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Abstract—Federated learning (FL) enables collaborative model
training across decentralized clients without sharing raw data.
However, its deployment in real-world settings faces severe
challenges, including data heterogeneity, system heterogeneity
with device capability variance, communication overhead, and
privacy concerns. A common limitation of existing work is
the lack of consideration for the joint impact of these issues,
ultimately leading to degraded performance. These limitations
are particularly evident in healthcare, where data distribution
differs across hospitals and patient groups, which makes a
single global model often inadequate. In this paper, we propose
PFedCDP for medical imaging, a unified framework for privacy-
preserving, heterogeneity-aware personalized federated learning
(PFL), which addresses these issues. PFedCDP introduces a
device capability-aware client clustering mechanism that assigns
appropriately scaled neural architectures to devices based on
computational capacity, memory, battery, and network metrics.
Personalized training is then guided by a mechanism that
preserves locally important parameters while still incorporat-
ing global knowledge, ensuring that clients benefit from both
personalization and collaboration. To have a generalized server
model, we add a post-hoc refinement stage that strengthens
representation robustness and effectively transfers diverse cluster
knowledge. Furthermore, the integration of differential privacy
and model quantization ensures privacy and communication
efficiency. Experimental evaluations on mammography datasets
demonstrate that PFedCDP outperforms state-of-the-art base-
lines, achieving robust personalization and privacy preserva-
tion under heterogeneous and non-IID conditions in real-world
healthcare scenarios. Our implementation repository is publicly
available at https://github.com/shadhin39/PFedCDP.

Index Terms—Federated Learning, Client Clustering, Knowl-
edge Distillation, Fisher Information, Contrastive Learning.

I. INTRODUCTION

Federated learning (FL) has emerged as a transformative

distributed machine learning paradigm that enables collab-

orative model training across decentralized devices while

preserving data locality and privacy [1]. Unlike traditional

centralized approaches that require raw aggregation of data,

FL allows multiple participants to contribute to a shared model

without exposing their sensitive information [2]. This property

is particularly crucial in today’s era of big data, where massive

volumes of information are generated across diverse sources,

and it directly addresses fundamental privacy concerns in

modern AI applications [3]. This revolutionary approach has

gained substantial attention across a wide range of applica-

tions, including smart homes [4], autonomous vehicles [5],

and critical domains like healthcare [6]. In healthcare, FL is

particularly valuable, as strict privacy regulations restrict data

sharing across hospitals. It has been applied to medical imag-

ing and disease prediction, where multi-hospital collaboration

can substantially improve model performance [6]. However,

clinical data are often highly non-independent and identically

distributed (non-IID). For example, in mammography, vari-

ations in imaging devices, acquisition protocols, and patient

demographics across hospitals introduce significant domain

shifts [7]. This heterogeneity can degrade the performance

of a single global model and highlights the need for PFL

approaches that adapt to local patient populations while still

leveraging shared knowledge. Such data heterogeneity is only

one part of the challenge. In practice, FL deployment must also

contend with the heterogeneous computational capabilities of

edge devices, which create bottlenecks as clients differ widely

in processing power, memory, battery life, and connectivity

[8]. These difficulties are further compounded by communi-

cation constraints and the need for robust privacy guarantees

in real-world deployments [9].

These challenges highlight that beyond addressing hetero-

geneity, effective FL must also incorporate personalization to

ensure reliable performance across diverse clients, especially

in sensitive domains such as healthcare [6]. Unlike generic

FL strategies that enforce a single global model, person-

alization allows local models to retain parameters that are

most relevant to their unique data distributions [10]. This

is critical in medical imaging tasks such as mammography,

where data distributions vary widely between hospitals due to

differences in imaging equipment, acquisition protocols, and

patient demographics. For example, rural or resource-limited

hospitals often face a scarcity of annotated mammograms

and may encounter class imbalance problems, while larger

urban medical centers may have more diverse and better-

curated datasets [11]. Without personalization, a global model

fails to perform adequately in low-resource settings, which

could increase inequalities in healthcare quality. Moreover,



because patient data are highly sensitive and subject to strict

privacy regulations, centralizing medical images for model

training is infeasible. Under these circumstances, PFL offers

a compelling solution, allowing hospitals to collaboratively

learn robust global representations while ensuring that each

institution’s local model is adapted to its specific patient and

resource environment. Recent work [12], [13] such as Fisher

information-based parameter selection provides a principled

way to achieve this balance by preserving parameters critical

to local tasks while incorporating global knowledge.

Although personalization improves model effectiveness

across diverse clinical settings, deployment also requires

strong privacy protections to ensure that sensitive patient

information remains more secure during training. Privacy-

preserving techniques in FL have evolved significantly, with

differential privacy (DP) emerging as the gold standard for

formal privacy preserving technique [14]. Recent advances

combine DP with communication efficiency techniques such

as quantization to reduce overhead while maintaining model

utility [15]. However, balancing privacy preservation with

model performance remains a critical challenge, particularly

in heterogeneous environments where device capabilities and

data distributions vary significantly [16].

