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ABSTRACT

Counterfactual reasoning has emerged as a crucial technique for generalizing
the reasoning capabilities of large language models (LLMs). By generating and
analyzing counterfactual scenarios, researchers can assess the adaptability and
reliability of model decision-making. Although prior work has shown that LLMs
often struggle with counterfactual reasoning, it remains unclear which factors most
significantly impede their performance across different tasks and modalities. In this
paper, we propose a decompositional strategy that breaks down the counterfactual
generation from causality construction to the reasoning over counterfactual inter-
ventions. To support decompositional analysis, we investigate 11 datasets spanning
diverse tasks, including natural language understanding, mathematics, program-
ming, and vision-language tasks. Through extensive evaluations, we characterize
LLM behavior across each decompositional stage and identify how modality type
and intermediate reasoning influence performance. By establishing a structured
framework for analyzing counterfactual reasoning, this work contributes to the
development of more reliable LLM-based reasoning systems and informs future
elicitation strategies.

1 INTRODUCTION

Large language models (LLMs) have exhibited remarkable proficiency across a diverse range of tasks,
including natural language understanding (Devlin et al., 2019; Kuang et al., 2025) and multimodal
reasoning (Hu et al., 2017; Lu et al., 2022; Yang et al., 2023). Despite these advancements, concerns
persist regarding their reasoning and generalization capabilities. A particularly challenging aspect of
model evaluation is Counterfactual Reasoning, i.e., the ability to adjust responses when presented
with modified premises (Pearl & Mackenzie, 2018) (e.g., What is the outcome in a hypothetical
condition?). Investigating the counterfactual reasoning of LLMs provides an interpretable step to
understand their adaptability under hypothetical alterations to input conditions (Gat et al., 2024;
Huang et al., 2024).

Prior studies have demonstrated that LLMs often struggle with counterfactual reasoning and fre-
quently fail to maintain logical consistency or adjust to context shifts (Li et al., 2023; Nguyen
et al., 2024; Wang et al., 2024). While these works highlight notable performance gaps, they lack a
standardized framework for systematically analyzing and understanding counterfactual behaviors in
LLMs. Consequently, it remains unclear what factors most significantly impact LLM performance in
counterfactual scenarios. Furthermore, counterfactual reasoning has often been evaluated in a direct
and monolithic manner, primarily by introducing interventions and assessing model responses (Li
et al., 2023), without grounding the analysis in the underlying causal structure that gives rise to such
interventions. This overlooks the foundational role of causal modeling. Specifically, the identification
of causal variables and their dependencies are essential for understanding counterfactuals.

To address these gaps, we are motivated by the structural formulation of counterfactual reasoning
under the Structural Causal Model (SCM) formalism (Pearl, 2009), in which counterfactual reasoning
must proceed through a sequence of regularized steps including inferring latent variables from
observations, modifying the SCM via intervention, and computing the updated outcome. Accordingly,
we outline a Decompositional Strategy that breaks down the analysis of counterfactual reasoning
into distinct stages. Our approach departs from prior work that focuses solely on counterfactual
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3. Intervention 
Identification

4. Outcome 
Reasoning

2. Causality 
Construction

1. Variable 
IdentificationInput Context Counterfactual 

Output

An online retail platform tracks user 
purchases to evaluate how personalized 
product recommendations influence 
buying behavior.

• Exposure: Web recommendation 
• Covariate: User browsing history 
• Mediator: Time spent on the webpage
• Outcome: If the user made a purchase

Example

Variables

Browsing history → a recommendation is shown
Browsing history → Purchase likelihood 
Recommendations → Time spent on the webpage
Time spent on the webpage → Purchase likelihood

Causal Graph (Factual)

• Intervention: What if the user had not received 
the personalized recommendation?

• Original Exposure: received recommendation
• Counterfactual: did not receive recommendation

Counterfactual

Browsing history → If recommendation is shown
Browsing history → Purchase likelihood 
No Recommendations → (?) Time spent on webpage
(?) Time spent on webpage → (?) Purchase likelihood

Causal Graph (Counterfactual)

Output
• Time Spent (Mediator): Reduced time on 

webpage due to the lack of recommendation
• Purchase (Outcome): Less likely due to the 

reduced time and lack of recommendation 

Figure 1: A workflow and illustrative example that decomposes LLM-based counterfactual reasoning
into four stages: (1) identifying causal variables (e.g., whether web recommendation is shown), (2)
constructing the causal graph (e.g., browsing history → a recommendation is shown), (3) specifying
the counterfactual intervention (e.g., no recommendation shown), and (4) reasoning about the coun-
terfactual outcome (e.g., less likely to purchase a product online).

generation. Instead, we begin by examining the causal structure of factual conditions, which serves
as the necessary foundation for valid counterfactual reasoning.

