers HOL Light [Harrison, 2009] and Isabelle [Paulson, 1994].
To the best of our knowledge, we are the first to apply this approach to understanding neural networks.

Contributions. We summarize our contributions below:

• A testbed for compilation tasks: We introduce Mini-Husky, a simple yet representative C-like programming
language, designed to formally assess transformers’ capabilities in programming language processing. We anticipate
that Mini-Husky will become a standard testbed for this purpose.

• Expressive power theory of transformers for several compilation tasks: We provide a formal proof that, when
the input code sequence has bounded AST depth and inference depth, the number of parameters in transformers only
needs to scale logarithmically with the input sequence length to handle compilation tasks such as AST construction,
symbol resolution, and type analysis. To the best of our knowledge, this is the first study exploring the power of
transformers for these compilation tasks.

• Transformers vs. RNNs: Theoretically, we demonstrate a negative result, showing that the number of parameters
in RNNs must scale linearly with the input sequence length to perform type analysis correctly. This result estab-
lishes an exponential separation between transformers and RNNs. We further empirically confirm the advantage of
transformers for the type analysis task.

2

A PREPRINT - JANUARY 28, 2025

• A Domain-Specific Language for Proofs: Given the challenges in formal proofs, we design a domain-specific
language, Cybertron, to serve as a proof vehicle. We believe that Cybertron, and the general approach of using
DSLs for analysis, can have broader applications in understanding transformers and other architectures.

2 Related Work

Expressive Power of Transformers. A line of work studies the expressive power of attention-based models. One
direction focuses on the universal approximation power [Yun et al., 2019, Bhattamishra et al., 2020b,c, Dehghani
et al., 2018, Pérez et al., 2021]. More recent works present fine-grained characterizations of the expressive power for
certain functions in different settings, sometimes with statistical analyses [Edelman et al., 2022, Elhage et al., 2021,
Likhosherstov et al., 2021, Akyürek et al., 2022, Zhao et al., 2023, Yao et al., 2021, Anil et al., 2022, Barak et al.,
2022, Garg et al., 2022, Von Oswald et al., 2022, Bai et al., 2023, Olsson et al., 2022, Akyürek et al., 2022, Li et al.,
2023, Hao et al., 2022, Pérez et al., 2019, Strobl, 2023, Chiang et al., 2023, Wei et al., 2022, Wang et al., 2022, Feng
et al., 2023, Li et al., 2024, Reddit User, 2013]. There are also characterizations of transformers to be as powerful as
universal computers if put in a looped context [Giannou et al., 2023]. The most related one is Yao et al. [2021] where
the authors prove constructively that bounded depth Dyck language can be recognized by encoder-only hard attention
transformers, which has similarities to our settings of bounded depth programming language recognized encoder-only
hard attention transformers. The major difference is that we introduce concepts and tasks from programming language
theory Pierce [2002] to study the semantic powers of transformers.

Transformers vs. RNN. It is important to understand the comparative advantages and disadvantages of transformers
against RNNs. Empirically, synthetic experiments have shown an advantage of transformers against RNNs for long
range tasks [Bhattamishra et al., 2023, Arora et al., 2023]. Theoretically, there has been a rich line of work focusing on
comparing transformers and RNNs in terms of recognizing formal languages [Bhattamishra et al., 2020a, Hahn, 2019,
Merrill et al., 2021], which show that the lack of recursive structure of transformers prevent them from recognizing
some formal languages that RNNs can recognize. However, the gap can be mitigated when we consider the bounded
length of input or bounded grammar depth [Liu et al., 2022, Yao et al., 2021], which is quite reasonable in practice
and is used in this paper. On the other side, prior work [Jelassi et al., 2024, Wen et al., 2024] proves a representation
gap between RNNs and Transformers in repeating a long sequence. In summary, it is somehow intuitive that recursive
structures with limited memory perform badly at tasks which requires information retrieval. Our paper shows that
semantic analysis for programming languages is such a task.

DSLs for Transformers. We note that we are not exactly the first one to employ a domain-specific language to
understand the expressive powers of transformers. Previously, DSLs with simple typings like RASP [Weiss et al.,
2021] were proposed to prove constructively that transformers can do various basic sequence-to-sequence operations.
Lindner et al. [2023] writes a compiler that compiles RASP into actual transformers, Friedman et al. [2023] shows
that RASP can be learned, and Zhou et al. [2023] uses RASP to prove that simple transformers can perform certain
algorithms. The major difference between RASP and our DSL Cybertron is that Cybertron has a powerful algebraic
type system that helps prove complicated operations beyond simple algorithms.

3 Preliminaries

The major innovation in the transformer architecture is that it uses self-attention solely without a conjunction with a
recurrent network [Vaswani, 2017], which processes input tokens in a distributed manner. This capability enables the
model to handle long-range dependencies, a crucial feature for language tasks. We use hard attention and simplified
position encoding to simplify our theoretical reasoning.

Attention. In practice, attention heads use soft attention. Given model dimension dmodel, number of heads H ,
and a finite set of token positions Pos, an attention layer with simplified position encoding is defined as a function
fattn : RPos×dmodel → R

Pos×dmodel given by

∀p ∈ Pos, fattn(X)p :=WO Concat
(

Attn(1)(X)p, . . . ,Attn(H)(X)p

)

, (1)

where the hth attention head is defined using soft attention as: Attn(h)(X)p :=
∑

p′∈Pos α
(h)
p,p′V

(h)
p′ . The attention

weights α
(h)
p,p′ given by: α

(h)
p,p′ =

exp
(

Q(h)
p

⊤
K

(h)

p′
+λ(h)⊤Ψp′−p

)

∑

p′′∈Pos exp
(

Q
(h)
p

⊤
K

(h)

p′′
+λ(h)⊤Ψp′′−p

) , where WO ∈ R
dmodel×dmodel are trainable pa-

3

A PREPRINT - JANUARY 28, 2025

rameters, Q
(h)
p ,K

(h)
p , V

(h)
p ∈ R

dmodel/H are linear transformations of Xp, λ(h) ∈ R
2 depends on the head, and

Ψq =

(
q

1q>0

)

∈ R
2 accounts for relative position.

For theoretical convenience, we use hard attention, commonly used in theoretical analysis of transformer [Yao et al.,
2021, Hahn, 2019]. Hard attention can be viewed as the limit of soft attention when the attention logits become
infinitely large. The hard attention head is defined as:

Attn(h)(X)p :=
1

|Sp|

∑

p′∈Sp

V
(h)
p′ , where Sp = arg max

p′∈Pos

(

Q(h)
p

⊤
K

(h)
p′ + λ(h)⊤Ψp′−p

)

(2)

In other words, hard attention selects the positions p′ that maximize the attention score for each position p, and averages

the corresponding value vectors V
(h)
p′ .

Feed-Forward Layer. Given model dimension dmodel, and a finite set of token positions Pos, a feed-forward layer is
a fully connected layer applied independently to each position, defined as a function fffn : RPos×dmodel → R

Pos×dmodel

given by

∀p ∈ Pos, fffn(X)p =W2σReLU (W1Xp + b1) + b2, (3)

where W1 ∈ R
dffn×dmodel and W2 ∈ R

dmodel×dffn are trainable weight matrices, b1 ∈ R
dffn and b2 ∈ R

dmodel are trainable
bias vectors, dffn is the hidden dimension of the feed-forward layer, chosen to be 2dmodel, as commonly used in practice,
σReLU is the ReLU activation function.

Encoder-Only Transformer. Encoder-only transformers consist solely of the encoder stack, making them ideal for
tasks like classification, regression, and sequence labeling that do not require sequence generation. Each encoder layer
includes a multi-head self-attention mechanism and a feed-forward network, allowing the model to capture complex
dependencies and contextual information.

One can define it using the following recurrence,

• The input is given by: X(0) = X .
• For each layer l = 1, 2, . . . , L:

– Compute attention output: X̂(l) = X(l−1) + f
(l)
attn

(
X(l−1)

)
,

– Compute feed-forward output: X(l) = X̂(l) + f
(l)
ffn

(

X̂(l)
)

.

In the above, f
(l)
attn are the attention layers, and f

(l)
ffn are the feed-forward layers, with the same model dimension dmodel,

number of heads H , and set of token positions Pos. For simplicity, layer normalization is ignored. See Appendix C
for full details of transformers and other architectures.

4 Programming Language Processing and The Target C-Like Language: Mini-Husky

Recently, transformers have expanded to support code analysis and generation [Nijkamp et al., 2023, Chen et al.,
2021, Anysphere, 2023]. Programming languages offer a cleaner foundation for studying language understanding,
as their syntactic and semantic tasks are precisely defined. To formally study the language processing capabilities of
transformers, we design Mini-Husky, a representative mix of modern C-like languages with strong typing and typical
syntactic features. It supports user-defined types (e.g., structs, enums) and enforces strict type equality, disallowing
implicit conversions. Lexical scoping, including shadowing, ensures proper variable accessibility based on block
structures, type inference, and type checking. These features make compiling Mini-Husky a representative task to
evaluate transformers’ capabilities in syntactic and semantic tasks like symbol resolution and type checking. See
Appendix E for the full details of Mini-Husky.

The standard pipeline of processing programming languages is shown in Figure 1 [Alfred et al., 2007]. The raw text is
firstly segmented into parts like literals, identifiers, punctuations, keywords, etc, called token stream, then parsed into a
tree-like structure representation generated from the input, finally syntactic and semantic analysis is performed on the
tree. Afterward, an intermediate language program is generated based on the syntactic and semantic analysis, which
is further optimized and finally transformed into targeted machine code. In this paper, to simplify the presentation,
we assume the tokenizer has been provided a priori. Below we describe the programming language processing tasks
investigated in the paper.

4

A PREPRINT - JANUARY 28, 2025

Raw Text Token Stream AST Semantic Information · · ·

Compiler

Tokenizer Transformer

Figure 1: Programming language processing pipeline

Abstract Syntax Tree Construction. Abstract Syntax Tree (AST) is a hierarchical, tree-like representation of the
syntactic structure of source code in a programming language. Unlike the raw text of the code, the AST abstracts
away surface syntax details, capturing the essential elements and their relationships in a structured form. Each node
in the AST corresponds to a construct occurring in the source code, such as expressions, statements, or declarations.
This representation is central to various stages of language processing, enabling efficient syntax checking, semantic
analysis, and code generation. The formal definition of ASTs is standard in the programming language literature but
is lengthy, so we defer it to Appendix A.

The AST construction task’s final output is the collection of all AST nodes. We will show transformers can construct
AST efficiently.

Symbol Resolution. In programming languages, symbols are functions, types, generics, variables, macros, etc. They
are defined somewhere and can be used by referring to the corresponding identifier or path in a certain scope. The
scope can be within a certain tree of modules, or within a certain curly braced scope within one module. For simplicity,
we only consider curly braced scope.

In Mini-Husky, the following showcases symbol resolution.

1 pub fn f() {

2 fn f1() {}

3

4 let a = 1;

5 let x = a;

6 let a = 2;

7 {

8 let a = 3;

9 { let a = 4; }

10 let y = a;

11 }

12 let z = a;

13 }

14

15 fn g() { f() }

The outer function f is accessible everywhere in the body of function g. However, the inner function f1 can only
be used inside the body of f as it is defined within the body. For variables with the same identifier a , the first is
accessible from line 5, the second is accessible from line 12, the third is accessible from line 10, and the fourth is not
accessible from anywhere. Thus x = 1, y = 3, z = 2.

The output of the symbol resolution task is the collection of symbol resolution results on all applicable tokens. More

concretely, the output is a sequence of values of type Option<SymbolResolution> where Option<SymbolResolution> is

the type SymbolResolution with a null value added for non-applicability and SymbolResolution is the type storing the

result of the symbol resolution, being either a success with a resolved symbol of type Symbol or a failure with an

error of type SymbolResolutionError . We shall prove that transformers can do symbol resolution and that attention is

crucial.

Type Analysis. In general, types are essential for conveying the intended usage of the written functions and specifying
constraints. As a first exploration of this topic, we try to make the type analysis in Mini-Husky as simple as possible
yet able to bring out the essential difficulty. The type system consists of four sequential components: (1) Type defini-
tion, (2) Type specification, (3) Type inference, and (4) Type checking. Due to the page limit, here we only introduce
(4) Type checking because it is the final step and this is a crucial step which separates transformers and RNNs. See
Appendix E.1 for details of (1) Type definition, (2) Type specification, and (3) Type inference.

5

A PREPRINT - JANUARY 28, 2025

Type checking ensures that the typed expressions agree with its expectations. For simplicity, we do not allow implicit
type conversion, so the agreement means exact equality of types. The arguments of function calls are expected to have
types according to the definition of the function. The operand type of field access must be a struct type with a field of
the same name. The type of the last expression of the function body or the expr in the return statement must be equal

to the return type of the function. For variables defined in the let statement, If the types are annotated, the types of
the left-hand side and right-hand side should be in agreement.

1 // Type Error: the return type is ‘i32‘, yet the last expression is of type ‘f32‘

2 fn f(a: i32) -> i32 { 1.1 }

3

4 struct A { x: i32 }

5

6 fn g() {

7 // Type Error: ‘x‘ is of type f32 but it’s assigned by a value of type ‘i32‘

8 // Type Error: the first argument of ‘f‘ is expected to be of type ‘i32‘ but gets a float literal

instead

9 let x: f32 = f(1.1);

10 // Type Error: no field named ‘y‘

11 let y = A { x: 1 }.y;

12 }

The above incorporates typical examples of type disagreements that count as type errors. A compiler should be able
to report these errors.

The type analysis task’s final output is the collection of all type errors. More concretely, the output is a sequence of

Option<TypeError> , where Option<TypeError> denoted the type TypeError will a null value added and TypeError is

the type storing the information of a type error. The position of type errors agrees with the source tokens leading to
these errors.

5 Expressive Power of Transformers as Efficient Compilers

In this section we discuss main theoretical results about the expressive power of transformers to perform compila-
tion tasks: AST construction, symbol resolution, and type analysis. In Section 5.4, we discuss Cybertron, a DSL
specifically designed for our proof.

5.1 Abstract Syntax Tree Construction

We start with a definition that characterizes low-complexity code.

Definition 1 (code with Bounded AST-Depth). Let MiniHuskyD be the set of token sequences that can be parsed into
valid ASTs in Mini-Husky with a depth less than D.

D in the above definition is small in practice, and a linear dependency on D is acceptable, but the linear dependency
on the length of the token sequence L is not. The fundamental reason is that the clean code principle [Martin, 2008]
requires one to write code with as little nested layer as possible for greater readility. Readability is of the utmost
importance because “Programs are meant to be read by humans and only incidentally for computers to execute”
[Abelson et al., 1996]. This assumption of bounded hierarchical depth is not limited to just programming languages,
but is often seen as applicable to natural languages [Frank et al., 2012, Brennan and Hale, 2019, Ding et al., 2017],
motivating Yao et al. [2021] to have a similar boundedness assumption. Below is the main result for AST construction
using transformers.

Theorem 1. There exists a transformer encoder of model dimension and number of layers being O(logL +D) and
number of heads being O(1) that represents a function that maps any token sequence of length L in MiniHuskyD to
its abstract syntax tree represented as a sequence.

We note logL is small because 64-bit computers can only process context length at most 264 and D is small by
assumption. Therefore, there exists a transformer with an almost constant number of parameters that is able to process
comparatively much longer context length.

Proof Sketch. The idea is to construct ASTs in a bottom-up manner with full parallelism. We shall recursively produce
the final ASTs in at most D steps. We shall maintain two values, called pre_asts and asts . asts represents ASTs that

have already been allocated, although they might not have been fully initialized. pre_asts represents tokens that have

yet to form ASTs and new ASTs that have not been fully initialized. For each round, we try to create new ASTs from
pre_asts and update asts and pre_asts . For the n-th round, we provably allocated all ASTs with a depth no more

6

A PREPRINT - JANUARY 28, 2025

than n. Then for the D-th round, all ASTs are properly constructed and allocated. Each round can be represented by
a transformer of O(1) number of heads, model dimension O(logL +D), and O(1) number of layers. Therefore, the
end-to-end process is then representable by a transformer of O(1) number of heads, model dimension O(logL+D),
and O(logL+D) number of layers. See full details in Appendix F.

5.2 Symbol Resolution

Next, we show that transformers can effectively perform symbolic resolution as logL and D are almost constant as
compared with context length L.

Theorem 2. There exists a transformer encoder of model dimension and number of layers being O(logL +D) and
number of heads being O(1) that represents a function that maps any token sequence of length L in MiniHuskyD to

its symbol resolution represented as a sequence of values of type Option<SymbolResolution> .

Proof Sketch. First, we need to define the type for scopes. It is represented by a tiny sequence of indices of curly brace
block AST that enclose the type/function/variable. We assign the scope by walking through the ASTs in a top-down
manner. We not only assign scopes to item definitions, we also: (1) assign scopes to ASTs representing curly brace
blocks, with these scopes equal to the scope of block itself, and (2) assign scopes to identifiers waiting to be resolved,
with these scopes equal to the maximum possible scope of its resolved definition. The computation process is easily
represented in Cybertron, indicating attention is expressive enough for this calculation and it only takes O(D) number
of layers.

After obtaining all the scopes for all items, it takes only one additional layer to obtain the symbolic resolution through
attention. As attention is expressed through the dot product of two linear projections Q and K, we have to choose the
representation of the scope type properly to finish the proof. The full details are in Appendix G.

5.3 Type Analysis

We need an additional definition to characterize the complexity of code for type analysis.

Definition 2 (code with Bounded AST-Depth and Type-Inference-Depth). We use MiniHuskyAnnotatedD,H to de-
note the subset of MiniHuskyD with the depth of type inference no more than H . The depth of type inference is
the number of rounds of computation needed to infer all the types using the type-inference algorithm (described in
Appendix E.1).

In practice,H is significantly smaller than the context length L for reasonably written code because it is upper bounded
by the number of statements in a function body which is required to be small according to the clean code princi-
ple [Martin, 2008]. Below, we present the main result of using transformers for type analysis. See full details in
Appendix H.

Theorem 3. For L,D,H ∈ N, there exists a transformer encoder of model dimension, and number of layers being
O(logL+D+H) and number of heads being O(1) that represents a function that maps any token sequence of length

L in MiniHuskyAnnotatedD,H to its type errors represented as a sequence of values of type Option<TypeError> .

5.4 Proof Vehicle: Cybertron, a Domain-Specific Language

Here we highlight our main proof technique. Proving that transformers can express complex algorithms and software
like compilers is a significant challenge due to the inherent differences between how transformers operate and the na-
ture of high-level tasks they are expected to perform. Transformers process input at a low level, where each layer ma-
nipulates raw token sequences as vectors without predefined structure or meaning. However, high-level tasks—such as
constructing ASTs and performing type and symbol analysis—require handling complex, structured information that
depends on long-range relationships and interactions across the input. Bridging the gap between this raw, unstructured
processing and the structured, multi-step logic required for these tasks introduces significant difficulty. Compilers,
for instance, typically rely on rule-based, step-by-step operations that are abstract and sequential, which transformers
must simulate through their attention mechanisms and feedforward layers. The challenge is further compounded by
the need to formally prove that transformers can handle such tasks efficiently and accurately, despite operating in a
fundamentally different manner. To address these challenges, we propose a domain-specific language (DSL) called
Cybertron, which allows us to systematically prove that transformers are capable of expressing complex algorithms
while maintaining sufficient readability.

A key feature of Cybertron is its expressive type system, which provides strong correctness guarantees. The type
system ensures that every value is strongly typed, making it easier to reason about function composition and ensuring

7

A PREPRINT - JANUARY 28, 2025

the validity of our proofs. This type system is crucial for managing how transformers represent and manipulate both
local and global types—where local types correspond to individual tokens and global types refer to sequences of
tokens, encapsulating broader program information.

What transformers output (possibly in the intermediate layers) is a representation in sequences of vector of sequences
of values in these types. As types are mathematically interpreted in this paper as a discrete subset of a vector space,
Cybertron allows us to construct transformers with automatic value validity guarantees if the Cybertron code is
type-correct.

In Cybertron, complex functions are broken down into “atomic” operations through propositions on function compo-
sitions and computation graphs (Propositions 11,13,14,2). It is straightforward to prove that these “atomic” operations
are representable by transformers, either by feedforward layers or attention layers. For example:

• Feedforward layers: boolean operations like AND (Proposition 6), OR (Proposition 7), or NOT (Proposition 5), or

operations over option types like Option::or (Proposition 9) being applied to each token in a sequence.

• Attention layers: operations that require information transmission between tokens such as nearest_left and

nearest_right that collect for each token the nearest left/right non-nil information (Proposition 15).

This approach allows us to break down complex operations into primitive tasks that transformers can simulate. Feed-
forward layers handle local operations on individual tokens, while attention layers manage long-range dependencies
and interactions between tokens, simulating the multi-step reasoning required for higher-level tasks.

Cybertron’s expressive type system and function composition framework help bridge the gap between the low-level
processing transformers perform and the high-level reasoning necessary for complex tasks like compilation. For
full details, including the mathematical foundations of Cybertron’s type system and function composition, see Ap-
pendix D.

6 Comparisons between Transformers and RNN

Now we compare transformers and RNNs from both theoretical and empirical perspectives.

6.1 A Lower Bound for RNNs for Type Checking

Previously, it has shown that RNN is provably less parameter efficient than transformers for associative recall [Wen
et al., 2024]. Intuitively speaking, the type checking step covers associative recall. Based on this observation, we
obtain the following lower bound for RNNs.

Theorem 4. For L,D,H ∈ N, for any RNN that represents a function that maps any token sequence of length
L in MiniHuskyAnnotatedD,H with D,H = O(1) to its type errors represented as a sequence of values of type

Option<TypeError> , then its state space size is at least Ω(L).