Despite these advances, existing solutions often address in-

dividual challenges, failing to provide a unified framework that

simultaneously handles device heterogeneity, data distribution

variations, and privacy requirements. While prior studies [9],

[17] have focused on privacy preservation and Dinh et al. [10]

have investigated performance costs, the combined treatment

of these two aspects remains unexplored.

To address these limitations, we introduce PFedCDP, a

novel privacy-preserving heterogeneity-aware PFL framework.

Our approach employs capability-based clustering to manage

device heterogeneity, while personalization on the client side

is achieved by using Fisher information to preserve locally

important parameters and we also apply knowledge distillation

(KD), where the server’s classification layer acts as a teacher to

refine client models. On the server side, we adopt a two-stage

strategy: (a) iterative aggregation of feature extractors during

federated rounds, and (b) a final, post-hoc model refinement

phase that synergistically combines multi-teacher Knowledge

Distillation (MTKD) [18], informed by Shapley values [19],

with Supervised Contrastive Learning (SCL) [20] on a public

dataset. To ensure practical viability, the framework integrates

DP [14] and quantization [21] for robust privacy protection

and communication efficiency. Our framework makes several

key contributions, which are listed below:

• A capability-based client clustering mechanism that ef-

ficiently manages device heterogeneity by stratifying

clients into computational capability clusters.

• A Fisher Information-guided personalization strategy that

selectively preserves important local parameters while

incorporating global knowledge, as well as employing

KD where a server model guides the training of the

client’s classification layer.

• A privacy-preserving communication protocol that com-

bines DP with quantization for enhanced security and

efficiency.

• A post-hoc refinement process that leverages Shapley

value-weighted MTKD with SCL to improve final server

model robustness.

II. LITERATURE REVIEW

FL has emerged as a promising paradigm for decentralized

machine learning, but its practical deployment remains con-

strained by non-IID data, heterogeneous devices, communica-

tion bottlenecks, and privacy risks [15]. Early solutions such

as FedProx introduced proximal regularization to stabilize

training under heterogeneity [16]. Another technique, pFedMe,

applied a Moreau envelope framework to enable client-level

adaptation with personalization [10]. Recent methods like

PFedCS focus on personalization, which emphasizes model

partitioning and similarity based collaboration, it also enhances

knowledge sharing among clients with related classifiers [22].

For personalization, Fisher information-based methods have

also been explored, as they preserve parameters that are

most important to local tasks while still incorporating global

knowledge [12]. These studies show that personalization is

important for stable performance, especially in domains such

as healthcare, since client distributions differ significantly

there.

Another line of research focuses on KD as a mechanism

for model heterogeneity and communication efficiency. FedDF

pioneered ensemble distillation on the server to fuse various

client models [8]. FedCKD extended this by combining multi-

teacher guidance with personalized history to improve sta-

bility [23]. FedMD leveraged KD on shared public datasets

to support heterogeneous client models, achieving an ap-

proximately 20% improvement in accuracy over standalone

training [24]. KD has also been shown effective for handling

device heterogeneity, where smaller models learn from larger

or ensemble teachers using soft targets [25]. MTKD frame-

works have been proposed to guide student models through

multiple teachers, although they often remain sensitive to non-

IID data distributions [18]. Multiple surveys underline KD’s

versatility in FL, spanning privacy preservation, generalization,

and transfer across heterogeneous environments [25], [26].

Although KD methods primarily address model hetero-

geneity and communication efficiency, they often overlook

fairness in contribution across clients, which Shapley value-

based approaches tackle through systematic client contribu-

tion weighting. ShapleyFL applied Shapley values to client

weighting for robust aggregation under adversarial or low-

quality updates [4]. FedKDShap extended this principle to

KD, emphasizing feature importance and mitigating non-IID

degradation [19].

While Shapley value-based methods improve fairness and

robustness in aggregation, other directions focus on strength-

ening feature representations to better handle non-IID data.

FedRCL adapted SCL to prevent representation collapse,
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dataset Dk and the server’s post-hoc refinement stage on proxy dataset Dpub. (b) details the iterative training loop within a single client cluster and server,
highlighting model decomposition for feature layer aggregation as well as Fisher information and KD based personalization.

strengthening global feature spaces while maintaining local

adaptability [27].

In addition to representation-level improvements, the practi-

cal implementation of FL must also address privacy and com-

munication constraints to ensure both security and efficiency.

DP has become the widely accepted standard for formal guar-

antees [17], but its integration with PFL often degrades utility.

DP-pFedDSU proposed dynamically sparsified client updates

via reparameterization and adaptive norms, reducing the noise

required under the same privacy budget and achieving stronger

trade-offs between privacy and personalization [9].

III. METHODOLOGY

We propose PFedCDP, a novel PFL framework tailored

to address real-world constraints in decentralized learning,

including device heterogeneity, data heterogeneity, commu-

nication limitations, and privacy preservation. The overall

framework is organized into two principal components: a

client-side personalization phase and a server-side post-hoc

refinement phase, both of them are described in detail in the

subsequent subsections.