As illustrated in Figure 1, our methodology is outlined into four stages. First, we assess (i) whether
LLMs can accurately identify the four variable groups critical to causal reasoning: Exposure, Co-
variate, Mediator, and Outcome. Next, we evaluate (ii) whether LLMs can correctly construct a
corresponding causal graph in the form of a directed acyclic graph (DAG). Building on this causality
modeling, we then study LLMs’ counterfactual reasoning abilities by evaluating (iii) whether they
can identify the correct intervened variable (i.e., the Exposure), and (iv) whether they can accurately
infer the counterfactual mediators and final outcomes by reasoning over the updated causal graph.

To support our decompositional study, we construct a benchmark by collecting and curating 11
counterfactual datasets across diverse tasks, including natural language understanding, mathematics,
programming, and vision-language reasoning. We curate each dataset by extracting factual and
counterfactual variables, identifying causal elements, and constructing corresponding causal graphs
as reference structures for evaluation purpose. In experiments, we test the performance of leading
LLMs across each decompositional stage to analyze their sufficiency in handling individual reasoning
components. Based on the observed performance among these decomposed evaluations, we propose
targeted improvements, such as integrating modality-specific function-calling interfaces within a tool-
augmented learning paradigm, to address critical reasoning bottlenecks. Additionally, we evaluate the
impact of different elicitation (prompting) strategies, including Chain-of-Thought (CoT) (Wei et al.,
2022), Chain-of-Thought with Self-Consistency (CoT-SC) (Wang et al., 2022), and Tree-of-Thought
(ToT) (Yao et al., 2023) reasoning. Collectively, our evaluations provide a solid step for understanding
and enhancing LLMs in complex reasoning tasks and imaginative scenarios 1.

In summary, we make the following contributions:

• Decompositional Framework–We propose a decompositional strategy that spans from causal
modeling to counterfactual reasoning, enabling a systematic evaluation of LLMs’ capabilities in
understanding and performing counterfactual tasks.

• Benchmark Construction–We construct a comprehensive evaluation benchmark by curating
causal structures and counterfactual instances across multiple domains. This benchmark standard-
izes decompositional evaluations and supports consistent analysis across tasks and modalities.

• Evaluation and Improvement Strategy–We evaluate leading LLMs under diverse tasks. By
identifying LLMs’ capabilities in specific decompositional stage, we propose actionable strategies
to improve LLMs’ counterfactual adaptability.

1Codes available at: https://anonymous.4open.science/r/Counterfactual_NeurIPS_
2025-D8E6/.
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2 RELATED WORK

Counterfactual Reasoning. A fundamental component of causal inference is to examine hypotheti-
cal scenarios, which addresses the question: What would have occurred had a particular factor or
decision differed? (Pearl & Mackenzie, 2018) This method facilitates causal analysis by compar-
ing observed outcomes with those projected under alternative conditions. Empirical research has
demonstrated the broad applicability of counterfactual reasoning across multiple domains, including
healthcare, business, and fairness (Gvozdenović et al., 2021; Kyrimi et al., 2025; Gow et al., 2016;
Kasirzadeh & Smart, 2021; Koonce et al., 2011). This stands in contrast to many contemporary
AI systems, which predominantly rely on statistical correlations while lacking robust capacities for
abstract reasoning and causal inference (Jiao et al., 2024).

Counterfactual Reasoning in AI and NLP. Counterfactual reasoning has emerged as a powerful
framework for enhancing model interpretability and causal understanding in AI and NLP. In medical
AI, SyncTwin (Qian et al., 2021) proposed a counterfactual estimation framework that constructs syn-
thetic patient data to predict potential outcomes under alternative treatments. In NLP, a Counterfactual
Reasoning Model (CRM) (Feng et al., 2021) is developed using LLMs to generate contrastive samples,
improving sentiment analysis and inference tasks. There are also order-faithfulness metrics (Gat et al.,
2024) to evaluate causal explanations in black-box models. These contributions demonstrate the
versatility of counterfactual methods in improving model transparency and reliability across domains.

LLMs and Elicitation. Recent advances have significantly enhanced LLMs’ reasoning capabilities
through several elicitation (prompting) approaches. The introduction of Chain-of-Thought (CoT)
prompting (Wei et al., 2022) and its extensions, the Self-Consistency CoT (Wang et al., 2022) and
Tree-of-Thought (ToT) (Yao et al., 2023), have enabled more structured and reliable multi-step
reasoning. These innovations collectively represent a paradigm shift from simple pattern recognition
to deliberate, verifiable reasoning in LLMs.

