450

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025 &L%/ I ECESES

Swarm-Level Task Learning via Generalized
Moments in Reinforcement Learning With
Reward Machines

Shayan Meshkat Alsadat™, Vivek Sunil Kulkarni

Abstract—Swarm-level task learning provides a basis for
learning complex tasks in swarm systems using swarm-
level features. We propose a method, SwaRM-L, to learn
reward machines (RMs) that encode non-Markovian reward
functions. We use reward machines to specify the task
and its temporal structure. Our approach enables a swarm
of agents to learn an RM that eventually becomes equiv-
alent to ground truth RM (i.e., the specified task) in this
environment (agents have no access to the ground truth
RM and only learn it through environment interaction). We
use generalized moments (GMs) to characterize swarm
features and estimate the RM state. Each agent maintains
an estimated GM to contribute to the collective learning
process. The agents use a gossip algorithm to communi-
cate with neighbors and update their estimated GMs. We
prove that our method converges to an optimal policy and
learns an equivalent RM to the ground truth RM within the
environment. We evaluate our proposed method in three
case studies involving forty agents with homogeneous
dynamics. Our results demonstrate the effectiveness of our
method in learning complex swarm behaviors.

Index Terms—Automata learning, generalized moments,
reinforcement learning, reward machines, swarm systems.

[. INTRODUCTION

SWARM of typically twenty or more agents can tackle

tasks unmanageable by individuals [1]. Swarms apply
to robotics, human-robot interaction, and intelligent systems,
but controlling more agents increases complexity. Distributed
control, though harder than centralized, offers robustness and
scalability [2]. We propose a distributed reinforcement learning
(RL) for decentralized swarm training and execution. Used in
search and rescue, swarms provide robustness and scalability, yet
struggle with partial observability, coordination, sparse rewards,
and exponential state-action growth. We use reward machines

Received 17 March 2025; revised 5 May 2025; accepted 17 May
2025. Date of publication 26 May 2025; date of current version
11 June 2025. This work was supported in part by NSF under Grant
CNS 2304863, Grant CNS 2339774, and Grant |IS 2332476; and in part
by Office of Naval Research (ONR) under Grant NO0O014-23-1-2505.
Recommended by Senior Editor C. Briat. (Corresponding author: Zhe
Xu.)

The authors are with the School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, AZ 85281 USA (e-mail:
smeshkal@asu.edu; vkulka16 @asu.edu; xzhe1 @asu.edu).

Digital Object Identifier 10.1109/LCSYS.2025.3573938

, and Zhe Xu“', Member, IEEE

(RMs) [3], a type of Mealy machine to encode task structures
and define Markovian or non-Markovian reward functions for
RL agents. In swarms, learning these structures is challenging
due to partial observability, coordination, and swarm property
preservation. RMs formally capture temporal dependencies,
enabling temporal abstraction and sub-task decomposition.
Unlike prior work [4] relying on known structures or expert
demonstrations, SwaRM-L (Swarm RL with Reward Machines
Learning) uses swarm-level features and generalized moments
(GMs) to guide RM learning. RMs despite formal languages
such as linear temporal logic (LTL) can encode task progression
with rewards and state transitions, enabling efficient learning of
reward and temporal structures by using swarm-level features,
unlike LTL, which lacks reward integration.

Related Works: RL for Swarm Systems. Previous work in
swarm systems has utilized Mean Field Theory to manage
large agent populations [5]. Deep RL approaches leverage
swarm homogeneity by treating neighboring agents’ state
information as random variable samples [6]. Value decompo-
sition networks [7] tackle credit assignments in cooperative
settings but lack support for temporal task specifications.
RL with Reward Machines. Methods like g-learning with
reward machine (QRM) [3] demonstrate the advantages of
RMs for temporal task specifications, while counterfactual
RMs [8] extend their application to multi-agent systems.
However, these approaches often assume prior knowledge of
the RM. Our work uses automata learning with satisfiability
(SAT) checks [9] to learn RM structures. Centralized training
with decentralized execution has also advanced multi-agent
RL [10]. Swarm Features. GMs characterize swarm behavior
in a permutation-invariant way [11]. Gossip algorithms aid
coordination [12], but cannot learn reward structures. Learning
RMs for swarms requires balancing local autonomy and
global coordination. Existing methods often lack scalability or
temporal awareness, but SwaRM-L uses GMs in conjunction
with RMs to represent swarm behavior in a decentralized,
task-relevant manner. Our work has the following contribu-
tions: (a) a framework that allows swarms to collectively
learn RMs that eventually become equivalent to ground truth
RMs within the environment through environment interaction,
unlike prior methods that presume RMs are known or use
expert demonstrations; (b) We learn the RM (i.e., the spec-
ified task) structure by utilizing GMs to characterize swarm