A. System Architecture

Figure 1 illustrates the proposed PFedCDP framework,

which operates in a client–server environment with heteroge-

neous devices and a server-side refinement stage. The architec-

ture is organized into two levels. The first one is the overview

showing how heterogeneous client clusters connected to the

central server using Figure 1a, and then the detailed training

loop for a single-client cluster shown in Figure 1b.

On the client side, devices are grouped into three capability-

based clusters (High, Medium, and Low) according to compu-

tational resources and network conditions. For example, high-

capability devices, such as workstations or servers with GPUs,

are assigned deeper neural networks; medium-capability de-

vices such as personal laptops or desktops are given mod-

erately complex models; and low-capability devices such as

mobile phones or IoT nodes are assigned lightweight shallow

models. This clustering ensures that weaker devices do not

become bottlenecks while still allowing them to contribute

effectively. For each client k, the client model Wk is de-

composed into a feature extractor, and a classification layer

(WC,k). The feature extractor is responsible for learning gen-

eral representations that can be shared and aggregated across

clients, while the classification layer captures task-specific

patterns specific to the client’s local data. This framework

keeps the classification layer on the local client side and only

shares the feature extractor with the server, which ensures

client specific personalization. It also allows each client to

adapt their predictions to its own data distribution while still

benefiting from global knowledge. On the server end, the

feature extractors are aggregated using FedAvg to produce a

prototype for each cluster. The server then refines these proto-

types in a post hoc stage. In this stage, MTKD gathers knowl-

edge from all cluster models. Then the Shapley value weights

adjust the impact of each model. Finally, SCL strengthens

the representation robustness using the public proxy dataset

Dpub. This refinement enables the server to integrate diverse

knowledge across clusters and improve generalization without

requiring access to sensitive private data.

In healthcare applications such as mammography screening,

this design is particularly beneficial because hospitals often

vary in computational resources as well as in patient data

distributions. PFedCDP ensures that hospitals with limited

compute capacity or smaller datasets can still participate

meaningfully without compromising privacy or accuracy.

Although client data are assumed to be non-IID in practice,

in our experiments statistical heterogeneity is emulated using



a Dirichlet partitioning strategy [2].

B. Heterogeneity-Aware Client Clustering

To manage the device heterogeneity of client devices,

we implement a capability-aware clustering mechanism prior

to training. For each client k, four normalized capability

parameters are computed to assess their suitability for FL.

The CPU capability is calculated as CCPUk
=

fcurrentk

fmaxk

,

which reflects how much of the device’s maximum processing

frequency is currently available. The memory capability is

given by CMemk
=

Mavailablek

Mtotalk

, which indicates the propor-

tion of usable memory relative to the total memory capac-

ity, thereby capturing whether the client can accommodate

training workloads. The battery capability is expressed as

CBatteryk
=

Battery Levelk
100 , which directly translates the per-

centage of the battery into a normalized score that accounts

for the reliability of the device under limited energy condi-

tions. Finally, the network capability is defined as CNetk =
1 − current Latencyk

maximum Acceptable Latency
, where higher latency values pro-

portionally decrease the performance. This formulation make

sure that clients with faster and more stable connections are

assigned with higher capability, on the other hand those near

the acceptable latency limit get lower scores because their

communication is less efficient.

These four metrics provide a clear view of the computa-

tional, memory, energy, and communication resources of each

client in a normalized form. Finally, all four matrices are

combined into a one weighted overall score, COk
. The weights

(w1, w2, w3, w4) can be tuned based on which resources

matter most, and they can add up to 1 (
∑

wi = 1). For

instance, if the battery level is considered less critical for

a particular deployment, its weight could be reduced (e.g.

w1 = 0.3, w2 = 0.3, w3 = 0.1, w4 = 0.3). If all resources

matter the same, each one gets an equal weight of 1/4. The

score is calculated as follows:

COk
= w1CCPUk

+ w2CMemk
+ w3CBatteryk

+ w4CNetk .
(1)

Then clients are placed into one of the three clusters (High,

Medium, Low) based on their overall score (COk
). This is

relative to predefined thresholds (TH , TM ).

Cluster(COk
) =











High, COk
≥ TH

Medium, TM ≤ COk
< TH

Low, COk
< TM

(2)

We have organized our architecture into three distinct client

clusters, where each cluster tailored to specific computational

capabilities and corresponding neural network model complex-

ities. Cluster 1 is designated as the high capability cluster. It

utilizes Deep Neural Network models, and it is suitable for

devices with substantial computational resources. The medium

capability cluster (Cluster 2) will be assigned Medium Size

Neural Network models, designed for devices with moderate

processing power. Finally, the low capability cluster (Cluster 3)

will employ very few layered neural networks, optimized for

devices with limited computing capabilities.