Theorem 3 and Theorem 4 give a clear separation between transformers and RNNs in terms of the compilation ca-
pability. Specifically, if the input codes satisfy D,H ≪ L, which is typically the case under the clean code princi-
ple [Martin, 2008], then transformers at most needO ((logL+D +H)) number of parameters, which is significantly
smaller what RNNs requires, Ω(L).

6.2 Empirical Comparison between Transformers and RNNs

We validate our theoretical results by conducting experiments on synthetic data.

Dataset construction. The synthetic dataset is parameterized by n (the number of data pieces), f (the number of
functions in a data piece), a (the maximum number of arguments of any function), c (the maximum number of function
calls involved in any function), d (the minimum distance between the declaration and the first call of a function, as
well as the minimum distance between its consecutive calls), v (the probability of using a variable in a function call),
and e (the error rate of using an incorrect type in a function call).

The names of the functions are drawn randomly and uniquely from a list of English words. For each of the arguments
of any function, its symbol is randomly drawn from another list of English words and its type is randomly drawn
from {Int, Float, Bool}. All the called functions must be declared and not called by at least d functions ahead
of the current one. For each argument of any function call, with probability v, the argument variable of the enclosing
function is used regardless of its type, with probability (1 − v)(1 − e), a literal of the correct type is used, and with

8

A PREPRINT - JANUARY 28, 2025

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in
_e
xp

ec
te
d_
ty
pe

_a
cc

n100000-f10-a5-c5-d3-v0.20-e0.50

rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in
_e
xp

ec
te
d_
ty
pe

_a
cc

n200000-f20-a5-c5-d3-v0.20-e0.50

rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in
_e
xp

ec
te
d_
ty
pe

_a
cc

n300000-f40-a5-c5-d5-v0.20-e0.50

rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in
_e
xp

ec
te
d_
ty
pe

_a
cc

n400000-f80-a5-c5-d10-v0.20-e0.50

rnn
transformer

Figure 2: Figures depicting the accuracy of the expected type (see Section 5.3) across different models, measured by
their number of trainable parameters, when trained on various datasets. Training accuracies are better indicators of
the expressive power of the models (instead of generalizability) than evaluation accuracies. We also report evaluation
accuracies in Appendix J.

probability (1 − v)e an incorrect type literal is used. For integers, the literals are from {0, 1, . . . , 99}; for floats, the
literals are from {0.1, 1.1, . . . , 99.1}; for booleans, the literals are from {true, false}. The training dataset and
evaluation dataset use disjoint lists for function names and argument symbols.

Below is a data piece with f = 10, a = 5, c = 5, d = 3, v = 0.2, e = 0.5:

1 fn rename_file (i : Float , sum : Float) { }

2 fn parse_data (list : Int , value : Bool , stack : Float , k : Float , msg : Float) { }

3 fn parse_json (position : Bool) { }

4 fn find_by_id (error : Float) { rename_file (60.1 , 94.1) ; }

5 fn merge (group : Int , table : Float , error : Bool , count : Int) { parse_data (7 , false , 49.1 ,

33.1 , 4.1) ; }

6 fn log_info (val : Bool , m : Bool , xml : Float , path : Float) { parse_json (true) ; }

7 fn process (function : Int , value : Float , keys : Bool) { find_by_id (88.1) ; rename_file (value ,

40.1) ; }

8 fn validate_response (end : Int , z : Float , max : Bool) { merge (1 , true , 27.1 , 72) ; parse_data (

11 , 85 , 35.1 , 14.1 , true) ; }

9 fn print_message (algorithm : Float) { parse_json (92) ; log_info (true , algorithm , false , 26.1) ;

}

10 fn print_help (max : Bool , tree : Int , method : Int , item : Bool) { process (25 , 28 , false) ;

rename_file (48 , 80.1) ; }

Model and training. We use customized BERT models [Devlin et al., 2019] and bidirectional RNN models [Schuster
and Paliwal, 1997] in our experiments. To control the model size (i.e., the number of trainable parameters), we adjust
only the hidden sizes while keeping other hyperparameters constant. Detailed model specifications can be found in
Table 1. For both transformers and RNNs, we use the hyperparameters listed in Table 2 in Appendix J during the
training process.

Results. We experimented with multiple combinations of models (Table 1) and datasets (Table 2). For each combi-
nation, we conducted independent runs using a fixed set of k = 5 random seeds. When plotting the figures, we took
the top t = 5 training/evaluation losses/accuracies from each run and averaged over all the k × t values. We plotted
separate figures for each dataset and separate sub-figures for each metric. In each sub-figure, the x-axis represents the
number of trainable parameters, and the y-axis represents the averaged values. Results are shown in Figure 2. They
demonstrate that customized BERT models are able to perform better at type checking than bidirectional RNN models
when both scale up, corroborating our theories. Other results are in Appendix J.

7 Conclusion

We demonstrated that transformers can efficiently handle a number of syntactic and semantic analysis tasks in C-
like languages, using Cybertron to prove their capacity for tasks like AST generation, symbol resolution, and type
analysis. We show a theoretical advantage of transformers over RNNs, particularly in their ability to manage long-
range dependencies with logarithmic parameter scaling. In a sense, transformers have the right inductive bias for
language tasks. Our experiments confirmed these theoretical insights, showing strong performance on synthetic and
real datasets, underscoring the expressiveness and efficiency of transformers in sequence-based learning.

9

A PREPRINT - JANUARY 28, 2025

8 Acknowledgement

Xiyu Zhai acknowledges the support of NSF through awards DMS-2031883 and PHY-2019786. Liao Zhang ac-
knowledges the ERC PoC project FormalWeb3 no. 101156734 and the University of Innsbruck doctoral scholarship
promotion of young talent.

References

Cursor: Ai-powered code editor, 2024. URL https://www.cursor.com/. Accessed: September 29, 2024.

Harold Abelson, Gerald Jay Sussman, and with Julie Sussman. Structure and Interpretation of Computer Programs.
MIT Press/McGraw-Hill, Cambridge, 2nd editon edition, 1996. ISBN 0-262-01153-0.

Agda Development Team. Agda compilers manual v2.6.4.2, 2024. URL https://agda.readthedocs.io/

en/v2.6.4.2/tools/compilers.html#javascript-backend.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is in-context
learning? investigations with linear models. arXiv preprint arXiv:2211.15661, 2022.

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools. pearson Education,
2007.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose Slone, Guy
Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large language models. arXiv
preprint arXiv:2207.04901, 2022.

Anysphere. Cursor, 2023. URL https://www.cursor.com/features.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra, and Christopher
R’e. Zoology: Measuring and improving recall in efficient language models. ArXiv, abs/2312.04927, 2023. URL
https://api.semanticscholar.org/CorpusID:266149332.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable in-context
learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637, 2023.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden progress in deep
learning: Sgd learns parities near the computational limit. Advances in Neural Information Processing Systems, 35:
21750–21764, 2022.

S. Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers to recognize formal
languages. In Conference on Empirical Methods in Natural Language Processing, 2020a. URL https://api.

semanticscholar.org/CorpusID:222225236.

S. Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context learning in transform-
ers and llms by learning to learn discrete functions. ArXiv, abs/2310.03016, 2023. URL https://api.

semanticscholar.org/CorpusID:263620583.

S. Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the representational capa-
bilities of transformers and recurrent architectures. ArXiv, abs/2406.09347, 2024. URL https://api.

semanticscholar.org/CorpusID:270440803.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers to recognize
formal languages. arXiv preprint arXiv:2009.11264, 2020b.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers and its implications
in sequence modeling. arXiv preprint arXiv:2006.09286, 2020c.

Jonathan Brennan and John Tracy Hale. Hierarchical structure guides rapid linguistic predictions during naturalistic
listening. PLoS ONE, 14, 2019. URL https://api.semanticscholar.org/CorpusID:260538292.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

David Chiang, Peter A. Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer encoders.
In International Conference on Machine Learning, 2023. URL https://api.semanticscholar.org/

CorpusID:256231094.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Rozière, Jonas Gehring, Gabriele Synnaeve, and
Hugh Leather. Meta large language model compiler: Foundation models of compiler optimization. ArXiv,
abs/2407.02524, 2024. URL https://api.semanticscholar.org/CorpusID:270924331.

10

A PREPRINT - JANUARY 28, 2025

Valentin David. Language Constructs for C++-like languages. PhD thesis, University of Bergen, 2009.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers. arXiv
preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

Nai Ding, Lucia Melloni, Xing Tian, and David Poeppel. Rule-based and word-level statistics-based processing
of language: insights from neuroscience. Language, Cognition and Neuroscience, 32:570 – 575, 2017. URL
https://api.semanticscholar.org/CorpusID:46747073.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Jana Dunfield and Neelakantan R Krishnaswami. Sound and complete bidirectional typechecking for higher-rank
polymorphism with existentials and indexed types. Proceedings of the ACM on Programming Languages, 3(POPL):
1–28, 2019.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable creation in self-
attention mechanisms. In International Conference on Machine Learning, pages 5793–5831. PMLR, 2022.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen, T Conerly, et al. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Husna Farooqui. The curry-howard correspondence. 2021. URL https://api.semanticscholar.org/

CorpusID:244268761.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing the mys-
tery behind chain of thought: a theoretical perspective. ArXiv, abs/2305.15408, 2023. URL https://api.

semanticscholar.org/CorpusID:258865989.

David Flanagan. JavaScript: The definitive guide: Activate your web pages. " O’Reilly Media, Inc.", 2011.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 111–122, 2004.

S. Frank, Rens Bod, and Morten H. Christiansen. How hierarchical is language use? Proceedings of the Royal Society
B: Biological Sciences, 279:4522 – 4531, 2012. URL https://api.semanticscholar.org/CorpusID:

11969171.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. ArXiv, abs/2306.01128, 2023.
URL https://api.semanticscholar.org/CorpusID:259064324.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context? a case
study of simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris Papailiopou-
los. Looped transformers as programmable computers. ArXiv, abs/2301.13196, 2023. URL https://api.

semanticscholar.org/CorpusID:256389656.

Google Deepmind. Ai achieves silver-medal standard solving international mathematical
olympiad problems, July 2024. URL https://deepmind.google/discover/blog/

ai-solves-imo-problems-at-silver-medal-level/.

Qiuhan Gu. Llm-based code generation method for golang compiler testing. Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2023.
URL https://api.semanticscholar.org/CorpusID:265509921.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 2019. URL https://api.semanticscholar.org/CorpusID:

189928186.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong, Cezary Kaliszyk,
Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof of the kepler conjecture. In Forum of
mathematics, Pi, volume 5, page e2. Cambridge University Press, 2017.

Sophie Hao, Dana Angluin, and Roberta Frank. Formal language recognition by hard attention transformers: Perspec-
tives from circuit complexity. Transactions of the Association for Computational Linguistics, 10:800–810, 2022.
URL https://api.semanticscholar.org/CorpusID:248177889.

11

A PREPRINT - JANUARY 28, 2025

John Harrison. Hol light: An overview. In International Conference on Theorem Proving in Higher Order Logics,
pages 60–66. Springer, 2009.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving. In Handbook of the History
of Logic, volume 9, pages 135–214. Elsevier, 2014.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Transformers are better
than state space models at copying. ArXiv, abs/2402.01032, 2024. URL https://api.semanticscholar.

org/CorpusID:267406617.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming,
28, 2018. URL https://api.semanticscholar.org/CorpusID:2023423.

Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and weight shifting for
softmax regression. arXiv preprint arXiv:2304.13276, 2023.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to solve inherently
serial problems. In The Twelfth International Conference on Learning Representations, 2024. URL https:

//openreview.net/forum?id=3EWTEy9MTM.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of self-attention matrices.
arXiv preprint arXiv:2106.03764, 2021.

David Lindner, J’anos Kram’ar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr: Compiled transformers
as a laboratory for interpretability. ArXiv, abs/2301.05062, 2023. URL https://api.semanticscholar.

org/CorpusID:255749093.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers learn shortcuts
to automata. ArXiv, abs/2210.10749, 2022. URL https://api.semanticscholar.org/CorpusID:

252992725.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall PTR, USA, 1 edition,
2008. ISBN 0132350882.

Patrick Massot. Teaching mathematics using lean and controlled natural language. In International Conference on In-
teractive Theorem Proving, 2024. URL https://api.semanticscholar.org/CorpusID:272330159.

The mathlib Community. The lean mathematical library. Proceedings of the 9th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, 2019. URL https://api.semanticscholar.org/CorpusID:

204801213.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856, 2021. URL https:

//api.semanticscholar.org/CorpusID:248085924.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2: Lessons for training
llms on programming and natural languages. ICLR, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. arXiv preprint arXiv:2209.11895,
2022.

OpenAI. Openai o1 system card, September 2024a. URL https://openai.com/index/

openai-o1-system-card/.

OpenAI. Sora: Creating video from text, February 2024b. URL https://openai.com/index/sora/.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Jorge Pérez, Javier Marinkovic, and Pablo Barceló. On the turing completeness of modern neural network ar-
chitectures. ArXiv, abs/1901.03429, 2019. URL https://api.semanticscholar.org/CorpusID:

57825721.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of Machine Learning
Research, 22(1):3463–3497, 2021.

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics. arXiv preprint
arXiv:1308.0729, 2013.

12

A PREPRINT - JANUARY 28, 2025

Reddit User. I think the main secret sauce of o1 is the data. https://www.reddit.com/r/singularity/
comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/, 2013. Ac-
cessed: 2024-09-28.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing,
45(11):2673–2681, 1997.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits. ArXiv,
abs/2308.03212, 2023. URL https://api.semanticscholar.org/CorpusID:260680416.

Victor Taelin. Ai and the future of coding. https://medium.com/jonathans-musings/

ai-and-the-future-of-coding-43caad31c3d3, 2023a. Accessed: 2024-10-01.

Victor Taelin. Agda to typescript compilation with sonnet-3.5, 2023b. URL https://x.com/VictorTaelin/

status/1837925011187027994. Accessed: September 29, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. arXiv preprint
arXiv:2212.07677, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-consistency im-
proves chain of thought reasoning in language models. ArXiv, abs/2203.11171, 2022. URL https://api.

semanticscholar.org/CorpusID:247595263.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022. URL
https://api.semanticscholar.org/CorpusID:246411621.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. ArXiv, abs/2106.06981, 2021. URL https:

//api.semanticscholar.org/CorpusID:235421630.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key bottleneck on in-
context retrieval. ArXiv, abs/2402.18510, 2024. URL https://api.semanticscholar.org/CorpusID:

268041425.

Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, and Maosong Sun. Beyond language models: Byte models
are digital world simulators. ArXiv, abs/2402.19155, 2024. URL https://api.semanticscholar.org/

CorpusID:268063492.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention networks can process
bounded hierarchical languages. In Annual Meeting of the Association for Computational Linguistics, 2021. URL
https://api.semanticscholar.org/CorpusID:235166395.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Are transformers
universal approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077, 2019.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while predicting the masked
word? arXiv preprint arXiv:2303.08117, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio, and Preetum
Nakkiran. What algorithms can transformers learn? a study in length generalization. ArXiv, abs/2310.16028, 2023.
URL https://api.semanticscholar.org/CorpusID:264439160.

13

A PREPRINT - JANUARY 28, 2025

A Tree

Trees are one of the most fundamental objects to study in computer science. However, its exact definition differs for
different domains. The trees used in “abstract syntax tree” (Section B) is more restrictive than that in mathematics,
which we call “typed tree”, so that one can define recursive computation more rigorously.

A.1 What are Trees

Trees in data structures have slightly additional meaning as compared to trees in mathematics. In this paper, all trees
are trees in data structures. For clarity, we lay down the precise definition of trees in data structure.

Definition 3 (Tree). A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship
that satisfies the following:

• If T is not empty, it has a special node called the root that has no parent.

• Each node v of T other than the root has a unique parent node w; each node with parent w is a child of w.

We denote the nodes of T as N(T).

Definition 4 (Recursive Definition of a Tree). A tree T is either empty or consists of a node r (the root) and a possibly
empty set of trees whose roots are the children of r.

However, the above definition is too permissive. We shall define a typed version as follows:

Definition 5 (Typed Tree). A tree type consists of a set of values V and a set of relationships C ⊆ V ×N, and a typed
tree under this type is any tree T such that for each node, a value v ∈ V is assigned such that (v, n) ∈ C where n is
the number of the children of the node.

All trees in this paper are typed.

Example 1 (Abstract syntax tree (AST) as Typed Tree). Consider an AST for a simple arithmetic expression. Let the
set of values V be:

V = { num , add , sub , mul , div }

and the set of relationships C ⊆ V × N specify the allowed number of children for each value:

C = {(num , 0), (add , 2), (sub , 2), (mul , 2), (div , 2)}

An example AST for the arithmetic expression (3 + 5)× 2 is the following typed tree:

• The root node is labeled mul (multiplication), and it has two children.

– The left child is labeled add (addition), and it has two children:

* The left child of add is labeled num with the value 3.

* The right child of add is labeled num with the value 5.

– The right child of mul is labeled num with the value 2.

This tree conforms to the typing rules because:

• num has 0 children,

• add has 2 children,

• mul has 2 children,

all of which satisfy the relationships in C.

A.2 Representations of Trees

It’s also important to talk about tree representations. We are studying transformers, and then it’s necessary to represent
large trees as a sequence, otherwise the model dimension is not large enough to contain the information locally. Let’s
first talk about the classical arena pattern used in system programming for representing trees and we shall slightly
adapt it to our use case for studying transformers.

14

A PREPRINT - JANUARY 28, 2025

Arena Pattern. To represent trees efficiently in memory, especially when trees are frequently modified (such as
insertions or deletions of nodes), an arena pattern is often used. The arena pattern provides a way to manage memory
allocation for tree structures, allowing for efficient memory usage and avoiding fragmentation. Here’s how the arena
pattern works in the context of tree representation:

Definition 6 (Arena Pattern in Tree Representation). In the arena pattern, a tree is represented by an array (or vector)
of nodes, called an arena. Each node in the arena contains:

• An element or value stored in the node.

• References (often indices or pointers) to the node’s children and possibly to its parent.

The key characteristics of the arena pattern are:

• Memory Contiguity: All nodes are stored contiguously in memory within the arena, which allows for efficient
traversal and modification operations.

• Fixed Capacity: The arena has a fixed or dynamically resizable capacity, and nodes are added sequentially.
This avoids the overhead of allocating individual nodes on the heap.

• Index-based References: Instead of using pointers, the nodes reference each other using indices within the
array, which simplifies memory management and can lead to cache-friendly operations.

• Efficient Allocation and Deallocation: Nodes can be efficiently allocated and deallocated within the arena
without requiring complex memory management techniques like garbage collection or reference counting.

The arena pattern is particularly useful in scenarios where the structure of the tree is highly dynamic or when perfor-
mance is critical. It allows for a simple and efficient way to manage and traverse trees without the typical overhead
associated with more traditional pointer-based tree representations.

Adaptations for Transformers For transformers, inputs, intermediate values and outputs are all sequences. So the
trees are represented as sequences of nodes with node reference representable by token position encoding. Based on
the representation, transformers will be able to perform various kinds of recursive tree operations, as we shall see.

B Context Free Grammar

In this section, we lay down the well-known definitions of context free grammar, derivations, and parse trees. To define
an abstract syntax tree (AST), one commonly resorts to generation rules, such as context-free grammars (CFG) [Alfred
et al., 2007] and parsing expression grammars (PEG) [Ford, 2004]. In most cases, just generation rules themselves are
not sufficient to define properly a language. Many practical languages like C and C++ cannot be solely described by
these rules [David, 2009] so that they can reuse the limited set of special characters on the keyboard. Furthermore,
semantic constraints like type correctness are intrinsically contextual and cannot be expressed through CFG or similar
rules. However, CFG or other rules provide a valuable construct, the AST. With an AST, one can refine the language
definition by putting restrictions on the syntax tree through tree operations. Effectively, a language can be seen as a
subset of trees, not as a subset of strings. Semantic analysis like symbol resolution and type checking can be described
effectively based on trees. In short, CFG standalone is hardly practical but it provides a useful and clear foundation to
build definitions upon.

A context-free grammar (CFG) is defined as a 4-tuple G = (V,Σ, R, S), where:

• V is a finite set of variables (non-terminal symbols).

• Σ is a finite set of terminal symbols, disjoint from V . Sequences of Σ, i.e., elements of Σ∗ are called (literal)
strings.

• R ⊂ V × (V ∪Σ)∗ is a finite set of production rules, where each rule is of the form A→ α, with A ∈ V and
α ∈ (V ∪ Σ)∗.

• S ∈ V is the start symbol.

Given a context-free grammar G = (V,Σ, R, S), we define derivation as follows:

• A derivation is a sequence of steps where, starting from the start symbol S, each step replaces a non-terminal
with the right-hand side of a production rule.

15

A PREPRINT - JANUARY 28, 2025

• Formally, we write u⇒ v if u = αAβ and v = αγβ for some productionA→ γ inR, where α, β ∈ (V ∪Σ)∗

and A ∈ V .

• A leftmost derivation is a derivation in which, at each step, the leftmost non-terminal is replaced.

• A rightmost derivation is a derivation in which, at each step, the rightmost non-terminal is replaced.

• We denote a derivation sequence as S ⇒∗ w, where w ∈ Σ∗ is a string derived from S in zero or more
steps.

A parse tree (or syntax tree) for a context-free grammar G = (V,Σ, R, S) is a tree that satisfies the following
conditions:

• The root of the tree is labeled with the start symbol S.

• Each leaf of the tree is labeled with a terminal symbol from Σ or the empty string ϵ.

• Each internal node of the tree is labeled with a non-terminal symbol from V .