2475-1456 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Arizona State University. Downloaded on January 06,2026 at 03:29:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0006-4301-1430
https://orcid.org/0009-0007-5096-0199
https://orcid.org/0000-0002-0440-0912

MESHKAT ALSADAT et al.: SWARM-LEVEL TASK LEARNING VIA GMs IN RL

451

behavior, providing a compact, permutation-invariant swarm
state representation vital for scalability; and (c) theoretical
guarantee of convergence to an optimal policy, along with an
upper bound error between estimated and actual swarm GMs.
We validate our approach in three case studies, showing faster
convergence to an optimal policy while preserving swarm
coordination and distribution. Agents use local observations
and gossip-based communication to update GMs and learn the
RM structure.

[I. PRELIMINARIES

Before proceeding, we define the necessary background.

Labeled Markov Decision Process (MDP). A labeled
MDP is defined as a tuple G = (S, s7, A, p, v, P, L) consisting
of a finite set of states S, an initial state sy, a finite set of actions
A, a transition probability function p : Sx A xS — [0, 1], a
discount factor y € [0, 1), a finite set of atomic propositions
P, and a labeling function L : S x A x S — 27 that maps
transitions to sets of propositions. We denote the floor function
by [-], norm-2 by | - ||, and infinity norm by || - || co-

A policy m(s,a) defines the probability of taking action
a € A in state s € S. A trajectory soapsi ... SkarSk+1, kK € N
represents states and actions visited by an agent at time step &,
with corresponding label sequence A = lyl; ... [where label
at time step k is Iy = L(sk, ax, sx+1)- A trace is a pair (A, p)
consisting of a label sequence A and corresponding reward
sequence p = rorj ... ry with ry is the reward at time step k.

Definition 1 (Labeled Swarm-MDP): We define the
swarm-MDP as a tuple M = (N, A, E,r, T, L*) where N is
the number of agents in the swarm, A is the swarm agent,
E C R is the set of the generalized moment and 7 € E is the
generalized moment (GM) of the swarm state which represents
the swarm features, r € R is the swarm-level reward (obtained
from Definition 2), T corresponds to the transition function
defined at the swarm-level T: SV x AV x ¥ — R, and
swarm-level labeling function is denoted by L*: E — 2P [4).

Definition 2 (Swarm Reward Machine (RM)): A swarm
RM is a tuple A = (V, vy, 27>, L’, 68, 0,19) where V denotes a
finite set of states, v; € V denotes the initial state, 2P denotes
the input alphabet (sets of atomic propositions). The transition
error allows transition to the next state if the swarm is within
this error limit, denoted by v+ € Q2 C R. The transition
function is denoted by 6: V x 2P x @ — Vv and the output
function o : V x 2P — R that assigns the reward [4].

Ill. GENERALIZED MOMENTS FOR SWARM SYSTEMS

We use undirected graphs to model the communication
topology of the swarm (see Definition 3).
Definition 3: We denote an undirected graph used by

the swarm by G = (C, &), where C = {c,c2,
....Cnc} is a finite set of mnodes, ¢ C & =
{e1,2, €13, ..., €1 ne,€23, -+, €ne_ ne) 15 a finite set of graph

edges. Moreover, e; 1; € € if nodes c¢; and ¢; are connected by
an edge in the graph G, and n¢, ng € N. In €, e; 4 represents
the edge that connects the nodes c; and ¢;.

In graph G, each node cj represents an agent, and an
edge e; j denotes communication between agents i and j.