C. Personalized Federated Training Loop

The core of our framework is an iterative training loop

that combines client-side personalization with server-side ag-

gregation of feature extractors. As described in Algorithm 1,

each client first personalizes its feature extractor using Fisher

information to preserve locally important parameters, while

replacing the remaining parameters with the global knowledge

received from the server. The client then refines its classifica-

tion layer through KD guided by the server’s model. After

local updates are computed, clients apply differential privacy

and quantization before transmitting their feature extractor

updates to the server. Algorithm 2 then describes the server-

side process, where client updates are dequantized, aggregated

within each cluster, and subsequently refined through a post-

hoc stage that integrates Shapley-weighted MTKD with SCL.

Together, these two algorithms provide a step-by-step view

of how PFedCDP balances personalization and generalization

across heterogeneous clients.
1) Server-to-Client Model Distribution: Following the Fig-

ure 1b, the classification of clients into discrete clusters based

on their computational capabilities, the iterative personalized

training process is initiated. The first step in each communi-

cation round involves the distribution of the server-to-client

model. At the start of each communication round t, the server

sends a complete cluster-specific prototype model to each

participating client k. This model consists of the aggregated

feature extractor for that cluster from the previous round

(W t−1
L,global), and the server’s own powerful classification layer

for that cluster W t−1
C,server.

2) Client-Side Personalization and Training: Upon receiv-

ing the server model (W t−1
L,global + W t−1

C,server), each client k
undertakes a multi-step local training process. The first step

involves feature extractor personalization with fisher infor-

mation. Fisher information, a classical statistical measure of

parameter sensitivity, which captures how much each model

parameter contributes to the likelihood of the observed data,

making it a natural criterion for identifying which parameters

are most important to preserve for local personalization [14].

In this stage, the client personalizes its local feature extractor

WL,k by retaining parameters with high Fisher scores while

allowing less critical parameters to be updated from the global

model. For a parameter wj , the fisher information is defined

as

F (wj) =

(

∂ logL(w,Dk)

∂wj

)2

, (3)

where L(w,Dk) denotes the likelihood function of the client’s

data. Based on a predefined threshold TFisher, two binary

masks are created: a Personal Mask (Mpersonal) and a Global

Mask (Mglobal). The two masks are used to separate param-

eters that should be preserved for local personalization from

those that should be replaced with global updates. Parameters

with high Fisher values, which contribute significantly to the

client’s local task, are preserved using the Personal Mask:

Mpersonal[j] =

{

1, if F (wj) ≥ TFisher

0, otherwise.
(4)



On the other hand, parameters with low Fisher values are

deemed less critical for local specialization and are instead

updated with the corresponding global parameters using the

Global Mask:

Mglobal[j] =

{

1, F (wj) ≤ TFisher

0, otherwise.
(5)

The client’s feature extractor for the current round, W t
L,k, is

then initialized by combining the preserved local parameters

with the updated global parameters from the server’s model

W t−1
L,global:

W t
L,k =Mpersonal ⊙W

t−1
L,k +Mglobal ⊙W

t−1
L,global, (6)

where ⊙ denotes element-wise multiplication. This selec-

tive update strategy allows clients to maintain crucial local

knowledge while benefiting from globally aggregated updates

for less critical parameters. By following this strategy, the

framework balances personalization and generalization.

After completion of the personalization step, the client

trains its classification layer using KD. At this point, the

personalized feature extractor layer W t
L,k remains frozen and

the client trains and updates only its classification layer

WC,k. Here, the server model with its classification layer

((W t−1
L,global+W

t−1
C,server)) acts as the teacher and, on the other

hand, the client model with its classification layer (WC,k)

serves as the student. Through this KD based teacher student

setup, the server helps guide the client by aligning the client’s

predictions with the softened outputs of the global model,

while the client also learns from its own local labels.

Formally, the student model θS generates logits zstudent =
θS(x) for local data x, while the teacher produces logits

zteacher for the same inputs using W t−1
L,global and W t−1

C,server.

Both logits are converted into softened probability distribu-

tions using the softmax function σ with a distillation temper-

ature TKD:

ỹstudent = σ(zstudent/TKD), (7)

ỹteacher = σ(zteacher/TKD). (8)

The temperature TKD smooths the distributions, enabling the

student to capture relative class probabilities from the teacher

rather than relying solely on hard labels.

The local training objective combines two components.

First, the standard cross entropy loss checks how well the

student model predicts the true labels y:

LCE = −
1

|yb|

∑

i∈b

logPθS (yi | xi), (9)

where yb is the batch of true labels and PθS (yi | xi) is the

probability that the student predicts for each sample. Second,

the Kullback-Leibler (KL) divergence measures how far the

student’s softened outputs are from the teacher’s softened

outputs:

LKD = DKL(ỹteacher ∥ ỹstudent). (10)

The overall local training loss combines these two terms with

weights that control their influence:

Llocal = (1− λ)LCE + λT 2
KDLKD, (11)

where λ controls how much weight the distillation term gets

and T 2
KD adjusts the KL part based on the temperature. By

minimizing Llocal, the client updates its classifier to fit its own

data while remaining consistent with the knowledge from the

server’s global model.
3) Client-to-Server Update Transmission: After completion

of its local training, each client k prepares the updated model

for transmission. The local model, W t
local,k, is split into

two distinct parts: first the updated feature extractor, W t
L,k,

and the other one is the updated classification layer, W t
C,k.