• If an internal node is labeled with a non-terminalA and has children labeled withX1, X2, . . . , Xn, then there
is a production rule A→ X1X2 . . . Xn in R.

• The yield of the parse tree, which is the concatenation of the labels of the leaves (in left-to-right order), forms
a string in Σ∗ that is derived from the start symbol S.

C Neural Architectures

In this section, we lay down the precise mathematical definitions of neural architectures we are going to use in our
proof.

Definition 7 (Single-Layer Fully Connected Network with 4× Intermediate Space).

Given model dimension dmodel, a single-layer feed-forward network with an intermediate space expanded to 4 times
the input dimension is a function from R

dmodel to R
dmodel , denoted by ffcn and defined as follows:

given X ∈ R
dmodel , weights W1 ∈ R

4dmodel×dmodel , W2 ∈ R
dmodel×4dmodel , and biases B1 ∈ R

4dmodel , B2 ∈ R
dmodel , the output

ffcn(X) is computed as:

ffcn(X) =W2σReLU(W1X +B1) +B2,

where σReLU : R4dmodel → R
4dmodel is the Rectified Linear Unit activation function applied element-wise, defined by:

σReLU(z) = (max(z1, 0),max(z2, 0), . . . ,max(z4dmodel
, 0))

⊤
,

for z = (z1, z2, . . . , z4dmodel
)⊤ ∈ R

4dmodel .

The choice of a 4× intermediate space is common in practice, often used in Transformer architectures. Interestingly,
this empirical choice turns out to have a useful theoretical property: it allows the network to express any affine
transformation, as we’ll see in the following proposition.

Proposition 1. A single-layer fully connected network with a 4× intermediate space, as defined previously, can express
any affine map from R

dmodel to R
dmodel .

Proof. Let f : Rdmodel → R
dmodel be any affine map given by f(X) = AX + b, where A ∈ R

dmodel×dmodel and b ∈ R
dmodel .

We will construct weights W1 ∈ R
4dmodel×dmodel , W2 ∈ R

dmodel×4dmodel and biases B1 ∈ R
4dmodel , B2 ∈ R

dmodel such that
ffcn(X) = f(X) for all X ∈ R

dmodel .

Define:

W1 =






Idmodel

−Idmodel

0
0




 , B1 = 0 ∈ R

4dmodel ,

where Idmodel
is the dmodel × dmodel identity matrix, and 0 represents zero matrices of appropriate dimensions. Set:

W2 = (A −A 0 0) , B2 = b.

16

A PREPRINT - JANUARY 28, 2025

For any X ∈ R
dmodel , compute:

ffcn(X) =W2 σReLU(W1X +B1) +B2

= (A −A 0 0) σReLU











X
−X
0
0









+ b

= (A −A 0 0)






σReLU (X)
σReLU (−X)

0
0




+ b

= AσReLU (X)−AσReLU (−X) + b.

Note that σReLU (X)− σReLU (−X) = X , we have:

ffcn(X) = AX + b = f(X).

Therefore, the network can represent any affine map from R
dmodel to R

dmodel .

Definition 8 (Single-Layer Feed Forward Network with 4× Intermediate Space). Given model dimension dmodel and
position set Pos, the Transformer Feed Forward Network is a function fffn : RPos×dmodel → R

Pos×dmodel defined as
follows:

For an input X ∈ R
Pos×dmodel , the output fffn(X) is computed by applying the single-layer feed-forward network ffcn

(as defined previously) independently to each position:

fffn(X)p = ffcn(Xp) ∀p ∈ Pos

where Xp ∈ R
dmodel is the p-th row of X , corresponding to the p-th position in the input sequence.

Next, we define the attention mechanism, which is a key component of the Transformer architecture. This definition
presents a hard attention layer with a simplified position encoding. We use hard attention here for theoretical simplicity,
as it represents a discrete limit of the more commonly used soft attention mechanism. Hard attention forces the model
to make a clear choice about which inputs to focus on, which can simplify analysis and provide clearer insights into
the model’s behavior. It can be viewed as the limiting case of soft attention as the temperature approaches zero, where
the softmax operation becomes increasingly peaked and eventually converges to a one-hot vector.

Definition 9 (Hard Attention Layer with Simplified Position Encoding). Given model dimension dmodel, number of
heads H , and number of layers L, a transformer with simplified position encoding and hard attention is defined to be
a function fattn : RPos×dmodel → R

Pos×dmodel defined by

∀p ∈ Pos, fattn(X)p :=WOConcat
(

Attn(1)(X)p, . . . ,Attn(H)(X)p

)

, (4)

where the hth attention head uses hard attention, defined as:

Attn(h)(X)p :=
1

|Sp|

∑

p′∈Sp

V
(h)
p′ , (5)

where

• WO ∈ R
dmodel×dmodel are trainable parameters;

• Sp = argmaxp′∈Pos

(

Q
(h)
p

⊤
K

(h)
p′ + λ(h)⊤Ψp′−p

)

with Q
(h)
p ,K

(h)
p , V

(h)
p , λ(h),Ψq defined by

– Q
(h)
p = W

(h)
Q Xp,K

(h)
p = W

(h)
K Xp are vectors of dimension dmodel/H , with trainable parameters

W
(h)
Q ,W

(h)
K ∈ R

(dmodel/H)×dmodel ;

– V
(h)
p = W

(h)
V Xp are vectors of dimension dmodel/H , linear transformations of Xp with trainable pa-

rameters W
(h)
V ∈ R

(dmodel/H)×dmodel ;

17

A PREPRINT - JANUARY 28, 2025

– λ(h) ∈ R
2 are constants depending only on head count h;

– Ψq ∈ R
2 are 2-dimensional vectors depending on relative position q but not on head count h. It is

explicitly defined as

Ψq =

(
q

1q>0

)

. (6)

This formulation allows for both past and future masking.

Having defined the basic components, we can now proceed to describe the full Transformer architecture. This defini-
tion builds upon the previously introduced concepts, incorporating them into a complete model structure.

Definition 10 (Transformer). A Transformer is a function ftf : R
Pos×dmodel → R

Pos×dmodel that maps an input sequence
to an output sequence through a series of layers, each consisting of a multi-head attention mechanism and a position-
wise feed-forward network (MLP).

Given:

• Input sequence X ∈ R
Pos×dmodel , where Pos is the set of positions and dmodel is the model dimension.

• Number of layers L.

• Number of attention heads H .

The Transformer computes the output Y = X(L) through recursive application of attention and feed-forward layers:

• Initialization is given by:

X(0) = X.

• For each layer l = 1, 2, . . . , L:

– Compute attention output:

X̂(l) = X(l−1) + f
(l)
attn

(

X(l−1)
)

– Compute feed-forward output:

X(l) = X̂(l) + f
(l)
ffn

(

X̂(l)
)

Here:

• f
(l)
attn are hard attention layers with simplified position encoding as previously defined. It operates on X(l−1)

and produces an output in R
Pos×dmodel .

• f
(l)
ffn are feed-forward networks with 4× intermediate space as previously defined. It operates position-wise

on X̂(l) and produces an output in R
Pos×dmodel .

Remark 1. For simplicity, we have omitted the Layer Normalization component typically present in Transformer archi-
tectures. This simplification allows us to focus on the core attention and feed-forward mechanisms while maintaining
the essential structure of the Transformer.

We use Tfdmodel

H,L to denote the set of transformers of model size dmodel, number of heads H and number of layers L as

functions from R
dmodel∗ to R

dmodel∗.

For purpose of proof, we shall also need residual multi-layer perceptron. Functions over local types are first represented
by multi-layer perception, then by Proposition 2 applications of these functions over sequences can be representable
by transformers. Residual multi-layer perceptron can be assembled through composition or computer graph, as we
shall see.

Here’s the definition of a residual MLP Network.

Definition 11 (Residual Multi-Layer Perceptron). A Residual Multi-Layer Perceptron (ResMLP) is a function fresmlp :
R

dmodel → R
dmodel defined recursively by

X(0) = X, X(l) = X(l−1) + ffcn

(

X(l−1)
)

, l = 1, 2, . . . , L, fresmlp(X) = X(L)

where X ∈ R
dmodel is the input vector, L is the total number of layers, and ffcn : Rdmodel → R

dmodel is the Single-Layer
Fully Connected Network with 4× Intermediate Space as previously defined in Definition 7.

18

A PREPRINT - JANUARY 28, 2025

We use ResMlpdmodel

L ⊂ R
dmodel

R
dmodel

to represent the set of residual MLPs with dimension dmodel and L layers, as
defined in Definition 11.

The following proposition is quite basic. It demonstrates that any function representable by a ResMLP can be applied
position-wise by a Transformer.

Proposition 2 (Position-wise ResMLP Application is Representable by Transformers). Let f : Rdmodel → R
dmodel be a

function representable by a Residual Multi-Layer Perceptron (ResMLP) as defined in Definition 11. Then the function
F : RPos×dmodel → R

Pos×dmodel , defined by applying f position-wise,

F (X)p = f(Xp), ∀p ∈ Pos,

is representable by a Transformer as defined in Definition 10.

Proof. Since f is representable by a ResMLP with L layers, it is defined recursively by

X(0) = X, X(l) = X(l−1) + ffcn

(

X(l−1)
)

for l = 1, . . . , L,

and
f(X) = X(L),

where ffcn : Rdmodel → R
dmodel is the Single-Layer Fully Connected Network with 4× intermediate space (Definition 7).

We construct a Transformer with L layers such that, for any input sequence X ∈ R
Pos×dmodel , the output Y = ftf(X)

satisfies Yp = f(Xp) for all p ∈ Pos.

To achieve this, we configure the Transformer so that the attention mechanism outputs zero at each layer. This can be

done by setting the attention weights to zero, ensuring fattn(X
(l−1)) = 0. Consequently, the update equations simplify

to
X̂(l) = X(l−1).

We then set the feed-forward network fffn in the Transformer to have the same weights and biases as ffcn in the
ResMLP. The Transformer layer update becomes

X(l) = X̂(l) + fffn

(

X̂(l)
)

= X(l−1) +
(

ffcn

(

X(l−1)
p

))

p∈Pos
.

This recursion matches that of the ResMLP applied position-wise to X . Therefore, after L layers, the Transformer
output satisfies ftf(X)p = f(Xp) for all p ∈ Pos.

D Cybertron

D.1 Introduction

It’s often difficult to directly prove that transformers or in general other low level forms of computation can express
complicated algorithms and even complex software. There are way too many details as compared with typical mathe-
matical proofs in machine learning theory. Hence, we propose the domain specific language Cybertron, where we can
systematically prove transformers can express complicated algorithms and complex software with sufficient readabil-
ity.

(Note: Cybertron is fundamentally different from Mini-Husky! Mini-Husky is the target language that we want
transformers to analyze yet Cybertron is the domain specific language we use to prove that transformers can do that.)

RASP [Weiss et al., 2021] is quite close to Cybertron in terms of its design purpose. However, Cybertron is more pow-
erful with advanced algebraic type system, global and local function constructions, etc. These additional mechanisms
replace a significant part of the chore in proofs with automatic type checking. Thus, using Cybertron one can argue
operations more complicated than simple algorithms can be simulated by transformers.

In the broader perspective of computer science, it’s common to use code to prove things. In fact, in the formal
verification community, mathematical proofs are viewed as a special case of a much larger universe of possible proof
systems [mathlib Community, 2019, Massot, 2024] and constructive proof using code [Harrison et al., 2014, Farooqui,
2021, Jung et al., 2018] is far more applicable with great soundness to the most general settings. In our case, our code
doesn’t serve as the whole proof but as an important part that contains most of the chores. However, it’s totally possible
to build a full-fledged formalized proof, despite it might be too costly for a single paper to do.

Essentially, Cybertron works as follows:

19

A PREPRINT - JANUARY 28, 2025

1. one builds complicated functions from the composition of smaller functions. We have lemmas that prove
that the composed functions are representable by certain architectures given that smaller functions are repre-
sentable.

2. there is an algebraic type system and every value is strongly typed and immutable, making it highly readable
and easy to reason about;

3. there is a distinction between global and local types/functions. Local types are those information hovered
over a single token, and global types are sequences of local types, i.e., the collection of information over the
whole token stream. One can define a global function by mapping a local function.

4. there are many functions that is defined externally, requiring external explanation that they can be represented
by transformers.

It’s implemented as a subset of the Rust programming language that can be understood as computation graphs over
sequences. It can be executed for testing purposes and we’ve tested our implementation for a range of inputs and
validated its correctness.

D.2 Philosophy: Sequential Representation of Everything

Before going through the full details, let’s first talk about the fundamental philosophy behind transformer and Cy-
bertron.

One of the fundamental reasons transformers can be easily adapted across multiple modalities, including NLP and
CV, is their sequence-to-sequence operation. Everything can be represented as an arbitrary-length sequence. Texts
are sequences of words, images are sequences of image patches, videos are sequences of spacetime patches [OpenAI,
2024b], and even graphs with sparse spatial structures can be represented as sequences of indexed nodes with additional
information like parent node indices. Since inputs of various modalities can be cast into vector sequences, transformers
can be applied to different domains without modifications to their architecture [Dosovitskiy et al., 2020].

Interestingly, this sequence-based thinking is not new. We’ve actually been representing everything as sequences
since the very early days of computer science. This has been the foundation of how data is stored and processed in
computers. However, sequence representations were traditionally viewed as low-level and sometimes inefficient for
practical use, prompting the development of higher-level abstractions for programming. The rise of transformers, with
their scalable learning capabilities, encourages us to reconsider the significance of sequence-based representations.

From a systems perspective, viewing everything as a sequence is the foundational approach in computer science.
Data in a computer is stored as a continuous stream of bits. Whether it’s text, images, videos, or graphs, this data is
represented in computer memory as an ordered sequence of bits. This aligns with how transformers handle different
types of input by transforming them into sequences of vectors. Thus, the sequence-based operation of transformers
mirrors the sequence-based representation of data in computer memory.

In essence, if a data structure can be represented in computer memory using N bits, it can be processed as a
sequence of bits of length N . This natural sequence representation in memory is consistent with how transformers
process data, which makes them particularly flexible across different modalities. For example, recent state-of-the-
art approaches Wu et al. [2024] show that transformers can even be trained directly on raw bits of data, further
emphasizing this connection.

Moreover, this sequence-based viewpoint offers fresh insights when applied to the domain of programming, partic-
ularly in areas such as code generation and analysis. With tools like ChatGPT and Copilot being widely used by
developers, the impact of transformers on programming workflows is growing. Understanding the complexity of algo-
rithms and programs expressed in sequence form becomes an interesting area of study, as it reveals new possibilities
for how we approach computation.

In comparison to traditional systems like CPUs and human cognition, transformers are highly parallel but shallow in
their operation. A transformer processes data in a fixed number of layers, while a CPU executes 109 cycles per second,
and humans may take days to process information like reading a book. Transformers, therefore, represent a funda-
mentally different computational model that is worth studying further in the context of sequence-based operations.

Example 2. Image to Sequence: In computer memory, an image is typically stored as a continuous block of pixel
values, often in row-major order, where each pixel’s value is encoded as bits in a sequence. When a transformer
processes an image, it divides the image into patches (e.g., 16 × 16 pixels), and each patch is flattened into a vector
of pixel values. This creates a sequence of patches, where each patch corresponds to a vector. The way transformers
represent these patches as a sequence closely aligns with how the image data is sequentially stored in computer
memory.

20

A PREPRINT - JANUARY 28, 2025

Example 3. Video to Sequence: A video is stored in computer memory as a sequence of frames, where each frame is
essentially an image. In a similar manner to images, these frames are stored as continuous pixel values. Transformers
process videos by dividing the frames into spacetime patches, where each patch captures a small region of space over
a short segment of time. These spacetime patches are flattened and arranged into a sequence for the transformer to
process. The sequential ordering of these patches matches how video frames and pixel data are stored in computer
memory.

Example 4. Graph to Sequence: In computer memory, a graph is typically stored using an adjacency list or adja-
cency matrix, where nodes and their connections (edges) are stored sequentially in a data structure. Transformers
process graphs by representing each node and its features as a vector, and then creating a sequence of these vectors.
The sequence may also encode additional information, such as the parent-child relationships between nodes. This
sequence-based representation of graphs is consistent with how graph data is stored in memory, where nodes and
edges are arranged in a structured order.

Example 5. Text to Sequence: Text is naturally stored in computer memory as a sequence of characters or words,
where each character is encoded as a sequence of bits (such as ASCII or Unicode values). When transformers process
text, they convert each word into a word embedding, which is a vector of real numbers. The sequence of word embed-
dings corresponds to the sequence of characters or words stored in memory. This natural sequential representation of
text in both memory and transformers ensures efficient handling of linguistic data.

Example 6. AST (Abstract Syntax Tree) to Sequence: In computer memory, an abstract syntax tree (AST) is typically
stored as a tree-like structure, where each node represents a component of the program (e.g., operators, variables, or
statements). However, this tree can be linearized into a sequence by traversing it in a specific order (e.g., pre-order
traversal). When transformers process an AST, they convert it into a sequence of tokens, where each token corresponds
to a node in the tree. This sequential representation of the tree in transformers mirrors how the tree is stored as nodes
and edges in memory, and how it can be flattened into a linear sequence.

In conclusion, the sequence-based representation in transformers is not just a novel approach for deep learning but is
deeply rooted in how data has been stored and processed in computer memory since the early days of computing. This
consistency between how data is stored in memory and how transformers process data as sequences is a key factor in
their adaptability across different domains.

D.3 Local and Global Types

Now we define the type foundation of Cybertron.

Types are fundamental objects for programming language theory. Here we use types to faciliate our proofs. Type
signatures contain rich information that help guarantee correctness of the program. Here, we choose a mathematical
definition of types that is most convenient for the discussion in this paper. We introduce the notion of “local type”.
Roughly speaking, they are types without heap allocation and intended to be represented with R

dmodel over a single to-
ken. For more complicated heap-allocated data structures like trees, graphs, etc., we shall represent them by sequences
of these “local type”s, which translate directly to vector sequences for transformers.

Definition 12 (Local Type). Given a base space B with at least two elements and a countably infinite identification
space Ψ, a local type T over B is a finite set S together with an embedding ϕ from S to Bd and some fixed d ∈ N and
an identification ψ ∈ Ψ.

For convenience, define Set (T) = S, dT = d and ϕT = ϕ and ψT = ψ. And let 0B , and 1B be two different elements

of B. And B0 := {0B} so that
∣
∣Bi
∣
∣ = |B|

i
holds for all i ∈ N.

Remark 2. We need B to be at least size 2, so that Bd can be as large as we want for d large enough.For typical
computer representation, we can take B to be 2 = {0, 1}. For transformers or neural networks in general, we can take
B to be R if we ignore precision. If we don’t ignore precision, B should be some finite set of floating point numbers.
Thus, we shall keep the generality of B throughout our discussion as all of these settings are important.

Remark 3. The role of identification ψT ∈ Ψ is to make two types mathematically different even if they have the same
underlying set, encoding dimension, and encoding. Basically we are establishing a specialized type of theory tailored
towards the expressive power of transformers upon a foundation of intuitive set theory.

Example 7 (Finite Set). In mathematics, we have the finite set denoted by [n] = {0, 1, . . . , n− 1}. Here we use a
slightly different notation for a type with underlying set JnK and some encoding.

Example 8 (Position Encoding). Position encoding can be viewed as the encoding of a type denoted by Pos (n) with
the underlying set being [n] where n is the context length. Although it has the same underlying set as type JnK, it is a
different type for a different purpose and might have different encoding.

21

A PREPRINT - JANUARY 28, 2025

If B is R, then the position encoding can be understood as the encoding of type JLK where L is the context length.
More explicitly, we have

ϕ(x) = (eiL
−i/dx)i∈[d/2], (7)

viewed as a d dimensional R-vector through the natural conversion of C to R
2, since d is even.

It’s too cumbersome to manually give the underlying set and the encoding. Here we introduce a classical concept from
programming language theory Program [2013] that makes it super easy to construct new types and make things fairly
readable.

Definition 13 (Finite Algebraic Data Type, Mathematical Forms). We define two ways of creating new types by com-
bining existing types:

1. Sum type. Given types Ti = (Si, ϕi, di) over base space B for i = 1, . . . , n, we define the sum type of Ti,
denoted by

∑n
i=1 Ti, as follows,

• let S = ({1} × S1) ⊔ . . . ⊔ ({n} × Sn);

• let d = dJnK +maxni=1 di;

• let ϕ : S → Bd be such that

∀i ∈ JnK, s ∈ Si, ϕ((i, s)) = ϕJnK(i)⊕ ϕi(s) ∈ BdJnK+di ⊆ Bd. (8)

Note that |S| =
∑n

i=1 |Si|, thus the name sum type.

2. Product type. Given Local Types Ti = (Si, ϕi, di) over base space B for i = 1, . . . , n, we define the product
type of Ti, denoted by

∏n
i=1 Ti, as follows,

• let S = S1 × . . .× Sn;

• let d =
∑n

i=1 di;

• let ϕ : S → Bd be such that

∀s = (s1, . . . , sn) ∈ S, ϕ(s) = ϕ1(s1)⊕ . . . ϕn(sn) ∈ Bd. (9)

Note that |S| =
∏n

i=1 |Si|, thus the name product type.

Although we can define things and refer to things in terms of mathematical equations, it’s sometimes cumbersome

to do so. So we shall frequently refer to types using a programming language form, like CybertronForm or more

complicated things like Option<T> a builtin generic type.

Definition 14 (Unit Type). The unit type is a type with S = {0} and ϕ : S → B0, 0 7→ 0B . In Cybertron, it’s denoted

as () .