The swarm is represented by A/, and N; is the neighbor
set of agent i. Communication is asynchronous, with two
agents interacting at each time step k. An agent is active
with probability ﬁ The adjacency matrix is D, and W
specifies communication probabilities, with W; 4 representing
the communication probability between i and j. Each agent
knows the time-invariant graph structure.

The swarm state is denoted by s € S, where § =
[h',...,h"] and h' is the observation of agent i. The total
number of agents in the swarm is N = |N/]. Here, the state
hi=[ni,..., h,iv] where h? is the observation of agent i. For
instance, hi = [x, y*] representing the x and y coordinates
of the agent i’s position, corresponding to its MDP state.

A generalized moment n € E C R is used to describe
a feature of the swarm. This is computed using a mapping
function UY : & — R, where n = U¥(s) and U¥(s) =
% Z‘ij\zfll v(h') [11]. Here, Y(h') is a polynomial function of
the state s of an individual agent. We define swarm GMs as
follows: mean (first-order) (1), variance (second-order, spatial
dispersion) (2), skewness (third-order, asymmetry) (3), and
kurtosis (fourth-order, clustering) (5).

1 IV '
Ul(s) =s — 1 = N ;Y(hl) 1)
2 Al - 2
U's) = (s —m1")" - m = N Y (x@hH—m)” @
i=1
V] ‘ 113
Urs) = Y| (v = m)a | > 3)
i=1
IV . |
= E[(m) = m1)(m2)"2] @
W -
v¥e) = Y[(¢@h —m))t -3 - 5)
i=1
1 V] _ 14
m = I 2ol (@D —m)) E -3 (©)

i=1

Each agent maintains moment estimates ¢*(k), updated
via local communication with neighbors. These generalized
moments offer a permutation-invariant representation of the
swarm state, which is essential for scalable learning.

Example 1: A swarm of forty agents tasked with collabora-
tive objective (Figure 1) does not know the task structure, but
learns it through environmental interaction, gradually learning
the task and its temporal structure via RM learning.

IV. SWARM GM CONVERGENCE

We use the gossip algorithm’s error property (Proposition 1)
in conjunction with swarm GM evolution in labeled swarm-
MDP M to prove the convergence of the GM estimation
process and derive a bound on the estimation error [4].

When agent i communicates with neighbor j at time k,
they update their GM estimates according to (7) and (8).

. 1
e+ 1) = E(cl(k)+§3(k))+91(k+1)—91(k) (7)

Authorized licensed use limited to: Arizona State University. Downloaded on January 06,2026 at 03:29:58 UTC from IEEE Xplore. Restrictions apply.

452

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

(—a,0)

(=b,0) (T,
(a, 0) v

Fig. 1. Ground truth RM for Example 1: Swarm first collects a once
enough agents have gathered (first-order swarm GM reaches a desired
value), then delivers it to destination b.

start —>(Yo

;j(k+1)=%(zi<k)+cj(k>)+9j<k+1)—9j<k) (8)

where 0%(k) denotes agent 1i’s local state observation
at time k. Others update their estimates of swarm GM
using (9).

Ck+1) =Yk 4+ 0V + 1) —0Y(k), we N and w # 1, 3. (9)
Writing (7) and (8) in vector form, we have:
C(k+ 1) =V(k)¢ (k) + Ab (k)

In (10), ¢(k) = [\ k), ..., §|N|(k)]T denotes a vector of
estimated GMs at time step k. The matrix V (k) represents
the communication topology and has a probability of ﬁWij

(10)

(ei—e5)(ei—ey)T
2

to be equal to Vij = Iz — where Iy ZJ is a
IN] x | V] identity matrix and e; = [0, ... is a
V] x 1 vector with only the i-th entry to be one [13], [14].

To show the convergence of the swarm GM estimation, we
first prove that the estimation error is bounded. I;et A(V) be
the second-largest eigenvalue of V, and ¢(0) = %lo_) be the
initial estimation error, where s(0) = £(0) and 1is a |N] x 1
vector of ones. Proposition 1 demonstrates that the estimation
error is bounded by the initial error.