For aggregation on the server side, only the updated feature

extractor, W t
L,k, is going to be transmitted. This transmission

strategy significantly reduces the communication cost, because

the classifier stays on the local device, where it remains

personalized to the client’s own data. The feature extractor,

conversely, represents more generalizable features learned

across the client’s dataset, which makes it suitable for global

aggregation and integration into the server’s prototype models.

To protect user data and reduce network overhead, two tech-

niques are applied concurrently after the client-side updates are

computed and before transmission to the server: DP for privacy

preservation and Quantization for communication efficiency.

i. Privacy Preservation with Differential Privacy: DP [15]

is a widely used technique that protects sensitive data by

adding calibrated noise to model updates. In our framework,

this is achieved by privatizing the feature extractor update

∆W t
L,k through L2 norm clipping followed by the addition of

Gaussian noise. C2 is the clipping threshold that controls the

maximum contribution of a client to the global update. ∆c
DP

is the local update after clipping, ∆t
DP is the final local update

after clipping and adding noise, N is the Gaussian noise added

to ensure DP, and σ is the noise multiplier computed by the

privacy accountant, and composition mechanism with respect

to ϵ and δ [14].

∆c
DP =

∆W t
L,k

max(1,
||∆W t

L,k
||2

C2

)
, (12)

∆t
DP = ∆c

DP +N (0, C2
2σ2). (13)

ii. Communication Efficiency via Quantization: To further

enhance communication efficiency, the privatized update is

quantized into a compact lower bit integer representation.

Let ∆W t
q denote the quantized update, and b the number of

bits used for quantization. The transformation is expressed as

follows:

∆W t
q = round

(

∆t
DP −∆wmin

∆wmax −∆wmin

× (2b − 1)

)

, (14)

where ∆wmin and ∆wmax represent the minimum and maxi-

mum values of the update, respectively. This quantization step

reduces the precision of transmitted updates, thereby lower-

ing the bandwidth requirements, while maintaining sufficient

fidelity for effective aggregation at the server.



4) Server-Side Aggregation: To construct a stronger global

representation from distributed training, the server aggregates

feature extractor updates collected from clients in each cluster.

Since the transmitted updates are quantized for efficiency, the

server first dequantizes them and then aggregates the results.

i. Dequantization: Since client updates are transmitted in

compressed form to save bandwidth, the server reconstructs

an approximate full precision update from each client k by

dequantization (∆W k
dq) [21]:

∆W k
dq = ∆wmin +

∆W k
q

2b − 1
× (∆wmax −∆wmin) (15)

ii. Aggregation: The server aggregates the dequantized fea-

ture extractor updates using Federated Averaging (FedAvg) to

produce the new global feature extractor for the next round,

W t
L,global [3].

D. Post-Hoc Server-Side Refinement with SCL and Shapley

Values informed MTKD

Following completion of federated training rounds, the

server initiates a crucial post-hoc refinement phase for ag-

gregated prototype models (P1, P2, . . . , Pn) within the PFed-

CDP architecture. This phase leverages a public dataset and

Algorithm 1 PFedCDP: Client-Side Local Training

1: Input: Cluster index c, previous global feature extractor

W t−1
L,global(c), server’s classifier W t−1

C,server(c), local data

Dk, Number Local Epochs E.

2: Output: Quantized update ∆W t
q for feature extractor

3: Download from the server:

4: Global feature extractor W t−1
L,global(c).

5: Server classifier W t−1
C,server(c).

6: Compute Fisher information F (wj) for each parameter wj

using eq. 3.

7: Build masks Mpersonal using eq. 4 and Mglobal[j] using

eq. 5.

8: Combine parameters: W t
L,k ← Mpersonal ⊙ W t−1

L,k +

Mglobal ⊙W
t−1
L,global using eq. 6.

9: Freeze the updated feature extractor W t
L,k.

10: Initialize student model: feature extractor W t
L,k, classifier

WC,k. Teacher model: W t−1
L,global +W t−1

C,server.

11: for each epoch e = 1 to E do

12: Compute student logits zstudent and teacher logits

zteacher for batch (x, y) ⊂ Dk.

13: ỹstudent ← σ(zstudent/TKD), using eq. 7.

14: ỹteacher ← σ(zteacher/TKD) using eq. 8.

15: Compute LCE , LKD,Llocal using eq. 9, 10, 11.

16: Update local classifier WC,k by minimizing Llocal

17: end for

18: Compute raw update: ∆W t
L,k ←W t

L,k −W
t−1
L,global.