Definition 15 (Array Type). Given a type T , the array type of T with length ℓ ∈ N is the type with S = S(T)ℓ,
d = ℓdT and ϕ : S → BℓdT , (s1, . . . , sℓ) 7→ ϕT (s1) ⊕ . . . ⊕ ϕT (sℓ). It’s denoted by T ℓ. In Cybertron, it’s denoted

as [T;N] .

Definition 16 (Vector Type of Finite Capacity). Given a type T , the vector type of finite capacity of T with maximal

length ℓ ∈ N is the type with S =
⊔ℓ

i=1 Set (T)
i
, d = dJℓK + ℓdT and ϕ : S → BdJℓK+ℓdT , (s1, . . . , si) 7→

ϕJℓK(i)⊕ϕT (s1)⊕ . . .⊕ϕT (si)⊕0B⊕ . . .⊕0B with just enough number of copies of 0B such that the dimensionality

matches. It’s denoted by T ≤ℓ.In cybertron, it’s denoted as BoundedVec<T,N> .

However, it’s cumbersome and obtuse to define and operate in mathematical forms only. So we shall give a definition
closer to actual programming that is more convenient and easy to read.

Definition 17 (Finite Algebraic Data Type, the Code Forms). We define two ways to create new types:

1. Enum type. An enum type is the sum type of a finite set of variant types. Each variant type is associated with
a different identifier and can be

• unit like, a unit type;

• struct like, a product of several types, each called a field of the variant, and associated with an identifier;

• tuple like, a product of several types, each called a field of the variant, but not associated with an
identifier.

22

A PREPRINT - JANUARY 28, 2025

Syntactically, an enum type is specified as follows,

1 enum <type-name> {

2 <identifier> { // 1st variant, struct like

3 <identifier>: <type>, // 1st named field of 1st variant

4 <identifier>: <type>, // 2nd named field of 1st variant

5 ...

6 },

7 <identifier> { // 2nd variant, struct like

8 <identifier>: <type>, // 1st field of 2nd variant

9 ...

10 },

11 <identifier> (// 3rd variant, tuple like

12 <type>, // 1st tuple field of 3rd variant

13 <type>, // 2nd tuple field of 3rd variant

14 ...

15),

16 <identifier>, // 4th variant, unit like

17 ...

18 }

For example,

1 enum Expr {

2 Variable(IdentToken), // 1st variant, tuple like

3 Binary { // 2nd variant, struct like

4 lopd: ExprId,

5 opr: BinaryOprToken,

6 ropd: ExprId,

7 },

8 Prefix { // 3rd variant, struct like

9 opr: PrefixOprToken,

10 opd: ExprId,

11 },

12 Suffix { // 4th variant, struct like

13 opd: ExprId,

14 opr: SuffixOprToken,

15 },

16 Panic, // 5th variant, unit like

17 }

2. Struct type. A struct type is just the product type of

1 struct <type-name> {

2 <identifier>: <type>,

3 <identifier>: <type>,

4 ...

5 }

1 struct A {

2 a: i32

3 }

To show how convenient this is, we can define the very useful option type as follows,

Definition 18 (Option type). For a local type T , we can define an option type as

1 enum Option<T> {

2 Some(T),

3 None

4 }

Definition 19 (Global Types). Global types are defined to be sequences of local types.

Example 9 (Representation of Graphs). Graphs can be represented as sequences of its nodes. We can use position
index to use as node references.

D.4 Computation Graph

For convenience, we shall use computation graph as a vehicle to describe complicated computation processes. Compu-
tation graph is close to actual computation process and one can derive an understanding of the computation difficulty
from the graph’s mathematic properties (width, depth, etc.)

Definition 20 (Directed Simple Graph). A directed simple graph G is a pair (V,E) where V is a finite set, and
E ⊆ V × V is called edges.

23

A PREPRINT - JANUARY 28, 2025

In the following, we shall simplify the "directed simple graph" to just graph.

Definition 21 (Computation Graph). A computation graph is an acyclic directed graph G = (V,E) with additional
structures:

1. for each vertex v ∈ V , there is an associated type, denoted by Tv;

2. for each vertex v ∈ V with a positive number of incoming edges, let v1, . . . , vn be the other vertices for the
incoming edges, then there is an associated function fv from Tv1

× · · · × Tvn
to Tv .

A computation graph naturally generates a function from source vertices to sink vertices. Let vin1 , . . . , v
in
n be the set

of vertices with no incoming edges, and let vout1 , . . . , voutm be the set of vertices with no outgoing edges. Then we can
construct a function from Tvin

1
× · · · × Tvin

n
to Tvout

1
× · · · × Tvout

m
in the following obvious manner:

1. let (x1, . . . , xn) ∈ Tvin
1
× · · · × Tvin

n
be an input;

2. for each vini , assign it with value xi;

3. for each vertex v ∈ V with all its incoming vertices v1, . . . , vl assigned with a value, assign it with the value
fv(xv1 , . . . , xvl

) where xvi
denotes the value assigned to vi;

4. repeat the process until all vertices are assigned a value, then take (xvout
1
, . . . , xvout

m
) as the output.

Our goal is to make a hypothesis class using the above graph. To control the statistical and computational complexity,
we put restrictions on the choice of Tv and fv , as follows:

Definition 22 (Restricted Computation Graph). Let U be a set of types, and for any A,B ∈ U , there is a set of
functions Mor(A,B) from A to B. We require that Tv, T

in
v ∈ U and fv ∈ Mor(T in

v , Tv) where T in
v :=

∏

v′v∈E

Tv′ . We

also require that the underlying graph G satisfies certain conditions (width, depth, etc.)

Definition 23 (Restricted Computation Graph Of Sequences). Let U be a universe such that for a set of types U0 all
types in U are of the form A∗ for some type A ∈ U0, and Mor(A∗, B∗) are functions that preserve sequence lengths.

Given a restriction, the class of functions generated by restricted computation graphs is the central object to study in
this paper. We shall use an even more restricted computation graph of sequences. We shall argue about the class of
functions formed that

1. it’s rich enough to contain many interesting operations including SQL, compiler (type inference, static anal-
ysis)

2. it’s computationally reasonable, and can be represented by transformers with pragmatic bounds

3. it has a reasonable statistical complexity

As a corollary, our theories suggest that transformers can possibly learn to do many interesting things with reasonable
computational and statistical complexity.

To our knowledge, this is the first theoretical paper that gives pragmatic optimistic bounds for the power of transformers
in a wide range of meaningful language tasks.

Now we introduce graph-theoretical measures that will play key roles in our new complexity theory.

The most basic one is the following:

Definition 24 (Depth of Graph). The depth of a computation graph is defined to the length of the longest path, denoted
by dG.

For convenience, we define the following vertex-wise depth.

Definition 25 (Depth of Graph Vertex). The depth of a vertex v of a computation graph is defined as the length of the
longest path with end v, denoted by dv .

The smaller dG is, the more parallel the computation is.

However, we shall discuss a more nuanced measure, containment, as follows:

24

A PREPRINT - JANUARY 28, 2025

D.5 Functions over Local Types

Definition 26 (Functions over Local Types). Given Local Types T ,R, the functions from T to R are defined to be just
the functions from Set (T) to Set (R).

Remark 4. The domains and codomains are all finite sets, so there aren’t many constraints we want to enforce here.
Basically, these are “discrete” functions.

Definition 27 (Functions over Algebraic Data Types). Let T ,S1, . . . ,Sm,R be Local Types, and suppose that T is
an algebraic data type, then we can construct functions from T × S1 × . . .× Sm to R as follows,

1. suppose that T is the sum type of T1, . . . , Tn. Then given functions fi : Ti ×S1 × · · · × Sm for i = 1, . . . , n,
we can construct a function f , by letting

f((i, t), s1, . . . , sm) = fi(t, s1, . . . , sm), (10)

for each t ∈ Set (Ti), s1 ∈ Set (S1), . . . , sm ∈ Set (Sm).

(Note that we use the pair (i, t) because the underlying set of T is
⊔n

i=1 {i} × Set (Ti).)

2. suppose that T is the product type of T1, . . . , Tn. Then given a function f∗ : T1 × · · · × Tn × S1 × · · · × Sm

for i = 1, . . . , n, we can construct a function f , by letting

f((t1, . . . , tn), s1, . . . , sm) = f∗(t1, . . . , tn, s1, . . . , sm), (11)

for each t ∈ Set (Ti), s1 ∈ Set (S1), . . . , sm ∈ Set (Sm).

It is not enough to just mathematically construct. We should also discuss how neural networks can represent these
functions. We define the representation of functions over Local Types formally as follows:

Definition 28 (Representation of Functions over Local Types Using Multi-Layer Perceptions). Let T ,R be Local
Types. Given a function f from T to R, we say it is representable by MLP of dimension d ≥ max {dT , dR} and

number of layers L, if there exists f̃ ∈ ResMlpdL such that

ι1 ◦ ϕR ◦ f = f̃ ◦ ι2 ◦ ϕT , (12)

where ι1 : RdR → R
d and ι2 : RdT → R

d are the canonical embeddings by putting zeros to fit the dimensionalities.

Here are some trivially true facts:

Proposition 3. [Identities are Representable] For any Local Type T , the identity map IdT is representable in

ResMlpdT

1 .

Proof. Just take W
(1)
0 = Id,W

(1)
1 =W

(2)
2 = 0, B

(1)
1 = B

(2)
2 = 0.

Proposition 4. [Equality is Representable] The equality function for any local type T is representable in ResMlp2d2 ,
where d is the encoding dimension of T .

Proof. Let x, y ∈ T be the inputs. We encode them as ϕT (x), ϕT (y) ∈ R
d. The equality function can be represented

as:

feq(x, y) = min

(

1, A

d∑

i=1

|ϕT (x)i − ϕT (y)i|

)

,

where A is a large enough positive constant such that the RHS is either 1 or 0.

This can be implemented in two-layer ResMLP with dimension 2d.

Proposition 5. [Boolean NOT is Representable] The Boolean NOT function is representable in ResMlp11.

Proof. It’s affine.

Proposition 6. [Boolean AND is Representable] The Boolean AND function is representable in ResMlp21.

25

A PREPRINT - JANUARY 28, 2025

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then AND is just taking the
minimum. By min(a, b) = b− σReLU (b− a), we’re done.

Proposition 7. [Boolean OR is Representable] The Boolean OR function is representable in ResMlp21.

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then OR is just taking the
maximum. By max(a, b) = a+ σReLU (b− a), we’re done.

Proposition 8. [THEN_SOME is Representable] The function Bool::then_some : Bool × T → Option T returns

Some t if the boolean is true and None otherwise. This function is representable in ResMlpd+1
1 .

Proof. Encode the boolean as a binary flag in a (d + 1)-dimensional vector, where the first component indicates the

boolean value and the remaining d components hold the value of type T . The residual MLP fresmlp constructs the

output Option T by assembling the flag and the value split into positive and negative parts influenced by the flag:

fresmlp(X) =

(
x1

σReLU (x2:d+1 −Ax1)− σReLU (−x2:d+1 −Ax1)

)

.

Here,A is a vector of dimension dwith all entries positive and large enough to ensure proper thresholding. Specifically,
each entry of A should be larger than the maximum absolute value that can be represented in the corresponding

dimension of type T . This ensures that when x1 = 1, the subtraction x2:d+1 − A will always be negative, and when
x1 = 0, it will not affect the value.

When the flag is true (x1 = 1), σReLU (x2:d+1 −A) = 0 and σReLU (−x2:d+1 −A) retains the negated value, result-

ing in Some t . When the flag is false (x1 = 0), both ReLU terms preserve the value, yielding None . Thus, fresmlp

effectively implements Bool::then_some within a single layer of the MLP.

Proposition 9. [Option Or is Representable] Let T be a local type, let Option::or be the function that maps two

values a,b of type Option T to a value c of type Option T such that c is equal to a when a is not none, and equal

to b otherwise. Then Option::or is representable in ResMlp
2(d+1)
1 .

Proof. Each Option T is represented as a (d + 1)-dimensional vector, where the first component is a binary flag

indicating the presence (1 for Some , 0 for None), and the remaining d components encode the value. Given inputs

a, b ∈ Option T , the residual MLP fresmlp processes the concatenated vector

X =






aflag

aval

bflag

bval




 .

The MLP is designed to separate bval into positive and negative parts (b+, b− respectively) influenced by aflag. Specif-
ically, it computes:

fresmlp(X) = aval + σReLU (b+ −Aaflag)− σReLU (b− −Aaflag)

= aval + σReLU (bval −Aaflag)− σReLU (−bval −Aaflag),
(13)

whereA is a vector with large positive entries that ensures the ReLU activation zeroes out the non-selected parts based
on the flag. When aflag = 1, the terms involving b are suppressed, resulting in c = a. Conversely, when aflag = 0,

the positive part of b remains, effectively selecting b. Thus, fresmlp accurately implements the Option::or function,

demonstrating that it is representable within ResMlp
2(d+1)
1 .

Proposition 10 (Field Access Is Representable in ResMlp). For algebraic data type, either struct field access, enum

discriminator, and variant field access can be represented in ResMlpd1 where d is the encoding dimension.

Proof. Obvious because these operations are linear.

26

A PREPRINT - JANUARY 28, 2025

ϕT (x)
L1 layers

MLP
ϕS(f(x))

L2 layers
MLP

ϕR(g(f(x)))

Figure 3: Transformation from ϕT (x) to ϕS(f(x)) to ϕR(g(f(x))) with MLP layers.

Proposition 11. [Composition of Functions Representable in ResMlp] For local types T ,S,R, with maps f : T →
S and map g : S → R representable in ResMlpd1

L1
and ResMlpd2

L2
respectively. Then g ◦ f is representable in

ResMlp
max{d1,d2}
L1+L2

.

Proof. Obvious by using the first L1 layers to map from T to S and using the rest L2 layers to map from S to R. The
process can be visualized as in Figure 3.

Proposition 12. [Computation Graph of Functions Representable in ResMlp] Let G be a computation graph, with each

vertex v being of some local type Tv , and the construction functions are representable in ResMlpdv

Lv
. For convenience,

if v is a source vertex, dv is defined to be the encoding dimension of Tv and Lv = 0. Then the function induced by the

computation graph is representable in ResMlp
∑

v∈G
dv

Depth(G)(maxv∈G Lv+1)+1.

Proof. We construct a global residual multi-layer perceptron (ResMLP) that simulates the computation graph G by
aggregating and updating the states of all vertices simultaneously. Let D =

∑

v∈G dv be the total dimension, where

dv is the dimension associated with vertex v. The global ResMLP will have a depth of Depth(G)(maxv Lv + 1).

Consider the concatenated state vector X(t) ∈ R
D, which is a concatenation of the states of all vertices:

X(t) =
(

X(t)
v

)

v∈G
,

where X
(t)
v ∈ R

dv is the state of vertex v at layer t.

Initialization occurs at depth zero, corresponding to the source vertices of the computation graph. The state vector

X(0) is set by assigning the input vectors to the source vertices and initializing all other vertices to zero. Formally, if
V0 denotes the set of source vertices, then:

X(0)
v =

{
xv if v ∈ V0,

0 otherwise,

where xv ∈ R
dv is the input to source vertex v. BecauseX

(0)
v is of dimensionality dv equal to the encoding dimension,

this agrees with our convention for representing functions over local types.

We proceed inductively over the depth levels of the computation graph. For each depth level k = 1, 2, . . . ,Depth(G),
we perform the following steps in the global ResMLP.

1. Input Aggregation Layer. We apply a linear transformation to gather the outputs from the predecessor vertices
of each vertex at depth k and feed them as inputs to these vertices. Specifically, we define a linear mapping

W
(k)
agg ∈ R

D×D such that:

X̃(tk) =W (k)
agg X

(tk−1),

where tk−1 is the layer after processing depth k−1, and X̃(tk) is the aggregated input for the vertices at depth

k. The matrix W
(k)
agg rearranges and combines the outputs from predecessor vertices to provide the correct

inputs to each vertex at depth k. Specifically, for each vertex v at depth k, and for each predecessor u of v in

the computation graph, the matrix W
(k)
agg contains entries that copy the output of u into the input positions of

v. All other entries in W
(k)
agg are set to zero or identity as appropriate.

27

A PREPRINT - JANUARY 28, 2025

2. Local Computation Layers. For each vertex v at depth k, we simulate its local ResMLP of depth Lv . Since
the depths Lv may vary, we pad the local ResMLPs to have a uniform depth L = maxv Lv by adding identity
mappings where necessary. The updates for vertex v are computed as:

X(tk+1)
v = X̃(tk)

v + ffcnv

(

X̃(tk)
v

)

,

X(tk+k′)
v = X(tk+k′−1)

v + ffcnv

(

X(tk+k′−1)
v

)

, for k′ = 2, . . . , Lv,

X(tk+k′)
v = X(tk+k′−1)

v , for k′ = Lv + 1, . . . , L.

Here, ffcnv denotes the single-layer fully connected network (as per Definition 7) for vertex v.

3. State Update. After completing the local computations for depth k, we update the global state vectorX(tk+L)

by concatenating the updated states of all vertices:

X(tk+L) =
(

X(tk+L)
v

)

v∈G
.

The total number of layers added for depth k is L + 1, accounting for the input aggregation layer and the L layers
simulating the local ResMLPs.

By repeating this process for each depth level k = 1, 2, . . . ,Depth(G), we simulate the entire computation graph
within a global ResMLP of depth Depth(G)(maxv Lv + 1).

Lastly, we use the final layer to perform a linear mapping so that the output is in the correct linear representation,
clearing out the intermediate values.

Therefore, the function computed by the global ResMLP is equivalent to the function induced by the computation

graph G, and it is representable in ResMlpDDepth(G)(maxv Lv+1).

Remark 5. We only prove things around MLPs here. Later, we shall show that this will imply that the induced map
operation over sequences can be represented by transformers.

D.6 Functions over Global Types

The task we want transformers to express is too complicated to be cleanly described in one shot. So we introduce the
following lemma to significantly simplify things. The lemma shall be useful for our future papers on this topic.

Proposition 13. [Composition of Functions Representable in Transformers] For local types T , S , R, with maps

f : T ∗ → S∗ and g : S∗ → R∗ representable in Tfd1

H1,L1
and Tfd2

H2,L2
respectively. Then the composition g ◦ f is

representable in Tf
max{d1,d2}
max{H1,H2},L1+L2

.

Proof. This is basically the same as the proof of Proposition 11.

Proposition 14. [Computation Graphs of Functions Representable in Transformers] Suppose we have a computation
graphG = (V,E) with types Tv = T ∗

v together with encoding map ψv : Tv → R
dv and decoding map ϕv : Rdv → Tv ,

satisfying ϕv ◦ψv ≡ idTv
, and there exists some positive integer d0 such that for each v ∈ V , fv can be represented in

TfdHv,Lv

Let f be the function generated by the computation graph. Then f can be represented in TfdH,L if d ≥
∑

v dv +Hd0,

L ≥ |G|
H + dG where dG is the depth of the graph.

Remark 6. This doesn’t really cover the above. The bound in Proposition 14 isn’t always tight for model dimension
when the computation graph is deep and Proposition 13 complements it.

Proof. WLOG, assume that d =
∑

v∈V dv +Hd0. Then

R
d =

(
⊕

v∈V

R
dv

)

︸ ︷︷ ︸

C

⊕




⊕

h∈[H]

R
d0





︸ ︷︷ ︸

A

. (14)

28

A PREPRINT - JANUARY 28, 2025

Here C stands for "cache" used for storing computed values, and A stands for "active" used for storing intermediate
computation results.

Make an order of all the nodes in the graph, say V =
{
v1, . . . , v|G|

}
such that Depth(vi) ≤ Depth(vj) if i ≤ j.

We now imagine the transformer computation process as gradually evaluating the value of each vertex, starting from
v1 to v|G|. Every maxv Lv layers form a layer group, and after each layer group, at most H vertices are assigned
values. The equation 14 implies that we have enough memory to cache the computed values and intermediate values
in small transformers.

Now let this process continue until we compute all the values. It must be finite because after each layer group, at least
one of the vertices is computed. But this bound is too loose. We claim the following:

Claim: the number of layer groups where less than H vertices are assigned values is smaller than Depth(G).

Sketch of Proof of Claim: for any layer group where less than H vertices are assigned, all the vertices that aren’t
assigned after this layer group must have larger depth than any vertices that are assigned values before this layer group,
otherwise such a vertice can be evaluated in this layer group. Define the depth of any layer group to be the smallest
depth of vertices evaluated in this layer group. Then for any unsatiated layer group, it must have a larger depth than
the previous layer group. But depth can only increase Depth(G) times, thus there are at most Depth(G) unsatiated
layer groups.

Proof of Claim: let V1, . . . , Vl be the vertices evaluated at each layer group. Note that l is a different symbol than L
and means that the number of layer groups rather than the number of layers.

For convenience, let Di be the minimum of the depths of vertices in Vi.

Suppose that the ith layer group is unsatiated, then i < l. We want to show that Di < Di+1. Suppose otherwise, i.e.,
Di = Di+1. Because the ith layer group is unsatiated, for any v ∈ Vi+1, v must have dependencies that haven’t been
evaluated before the ith layer group. Choose v0 ∈ Vi, v1 ∈ Vi+1 such that Depth(v0) = Depth(v1) = Di = Di+1.
Note that any dependency of v1 must have smaller depths than v0, then must have already be evaluated before the ith
layer group. Contradiction!

Now given the claim, we have that for all but at most Depth(G) choices of i = 1, . . . , l, we have |Vi| = H , then we
have

|G| =

l∑

i=1

|Vi| ≥ (l −Depth(G))H (15)

Then l ≤ |G|
H +Depth(G).

Then L ≤ l ·maxv∈G Lv =
(

|G|
H +Depth(G)

)

maxv∈G.

Proposition 15. [Nearest Left/Right] For any local type T , consider the function that maps a sequence of type

Option<T> to nearest left/right neighbors that are not none. It’s representable in Tfd+1
1,1

Proof. There is only one layer and one head needed, so we can omit the layer and head index.