Proposition 1: The GM estimation error satisfies E|| ¢ (k) —
n()1]lec < p(k), with initial bound E(]|Z(0) — Z(0)1]|*) <
E|1¢(0)|%, a result from gossip algorithms [13], and converges
to zero as k — oo with A(V) < 1. Also, the one-step
estimation error of ¢ (0) satisfies E(IV(0)¢(0) — E(O)1||2) =
E([V(0)(£(0) — Z(O)D[I?) < A2(V)]|£(0)[|%, and k-step esti-
mation error of ¢ (0) satisfies [13]:

E(I(Vk = 1) VOEO1?) < 2% (1)

We assume that each agent knows that the initial estimation
error is bounded, i.e., E(]|¢(0) — ¢(0)1]lc0) < &max. Starting
with E(||¢(k) — n(k)1]ls), we apply Jensen’s inequality to
bound via the 2-norm: E(||¢ (k) — n(k)1]le) < E(|¢(k) —
n(k)1]), as in (12) where An(k) = nk) — nk — 1).

E(lg (k) —n()1(K)lloo) <EUIV(E—1)---V(0)£(0) +
Vk—1)---V(DAO) +--- + A (k) — [n(k) — n(k —1)
+nk—=1) = ntk=2)+---+n(1) = £0) + £ O)1])
=E(V(k—1)---V(©0)£(0) — (01 + V(k—1)
V(A — Anp(DL1+-- -+ Ab8(k) — An(k)1])
<E(Vk—=1---V(0)¢©0) — AnO1) +E(Vk—1)---
VHAID) — An(DI]) +--- + E(A0 (k) — An()1])
To prove E(]|¢ (k) — n(k)1(k)||lc) — O when k — oo, we

first need to compute an upper bound on the one-step GM
estimation error E([|[V(k — 1)A@(k — 1) — An(k — D1]|]).

12)

Let g1 = V(k—1)Af(k—1)— An(k—1)1. Using Jensen’s
inequality, we get the following.

E(lle—11) < /E(llex—111)

o N 1
T .
= | Y > Vv VLS
T=—001i,j=I1
VPl(AOk — 1) — Antk— 1) = 7] =
3 TVIVIpl(AB(k — 1) — An(k — D) = 1],

T=—00

13)

where p[(A0(k—1)— An(k—1)1) = t] denotes the probability
of (AB(k—1)— An(k— 1)1) = t. By applying Proposition 1
to 7VIVr, we can write (13) as

E(V(k —1DAOKk — 1) — An(k — D1J)

< 2(ME(I126k — D)

We assume that in MDP in discrete state space and discrete
time domain, the following difference is bounded.

(14)

EIA00)]2 = VE(100) — 8k = DI?) < bnax. (15)
By using (15), (14), and Proposition 1, (12) becomes:

E(1¢ (k) — n()1(k) o) < E (1€ (k) — n(k)1(k)||)
=)‘k(v)\/ﬁgmax +)»kil(V) 4+ .41

k
+ Y V). (16)

k'=1

From (16) and the fact A(V) < 1, we conclude that the
upper bound on the estimation error goes to 0 when k — oo.
We denote this upper bound by p (k).

< A (V)VNimax

k
pk) =)\k(v)‘/ﬁgmax + Z)\kik/(v)emax

k'=1

a7

For instance, Omax in a discrete MDP is 1, as each agent can
change its state s by at most 1 unit per time step. Bound (17)
shows that estimation errors decrease exponentially with rate
A(V), which can be optimized by solving:

minimize
V.g g

subjectto ZleVlj, Wi =0 if (i,3) ¢ €
1,3
V—111T<g1,geR
N =
Zwij =1 Vi,Wi5;>0 (18)
J
where W;5 is the communication probability and V5

is the communication matrix. The gossip algorithm cost
is O(log(JNV))) [13], while broadcasting may require
O(I./\/Iz) [15]. This analysis guarantees that as k — oo,
all agents’ GM estimates converge to the actual swarm

Authorized licensed use limited to: Arizona State University. Downloaded on January 06,2026 at 03:29:58 UTC from IEEE Xplore. Restrictions apply.