19: Clip and add noise (Differential Privacy):

20: ∆W c
DP ; ∆W

t
DP . using eq. 12 and eq. 13 respectively.

21: Quantize update: ∆W t
q using eq. 14.

22: Return: Transmit ∆W t
q to the server.

integrates both Ensemble MTKD [18] with Shapley values-

based weighting and SCL [20]. Our motivation for integrating

Shapley values-based weighting [19] and SCL stems from

their efficacy in leveraging a local public or proxy dataset.

This public dataset is separated from anything learned in the

private dataset of all the clients. It lets the server refine the

model to improve robustness and discrimination while without

compromising the private data.

The server starts its refinement step by treating the cluster

prototypes as a group of teacher models. Each prototype Pk

effectively gathers the knowledge from its respective client

cluster after the completion of all federated rounds. Then

each prototype serves as an individual teacher model θ
(k)
T .

The server then initializes a new student model, θS , which

will become the refined global model. A labeled proxy dataset

(xtrain, ytrain) is used to combine the knowledge of all teachers.

Prior to training of θS , PFedCDP computes Shapley value-

based feature importance for each teacher model θ
(k)
T using the

proxy data. A feature importance vector ψ(k) is derived using

shapley values, which quantifies each input feature’s contri-

bution to the teacher’s predictions on a representative subset

of class-balanced test samples. These individual ψ(k) vectors

are then aggregated (e.g., averaged) to form a combined im-

portance weight ψ, capturing the collective feature importance

across the teacher ensemble. This ψ will subsequently guide

the distillation process by weighting the loss function [19],

ψ =
1

K

K
∑

k=1

ψ(k). (16)

The training of the student model θS proceeds using ensemble

MTKD over multiple epochs (E) and mini-batches (xb, yb)
from the public training data. For each batch, we have followed

the two steps which are: i) Each teacher θ
(k)
T generates logits

z
(k)
T = θ

(k)
T (xb). These are combined to form an ensemble

prediction of the teacher z̄T = 1
K

∑K

k=1 z
(k)
T . ii) Softened

probability distributions are derived from teacher and student

model logits using a distillation temperature using equation 7,

and 8. The KD loss (LKD) is then computed as the KL

divergence between these softened distributions using equa-

tion 10. Crucially, instead of traditional cross-entropy loss,

our framework integrates SCL as the primary classification

objective. SCL enhances representation learning by promoting

intraclass compactness (pulling samples from the same class

together) and interclass separability (pushing samples from

different classes apart) [20]. This is achieved by generalizing

the standard contrastive loss to handle an arbitrary number of

positive examples for a given anchor within a mini-batch. This

method encourages the encoder to generate closely aligned

representations for all instances of the same class, leading

to a more robust clustering of the representation space. The

supervised contrastive loss for a single anchor sample i is



given by:

LSCL
i =

−1

2Nỹi
− 1

2N
∑

j=1,i ̸=j,ỹi=ỹj

log
exp(zi · zj/τ)

∑2N
k=1,i ̸=k exp(zi · zk/τ)

.

(17)

Here, zi, zj , and zk are the representation embeddings of the

samples, the sum in the numerator is over all other ”positive”

samples j in the mini-batch that share the same label as the

anchor i, Nỹi
is the total number of images in the mini-

batch that have the same label, ỹi, as the anchor, and τ is

a temperature hyperparameter. This LSCL term, summed over

all samples in the batch, directly contributes to the overall loss.

The total loss LSupMTKD for the student model combines

the SCL loss and the KD loss:

LSupMTKD = (1− α)LSCL + αT 2 LKD. (18)

Here, α is a balancing hyperparameter, and T 2 scales the KL

term. Finally, LSupMTKD is weighted by the Shapley-based

importance ψi to yield the feature-weighted distillation loss

LSupMTKDShap:

LSupMTKDShap =
1

|F |

|F |
∑

i=1

ψiLSupMTKD. (19)

The overall server-side refinement process, which combines

MTKD, Shapley weighting, and SCL, is shown in Algorithm 2.

IV. PERFORMANCE EVALUATION

This section discusses the experimental evaluation of our

proposed PFedCDP framework. We assess its performance in

handling data and system heterogeneity, preserving privacy,

and achieving high model accuracy, precision, recall, f1-score,

specificity, and AUC compared to baseline methods [28].

A. Experimental Setup

1) Datasets and Distribution: To simulate a realistic med-

ical imaging scenario, we utilize two public mammography

datasets: the Curated Breast Imaging Subset of DDSM (CBIS-

DDSM) [29] and the Mammographic Image Analysis Society

(MIAS) dataset [30].

The private data held by clients is represented by the CBIS-

DDSM dataset. This is a curated and standardized version of

the Digital Database for Screening Mammography (DDSM),

which consists of 2,620 scanned film mammography studies.

It is a comprehensive collection containing normal, benign,

and malignant cases with verified pathology information. We

use 2,326 training images and 772 testing images for our

experiments. To simulate statistical heterogeneity, we split the

training data among all clients using a dirichlet distribution

with (α = 0.5). This produces non IID data at each client

side. This setting reflects real world scenarios where hospitals

hold patient data with different biases.