WLOG, we consider the nearest left case.

We just need to make the attention exponential look like this:

Q⊤
p Kp′ + λΨp′−p = aflag,p′ − 1p′−p>0, (16)

where aflag,p′ ∈ {0, 1} indicates whether the value at position p′ is some or none.

We set Vp′ to represent the value of type Option<T> .

For the starter token p0, we make it such that

Q⊤
p Kp0

+ λΨp0−p = 1, (17)

and
Vp0

= 0, (18)

so that when there are no some to the left, it will give us none.

29

A PREPRINT - JANUARY 28, 2025

Proposition 16. [Nearest Two Left/Right] For any local type T , consider the function that maps a sequence of type

Option<T> to nearest two left/right neighbors that are not none. It’s representable in Tf
O(d)
O(1),O(1) where d is the

encoding dimension of T .

Proof. We can utilize Proposition 15 and 14.

The nearest two left or right is equivalent to first computing the nearest left/right, and then packing them together into
one and compute its nearest left/right. The process is represented by a small constant computation graph, then we’re
done.

D.7 Syntax and Semantics of Cybertron

Having laid the necessary mathematical foundation behind Cybertron, we now turn to explaining its surface—its
syntax and semantics. Cybertron serves as a syntax sugar for expressing local and global computation graphs, which
are the vehicles used to demonstrate the expressive power of transformers. In Cybertron, computations are divided into
two layers: the local world and the global world. These layers play distinct but complementary roles in constructing
computation graphs.

D.7.1 Local World

The local world in Cybertron corresponds to the feed-forward layers of a transformer, focusing on computations over
local types. Local types represent individual tokens or data points, and computations in this world handle operations
on tokens independently of their surrounding context.

Data Types. Local types in Cybertron include basic types such as Bool , Idx , Pos , Fin<n> , BoundedVec<T, N> ,

etc. These types are essential for building local computation graphs that operate over individual tokens. Compound
types, like structs and enums, can also be defined for more complex token representations. These types serve as the
building blocks for the local computation graphs that transform data at the token level.

1 struct Node {

2 id: Idx,

3 position: Pos,

4 }

5

6 enum Operation {

7 Add {

8 lhs: Pos,

9 rhs: Pos,

10 },

11 Multiply {

12 factor: Pos,

13 },

14 }

Functions. Functions in the local world define operations upon information over individual tokens. These operations
form nodes in the local computation graphs. For instance, operations like binary or unary expressions, conditionals,
and matches on token types are transformed into computation graphs by handling each individual token’s data.

1 fn process_ast(ast: AstData) -> Option<Role> {

2 match ast {

3 AstData::LetInit { pattern, initial_value, .. } => {

4 Some(Role::LetStmt { pattern, initial_value })

5 }

6 AstData::Defn { keyword, ident, .. } => {

7 Some(match keyword {

8 DefnKeyword::Struct => Role::StructDefn(ident),

9 DefnKeyword::Enum => Role::EnumDefn(ident),

10 DefnKeyword::Fn => Role::FnDefn(ident),

11 })

12 }

13 _ => None,

14 }

15 }

30

A PREPRINT - JANUARY 28, 2025

Control Flow. In the local world, control flow structures such as if and match are transformed into computation

graphs by treating each branch or arm as an expression that returns an Option based on conditions. These Option val-

ues are then combined using the Option::or function. According to Proposition 9, Option::or maps two Option<T>

values and returns the first non- None value, or the second one otherwise. This allows conditional branches to be
represented in computation graphs as sequential option evaluations, where the first matching condition provides the
result.

D.7.2 Global World

The global world extends beyond individual tokens to sequences of tokens, represented as global types. These global

types are denoted as Seq<T> , where T is a local type. The global world represents the full transformer, focusing

on operations involving sequences of tokens, including variable definitions, expressions involving variable references,
and function calls.

Variable Definitions. Variables in the global world are defined using global types, which represent sequences of
local tokens. These definitions correspond to nodes in the global computation graph.

Expressions. Expressions in the global world consist of references to variables or function calls. Since the global
world operates over sequences of tokens, these expressions are translated into sequence-level operations in the com-
putation graph.

Function Calls. Function calls are key elements of the global world. They are represented by applying global func-
tions to sequences of tokens. Cybertron provides map functions to elevate local functions to global functions by

mapping them across sequences. Additionally, attention methods like nearest_left and nearest_right handle depen-

dencies between tokens in the sequence by identifying relationships based on their positions.

1 let result = seq_of_values.nearest_left();

In the global world, computation graphs are built by composing map functions and attention methods. These graphs,
unlike those in the local world, do not include control flow mechanisms.

D.8 Dyck Language

This section demonstrates how the local world in Cybertron operates over token-level computations and how the
global world handles sequence-level operations. We use a Dyck language example to explain the interactions between
these two worlds. The example processes a sequence of delimiters (like parentheses) and checks for matching pairs.

Local World. In Cybertron, the local world operates on individual tokens. Here, the local types are simple, such as

Delimiter and PreAst , which represent information associated with individual tokens. These types allow for token-
level operations like comparisons and transformations.

We define a struct to represent a delimiter and an enum to classify delimiters as either left or right. These definitions
reflect local types, as they hold information over a single token.

1 // Define a struct ‘Delimiter‘ that wraps a ‘u8‘ value.

2 #[derive(Debug, Clone, Copy, PartialEq, Eq)]

3 pub struct Delimiter(u8);

4

5 // Define an enum ‘PreAst‘ which represents a left or right delimiter.

6 #[derive(Debug, Clone, Copy, PartialEq, Eq)]

7 pub enum PreAst {

8 LeftDelimiter(Delimiter),

9 RightDelimiter(Delimiter),

10 }

Here, the local types Delimiter and PreAst define operations upon individual tokens, representing fundamental units
of the computation graph at the local level. The local world is responsible for handling these small, token-level
computations independently of the global sequence.

Global World. In the global world, Cybertron operates on sequences of tokens, treating the collection of local types

as a single unit of computation. The global world introduces global types such as Seq<Option<PreAst>> , which rep-

31

A PREPRINT - JANUARY 28, 2025

resents a sequence of optional delimiters. The global world handles sequence-level operations by applying functions

like nearest_left and nearest_right to capture the relationships between tokens in the sequence.

The following function operates on a sequence of PreAst , reducing matched pre-asts. The recursive application of

step gives us the classifier for Dyck language.

1 fn step(pre_asts: Seq<Option<PreAst>>) -> Seq<Option<PreAst>> {

2 let pre_asts_nearest_left = pre_asts.nearest_left();

3 let pre_asts_nearest_right = pre_asts.nearest_right();

4 step_aux.apply(pre_asts_nearest_left, pre_asts, pre_asts_nearest_right)

5 }

Local Worlds. The step_aux function matches tokens based on their nearest neighbors within the sequence, elimi-

nating pre-asts if a match is found.

1 fn step_aux(

2 pre_ast_nearest_left: Option<(Idx, PreAst)>,

3 pre_ast: Option<PreAst>,

4 pre_ast_nearest_right: Option<(Idx, PreAst)>

5) -> Option<PreAst> {

6 match pre_ast? {

7 PreAst::LeftDelimiter(delimiter) => match pre_ast_nearest_right {

8 Some((_, PreAst::RightDelimiter(delimiter1))) if delimiter1 == delimiter => None,

9 _ => pre_ast,

10 },

11 PreAst::RightDelimiter(delimiter) => match pre_ast_nearest_left {

12 Some((_, PreAst::LeftDelimiter(delimiter1))) if delimiter1 == delimiter => None,

13 _ => pre_ast,

14 },

15 }

16 }

In this example, the global function step uses nearest_left and nearest_right to capture sequence-level dependencies,

while the local function step_aux uses conditional logic to check for matching pairs of delimiters. The local world

handles token-level logic, while the global world coordinates operations across the entire sequence. This separation
reflects how Cybertron handles computations at different levels of granularity.

Thus, this example illustrates how Cybertron leverages both the local and global worlds to build comprehensive com-
putation graphs in a convenient, comprehensive yet rigorous manner. The local world performs individual tokenwise
operations, and the global world captures relationships between tokens in a sequence, demonstrating how Cybertron
enables transformers to express complex computations.

E Mini-Husky Details

Here’s the BNF grammar of the Mini-Husky language:

32

A PREPRINT - JANUARY 28, 2025

⟨ast⟩ ::= ⟨literal⟩
| ⟨ident⟩
| ⟨prefix⟩
| ⟨binary⟩
| ⟨suffix⟩
| ⟨delimited⟩
| ⟨separated_item⟩
| ⟨call⟩
| ⟨let_init⟩
| ⟨if_stmt⟩
| ⟨else_stmt⟩
| ⟨defn⟩

⟨literal⟩ ::= ...

⟨ident⟩ ::= ...

⟨prefix⟩ ::= ⟨prefix_opr⟩ ⟨ast⟩

⟨binary⟩ ::= ⟨ast⟩ ⟨binary_opr⟩ ⟨ast⟩

⟨suffix⟩ ::= ⟨ast⟩ ⟨suffix_opr⟩

⟨delimited⟩ ::= ⟨left_delimiter⟩ ⟨separated_item⟩* ⟨right_delimiter⟩

⟨separated_item⟩ ::= [⟨ast⟩] ⟨separator⟩

⟨call⟩ ::= ⟨ast⟩ ⟨left_delimiter⟩ ⟨ast⟩* ⟨right_delimiter⟩

⟨let_init⟩ ::= let ⟨ast⟩

⟨if_stmt⟩ ::= if ⟨ast⟩ ⟨delimited⟩

⟨else_stmt⟩ ::= ⟨if_stmt⟩ else (⟨delimited⟩ | ⟨else_stmt⟩)

⟨defn⟩ ::= ⟨defn_keyword⟩ ⟨ident⟩ ⟨ast⟩

⟨prefix_opr⟩ ::= + | - | ! | ...

⟨binary_opr⟩ ::= + | - | * | / | ...

⟨suffix_opr⟩ ::= ++ | -- | ...

⟨left_delimiter⟩ ::= ‘(’ | [| {

⟨right_delimiter⟩ ::= ‘)’ |] | }

⟨separator⟩ ::= , | ;

⟨defn_keyword⟩ ::= def | fn | ...

Below is a sample piece of codes:

1 struct Dog { weight: f32, .. }

2

3 fn see_vet(dog: Dog) -> f32 {

4 assert dog.weight < 100;

5 let mut fee = dog.weight * 10.0;

6 fee +=100.0;

7 return fee

8 }

It should be noted that the above is not the full story. There are additional constraints put on the ASTs. However, these
can be easily implemented as tree functions that are easy for transformers to express. As we are focusing on higher
level language processing capabilities, we ignore the details here.

Additionally, we need to require that for semantic correctness, we must have proper symbol resolution and type
correctness.

E.1 Additional Details about Compiler Tasks.

The outputs of the tasks are defined using Cybertron as follows:

• The construction of AST task’s final output is the collection all AST nodes. More concretely, the output is a sequence

of Option<Ast> with length equal to the input token sequence’s length, where Option<Ast> denoted the type Ast

33

A PREPRINT - JANUARY 28, 2025

will a null value added and Ast is the type storing the information of a node, including its parent, and its data of

type AstData . In Cybertron, we define Ast and AstData explicitly as follows:

1 /// Represents a node in an Abstract Syntax Tree (AST).

2 ///

3 /// Each ‘Ast‘ node has a reference to its parent node (if any) and holds

4 /// the associated syntax data (such as expressions, statements, or other

5 /// constructs defined in the ‘AstData‘ enum).

6 pub struct Ast {

7 /// The index of the parent node in the AST, if it exists.

8 ///

9 /// - ‘Some(Idx)‘: The node has a parent, and ‘Idx‘ represents its position.

10 /// - ‘None‘: The node is the root or does not have a parent.

11 pub parent: Option<Idx>,

12 /// The data associated with this AST node.

13 pub data: AstData,

14 }

15

16 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes

17 pub enum AstData {

18 /// Represents a literal value (e.g., integer, string)

19 Literal(Literal),

20 /// Represents an identifier (e.g., variable name)

21 Ident(Ident),

22 /// Represents a binary expression (e.g., ‘x + y‘, ‘a * b‘)

23 Binary {

24 /// Index of the left operand

25 lopd: Idx,

26 /// Operator in the binary expression (e.g., ‘+‘, ‘*‘)

27 opr: BinaryOpr,

28 /// Index of the right operand

29 ropd: Idx,

30 },

31 ... // other variants

32 }

• The output of the symbol resolution task is the collection of symbol resolution results on all applicable tokens. More

concretely, the output is a sequence of values of type Option<SymbolResolution> where Option<SymbolResolution>

is the type SymbolResolution with a null value added for non-applicability and SymbolResolution is the type storing

the result of the symbol resolution, being either a success with a resolved symbol of type Symbol or a failure with

an error of type SymbolResolutionError . In Cybertron, we define SymbolResolution explicitly as follows:

1 // an enum type definition, basically a tagged union type

2 pub enum SymbolResolution {

3 Ok(Symbol), // enum type variant for success with a resolved symbol

4 Err(SymbolResolutionError), // enum type variant for failure with an error

5 }

• The type analysis task’s final output is the collection of all type errors. More concretely, the output is a sequence of

Option<TypeError> , where Option<TypeError> denoted the type TypeError will a null value added and TypeError

is the type storing the information of a type error. The position of type errors agrees with the source tokens leading

to these errors. In Cybertron, we define TypeError explicitly as follows:

1 // This enum represents various kinds of type errors

2 pub enum TypeError {

3 // This variant indicates a type mismatch

4 // ‘expected‘ is the type that was anticipated

5 // ‘actual‘ is the type that was encountered

6 TypeMismatch { expected: Type, actual: Type },

7 }

One can expand the definition to include other kinds of type errors.

(1) Type definition. Types are either identified uniquely by a single identifier like <identifier> , or builtin generic types

Option<<identifier>> or Vec<<identifier>> . Users can define custom types without generics like the following (f32

means float32 and i32 means int32 below):

1 struct Dog { weight: f32 }

2

3 enum Animal {

4 Dog,

5 Cat,

6 }

34

A PREPRINT - JANUARY 28, 2025

This part is actually a part of the AST task and type definition is a variant of the AstData type:

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes

2 pub enum AstData {

3 ...

4 /// Represents a function or variable definition

5 ///

6 /// # defn

7 ///

8 Defn {

9 /// The keyword in the definition (e.g., ‘fn‘, ‘enum‘)

10 keyword: DefnKeyword,

11 /// Index of the identifier in the definition

12 ident_idx: Idx,

13 /// The identifier being defined (e.g., function name, variable name)

14 ident: Ident,

15 /// Index of the content or body of the definition

16 content: Idx,

17 },

18 }

(2) Type specification. Each appeared variable has a unique type, either by specification or speculation. All parameters
of a function must be specified explicitly by users. Variables defined by let statements might or might not be specified,
as follows:

1 fn f(a: i32) { // type of ‘a‘ must be specified

2 let x: i32 = a; // type of ‘x‘ specified

3 let y = a; // type of ‘y‘ unspecified

4 }

The return type of functions must be specified. The field type of structs and enum variants must be specified. the type
of expressions of function calls and field access will be determined correspondingly.

The output of the task is the collection of all type signatures, represented as a sequence of values of type

Option<TypeSignature> where TypeSignature is the type holding the essential information of type specifications. In

Cybertron, TypeSignature is defined as,

1 pub struct TypeSignature {

2 pub key: TypeSignatureKey,

3 pub ty: Type,

4 }

5

6 pub enum TypeSignatureKey {

7 FnParameter { fn_ident: Ident, rank: Rank },

8 FnOutput { fn_ident: Ident },

9 StructField { ty_ident: Ident, field_ident: Ident },

10 }

(3) Type inference. As discussed above, not all variables have their types specified.

1 fn f() {

2 let x: i32 = 1;

3 let y = x;

4 let z = y;

5 }

In the above code, 1 is an ambiguous literal that can be of type i32 , i64 , u32 , u64 , etc, and the types of y and

z is not specified. However, one easily sees that there exists one and only one choice of the types of 1 , y , and z

such that the whole code is type correct. Utilizing this property, the user can opt out of a significant portion of type
specification, achieving static guarantees.

A Type Inference Algorithm: For simplicity, we shall prove transformers can implement a simple type inference
algorithm: we maintain a table of type assignments for variables. We update the entries of the table by means of re-
duction, i.e., assuming the whole code is correctly typed and infer more and more unspecified types until we encounter
errors or all types are inferred. The process is largely parallel, and we call the number of rounds needed the depth of
type inference.

In the above code, the first round, we determine that the type of both 1 and the type of y are equal to the type of x

which is i32 . But we have no way to determine the type of z because the type of y is unknown at the first round.

In the second round, z can be determined to be of type i32 because the type of y is already inferred.

35

A PREPRINT - JANUARY 28, 2025

The output of the task is the collection all types inferred, represented as a sequence of values of type

Option<TypeInference> where TypeInference is the type holding the inferred type. In Cybertron, TypeSignature is

defined as,

1 pub struct TypeInference {

2 pub ty: Type,

3 }

F Transformer AST Proof

F.1 High Level Overview

Here we give the full details of the proof of transformers being able to parse ASTs.

On a high level, we are going to see the parsing of ASTs as an assembly process. First, we immediately get the atomic
ones, like identifiers, literals, etc. Then we assembly all composite ASTs with enough precedence util all tokens are
consumed. We can prove that at the nth round, all ASTs with depth no more than n are already constructed. In the
process, we must keep track of the unconsumed tokens and newly constructed ASTs (to be consumed as children for
new ASTs in the next round, as we are going bottom up). We use pre_asts to denote all the unconsumed tokens and

newly constructed ASTs and use asts to denote all the constructed(allocated) ASTs. For correctness guarantees, we
give detailed type specifications for tokens, ASTs, and PreASTs as follows.

We define the Token type as follows:

1 /// The ‘Token‘ enum represents the various types of tokens that can be

2 /// identified during the lexical analysis phase of a compiler. Each variant

3 /// corresponds to a specific category of token that can be encountered

4 /// in the source code.

5 pub enum Token {

6 /// A literal value, which can be a number, string, or other primitive type.

7 Literal(Literal),

8 /// A reserved keyword in the language, such as ‘if‘, ‘else‘, ‘while‘, etc.

9 Keyword(Keyword),

10 /// An identifier, typically representing variable names, function names,

11 /// or other user-defined symbols.

12 Ident(Ident),

13 /// An operator, such as ‘+‘, ‘-‘, ‘*‘, ‘==‘, etc., representing mathematical

14 /// or logical operations.

15 Opr(Opr),

16 /// A left delimiter, such as ‘(‘, ‘{‘, ‘[‘, used to denote the beginning of

17 /// a block, list, or expression.

18 LeftDelimiter(LeftDelimiter),

19 /// A right delimiter, such as ‘)‘, ‘}‘, ‘]‘, used to denote the end of a

20 /// block, list, or expression.

21 RightDelimiter(RightDelimiter),

22 /// A separator, such as ‘,‘ or ‘;‘, used to separate elements in a list or

23 /// statements in a block.

24 Separator(Separator),

25 }

The type has an encoding dimenion dToken = Θ(logL), which is large enough to faithfully represent its information.

More specifically, the types Literal , Keyword , Ident , Opr , LeftDelimiter , RightDelimiter , Separator are local types

assumed to have encoding dimension less than dToken. Keyword , Opr , LeftDelimiter , RightDelimiter , Separator are

small, so they can be encoded in a straight-forward manner entirely using dToken. However, Literal and Ident are

larger than representable by a limited number of bits because potentially a Literal can be a string literal of arbitrary

length and an Ident can also be of arbitrary length. This can be solved through methods like interning, which gives
all literals and identifiers that actually appear in the input distinct encodings. As the context length is L, the number
of different literals/identifiers are bounded by context length and interning needs O(dToken) = O(logL) to work. As
far as our theories are concerned, it’s totally reasonable to assume that all these types are assumed to have encoding
dimension less than dToken = O(logL).

We define AST type as follows:

1 /// Represents a node in an Abstract Syntax Tree (AST).

2 ///

3 /// Each ‘Ast‘ node has a reference to its parent node (if any) and holds

4 /// the associated syntax data (such as expressions, statements, or other

36

A PREPRINT - JANUARY 28, 2025

5 /// constructs defined in the ‘AstData‘ enum).

6 pub struct Ast {

7 /// The index of the parent node in the AST, if it exists.

8 ///

9 /// - ‘Some(Idx)‘: The node has a parent, and ‘Idx‘ represents its position.

10 /// - ‘None‘: The node is the root or does not have a parent.

11 pub parent: Option<Idx>,

12 /// The data associated with this AST node.

13 ///

14 /// This field holds the actual syntax information, which is typically

15 /// defined by the ‘AstData‘ enum. This could represent literals, expressions,

16 /// statements, and other constructs in the source language.

17 pub data: AstData,

18 }

Note that we intentionally structure the tree by always storing the parent but not necessarily storing all children
information. In our assumptions, we only control the depth of ASTs but don’t control the number of children. More
specifically, a function can have as many statements as possible. To avoid overflowing, we don’t store all children
information. As we shall see, parent information alone is enough for transformers to perform tree operations.