MESHKAT ALSADAT et al.: SWARM-LEVEL TASK LEARNING VIA GMs IN RL

453

GM Error

o

oL L
I

Error in GM estimation

0200 400 600 800 1000 1200 1400
Steps

Fig. 2. Convergence of swarm GM estimation for Example 1 (¢x and
¢y, the swarm GM in a two-dimensional space).

GM, enabling accurate reward machine state estimation (see
Figure 2).

In the optimization problem (18), V—Ulv—‘llT =< gl \ means
that (gln) —V + |WI—IIIT) is semi-definite.

V. AUTOMATA LEARNING FOR RM LEARNING

SwaRM-L uses counterexamples (inconsistent traces of
learned and ground truth RMs) to iteratively construct a
minimal RM [16], while ensuring consistency with X C 2P,
It employs SAT-based automata learning (using satisfiability
solvers to learn a DFA [9]) to verify parametric systems,
breaking the task into satisfiability checks for propositional
logic formulas ¢,f(, where n > 0 [9].

Lemma I: We denote the labeled swarm MDP process by
M, the ground truth RM A, and the learned RM U/ encoding
the rewards of labeled MDP M, let

r= max{2|M| A+ 1), IMI(A] + 1)2] (19)

Then with episode length Q > T' almost surely (meaning
with probability 1) SwaRM-L learns an RM that is equivalent
to the ground truth RM.

Proof: The algorithm maintains a set of counterexamples,
which are used to learn the RM U. By using the counterex-
amples X, we will iteratively learn an equivalent RM U to
the ground truth RM A (Algorithm 1 Line 17), conditioned
on that all (s,a,l) are admissible [17] and encountered in
M. The algorithm visits all attainable trajectories [16] in
the labeled swarm MDP M in the limit (no more X is
found), meaning the set X becomes stable, i.e., no additional
counterexamples are introduced or when the ground truth
RM, A, is identified. Once X stabilizes, following a similar
reasoning to Neider et al. [16], the algorithm eventually learns
the true RM. As long as the current I/ differs from A, there
exists a “short” trajectory revealing this. |

Once X stabilizes, as in [16], the algorithm learns the correct
RM. If U differs from the true RM, a short distinguishing
trajectory exists and is added to X for Q > T, ensuring
convergence to the ground truth RM.

VI. LEARNING SWARM REWARD MACHINE IN RL

Using swarm GM, we learn an RM equivalent to the
ground truth RM, enabling each agent i to estimate its
RM state f),fé from its estimated GM ¢1. This GM guides
RM state transitions, while the ground truth RM state Vi is
not known. Each agent relies on ¢* for transitions, with ¢
converging to the actual GM nl. An optimal policy from
SwaRM-L is a function of the RM state, w1(st,), and

maximizes the expected cumulative reward defined by the RM,
which represents the swarm-level task. The non-Markovian
reward structure becomes Markovian by using RM through the
augmented state (s, v). Swarm-level learning refines the RM
using counterexamples X from swarm trajectories. Transitions
occur when the swarm GM satisfies (20), f/,% #* fz,% 4 if within
a user-defined threshold.

Theorem 1: The estimated learned RM states converge to
the actual learned RM states when the estimated swarm GMs
are sufficiently close to the actual swarm GMs, i.e., the
constraint (20) is satisfied.

Vi = 8(%. LEHK)
Proof: We show that as estimated swarm GMs approach the
true GM, the estimated RM states 9; converge to the actual

RM state vy = f/,i V i € N for all agents as k — oo by
enforcing the transition constraint (21).

S(vi, L(n(k))) = viey1 i [[n(k) — x|l < p
Vk = Vik+1 else

(20)

1)

where « is the target state and u € R is a user-
defined threshold. RM transitions depend on each agent’s
estimated state . To ensure vy = f/,i for all i as
k — oo, the sequence V;, ..., V; ., must follow the learned
RM transitions vg, ..., viyn. By the triangle inequality and
constraint (21):

S(08, L (k) = py iff I (k) — k|l < — &

where £ € R is a user-defined upper bound on the GM esti-
mation error from (17), i.e., || (k) — nl||. The constraint (22)
triggers a transition only if the agent’s estimated GM is within
n — & > 0 of the target (close enough), while & ensures GM
estimates are within the acceptable error bound to the actual
GM 7 since & evolution follows (17). |

Corollary 1: Let T be the communication interval (gossip
occurs every T time steps). The time steps k for ¢ to converge
to within ¢ of the nl satisfy k = T - log(1/¢), swarm GM
errors remain acceptable for T < Tax = (4 — &) /Omax], 1.€.,
swarm GM estimation errors remain bounded.