The MIAS dataset serves as the public data on the server.

It contains mammography images with labels that mark each

case as Benign (B) or Malignant (M). We used 280 training

samples and 50 testing samples for the refinement stage.

During this step, SCL and Shapley weighted MTKD help

to strengthen the generalization of the global model without

requiring any private client data.

2) Simulation Environment and Models: Our simulation

uses the Flower framework [2] to handle communication

between the central server and the heterogeneous client envi-

ronment. We simulate the three client clusters defined in our

methodology (High, Medium, and Low capability). Each clus-

ter is assigned a different model architecture that matches its

computational capability. We utilized the Flower framework’s

gRPC-based architecture to reliably simulate client-server in-

teractions, with each cluster communicating on a dedicated

port (e.g., 8080, 8081, 8082). The framework employs three

CNN models on the client side that are tailored to the device

capability. Model A is for high-capability devices that uses

two convolutional blocks with 32 and 64 filters, followed by

a dense layer of 128 units prior to the classification layer.

Then, Model B is designed for medium-capability devices,

which have lighter convolutional layers with 16 and 32 filters,

Algorithm 2 PFedCDP: Server-Side Training and Post-Hoc

Refinement

1: Input: Client Clusters C, thresholds (TH , TM ), rounds T ,

Training Epoch E, proxy dataset (xtrain, ytrain)
2: Output: Refined global student model θS
3: for each round t = 1 to T do

4: Send (W t−1
L,global(c),W

t−1
C,server(c)) to clients in all c

5: Receive client’s local updates quantized ∆W k
q

6: for each client k do

7: Dequantize: ∆W k
dq ← DeQuant(∆W k

q ) using eq. 15.

8: end for

9: for each cluster c do

10: ∆W c
agg ← Avgk∈C(c)(∆W

k
dq) (FedAvg)

11: W t
L,global(c)←W t−1

L,global(c) + ∆W c
agg

12: end for

13: end for

14: Broadcast ∆W c
agg, W

t
L,global(c) to the client clusters.

15: Collect final cluster models {P1, . . . , PC}
16: Compute Shapley feature importance vectors

{ψ(1), . . . , ψ(C)} and average to get ψ using eq. 16.

17: Initialize student model θS
18: for each training epoch 1 to E do

19: for each batch (xb, yb) in proxy dataset (xtrain, ytrain) do

20: Compute teacher logits {z
(k)
T = Pk(xb)}

C
k=1 and

average to get z̄T
21: Compute student logits zS ← θS(xb)
22: Compute distillation loss LKD using eq. 10 and

LSCL using embeddings of θS with eq. 17.

23: Calculate LSupMTKD using eq. 18.

24: Apply Shapley weighting: LSupMTKDShap ← ψ ·
LSupMTKD using eq. 19.

25: Update θS with gradientdescent
26: end for

27: end for

28: Return: Refined model θS



a 64-unit dense layer, and includes dropout regularization.

Finally, Model C is built for low-capability devices, which is

an ultralight version with only 8 and 16 filters, and a 32-unit

dense layer. For post-hoc refinement on the server, a student

model is trained with 16 and 32 filters, a 64-unit dense layer,

and a dropout of 0.5, ending with a softmax classification

layer. The simulation runs for 20 federated rounds, with each

client performing local training for 20 epochs per round,

tailored to its capability. For privacy and efficiency, we apply

Differential Privacy (ϵ = 5.0, C2 = 2.5) and Quantization (8

bits) to the model updates before transmission to the server.

B. Evaluation

We have evaluated PFedCDP against two baselines: a

centralized model trained on all private data (serving as an

upper bound) and a standard FedAvg implementation. We

use a wide set of metrics to evaluate the performance of the

dataset given the medical nature of the datasets. We report

Accuracy, Precision, Recall (Sensitivity), Specificity, F1 Score,

and AUC (Area Under the Curve), as the clinical impact of

false negatives and false positives is really important in these

scenarios.

1) Quantitative Analysis: Tables I and II show the final

test results. PFedCDP clearly improves over FedAvg on every

metric for both private (CBIS-DDSM) and public (MIAS)

datasets. In the more challenging CBIS-DDSM dataset, PFed-

CDP reaches an accuracy of 94.1% and a high sensitivity of

93.5%. These results get close to the centralized upper bound

and show strong performance on non IID data. On MIAS, the

model reaches near perfect numbers, including 99.5% accuracy

and a 99.9% AUC. This highlights how effective the post

hoc refinement stage is at producing a well generalized global

model.

2) Heterogeneity and Personalization Analysis: Figure 2

compares the performance of heterogeneous client clusters on

the CBIS-DDSM dataset when training with 10, 50 and 100

clients. Cluster A (high capability) consistently achieves the

highest accuracy across all settings. In contrast, Clusters B

and C also show steady improvement. It demonstrates that,

our framework enables clients of varying capacities to benefit

from federated training. In particular, with the fewer clients

(e.g., 10 clients) the framework achieves higher final accuracy

and faster convergence than 50 or 100 clients. This is because

each client holds more samples, which produces less noise

to local gradients and enables more effective personalization.