The AstData is the most complicated we define in this paper, as follows:

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes

2 pub enum AstData {

3 /// Represents a literal value (e.g., integer, string)

4 Literal(Literal),

5 /// Represents an identifier (e.g., variable name)

6 Ident(Ident),

7 /// Represents a prefix expression (e.g., ‘!x‘, ‘-x‘)

8 ///

9 /// # exprs

10 ///

11 Prefix {

12 /// Operator in the prefix expression (e.g., ‘!‘, ‘-‘)

13 opr: PrefixOpr,

14 /// Operand index of the expression

15 opd: Idx,

16 },

17 /// Represents a binary expression (e.g., ‘x + y‘, ‘a * b‘)

18 Binary {

19 /// Index of the left operand

20 lopd: Idx,

21 /// Operator in the binary expression (e.g., ‘+‘, ‘*‘)

22 opr: BinaryOpr,

23 /// Index of the right operand

24 ropd: Idx,

25 },

26 /// Represents a suffix expression (e.g., ‘x++‘, ‘y--‘)

27 Suffix {

28 /// Index of the operand

29 opd: Idx,

30 /// Operator in the suffix expression (e.g., ‘++‘, ‘--‘)

31 opr: SuffixOpr,

32 },

33 /// Represents a delimited expression (e.g., ‘(x + y)‘, ‘{a, b, c}‘)

34 Delimited {

35 /// Index of the left delimiter in the expression

36 left_delimiter_idx: Idx,

37 /// The left delimiter (e.g., ‘(‘, ‘{‘)

38 left_delimiter: LeftDelimiter,

39 /// The right delimiter (e.g., ‘)‘, ‘}‘)

40 right_delimiter: RightDelimiter,

41 },

42 /// Represents an item separated by a separator (e.g., elements in an array or list)

43 SeparatedItem {

44 /// Index of the content, if any

45 content: Option<Idx>,

46 /// The separator (e.g., ‘,‘, ‘;‘)

47 separator: Separator,

48 },

49 /// Represents a function call or array access (e.g., ‘f(...)‘, ‘a[...]‘)

50 ///

51 /// things like ‘f(...)‘ or ‘a[...]‘

52 Call {

53 /// Index of the caller (e.g., function or array)

54 caller: Idx,

55 /// The left delimiter of the call (e.g., ‘(‘, ‘[‘)

56 left_delimiter: LeftDelimiter,

57 /// The right delimiter of the call (e.g., ‘)‘, ‘]‘)

37

A PREPRINT - JANUARY 28, 2025

58 right_delimiter: RightDelimiter,

59 /// Index of the delimited arguments in the call

60 delimited_arguments: Idx,

61 },

62 /// Represents a ‘let‘ statement with an initialization (e.g., ‘let x = 5;‘)

63 ///

64 /// # stmts

65 ///

66 LetInit {

67 /// Index of the expression in the initialization

68 expr: Idx,

69 /// Index of the pattern being initialized

70 pattern: Idx,

71 /// Optional index of the initial value

72 initial_value: Option<Idx>,

73 },

74 /// Represents an ‘if‘ statement

75 If {

76 /// Index of the condition in the ‘if‘ statement

77 condition: Idx,

78 /// Index of the body of the ‘if‘ statement

79 body: Idx,

80 },

81 /// Represents an ‘else‘ statement

82 Else {

83 /// Index of the associated ‘if‘ statement

84 if_stmt: Idx,

85 /// Index of the body of the ‘else‘ statement

86 body: Idx,

87 },

88 /// Represents a function or variable definition

89 ///

90 /// # defn

91 ///

92 Defn {

93 /// The keyword in the definition (e.g., ‘fn‘, ‘enum‘)

94 keyword: DefnKeyword,

95 /// Index of the identifier in the definition

96 ident_idx: Idx,

97 /// The identifier being defined (e.g., function name, variable name)

98 ident: Ident,

99 /// Index of the content or body of the definition

100 content: Idx,

101 },

102 }

1 /// The ‘PreAst‘ enum represents the intermediate forms of tokens and ASTs that are

2 /// encountered during the parsing phase, before the final AST is constructed.

3 /// Each variant corresponds to a specific type of token or partial

4 /// AST node that contributes to the construction of the final AST.

5 #[derive(Clone, Copy, PartialEq, Eq)]

6 pub enum PreAst {

7 /// A reserved keyword in the language, such as ‘if‘, ‘else‘, ‘while‘, etc.

8 Keyword(Keyword),

9 /// An operator, such as ‘+‘, ‘-‘, ‘*‘, ‘==‘, etc., representing mathematical

10 /// or logical operations.

11 Opr(Opr),

12 /// A left delimiter, such as ‘(‘, ‘{‘, ‘[‘, used to denote the beginning of

13 /// a block, list, or expression.

14 LeftDelimiter(LeftDelimiter),

15 /// A right delimiter, such as ‘)‘, ‘}‘, ‘]‘, used to denote the end of a

16 /// block, list, or expression.

17 RightDelimiter(RightDelimiter),

18 /// A partially constructed AST node, representing a more complex structure

19 /// that will be further processed to build the final AST.

20 Ast(AstData),

21 /// A separator, such as ‘,‘ or ‘;‘, used to separate elements in a list or

22 /// statements in a block.

23 Separator(Separator),

24 }

1 /// this is beyond the scope of Cybertron

2 ///

3 /// rather a general Rust function to integrate for testing

4 pub fn calc_asts_from_input(input: &str, n: usize) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 let tokens = tokenize(input);

6 let pre_asts = calc_pre_ast_initial_seq(tokens);

7 let allocated_asts: Seq<Option<Ast>> = tokens.map(|token| token.into());

8 reduce_n_times(pre_asts, allocated_asts, n)

9 }

38

A PREPRINT - JANUARY 28, 2025

The reduce function in Cybertron is designed to progressively refine sequences of pre-abstract syntax trees (pre-ASTs)

and allocated abstract syntax trees (ASTs). The function takes two input sequences: pre_asts , which is a sequence of

optional pre-ASTs, and allocated_asts , which is a sequence of optional ASTs. It returns a tuple containing the reduced
sequences of pre-ASTs and allocated ASTs.

The reduction process is carried out in multiple stages, each focusing on different syntactic constructs:

1. reduce_by_opr : This step handles reduction by dealing with operators and their precedence. It simplifies

expressions involving operations to form more compact ASTs.

2. reduce_by_delimited : This step reduces constructs that are delimited, such as those involving parentheses,

braces, or other grouping symbols. It ensures that delimited blocks are properly nested and combined in the
AST.

3. reduce_by_call : In this stage, function or method calls are reduced. This involves identifying and structuring

calls within the AST, ensuring correct representation of function invocations.

4. reduce_by_stmt : This reduction step addresses statements, ensuring that individual statements are correctly

parsed and represented within the AST, such as assignment statements, loops, and conditionals.

5. reduce_by_defn : Finally, reduction by definition handles the parsing of definitions, such as variable or func-

tion declarations. This step ensures that all definitions are correctly represented within the AST.

By sequentially applying these reduction steps, the reduce function progressively transforms the initial sequences into
their most refined forms, ready for further syntactic or semantic analysis.

1 pub fn reduce(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 // Reduce ASTs by handling operators and precedence

6 let (pre_asts, allocated_asts) = reduce_by_opr(pre_asts, allocated_asts);

7

8 // Reduce ASTs by handling delimited constructs like parentheses or braces

9 let (pre_asts, allocated_asts) = reduce_by_delimited(pre_asts, allocated_asts);

10

11 // Reduce ASTs by handling function or method calls

12 let (pre_asts, allocated_asts) = reduce_by_call(pre_asts, allocated_asts);

13

14 // Reduce ASTs by handling statements, ensuring proper syntax structure

15 let (pre_asts, allocated_asts) = reduce_by_stmt(pre_asts, allocated_asts);

16

17 // Reduce ASTs by handling definitions, like variables or functions

18 let (pre_asts, allocated_asts) = reduce_by_defn(pre_asts, allocated_asts);

19

20 // Return the final reduced sequences of pre-ASTs and allocated ASTs

21 (pre_asts, allocated_asts)

22 }

1 pub fn reduce_n_times(

2 mut pre_asts: Seq<Option<PreAst>>,

3 mut allocated_asts: Seq<Option<Ast>>,

4 n: usize,

5) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

6 for _ in 0..n {

7 let (pre_asts1, allocated_asts1) = reduce(pre_asts, allocated_asts);

8 pre_asts = pre_asts1;

9 allocated_asts = allocated_asts1;

10 }

11 (pre_asts, allocated_asts)

12 }

In the above definition, we actually used Rust’s mutable variable semantics. However, it’s straightforward to see that it
translates to a computation graph that is a sequential composition of subgraphs with sequential length n. Because the

AST’s depth is bounded by D, we can just take n to be D. Each subgraph is generated from the reduce function, then
they are all constant graphs constructed by global and local functions, then by Proposition 13,11 and 2 they translate to
transformers withO(logL+D) depth, model dimension, and number of heads, where logL comes from the encoding

of types like Token .

Below we give full details of the various reduction functions.

39

A PREPRINT - JANUARY 28, 2025

As these are implemented as Rust functions, they have been tested against a number of inputs. We don’t guarantee an
industry level of correctness, but the key point is well illustrated.

F.2 Operators

In this section, we lay down the definition of reduce_by_opr .

1 pub(super) fn reduce_by_opr(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();

7 let new_opr_asts = new_opr_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);

8 let (pre_asts_reduced, new_parents) = reduce_pre_asts_by_opr(pre_asts, new_opr_asts);

9 let pre_asts = update_pre_asts_by_new_asts(pre_asts_reduced, new_opr_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_opr_asts, new_parents);

12 (pre_asts, allocated_asts)

13 }

1 /// a finite function

2 pub(crate) fn new_opr_ast(

3 nearest_left2: Option2<(Idx, PreAst)>,

4 current: Option<PreAst>,

5 nearest_right2: Option2<(Idx, PreAst)>,

6) -> Option<AstData> {

7 let Some(PreAst::Opr(opr)) = current else {

8 return None;

9 };

10 match opr {

11 Opr::Prefix(opr) => {

12 let Some((opd, PreAst::Ast(_))) = nearest_right2.first() else {

13 return None;

14 };

15 if let Some((_, ast)) = nearest_right2.second() {

16 match ast {

17 PreAst::Keyword(_) => (),

18 PreAst::Opr(right_opr) => match right_opr {

19 Opr::Prefix(_) => (),

20 Opr::Binary(right_opr) => {

21 // every binary opr in our small language is left associative, so ‘<‘ instead

of ‘<=‘

22 if right_opr.precedence() > opr.precedence() {

23 return None;

24 }

25 }

26 Opr::Suffix(right_opr) => {

27 if right_opr.precedence() > opr.precedence() {

28 return None;

29 }

30 }

31 },

32 PreAst::Ast(_) => (),

33 // function call or index takes higher precedence

34 PreAst::LeftDelimiter(_) => return None,

35 PreAst::RightDelimiter(_) => (),

36 PreAst::Separator(_) => (),

37 }

38 };

39 Some(AstData::Prefix { opr, opd })

40 }

41 Opr::Binary(opr) => {

42 let Some((lopd, PreAst::Ast(_))) = nearest_left2.first() else {

43 return None;

44 };

45 let Some((ropd, PreAst::Ast(_))) = nearest_right2.first() else {

46 return None;

47 };

48 if let Some((_, ast)) = nearest_left2.second() {

49 match ast {

50 PreAst::Keyword(kw) => (),

51 PreAst::Opr(left_opr) => match left_opr {

52 Opr::Prefix(left_opr) => {

53 if left_opr.precedence() >= opr.precedence() {

54 return None;

55 }

56 }

40

A PREPRINT - JANUARY 28, 2025

57 Opr::Binary(left_opr) => {

58 /// every binary opr in our small language is left associative, so ‘>=‘ instead

of ‘>‘

59 if left_opr.precedence() >= opr.precedence() {

60 return None;

61 }

62 }

63 Opr::Suffix(_) => (), // actually this will be a syntax error

64 },

65 PreAst::Ast(_) => {

66 if opr != BinaryOpr::LightArrow {

67 return None;

68 }

69 }

70 PreAst::LeftDelimiter(_) => (),

71 PreAst::RightDelimiter(_) => return None,

72 PreAst::Separator(_) => (),

73 }

74 };

75 if let Some((_, ast)) = nearest_right2.second() {

76 match ast {

77 PreAst::Keyword(kw) => match kw {

78 Keyword::ELSE => return None,

79 _ => (),

80 },

81 PreAst::Opr(right_opr) => match right_opr {

82 Opr::Prefix(_) => (), // actually this will be a syntax error

83 Opr::Binary(right_opr) => {

84 /// every binary opr in our small language is left associative, so ‘<‘ instead

of ‘<=‘

85 if right_opr.precedence() > opr.precedence() {

86 return None;

87 }

88 }

89 Opr::Suffix(right_opr) => {

90 if right_opr.precedence() >= opr.precedence() {

91 return None;

92 }

93 }

94 },

95 // function call or index takes higher precedence

96 PreAst::LeftDelimiter(_) => return None,

97 PreAst::RightDelimiter(_) => (),

98 PreAst::Ast(_) => (),

99 PreAst::Separator(_) => (),

100 }

101 };

102 Some(AstData::Binary { lopd, opr, ropd })

103 }

104 Opr::Suffix(opr) => {

105 let Some((opd, PreAst::Ast(_))) = nearest_left2.first() else {

106 return None;

107 };

108 if let Some((_, ast)) = nearest_left2.second() {

109 match ast {

110 PreAst::Keyword(_) => (),

111 PreAst::Opr(right_opr) => match right_opr {

112 Opr::Prefix(right_opr) => {

113 if right_opr.precedence() > opr.precedence() {

114 return None;

115 }

116 }

117 Opr::Binary(right_opr) => {

118 /// every binary opr in our small language is left associative, so ‘<‘ instead

of ‘<=‘

119 if right_opr.precedence() > opr.precedence() {

120 return None;

121 }

122 }

123 Opr::Suffix(_) => (),

124 },

125 PreAst::LeftDelimiter(_) => (),

126 PreAst::RightDelimiter(_) => return None,

127 PreAst::Ast(_) => return None,

128 PreAst::Separator(_) => (),

129 }

130 };

131 Some(AstData::Suffix { opr, opd })

132 }

133 }

134 }

41

A PREPRINT - JANUARY 28, 2025

1 /// returns sequence of remaining PreAsts and new parent idxs

2 pub(crate) fn reduce_pre_asts_by_opr(

3 pre_asts: Seq<Option<PreAst>>,

4 new_asts: Seq<Option<AstData>>,

5) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {

6 let new_asts_nearest_left = new_asts.nearest_left();

7 let pre_asts = reduce_pre_ast_by_new_ast.apply(pre_asts, new_asts);

8 let (pre_asts, new_parents) = reduce_pre_ast_by_opr_left

9 .apply_enumerated(new_asts_nearest_left, pre_asts)

10 .decouple();

11 let new_asts_nearest_right = new_asts.nearest_right();

12 reduce_pre_ast_by_opr_right

13 .apply_enumerated(new_asts_nearest_right, pre_asts, new_parents)

14 .decouple()

15 }

1 fn reduce_pre_ast_by_new_ast(pre_ast: Option<PreAst>, new_ast: Option<AstData>) -> Option<PreAst> {

2 if new_ast.is_some() {

3 None

4 } else {

5 pre_ast

6 }

7 }

1 fn reduce_pre_ast_by_opr_left(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,

4 pre_ast: Option<PreAst>,

5) -> (Option<PreAst>, Option<Idx>) {

6 let Some(pre_ast) = pre_ast else {

7 return (None, None);

8 };

9 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_left else {

10 return (Some(pre_ast), None);

11 };

12 match new_ast_data {

13 AstData::Binary { ropd: opd, .. } | AstData::Prefix { opd, .. } if opd == idx => {

14 (None, Some(new_ast_idx))

15 }

16 _ => (Some(pre_ast), None),

17 }

18 }

1 fn reduce_pre_ast_by_opr_right(

2 idx: Idx,

3 new_ast_nearest_right: Option<(Idx, AstData)>,

4 pre_ast: Option<PreAst>,

5 new_parent: Option<Idx>,

6) -> (Option<PreAst>, Option<Idx>) {

7 let Some(pre_ast) = pre_ast else {

8 return (None, new_parent);

9 };

10 if let Some(new_parent) = new_parent {

11 return (None, Some(new_parent));

12 }

13 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_right else {

14 return (Some(pre_ast), None);

15 };

16 match new_ast_data {

17 AstData::Binary { lopd: opd, .. } | AstData::Suffix { opd, .. } if opd == idx => {

18 (None, Some(new_ast_idx))

19 }

20 _ => (Some(pre_ast), None),

21 }

22 }

F.3 Statements

In this section, we lay down the definition of reduce_by_stmt .

1 pub(super) fn reduce_by_stmt(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();

7 let new_stmt_asts =

42

A PREPRINT - JANUARY 28, 2025

8 new_stmt_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);

9 let (pre_asts, new_parents) = reduce_pre_asts_by_stmt(pre_asts, new_stmt_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_stmt_asts, new_parents);

12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_stmt_asts);

13 (pre_asts, allocated_asts)

14 }

1 fn new_stmt_ast(

2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,

3 pre_ast: Option<PreAst>,

4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,

5) -> Option<AstData> {

6 let PreAst::Keyword(Keyword::Stmt(kw)) = pre_ast? else {

7 return None;

8 };

9 match kw {

10 StmtKeyword::Let => {

11 let Some((idx1, PreAst::Ast(ast))) = pre_ast_nearest_right2.first() else {

12 return None;

13 };

14 if let Some((_, pre_ast)) = pre_ast_nearest_right2.second() {

15 match pre_ast {

16 PreAst::Keyword(_) => (),

17 PreAst::Opr(_) | PreAst::LeftDelimiter(_) => return None,

18 PreAst::RightDelimiter(_) => (),

19 PreAst::Ast(_) => return None,

20 PreAst::Separator(separator) => match separator {

21 Separator::Comma => return None,

22 Separator::Semicolon => (),

23 },

24 }

25 }

26 let (pattern, initial_value) = match ast {

27 AstData::Binary {

28 lopd,

29 opr: BinaryOpr::Assign,

30 ropd,

31 } => (lopd, Some(ropd)),

32 AstData::Ident(_)

33 | AstData::Prefix { .. }

34 | AstData::Binary { .. }

35 | AstData::Delimited { .. }

36 | AstData::Call { .. } => (idx1, None),

37 _ => return None,

38 };

39 Some(AstData::LetInit {

40 expr: idx1,

41 pattern,

42 initial_value,

43 })

44 }

45 StmtKeyword::If => {

46 let Some((condition, PreAst::Ast(ast1))) = pre_ast_nearest_right2.first() else {

47 return None;

48 };

49 let Some((

50 body,

51 PreAst::Ast(AstData::Delimited {

52 left_delimiter: LCURL,

53 right_delimiter: RCURL,

54 ..

55 }),

56)) = pre_ast_nearest_right2.second()

57 else {

58 return None;

59 };

60 Some(AstData::If { condition, body })

61 }

62 StmtKeyword::Else => {

63 let Some((if_stmt, PreAst::Ast(AstData::If { .. }))) = pre_ast_nearest_left2.first()

64 else {

65 return None;

66 };

67 let Some((

68 body,

69 PreAst::Ast(

70 AstData::Delimited {

71 left_delimiter: LCURL,

72 right_delimiter: RCURL,

73 ..

43

A PREPRINT - JANUARY 28, 2025

74 }

75 | AstData::If { .. }

76 | AstData::Else { .. },

77),

78)) = pre_ast_nearest_right2.first()

79 else {

80 return None;

81 };

82 if let Some((_, PreAst::Keyword(Keyword::ELSE))) = pre_ast_nearest_right2.second() {

83 return None;

84 }

85 Some(AstData::Else { if_stmt, body })

86 }

87 }

88 }

1 fn reduce_pre_asts_by_stmt(

2 pre_asts: Seq<Option<PreAst>>,

3 new_asts: Seq<Option<AstData>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {

5 let new_asts_nearest_left = new_asts.nearest_left();

6 let new_asts_nearest_right = new_asts.nearest_right();

7 reduce_pre_ast_by_stmt

8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)

9 .decouple()

10 }

1 fn reduce_pre_ast_by_stmt(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,

4 new_ast_nearest_right: Option<(Idx, AstData)>,

5 pre_ast: Option<PreAst>,

6) -> (Option<PreAst>, Option<Idx>) {

7 if let Some((idx1, ast)) = new_ast_nearest_left {

8 match ast {

9 AstData::LetInit { expr, .. } if expr == idx => (None, Some(idx1)),

10 AstData::If {

11 condition, body, ..

12 } if condition == idx || body == idx => (None, Some(idx1)),

13 AstData::Else { body, .. } if body == idx => (None, Some(idx1)),

14 _ => (pre_ast, None),

15 }

16 } else if let Some((idx1, AstData::Else { if_stmt, .. })) = new_ast_nearest_right

17 && if_stmt == idx

18 {

19 (None, Some(idx1))

20 } else {

21 (pre_ast, None)

22 }

23 }

F.4 Generalized Call Forms

In this section, we lay down the definition of reduce_by_call .

1 pub(super) fn reduce_by_call(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right = pre_asts.nearest_right();

7 let new_call_asts =

8 new_call_ast.apply_enumerated(pre_asts_nearest_left2, pre_asts_nearest_right);

9 let (pre_asts, new_parents) = reduce_pre_asts_by_call(pre_asts, new_call_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_call_asts, new_parents);

12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_call_asts);

13 (pre_asts, allocated_asts)

14 }

1 fn new_call_ast(

2 idx: Idx,

3 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,

4 pre_ast_nearest_right: Option<(Idx, PreAst)>,

5) -> Option<AstData> {

6 let (caller, PreAst::Ast(caller_ast)) = pre_ast_nearest_left2.first()? else {

7 return None;

44

A PREPRINT - JANUARY 28, 2025

8 };

9 let (

10 delimited_arguments,

11 PreAst::Ast(AstData::Delimited {

12 left_delimiter_idx,

13 left_delimiter,

14 right_delimiter,

15 }),

16) = pre_ast_nearest_right?