Proof: Let GM error bound p(k) < § < /2 and k >
TClog(1/£) (from (17)), with C = 1/|log(A(V))|. Assuming
e x &, we get k = Tlog(l/e). Stability holds for T < Tpax,
ensuring RM errors stay below /2. |

Theorem 2: The SwaRM-L algorithm converges to an
optimal policy when the agents’ reward machine state transi-
tion is governed by constraint (20).

Proof: Theorem 2 follows immediately from Theorem 1,
Lemma 1, Proposition 1, and correctness of the QRM [3]. B

Algorithm 1 initializes the learned RM U, agent g-values,
MDP states, counterexample set X, and each agent’s esti-
mated GM (Lines 1-2). Over M episodes, agents select
e-greedy actions and update states (Lines 5-8). Gossip-
based communication updates GMs and RM states for active
agents (Lines 9-10); others update via (9). The environment
issues rewards, and agents update g-values (Lines 13-14).
Counterexamples are added if U/ disagrees with the ground
truth RM (Lines 15-16). We use automata learning and
satisfiability checking [9] (Section V) to iteratively learn

(22)

Authorized licensed use limited to: Arizona State University. Downloaded on January 06,2026 at 03:29:58 UTC from IEEE Xplore. Restrictions apply.

454

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

Algorithm 1: SwaRM-1L,
Hyperparameters: M episodes, steps O,
Discount factor y, Error bound &, Threshold u
Input: Learned Reward Machine U, g-function ¢
1 U<« W, g8 < InitQFun(),1i e N, X < @;
2§ < InitState(), ' <0, i e N, ¢t <0, 1ieN;
3 for 1 < episode < M do

4 Kinit < &

5 for 0 <k < Q do

6 for each agent i € {1,...,N} do

7 a; < SelectAction(nl(a,tls,t, Vi) e);

8 s,ﬁH <~ ExecuteAction(s,t, a;);

9 if agent i is active then

10 e Vs G ﬁzfl)f_
UpdateGM(i, N;, & vi);

11 else

12 L Update (¢, V) using Equation (9);

13 1k <= o, k), p < p U {ne;

14 Update g-values g* (s;, a;, ;) for all agents;

15 if U(A) # p then

16 | [X e XU)

17 if X # Ajnic then

18 L U < LearnRM(X), g < InitQFun();

9 return (g, p, A);

-

Algorithm 2: UpdateGM
Input: Agents i, Neig.hborslj\fi, estimated GMs {;ki}
Output: &g\ 1. Vi, y0 8oy Py

1]« SelectNeighbor(i, N;);

2 iy < using Equation (7);

3 ¢y, < using Equation (8);

4 for K e {i,3j} do

5 if ||§,§rl — k|| < u — & then

K ~sK K .
6 L Vig1 < S(kaL(§k+1)),
7 else

~sK ~SK.
8 | Vi <V

K ~K .
9 return §k+1’ Vier1s

an equivalent RM which eventually becomes equivalent to
the ground truth RM by using SAT solvers [16], i.e.,
Line 18 (see Lemma 1). Updated X trigger RM relearning
for consistency and g-function reinitialization to avoid bias
(Lines 17-18).

Algorithm 2 updates the estimated swarm GMs and RM
states for the communicating agents. The active agent selects
a neighbor (Line 1), both update their GMs via gossip
(Lines 2-3), and then update their RM states if the GM
estimate is within the error bound (Lines 5-8). The RM state
updates occur only when the GM estimation error is below &.