As the number of clients increases, data fragmentation and

client drift become more pronounced. This leads to slower

convergence and slightly lower peak accuracy. However, in

all settings, Fisher information based personalization allows

clients to retain critical local knowledge while still integrating

global updates. Thus, the architecture mitigates the adverse

effects of non-IID data and heterogeneous device capacities.

3) Post-Hoc Refinement Evaluation: Figure 3 shows the

effectiveness of the server side post-hoc refinement stage. It

compares the final PFedCDP student model with FedAvg and

a centralized model across six performance metrics on the

MIAS test dataset. In every plot in the corresponding sub-

figures, the PFedCDP model, which is refined with Shapley

weighted MTKD and SCL, converges faster and reaches higher

final scores than FedAvg. This ensures that the refinement

stage effectively gathers knowledge from the different teacher

models and builds a stronger and more discriminative global

model. As a result, it generalizes better on the public/proxy

dataset.

4) Comparison with State-of-the-Art (SOTA): To better

understand its performance, we also compare PFedCDP with

several recent state of the art (SOTA) approaches. Tables III

and IV show that PFedCDP demonstrates highly competitive,

and superior performance in both public and private datasets,

similar to our approach.

In summary, PFedCDP effectively handles heterogeneity

and privacy in FL through capability-aware clustering, Fisher-

guided personalization, and advanced post-hoc refinement

which delivers a robust, scalable, and high-performing PFL

framework.

V. CONCLUSION

This paper introduces PFedCDP, a novel framework that

addresses the key challenges of FL data heterogeneity, sys-

tem heterogeneity, privacy, and communication overhead. Our

approach provides a practical solution to train personalized

models on diverse devices with limited resources. PFedCDP

uniquely combines capability-aware client clustering, Fisher

information-guided personalization, and a server-side refine-

ment stage using Shapley-weighted distillation and contrastive

learning. For security and efficiency, the framework also

integrates differential privacy and quantization. Our compre-

hensive experimental evaluations on public mammography

datasets show that PFedCDP outperforms FedAvg, achieving

94.1% accuracy on the private CBIS-DDSM data and 99.5%

on the public MIAS data. These results validate that our inte-

grated approach effectively mitigates the challenges of non-IID

data and system variance. For future work, we plan to explore

more dynamic client clustering algorithms and investigate the

framework’s applicability to other data modalities, such as text

and time series data. In general, PFedCDP marks a step toward

practical, and efficient PFL systems, especially in healthcare.

TABLE I
PERFORMANCE COMPARISON ON THE CBIS-DDSM (PRIVATE) DATASET.

Method Accuracy(%) Precision(%) Recall/Sensitivity(%) F1-Score(%) Specificity(%) AUC(%)

Centralized 96.2 96.6 95.8 96.2 96.5 98.8
Standard FedAvg 85.7 86.5 84.0 85.2 87.0 91.0
PFedCDP (Ours) 94.1 94.8 93.5 94.1 94.5 97.5



TABLE II
PERFORMANCE COMPARISON ON THE MIAS (PUBLIC/PROXY) DATASET.

Method Accuracy(%) Precision(%) Recall/Sensitivity(%) F1-Score(%) Specificity(%) AUC(%)

Centralized 99.8 99.9 99.7 99.8 99.9 99.9
Standard FedAvg 91.3 91.8 90.5 91.1 92.0 95.5
PFedCDP (Ours) 99.5 99.6 99.4 99.5 99.6 99.9

(a) No. of Clients - 10 (accuracy) (b) No. of Clients - 50 (accuracy) (c) No. of Clients - 100 (accuracy)

Fig. 2. Global accuracy of heterogeneous client clusters (A: High capability, B: Medium capability, C: Low capability) on non-IID partitions of the CBIS-
DDSM dataset across 20 federated rounds. With fewer clients (10 clients), larger local datasets yield faster convergence and higher accuracy, while 50 and
100 clients introduce more fragmentation and drift, reducing peak accuracy. Nevertheless, all clusters show steady improvement, demonstrating that PFedCDP
allows clients of varying capabilities to benefit from both global aggregation and Fisher Information guided personalization.

(a) Accuracy vs. Rounds/Epochs (b) Precision Score vs. Rounds/Epochs (c) Recall Score vs. Rounds/Epochs

(d) F1-Score vs. Rounds/Epochs (e) Specificity Score vs. Rounds/Epochs (f) AUC Score vs. Rounds/Epochs

Fig. 3. performance comparison on the public MIAS dataset. The subfigures illustrate the better performance of the final student model (enhanced via post-hoc
refinement) over the standard FedAvg baseline across six key metrics: (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score, (e) Specificity, and (f) AUC.
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