17 else {

18 return None;

19 };

20 if let Some((_, snd)) = pre_ast_nearest_left2.second() {

21 match snd {

22 PreAst::Keyword(kw) => match kw {

23 Keyword::Defn(kw) => match kw {

24 DefnKeyword::Struct | DefnKeyword::Enum => return None,

25 DefnKeyword::Fn => match left_delimiter.delimiter() {

26 Delimiter::Parenthesis | Delimiter::Box => return None,

27 Delimiter::Curly => (),

28 },

29 },

30 Keyword::Stmt(kw) => match kw {

31 StmtKeyword::Let => (),

32 StmtKeyword::If => match left_delimiter.delimiter() {

33 Delimiter::Parenthesis | Delimiter::Box => (),

34 Delimiter::Curly => return None,

35 },

36 StmtKeyword::Else => return None,

37 },

38 },

39 PreAst::Opr(opr) => match opr {

40 Opr::Prefix(_) | Opr::Binary(_) => match left_delimiter.delimiter() {

41 Delimiter::Parenthesis | Delimiter::Box => (),

42 Delimiter::Curly => return None,

43 },

44 Opr::Suffix(_) => return None,

45 },

46 PreAst::LeftDelimiter(_) => (),

47 PreAst::RightDelimiter(_) => return None,

48 PreAst::Ast(snd_ast) => {

49 if let AstData::Ident(_) = snd_ast

50 && left_delimiter == LCURL

51 {

52 match caller_ast {

53 AstData::Binary {

54 opr: BinaryOpr::LightArrow,

55 ..

56 }

57 | AstData::Delimited {

58 left_delimiter: LPAR,

59 right_delimiter: RPAR,

60 ..

61 } => (),

62 _ => return None,

63 }

64 } else {

65 return None;

66 }

67 }

68 PreAst::Separator(_) => (),

69 }

70 }

71 if left_delimiter_idx != idx {

72 return None;

73 }

74 Some(AstData::Call {

75 caller,

76 delimited_arguments,

77 left_delimiter,

78 right_delimiter,

79 })

80 }

1 fn reduce_pre_asts_by_call(

2 pre_asts: Seq<Option<PreAst>>,

3 new_asts: Seq<Option<AstData>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {

5 let new_asts_nearest_left = new_asts.nearest_left();

6 let new_asts_nearest_right = new_asts.nearest_right();

7 reduce_pre_ast_by_call

45

A PREPRINT - JANUARY 28, 2025

8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)

9 .decouple()

10 }

1 fn reduce_pre_ast_by_call(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,

4 new_ast_nearest_right: Option<(Idx, AstData)>,

5 pre_ast: Option<PreAst>,

6) -> (Option<PreAst>, Option<Idx>) {

7 if let Some((

8 idx1,

9 AstData::Call {

10 delimited_arguments,

11 ..

12 },

13)) = new_ast_nearest_left

14 && delimited_arguments == idx

15 {

16 (None, Some(idx1))

17 } else if let Some((idx1, AstData::Call { caller, .. })) = new_ast_nearest_right

18 && caller == idx

19 {

20 (None, Some(idx1))

21 } else {

22 (pre_ast, None)

23 }

24 }

F.5 Definitions

In this section, we lay down the definition of reduce_by_defn .

1 pub(super) fn reduce_by_defn(

2 pre_asts: Seq<Option<PreAst>>,

3 allocated_asts: Seq<Option<Ast>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {

5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();

6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();

7 let new_defn_asts =

8 new_defn_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);

9 let (pre_asts, new_parents) = reduce_pre_asts_by_defn(pre_asts, new_defn_asts);

10 let allocated_asts =

11 allocate_asts_and_update_parents(allocated_asts, new_defn_asts, new_parents);

12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_defn_asts);

13 (pre_asts, allocated_asts)

14 }

1 fn new_defn_ast(

2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,

3 pre_ast: Option<PreAst>,

4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,

5) -> Option<AstData> {

6 let PreAst::Keyword(Keyword::Defn(keyword)) = pre_ast? else {

7 return None;

8 };

9 {

10 let Some((ident_idx, PreAst::Ast(AstData::Ident(ident)))) = pre_ast_nearest_right2.first()

11 else {

12 return None;

13 };

14 let Some((content, PreAst::Ast(content_ast))) = pre_ast_nearest_right2.second() else {

15 return None;

16 };

17 match keyword {

18 DefnKeyword::Struct => match content_ast {

19 AstData::Delimited { .. } => (),

20 _ => return None,

21 },

22 DefnKeyword::Enum => match content_ast {

23 AstData::Delimited { .. } => (),

24 _ => return None,

25 },

26 DefnKeyword::Fn => match content_ast {

27 AstData::Call { .. } => (),

28 _ => return None,

29 },

46

A PREPRINT - JANUARY 28, 2025

30 }

31 Some(AstData::Defn {

32 keyword,

33 ident,

34 ident_idx,

35 content,

36 })

37 }

38 }

1 fn reduce_pre_asts_by_defn(

2 pre_asts: Seq<Option<PreAst>>,

3 new_asts: Seq<Option<AstData>>,

4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {

5 let new_asts_nearest_left = new_asts.nearest_left();

6 let new_asts_nearest_right = new_asts.nearest_right();

7 reduce_pre_ast_by_defn

8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)

9 .decouple()

10 }

1 fn reduce_pre_ast_by_defn(

2 idx: Idx,

3 new_ast_nearest_left: Option<(Idx, AstData)>,

4 new_ast_nearest_right: Option<(Idx, AstData)>,

5 pre_ast: Option<PreAst>,

6) -> (Option<PreAst>, Option<Idx>) {

7 if let Some((idx1, ast)) = new_ast_nearest_left {

8 match ast {

9 AstData::Defn {

10 keyword,

11 ident_idx,

12 ident,

13 content,

14 ..

15 } if ident_idx == idx || content == idx => (None, Some(idx1)),

16 _ => (pre_ast, None),

17 }

18 } else if let Some((idx1, AstData::Defn { .. })) = new_ast_nearest_right

19 && false

20 {

21 (None, Some(idx1))

22 } else {

23 (pre_ast, None)

24 }

25 }

G Transformer Symbol Resolution Proof

Here we lay down the code for symbol resolution. The actual process involves many details such as computing ranks
(the exact position of an AST node among its siblings), scopes, and roles (a more precise version of AST, computed
from its parent recursively), definitions and resolutions.

G.1 Ranks

1 #[derive(Debug, Default, PartialEq, Eq, Clone, Copy)]

2 pub struct Rank(u8);

3

4 impl Rank {

5 fn next(self) -> Self {

6 Self(self.0 + 1)

7 }

8 }

9

10 pub fn calc_ranks(asts: Seq<Option<Ast>>) -> Seq<Option<Rank>> {

11 let counts = asts.count_past_by_attention(asts, |ast, ast1| {

12 let Some(ast) = ast else { return false };

13 let Some(ast1) = ast1 else { return false };

14 ast.parent == ast1.parent

15 });

16 (|c: usize, ast| {

17 ast?;

18 Some(Rank(c.try_into().unwrap()))

19 })

20 .apply(counts, asts)

47

A PREPRINT - JANUARY 28, 2025

21 }

22

23 pub fn calc_ranks1(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Rank>> {

24 let mut ranks: Seq<Option<Rank>> = asts.map(|_| None);

25 for _ in 0..n {

26 ranks = calc_sibling_indicies_step(asts, ranks);

27 }

28 ranks

29 }

30

31 fn calc_sibling_indicies_step(

32 asts: Seq<Option<Ast>>,

33 ranks: Seq<Option<Rank>>,

34) -> Seq<Option<Rank>> {

35 let previous_ranks = ranks.nearest_left_filtered_by_attention(asts, asts, |ast, ast1| {

36 let Some(ast) = ast else { return false };

37 let Some(ast1) = ast1 else { return false };

38 ast.parent == ast1.parent

39 });

40 let ranks = (|ast, rank, previous_rank: Option<Option<Rank>>| {

41 let _ = ast?;

42 if let Some(rank) = rank {

43 return Some(rank);

44 }

45 let Some(previous_rank) = previous_rank else {

46 return Some(Default::default());

47 };

48 Some(previous_rank?.next())

49 })

50 .apply(asts, ranks, previous_ranks);

51 ranks

52 }

In the above, count_past_by_attention that count is representable by transformers by utilizing directly hard attention

and the starter token. If the count is c, we shall get c/(c+ 1) from the attention directly.

G.2 Scopes

1 const D: usize = 8usize;

2

3 pub struct Scope {

4 enclosing_blocks: BoundedVec<Idx, D>,

5 }

6

7 impl Scope {

8 pub fn from_ast(idx: Idx, ast: AstData, parent_scope: Scope) -> Self {

9 match ast {

10 AstData::Delimited {

11 left_delimiter_idx,

12 left_delimiter: LCURL,

13 right_delimiter: RCURL,

14 } => Self {

15 enclosing_blocks: parent_scope.enclosing_blocks.append(idx),

16 },

17 _ => parent_scope,

18 }

19 }

20

21 pub fn new(idx: Idx) -> Self {

22 Self {

23 enclosing_blocks: todo!(),

24 }

25 }

26

27 pub fn append(self, idx: Idx) -> Self {

28 Self {

29 enclosing_blocks: self.enclosing_blocks.append(idx),

30 }

31 }

32 }

33

34 impl Scope {

35 pub fn contains(self, other: Self) -> bool {

36 let len = self.enclosing_blocks.len();

37 if len > other.enclosing_blocks.len() {

38 return false;

39 }

40 for i in 0..len {

48

A PREPRINT - JANUARY 28, 2025

41 if self.enclosing_blocks[i] != other.enclosing_blocks[i] {

42 return false;

43 }

44 }

45 true

46 }

47 }

48

49 pub fn infer_scopes(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Scope>> {

50 let mut scopes = initial_scope.apply_enumerated(asts);

51 for _ in 0..n {

52 let parent_scopes = parent_queries(asts, scopes);

53 scopes = infer_scopes_step(asts, parent_scopes, scopes);

54 }

55 scopes

56 }

57

58 fn initial_scope(idx: Idx, ast: Option<Ast>) -> Option<Scope> {

59 let ast = ast?;

60 if ast.parent.is_some() {

61 return None;

62 }

63 let scope = Scope::default();

64 Some(Scope::from_ast(idx, ast.data, scope))

65 }

66

67 fn infer_scopes_step(

68 asts: Seq<Option<Ast>>,

69 parent_scopes: Seq<Option<Scope>>,

70 scopes: Seq<Option<Scope>>,

71) -> Seq<Option<Scope>> {

72 infer_scope_step.apply_enumerated(asts, parent_scopes, scopes)

73 }

74

75 fn infer_scope_step(

76 idx: Idx,

77 ast: Option<Ast>,

78 parent_scope: Option<Scope>,

79 scope: Option<Scope>,

80) -> Option<Scope> {

81 if let Some(scope) = scope {

82 return Some(scope);

83 }

84 Some(Scope::from_ast(idx, ast?.data, parent_scope?))

85 }

G.3 Roles

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]

2 pub enum Role {

3 LetStmt {

4 pattern: Idx,

5 initial_value: Option<Idx>,

6 },

7 LetStmtInner {

8 pattern: Idx,

9 initial_value: Idx,

10 },

11 LetStmtIdent,

12 LetStmtTypedVariables {

13 variables: Idx,

14 ty: Idx,

15 },

16 StructDefn(Ident),

17 EnumDefn(Ident),

18 FnDefn(Ident),

19 FnDefnCallForm {

20 fn_ident: Ident,

21 scope: Scope,

22 },

23 FnParameters {

24 fn_ident: Ident,

25 has_return_ty: bool,

26 scope: Scope,

27 },

28 FnParametersAndReturnType {

29 fn_ident: Ident,

30 parameters: Idx,

31 scope: Scope,

49

A PREPRINT - JANUARY 28, 2025

32 return_ty: Idx,

33 },

34 FnBody(Ident),

35 StructFields(Ident),

36 FnParameter {

37 fn_ident: Ident,

38 rank: Rank,

39 ty: Idx,

40 fn_ident_idx: Idx,

41 scope: Scope,

42 },

43 FnParameterIdent {

44 scope: Scope,

45 },

46 FnParameterSeparated {

47 fn_ident: Ident,

48 rank: Rank,

49 scope: Scope,

50 },

51 FnParameterType {

52 fn_ident: Ident,

53 rank: Rank,

54 },

55 FnOutputType {

56 fn_ident: Ident,

57 },

58 StructField {

59 ty_ident: Ident,

60 field_ident: Ident,

61 ty_idx: Idx,

62 },

63 StructFieldType {

64 ty_ident: Ident,

65 field_ident: Ident,

66 },

67 TypeArgument,

68 TypeArguments,

69 StructFieldSeparated(Ident),

70 LetStmtVariablesType,

71 LetStmtVariables,

72 }

1 impl Ast {

2 fn role(self) -> Option<Role> {

3 match self.data {

4 AstData::LetInit {

5 expr,

6 pattern,

7 initial_value,

8 } => Some(Role::LetStmt {

9 pattern,

10 initial_value,

11 }),

12 AstData::Defn {

13 keyword,

14 ident_idx,

15 ident,

16 content,

17 } => Some(match keyword {

18 DefnKeyword::Struct => Role::StructDefn(ident),

19 DefnKeyword::Enum => Role::EnumDefn(ident),

20 DefnKeyword::Fn => Role::FnDefn(ident),

21 }),

22 _ => None,

23 }

24 }

25 }

1 pub fn calc_roles(

2 asts: Seq<Option<Ast>>,

3 scopes: Seq<Option<Scope>>,

4 n: usize,

5) -> Seq<Option<Role>> {

6 let mut roles: Seq<Option<Role>> = asts.map(|ast| ast?.role());

7 let ranks = calc_ranks(asts);

8 for _ in 0..n {

9 let parent_roles = parent_queries(asts, roles);

10 roles = calc_roles_step(asts, parent_roles, roles, ranks, scopes);

11 }

12 roles

50

A PREPRINT - JANUARY 28, 2025

13 }

1 fn calc_roles_step(

2 asts: Seq<Option<Ast>>,

3 parent_roles: Seq<Option<Role>>,

4 roles: Seq<Option<Role>>,

5 ranks: Seq<Option<Rank>>,

6 scopes: Seq<Option<Scope>>,

7) -> Seq<Option<Role>> {

8 calc_role_step.apply_enumerated(asts, parent_roles, roles, ranks, scopes)

9 }

1 fn calc_role_step(

2 idx: Idx,

3 ast: Option<Ast>,

4 parent_role: Option<Role>,

5 role: Option<Role>,

6 rank: Option<Rank>,

7 scope: Option<Scope>,

8) -> Option<Role> {

9 if let Some(role) = role {

10 return Some(role);

11 }

12 let ast = ast?;

13 if let Some(role) = ast.role() {

14 return Some(role);

15 }

16 match parent_role? {

17 Role::LetStmt {

18 pattern,

19 initial_value,

20 } => match ast.data {

21 AstData::Ident(ident) if idx == pattern => Some(Role::LetStmtIdent),

22 AstData::Binary {

23 lopd,

24 opr: BinaryOpr::Assign,

25 ropd,

26 lopd_ident,

27 } if lopd == pattern => Some(Role::LetStmtInner {

28 pattern,

29 initial_value: ropd,

30 }),

31 _ => None,

32 },

33 Role::LetStmtInner {

34 pattern,

35 initial_value,

36 } => {

37 if idx == pattern {

38 match ast.data {

39 AstData::Ident(ident) => Some(Role::LetStmtIdent),

40 AstData::Binary {

41 lopd,

42 lopd_ident,

43 opr,

44 ropd,

45 } => Some(Role::LetStmtTypedVariables {

46 variables: lopd,

47 ty: ropd,

48 }),

49 _ => todo!(),

50 }

51 } else {

52 None

53 }

54 }

55 Role::LetStmtIdent => todo!(),

56 Role::FnParameterIdent { scope } => todo!(),

57 Role::StructDefn(ident) => match ast.data {

58 AstData::Literal(_) => todo!(),

59 AstData::Ident(_) => None,

60 AstData::Prefix { opr, opd } => todo!(),

61 AstData::Binary {

62 lopd,

63 opr,

64 ropd,

65 lopd_ident,

66 } => todo!(),

67 AstData::Suffix { opd, opr } => todo!(),

68 AstData::Delimited {

51

A PREPRINT - JANUARY 28, 2025

69 left_delimiter_idx,

70 left_delimiter,

71 right_delimiter,

72 } => Some(Role::StructFields(ident)),

73 AstData::SeparatedItem { content, separator } => todo!(),

74 AstData::Call { .. } => todo!(),

75 AstData::LetInit {

76 expr,

77 pattern,

78 initial_value,

79 } => todo!(),

80 AstData::Return { result } => todo!(),

81 AstData::Assert { condition } => todo!(),

82 AstData::If { condition, body } => todo!(),

83 AstData::Else { if_stmt, body } => todo!(),

84 AstData::Defn {

85 keyword,

86 ident_idx,

87 ident,

88 content,

89 } => todo!(),

90 },

91 Role::EnumDefn(_) => None, // ad hoc

92 Role::FnDefn(fn_ident) => match ast.data {

93 AstData::Literal(_) => todo!(),

94 AstData::Ident(_) => None,

95 AstData::Prefix { opr, opd } => todo!(),

96 AstData::Binary {

97 lopd,

98 opr,

99 ropd,

100 lopd_ident,

101 } => todo!(),

102 AstData::Suffix { opd, opr } => todo!(),

103 AstData::Delimited {

104 left_delimiter_idx,

105 left_delimiter,

106 right_delimiter,

107 } => todo!(),

108 AstData::SeparatedItem { content, separator } => todo!(),

109 AstData::Call {

110 delimited_arguments,

111 ..

112 } => Some(Role::FnDefnCallForm {

113 fn_ident,

114 scope: match scope {

115 Some(scope) => scope.append(delimited_arguments),

116 None => Scope::new(delimited_arguments),

117 },

118 }),

119 AstData::LetInit {

120 expr,

121 pattern,

122 initial_value,

123 } => todo!(),

124 AstData::Return { result } => todo!(),

125 AstData::Assert { condition } => todo!(),

126 AstData::If { condition, body } => todo!(),

127 AstData::Else { if_stmt, body } => todo!(),

128 AstData::Defn {

129 keyword,

130 ident_idx,

131 ident,

132 content,

133 } => todo!(),

134 },

135 Role::FnDefnCallForm { fn_ident, scope } => match ast.data {

136 AstData::Literal(_) => todo!(),

137 AstData::Ident(_) => todo!(),

138 AstData::Prefix { opr, opd } => todo!(),

139 AstData::Binary {

140 lopd,

141 opr,

142 ropd,

143 lopd_ident,

144 } => {

145 if opr == BinaryOpr::LightArrow {

146 Some(Role::FnParametersAndReturnType {

147 fn_ident,

148 parameters: lopd,

149 return_ty: ropd,

52

A PREPRINT - JANUARY 28, 2025

150 scope,

151 })

152 } else {

153 unreachable!()

154 }

155 }

156 AstData::Suffix { opd, opr } => todo!(),

157 AstData::Delimited {

158 left_delimiter_idx,

159 left_delimiter,

160 right_delimiter,

161 } => match left_delimiter.delimiter() {

162 Delimiter::Parenthesis => Some(Role::FnParameters {

163 fn_ident,

164 has_return_ty: false,

165 scope,

166 }),

167 Delimiter::Box => todo!(),

168 Delimiter::Curly => Some(Role::FnBody(fn_ident)),

169 },

170 AstData::SeparatedItem { content, separator } => todo!(),

171 AstData::Call { .. } => todo!(),

172 AstData::LetInit {

173 expr,

174 pattern,

175 initial_value,

176 } => todo!(),

177 AstData::Return { result } => todo!(),

178 AstData::Assert { condition } => todo!(),

179 AstData::If { condition, body } => todo!(),

180 AstData::Else { if_stmt, body } => todo!(),

181 AstData::Defn {

182 keyword,

183 ident_idx,

184 ident,

185 content,

186 } => todo!(),

187 },

188 Role::FnParameters {

189 fn_ident, scope, ..

190 } => match ast.data {

191 AstData::Binary {

192 lopd,

193 opr,

194 ropd,

195 lopd_ident,

196 } => {

197 if opr == BinaryOpr::TypeIs {

198 Some(Role::FnParameter {

199 fn_ident,

200 fn_ident_idx: lopd,

201 rank: rank.unwrap(),

202 ty: ropd,

203 scope,

204 })

205 } else {

206 unreachable!()

207 }

208 }

209 AstData::SeparatedItem { .. } => Some(Role::FnParameterSeparated {

210 fn_ident,

211 rank: rank.unwrap(),

212 scope,

213 }),

214 _ => unreachable!(),

215 },

216 Role::FnBody(_) => None,

217 Role::StructFields(ty_ident) => match ast.data {

218 AstData::Binary {

219 lopd,

220 opr,

221 ropd,

222 lopd_ident,

223 } => {

224 assert_eq!(opr, BinaryOpr::TypeIs);

225 Some(Role::StructField {

226 ty_ident,

227 field_ident: lopd_ident.unwrap(),

228 ty_idx: ropd,

229 })

230 }

53

A PREPRINT - JANUARY 28, 2025

231 AstData::SeparatedItem { content, separator } => {

232 Some(Role::StructFieldSeparated(ty_ident))

233 }

234 _ => None,

235 },

236 Role::FnParameter {

237 fn_ident,

238 fn_ident_idx,

239 rank,

240 ty,

241 scope,

242 ..