Case Study

E 1
é —— SwaRM-L
£08 — s AAgents
Z0.0 —— DDQN :
. — R @ | e Pickup
= oDelivery
?n_n 7 n . ’ r T T ¥
Z 0 250 500 750 1000 1250 1500 1750 2000
o ’ 7 ppisode ' ﬁf
() (b)
Fig. 3. (a) SwaRM-L uses task’s temporal structure to learn an optimal

policy. (b) Case Study 1: forty-agent swarm, with p (pickup) and d
(delivery) labels encoding the task.

(=p A —d, 0) (2d.0)
at (p, 0)
start —(vo vl
N

Fig. 4. Case Study 1 ground truth RM, label p shows pickup location
reached (verified by sufficient agents via first-order swarm GM, all
transitions are governed by swarm GM), and d signals the delivery
location is reached.

(T3 0)
(d; 1)

VIl. CASE STUDIES

The swarm learns the temporal structure and ground truth
RM under sparse rewards (only given when all sub-tasks are
completed in order). The g-learning in augmented state space
(QAS) uses label information as one-hot vectors in the state
space [17]. The double deep g-network (DDQN) [18] learns
policies via state-action pairs, assigning g-values per agent.
The hierarchical RL (HRL) [19] uses a high-level controller
and low-level policies to decompose tasks into subtasks (a
similar strategy to SwaRM-L), learning a policy for each.

Case Study 1. A swarm of forty agents has no knowledge
of the underlying task structure and learns the task structure
by interacting with the environment.

The ground truth RM for this task is shown in Figure 4.
Figure 3(a) shows the discounted cumulative reward averaged
every 30 episodes (500 steps per episode) over five runs.
SwaRM-L achieves higher sampling efficiency and converges
to an optimal policy, while QAS and HRL obtain higher
rewards but fail to learn the temporal structure; DDQN strug-
gles to learn effective policies. SwaRM-L scales efficiently by
using swarm GM to estimate RM state and transitions.

Case Study 2. A swarm of forty agents performs search
and rescue in a 12 x 12 grid, maintaining spatial distribution
(first and second-order swarm GMs) for efficient search, then
transporting survivors to safe zones while avoiding hazards.
The RM for this task is shown in Figure 5.

Figure 6(a) shows discounted cumulative reward (averaged
every 50 episodes, 500 steps per episode). SwaRM-L con-
verges faster than baselines in a more complex scenario by
using swarm GMs to learn the task’s temporal structure.

Case Study 3. Extends search and rescue by adding a
decontamination sub-task, toxic areas, and expanding the grid
to 15 x 15 with 60 agents (RM in Figure 7).

Figure 8(a) shows the reward averaged over 50 episodes
(900 steps per episode). SwaRM-L converges to an optimal
policy, but baselines struggle with learning the increased
complexity of the underlying temporal structure of the task.

Authorized licensed use limited to: Arizona State University. Downloaded on January 06,2026 at 03:29:58 UTC from IEEE Xplore. Restrictions apply.

MESHKAT ALSADAT et al.: SWARM-LEVEL TASK LEARNING VIA GMs IN RL

455

(—sV —f V—G,0)

(=bV —f V-GV g, 0)
(bASA=fA—G1)

(o o

Fig. 5. Case Study 2 RM: b safe zone, ffire, G trees, s survivors, and ¢

swarm position variance (second-order GM).

S o o o o =
S R = >

AAgents

ySurvivor

Safe Zone

W Fire Area

| Tree Area

B

Discounted Cumulative Reward

500 750 1000 1250 1500 1750 2(

Fig. 6. (a) SwaRM-L converges to an optimal policy; while the baselines
fail to learn the temporal structure. (b) Case Study 2: Swarm performs
search and rescue, taking survivors to safety while avoiding hazards.

(=sV =f V=GVt 0)
(=d V =f V=&V =tV =g, 0)

(s ANg,0) (dAGA=fA-GA
v1

start —>(vo

(fVGEVt0)

(=bV =f V=GV —tV g, 0)

ﬁt,O)}l\ (B,1)
o

Fig. 7. The ground truth RM in Case Study 3 uses labels for toxic areas
t, and decontamination d to encode additional sub-tasks (3 =b A ¢ A —

fAGA—?).

:

A Agents

Survivor

Safe Zone

Decontam.

M Fire Area

| Tree Area

250 500 750 1000 1250 1500 1750 2000

W Toxic Area

Fig. 8. (a) SwaRM-L completes the task. (b) Case Study 3: with

survivors to be decontaminated first.

VIIl. CONCLUSION

SwaRM-L enables swarm systems to learn RMs by using
GMs. We showed SwaRM-L learns an equivalent RM to the
ground truth RM within the environment. Future work extends
SwaRM-L to heterogeneous swarms and communication-
constrained settings and methods, e.g., broadcasting.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a

swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,

pp- 287-300, 2013.

F. Djeumou, Z. Xu, M. Cubuktepe, and U. Topcu, “Probabilistic control

of heterogeneous swarms subject to graph temporal logic specifications:

A decentralized and scalable approach,” IEEE Trans. Autom. Control,

vol. 68, no. 4, pp. 2245-2260, Apr. 2023.

R. T. Icarte, T. Klassen, R. Valenzano, and S. Mcllraith, “Using

reward machines for high-level task specification and decomposition in

reinforcement learning,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018,

pp. 2107-2116.

S. M. Alsadat, N. Baharisangari, Y. Paliwal, and Z. Xu, “Distributed

reinforcement learning for swarm systems with reward machines,” in

Proc. Am. Control Conf. (ACC), 2024, pp. 33-38.

Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field

multi-agent reinforcement learning,” in Proc. Int. Conf. Mach. Learn.

(ICML), 2018, pp. 5571-5580.

M. Hiittenrauch, A. §o§ié, and G. Neumann, “Deep reinforcement

learning for swarm systems,” J. Mach. Learn. Res., vol. 20, no. 54,

pp- 1-31, 2019.

P. Sunehag et al., “Value-decomposition networks for cooperative multi-

agent learning,” 2017, arXiv:1706.05296.

C. Neary, Z. Xu, B. Wu, and U. Topcu, “Reward machines for cooper-

ative multi-agent reinforcement learning,” 2020, arXiv:2007.01962.

D. Neider, “Applications of automata learning in verification and

synthesis,” Ph.D. dissertation, Faculty Math., Comput. Sci. Nat. Sci.,

RWTH Aachen Univ., Aachen, Germany, 2014.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,

“Multi-agent actor-critic for mixed cooperative-competitive environ-

ments,” in Proc. 31st Conf. Neural Inf. Process. Syst. (NeurlPS), 2017,
L 1-12.

[ﬁp Yan, Z. Xu, and A. Julius, “Swarm signal temporal logic inference

for swarm behavior analysis,” IEEE Robot. Autom. Lett., vol. 4, no. 3,

pp- 3021-3028, Jul. 2019.

Z. Zhang, X. Zhao, B. Tao, and H. Ding, “Distributed gossip-

triggered control for robot swarms with limited communication

range,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12511-12521,

Dec. 2023.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip

algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508-2530,

Jun. 2006.

R. Yan and A. Julius, “Distributed consensus-based online monitoring of

robot swarms with temporal logic specifications,” IEEE Robot. Autom.

Lett., vol. 7, no. 4, pp. 9413-9420, Oct. 2022.

T. Locher, “Byzantine reliable broadcast with low communication and

time complexity,” 2024, arXiv:2404.08070.

D. Neider, J.-R. Gaglione, I. Gavran, U. Topcu, B. Wu, and Z. Xu,

“Advice-guided reinforcement learning in a non-Markovian environ-

ment,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 9073-9080.

Z. Xu et al., “Joint inference of reward machines and policies for

reinforcement learning,” in Proc. Int. Conf. Autom. Plan. Schedul.

(ICAPS), 2020, pp. 590-598.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016,

pp- 2094-2100.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum,

“Hierarchical deep reinforcement learning: Integrating temporal abstrac-

tion and intrinsic motivation,” in Proc. 30th Int. Conf. Neural Inf.

Process. Syst., 2016, pp. 3682-3690.

Authorized licensed use limited to: Arizona State University. Downloaded on January 06,2026 at 03:29:58 UTC from IEEE Xplore. Restrictions apply.