243 } => {

244 if idx == ty {

245 Some(Role::FnParameterType { fn_ident, rank })

246 } else if idx == fn_ident_idx {

247 Some(Role::FnParameterIdent { scope })

248 } else {

249 None

250 }

251 }

252 Role::FnParameterSeparated {

253 fn_ident,

254 rank,

255 scope,

256 } => match ast.data {

257 AstData::Binary {

258 lopd,

259 opr,

260 ropd,

261 lopd_ident,

262 } => {

263 if opr == BinaryOpr::TypeIs {

264 Some(Role::FnParameter {

265 fn_ident,

266 fn_ident_idx: lopd,

267 rank,

268 ty: ropd,

269 scope,

270 })

271 } else {

272 unreachable!()

273 }

274 }

275 _ => unreachable!(),

276 },

277 Role::StructField {

278 ty_ident,

279 field_ident,

280 ty_idx,

281 } => {

282 if idx == ty_idx {

283 Some(Role::StructFieldType {

284 ty_ident,

285 field_ident,

286 })

287 } else {

288 None

289 }

290 }

291 Role::StructFieldSeparated(ty_ident) => match ast.data {

292 AstData::Binary {

293 lopd,

294 opr,

295 ropd,

296 lopd_ident,

297 } => {

298 assert_eq!(opr, BinaryOpr::TypeIs);

299 Some(Role::StructField {

300 ty_ident,

301 field_ident: lopd_ident.unwrap(),

302 ty_idx: ropd,

303 })

304 }

305 _ => unreachable!(),

306 },

307 Role::FnParameterType { .. } | Role::StructFieldType { .. } | Role::TypeArgument => {

308 match ast.data {

309 AstData::Delimited {

310 left_delimiter_idx,

311 left_delimiter,

54

A PREPRINT - JANUARY 28, 2025

312 right_delimiter,

313 } => Some(Role::TypeArguments),

314 _ => None,

315 }

316 }

317 Role::TypeArguments => match ast.data {

318 AstData::Ident(_) => Some(Role::TypeArgument),

319 AstData::Delimited {

320 left_delimiter_idx,

321 left_delimiter,

322 right_delimiter,

323 } => todo!(),

324 AstData::SeparatedItem { content, separator } => todo!(),

325 AstData::Call {

326 caller,

327 caller_ident,

328 left_delimiter,

329 right_delimiter,

330 delimited_arguments,

331 } => todo!(),

332 _ => None,

333 },

334 Role::FnParametersAndReturnType {

335 fn_ident,

336 parameters,

337 return_ty,

338 scope,

339 } => {

340 if idx == parameters {

341 Some(Role::FnParameters {

342 fn_ident,

343 has_return_ty: true,

344 scope,

345 })

346 } else if idx == return_ty {

347 Some(Role::FnOutputType { fn_ident })

348 } else {

349 unreachable!()

350 }

351 }

352 Role::FnOutputType { fn_ident } => todo!(),

353 Role::LetStmtTypedVariables { variables, ty } => {

354 if idx == variables {

355 Some(Role::LetStmtVariables)

356 } else if idx == ty {

357 Some(Role::LetStmtVariablesType)

358 } else {

359 unreachable!()

360 }

361 }

362 Role::LetStmtVariablesType => todo!(),

363 Role::LetStmtVariables => todo!(),

364 }

365 }

G.4 Defns

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]

2 pub struct SymbolDefn {

3 pub symbol: Symbol,

4 pub scope: Option<Scope>,

5 }

1 pub fn calc_symbol_defns(

2 asts: Seq<Option<Ast>>,

3 scopes: Seq<Option<Scope>>,

4 n: usize,

5) -> Seq<Option<SymbolDefn>> {

6 let roles = calc_roles(asts, scopes, n);

7 calc_symbol_defn.apply_enumerated(asts, roles, scopes)

8 }

1 fn calc_symbol_defn(

2 idx: Idx,

3 ast: Option<Ast>,

4 role: Option<Role>,

5 scope: Option<Scope>,

6) -> Option<SymbolDefn> {

55

A PREPRINT - JANUARY 28, 2025

7 match ast?.data {

8 AstData::Ident(ident) => match role? {

9 Role::LetStmt { .. } => unreachable!(),

10 Role::LetStmtVariables | Role::LetStmtIdent => Some(SymbolDefn {

11 symbol: Symbol {

12 ident,

13 source: idx,

14 data: SymbolData::Variable,

15 },

16 scope,

17 }),

18 Role::FnParameterIdent { scope } => Some(SymbolDefn {

19 symbol: Symbol {

20 ident,

21 source: idx,

22 data: SymbolData::Variable,

23 },

24 scope: Some(scope),

25 }),

26 _ => None,

27 },

28 AstData::Defn {

29 keyword,

30 ident_idx,

31 ident,

32 content,

33 } => Some(SymbolDefn {

34 symbol: Symbol {

35 ident,

36 source: idx,

37 data: SymbolData::Item {

38 kind: keyword.into(),

39 },

40 },

41 scope,

42 }),

43 _ => None,

44 }

45 }

G.5 Resolutions

1 pub enum SymbolResolution {

2 Ok(Symbol),

3 Err(SymbolResolutionError),

4 }

1 pub enum SymbolResolutionError {

2 NotResolved,

3 NotYetDeclared(Symbol),

4 }

1 pub fn calc_symbol_resolutions(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<SymbolResolution>> {

2 let scopes = infer_scopes(asts, n);

3 let symbol_defns = calc_symbol_defns(asts, scopes, n);

4 let idents = asts.map(|ast| match ast?.data {

5 AstData::Ident(ident) => Some(ident),

6 _ => None,

7 });

8 let symbols = symbol_defns

9 .map(|symbol_defn| Some(symbol_defn?.symbol))

10 .first_filtered_by_attention(

11 (|ident, scope| (ident, scope)).apply(idents, scopes),

12 symbol_defns,

13 |(ident, scope), symbol_defn| {

14 let Some(ident) = ident else { return false };

15 let Some(symbol_defn) = symbol_defn else {

16 return false;

17 };

18 if let Some(symbol_defn_scope) = symbol_defn.scope {

19 if !symbol_defn_scope.contains(scope.unwrap()) {

20 return false;

21 }

22 }

23 symbol_defn.symbol.ident == ident

24 },

25)

26 .map(|s| s.flatten());

56

A PREPRINT - JANUARY 28, 2025

27 finalize.apply_enumerated(idents, symbols)

28 }

In the above code, we use a somehow complicated attention which we should illustrate why it’s representable by

transformers. The essence is to prove symbol_defn_scope.contains(scope.unwrap()) can be represented as part of the

inner product in Q⊤K. This can be done by looking closer to what contains does. Consider two scopes, scope1

and scope2 , which are sequences of bracket ast indices (can be null). The function returns true if the sequence of

scope1 contains the sequence of scope2 as prefix, which can be achieved by
∑

i x
⊤
i yi where xi, yi are the encoding

of ith ast indices of scope1 and scope2 after some transformations (different transformations because the function is

asymmetric) so that x⊤i yi = 0 if and only if either xi is a None or xi represents the same thing as yi, and x⊤i yi < 0
otherwise. More concretely, if xi is a None, xi = 0 by choice, and equal to (1, ui) otherwise where ui corresponds to

the encoding of the ith ast index of scope1 ; if yi is a None, yi = 0 by choice, and equal to (−1, vi) otherwise where

A > 0 and vi corresponds to the encoding of the ith ast index of scope2 . We should choose the encoding ui, vi such

that u⊤i vi = 1 if and only if they encode the same index, which is obviously easy enough.

1 fn finalize(idx: Idx, ident: Option<Ident>, symbol: Option<Symbol>) -> Option<SymbolResolution> {

2 let _ = ident?;

3 let Some(symbol) = symbol else {

4 return Some(SymbolResolution::Err(SymbolResolutionError::NotResolved));

5 };

6 match symbol.data {

7 SymbolData::Item { .. } => (),

8 SymbolData::Variable => {

9 if idx < symbol.source {

10 return Some(SymbolResolution::Err(

11 SymbolResolutionError::NotYetDeclared(symbol),

12));

13 }

14 }

15 }

16 Some(SymbolResolution::Ok(symbol))

17 }

H Transformer Type Checking Proof

Here we lay down the code for type analysis. It should be noted that we didn’t completely implement all the details.
Things like struct fields, enum variant fields are left out. However, we already cover the essential mechanism of type
analysis, making it sufficient for proof purposes.

H.1 Type Signatures

1 #[deri

2 ve(Debug, PartialEq, Eq, Clone, Copy)]

3 pub struct TypeSignature {

4 pub key: TypeSignatureKey,

5 pub ty: Type,

6 }

1 #[derive(Debug, PartialEq, Eq, Clone, Copy)]

2 pub enum TypeSignatureKey {

3 FnParameter { fn_ident: Ident, rank: Rank },

4 FnOutput { fn_ident: Ident },

5 StructField { ty_ident: Ident, field_ident: Ident },

6 }

1 pub(super) fn calc_ty_signatures(

2 asts: Seq<Option<Ast>>,

3 roles: Seq<Option<Role>>,

4 ty_terms: Seq<Option<Type>>,

5) -> Seq<Option<TypeSignature>> {

6 calc_ty_signature.apply(roles, ty_terms)

7 }

1 fn calc_ty_signature(role: Option<Role>, ty_term: Option<Type>) -> Option<TypeSignature> {

2 let key = match role? {

3 Role::FnParameterType { fn_ident, rank } => {

57

A PREPRINT - JANUARY 28, 2025

4 TypeSignatureKey::FnParameter { fn_ident, rank }

5 }

6 Role::StructFieldType {

7 ty_ident,

8 field_ident,

9 } => TypeSignatureKey::StructField {

10 ty_ident,

11 field_ident,

12 },

13 Role::FnOutputType { fn_ident } => TypeSignatureKey::FnOutput { fn_ident },

14 Role::FnParameters {

15 fn_ident,

16 has_return_ty: false,

17 scope,

18 } => {

19 let key = TypeSignatureKey::FnOutput { fn_ident };

20 let ty = Type::new_ident(Ident::new("unit"));

21 return Some(TypeSignature { key, ty });

22 }

23 _ => return None,

24 };

25 // put it here!

26 let ty = ty_term?;

27 Some(TypeSignature { key, ty })

28 }

H.2 Type Inference

1 pub struct TypeInference {

2 pub ty: Type,

3 }

1 pub fn calc_ty_inferences(

2 asts: Seq<Option<Ast>>,

3 symbol_resolutions: Seq<Option<SymbolResolution>>,

4 roles: Seq<Option<Role>>,

5 ty_terms: Seq<Option<Type>>,

6 ty_signatures: Seq<Option<TypeSignature>>,

7 n: usize,

8) -> Seq<Option<TypeInference>> {

9 let mut ty_inferences = infer_tys_initial(asts, ty_signatures);

10 let mut ty_designations =

11 calc_initial_ty_designations(asts, roles, symbol_resolutions, ty_inferences, ty_terms);

12 for _ in 0..n {

13 ty_inferences |= infer_tys_step(asts, symbol_resolutions, ty_inferences, ty_designations);

14 ty_designations |= calc_ty_designations_step(roles, symbol_resolutions, ty_inferences);

15 }

16 ty_inferences

17 }

1 fn infer_tys_initial(

2 asts: Seq<Option<Ast>>,

3 ty_signatures: Seq<Option<TypeSignature>>,

4) -> Seq<Option<TypeInference>> {

5 inference_literal_tys(asts).or(infer_fn_call_tys(asts, ty_signatures))

6 }

1 fn inference_literal_tys(asts: Seq<Option<Ast>>) -> Seq<Option<TypeInference>> {

2 asts.map(|ast| match ast?.data {

3 AstData::Literal(lit) => match lit {

4 Literal::Int(_) => Some(TypeInference {

5 ty: Type::new_ident(Ident::new("Int")),

6 }),

7 Literal::Float(_) => Some(TypeInference {

8 ty: Type::new_ident(Ident::new("Float")),

9 }),

10 },

11 _ => None,

12 })

13 }

1 fn infer_fn_call_tys(

2 asts: Seq<Option<Ast>>,

3 ty_signatures: Seq<Option<TypeSignature>>,

4) -> Seq<Option<TypeInference>> {

5 ty_signatures

6 .first_filtered_by_attention(asts, ty_signatures, |ast, ty_signature| {

58

A PREPRINT - JANUARY 28, 2025

7 let Some(ast) = ast else { return false };

8 let Some(TypeSignature {

9 key: TypeSignatureKey::FnOutput { fn_ident },

10 ..

11 }) = ty_signature

12 else {

13 return false;

14 };

15 match ast.data {

16 AstData::Call {

17 caller,

18 caller_ident,

19 left_delimiter,

20 right_delimiter,

21 delimited_arguments,

22 } if caller_ident == Some(fn_ident) => true,

23 _ => false,

24 }

25 })

26 .map(|ty_inference| {

27 Some(TypeInference {

28 ty: ty_inference??.ty,

29 })

30 })

31 }

H.3 Type Expectations

1 pub struct TypeExpectation {

2 pub ty: Type,

3 pub source: TypeExpectationSource,

4 }

1 pub enum TypeExpectationSource {

2 CallArgument { caller_ident: Ident, rank: Rank },

3 }

1 pub fn calc_ty_expectations(

2 asts: Seq<Option<Ast>>,

3 ranks: Seq<Option<Rank>>,

4 ty_signatures: Seq<Option<TypeSignature>>,

5) -> Seq<Option<TypeExpectation>> {

6 let parent_asts = asts.index(asts.map(|ast| ast?.parent)).map(Option::flatten);

7 let grandparent_asts = asts

8 .index(parent_asts.map(|parent_ast| parent_ast?.parent))

9 .map(Option::flatten);

10 let ty_expectation_sources = calc_ty_expectation_source.apply(grandparent_asts, ranks);

11 let retrieved_ty_signatures = ty_signatures

12 .first_filtered_by_attention(

13 ty_expectation_sources,

14 ty_signatures,

15 |ty_expection_source, ty_signature| {

16 let Some(type_expectation_source) = ty_expection_source else {

17 return false;

18 };

19 let Some(type_signature) = ty_signature else {

20 return false;

21 };

22 match (type_expectation_source, type_signature.key()) {

23 (

24 TypeExpectationSource::CallArgument {

25 caller_ident,

26 rank: rank0,

27 },

28 TypeSignatureKey::FnParameter {

29 fn_ident,

30 rank: rank1,

31 },

32) if caller_ident == fn_ident && rank0 == rank1 => true,

33 _ => false,

34 }

35 },

36)

37 .map(Option::flatten);

38 (|ty_expectation_source: Option<TypeExpectationSource>,

39 retrieved_ty_signature: Option<TypeSignature>| {

40 Some(TypeExpectation {

41 ty: retrieved_ty_signature?.ty(),

59

A PREPRINT - JANUARY 28, 2025

42 source: ty_expectation_source?,

43 })

44 })

45 .apply(ty_expectation_sources, retrieved_ty_signatures)

46 }

1 fn calc_ty_expectation_source(

2 grandparent_ast: Option<Ast>,

3 rank: Option<Rank>,

4) -> Option<TypeExpectationSource> {

5 let grandparent_ast = grandparent_ast?;

6 let rank = rank?;

7 match grandparent_ast.data {

8 AstData::Call {

9 caller,

10 caller_ident: Some(caller_ident),

11 left_delimiter,

12 right_delimiter,

13 delimited_arguments,

14 } => Some(TypeExpectationSource::CallArgument { caller_ident, rank }),

15 _ => None,

16 }

17 }

H.4 Type Errors

1 pub enum TypeError {

2 TypeMismatch { expected: Type, actual: Type },

3 }

1 pub fn calc_ty_errors(

2 ty_inferences: Seq<Option<TypeInference>>,

3 ty_expectations: Seq<Option<TypeExpectation>>,

4) -> Seq<Option<TypeError>> {

5 calc_ty_error.apply(ty_inferences, ty_expectations)

6 }

1 fn calc_ty_error(

2 ty_inference: Option<TypeInference>,

3 ty_expectation: Option<TypeExpectation>,

4) -> Option<TypeError> {

5 let ty_inference = ty_inference?;

6 let ty_expectation = ty_expectation?;

7 if ty_inference.ty == ty_expectation.ty {

8 None

9 } else {

10 Some(TypeError::TypeMismatch {

11 expected: ty_expectation.ty,

12 actual: ty_inference.ty,

13 })

14 }

15 }

I Lower Bounds

1 struct <ty-ident-1> {}

2 struct <ty-ident-2> {}

3 struct <ty-ident-3> {}

4 struct <ty-ident-4> {}

5

6 fn <f-ident-1>(a: <arg-ty-ident-1>) {}

7 fn <f-ident-2>(a: <arg-ty-ident-2>) {}

8 fn <f-ident-3>(a: <arg-ty-ident-3>) {}

9 fn <f-ident-4>(a: <arg-ty-ident-4>) {}

10

11 fn g() {

12 let x: <ty-ident> = ...;

13 <f-ident>(x);

14 }

60

A PREPRINT - JANUARY 28, 2025

I.1 Lower bounds for RNN: Easy Bounds due to Memory

Proof of Theorem 4. Our proof resonates with the proof of Theorem 4.6 in Wen et al. [2024] and Theorem 8 in Bhat-
tamishra et al. [2024]. For L,D,H ∈ N, suppose that D makes MiniHuskyAnnotatedD,H to be nontrivial, i.e., one
can define functions with one parameter and use function calls. Simple calculations shows we can choose D = 7 and
H = 1. If a RNN represents a function maps any token sequence of length L in MiniHuskyAnnotatedD,H to its type

errors represented as a sequence of values of type Option<TypeError> , then the memory right before type checking

must store all previous type signatures, the number of which can be as many as Ω(L) in the worst case. Assuming
proper numerical discretization, the memorization of these type signatures would require the memory size to be Ω(L)
in the worst case.

J Additional Experiment Details

J.1 Setups

Model details are shown in Table 1, and other hyperparameters are shown in Table 2.

Table 1: Model specification

Specification Value

Transformer
- Hidden size (dh) {8k | 1 ≤ k ≤ 8} ∪ {240}
- Num attention heads 1
- Num hidden layers 8
- Intermediate size 2dh
- Max position embeddings ≤ 2048
RNN
- Hidden size {8k | 1 ≤ k ≤ 8} ∪ {256}
- Num layers 8

Table 2: Hyperparameters of experiments

Hyperparameter Value

Dataset
- (n, f, d) {(100000, 10, 3), (200000, 20, 5), (300000, 40, 10), (400000, 80, 20)}
- (a, c, v, e) (5, 5, 0.2, 0.5)
Number of epochs 80
Train batch size 512
Optimizer Adam
LR scheduler Linear warmup-decay

- Warmup min lr 1× 10−5

- Warmup max lr 1× 10−3

- Warmup steps 990

J.2 Additional Results

Figures 4,5,6,7 include other metrics (train loss, accuracies for expected type in validation set, and validation loss) in
the experiments. Note that for the expressive power of the models, training accuracies are better indicators.

61

A PREPRINT - JANUARY 28, 2025

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in
_lo

ss

n100000-f10-a5-c5-d3-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_
ty
pe

_a
cc

n100000-f10-a5-c5-d3-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l
os
s

n100000-f10-a5-c5-d3-v0.20-e0.50
rnn
transformer

Figure 4: Figures for the dataset with (f, a, c, d, v, e) = (10, 5, 5, 3, 0.2, 0.5).

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in
_lo

ss

n200000-f20-a5-c5-d3-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_
ty
pe

_a
cc

n200000-f20-a5-c5-d3-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l
os
s

n200000-f20-a5-c5-d3-v0.20-e0.50
rnn
transformer

Figure 5: Figures for the dataset with (f, a, c, d, v, e) = (20, 5, 5, 3, 0.2, 0.5).

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in
_lo

ss

n300000-f40-a5-c5-d5-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_
ty
pe

_a
cc

n300000-f40-a5-c5-d5-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l
os
s

n300000-f40-a5-c5-d5-v0.20-e0.50
rnn
transformer

Figure 6: Figures for the dataset with (f, a, c, d, v, e) = (40, 5, 5, 5, 0.2, 0.5).

62

A PREPRINT - JANUARY 28, 2025

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in
_lo

ss

n400000-f80-a5-c5-d10-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_
ty
pe

_a
cc

n400000-f80-a5-c5-d10-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l
os
s

n400000-f80-a5-c5-d10-v0.20-e0.50
rnn
transformer

Figure 7: Figures for the dataset with (f, a, c, d, v, e) = (80, 5, 5, 10, 0.2, 0.5).

63

	Introduction
	Related Work
	Preliminaries
	Programming Language Processing and The Target C-Like Language: Mini-Husky
	Expressive Power of Transformers as Efficient Compilers
	Abstract Syntax Tree Construction
	Symbol Resolution
	Type Analysis
	Proof Vehicle: Cybertron, a Domain-Specific Language

	Comparisons between Transformers and RNN
	A Lower Bound for RNNs for Type Checking
	Empirical Comparison between Transformers and RNNs

	Conclusion
	Acknowledgement
	Tree
	What are Trees
	Representations of Trees

	Context Free Grammar
	Neural Architectures
	Cybertron
	Introduction
	Philosophy: Sequential Representation of Everything
	Local and Global Types
	Computation Graph
	Functions over Local Types
	Functions over Global Types
	Syntax and Semantics of Cybertron
	Local World
	Global World

	Dyck Language

	Mini-Husky Details
	Additional Details about Compiler Tasks.

	Transformer AST Proof
	High Level Overview
	Operators
	Statements
	Generalized Call Forms
	Definitions

	Transformer Symbol Resolution Proof
	Ranks
	Scopes
	Roles
	Defns
	Resolutions

	Transformer Type Checking Proof
	Type Signatures
	Type Inference
	Type Expectations
	Type Errors

	Lower Bounds
	Lower bounds for RNN: Easy Bounds due to Memory

	Additional Experiment Details
	Setups
	Additional Results