Evaluation of Counterfactual Reasoning. Evaluating counterfactual reasoning in LLMs has
garnered growing attention. However, most prior works assess counterfactual through end-to-end
evaluations such as contrastive counterfactuals (e.g., “What would happen if X didn’t occur?”)
(Huang et al., 2023; Frohberg & Binder, 2021; Zhang et al., 2024b; Le et al., 2023). Other studies
such as MalAlgoQA (Sonkar et al., 2024) introduce the concept of algorithms to assess LLMs’ ability
to reason about flawed hypothetical paths. Their setup focuses on identifying distractor rationales in
multiple-choice formats, revealing LLM struggles in understanding student misconceptions Other
efforts like DICE (Shrivastava & Aoyagui, 2025) and CausalProbe (Chi et al., 2024) create diagnostic
benchmarks to evaluate causal sensitivity or counterfactual faithfulness in static question-answering
formats, without decomposing the reasoning process into interpretable modules . Similarly, synthetic
datasets have been used to analyze RNN inductive biases in agreement prediction (Ravfogel et al.,
2019) but do not extend to structured counterfactual inference tasks. Compared to these works,
our study introduces a modular evaluation aligned with Pearl’s structural causal model (Pearl &
Mackenzie, 2018). We decompose counterfactual reasoning into four interconnected sub-tasks to
open up fine-grained attribution of model failures and provide a more diagnostic and interpretable
assessment of LLM reasoning capabilities.

3 METHODOLOGY: DECOMPOSING COUNTERFACTUAL REASONING

This section presents our methodology for decomposing counterfactual reasoning. We begin by intro-
ducing foundational concepts in causality and counterfactual reasoning (Section 3.1). Subsequently,
we detail the evaluation tasks used to assess models (Section 3.2) and our corresponding construction
of benchmarks over multimodal datasets (Section 3.3).

3.1 PRELIMINARY: FROM CAUSALITY TO COUNTERFACTUAL REASONING

Causality. Causality depicts the dependencies about how one variable influences another, i.e., the
underlying causal effects. There are four types of variables commonly used in causal analysis:
exposure, covariate, mediator, and outcome. Specifically: (1) Exposure (or treatment, intervention,
denoted X) refers to the action or condition imposed on a system; (2) Outcome (Y ) denotes the
resulting response or effect influenced by the exposure; (3) Covariate (Z) is the pre-treatment variable

3
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that may influence both X and Y ; (4) Mediator (M ) lies on the causal pathway from X to Y ,
representing intermediate mechanisms through which the exposure exerts its influence.

Example 1 Consider a dataset that records students’ academic performance in the presence of a
tutoring tool. Here, the exposure X indicates whether a student used the tool. The outcome Y
corresponds to the student’s final exam score. The covariate Z may include socioeconomic factors
(e.g., parental income), which could influence both the use of tutoring and academic outcomes.
The mediator M is the number of hours the student spends studying per week.

Causal Graph. The relationships among exposure, covariate(s), mediator(s), and outcome(s) can
be formally represented using a directed acyclic graph (DAG), commonly named a causal graph
(Pearl & Mackenzie, 2018) that captures causal relationships, where the exposure X influences the
outcome Y both directly and indirectly through a mediator M . Covariate Z may affect X , M , and
Y , as illustrated in Figure 2.

Example 2 The corresponding causal graph, illustrated in Figure 2-(a), would include: an
arrow from X → M (e.g., tutoring influences study time), M → Y (study time influences
exam performance), X → Y (direct effect of tutoring on scores), Z → X and Z → Y (e.g.,
socioeconomic status affects both tutoring usage and academic performance).

Tutoring or 
not

socioeconomic 
status

Study time Exam score

(a) Causal Graph Structure

Z

X
M Y

Not Received 
Tutoring

Low income

5 hours/week Score = 78

Z

X
M Y

(b) A Factual Graph

Received 
Tutoring

Low income

? hours/week Score = ?

Z

X
M Y

(c) A Counterfactual Graph

Intervention

Figure 2: (a) Causal graph structure and (b)(c) A factual/counterfactual example.

Counterfactual Reasoning. Counterfactual reasoning aims to answer:

Given an observed instance (X = x, Z = z,M = m,Y = y), what would the outcome Y be
if the exposure X were set to a different value x→, while keeping the covariate Z fixed?

The observed instance (x, z,m, y) is also known as the factual case. In contrast, counterfactual
reasoning seeks to determine the outcomes under an alternate intervention, that is, when X = x→.

In causal graph, we assume a two-stage causal mechanism: (1) Mediator Function: M = fM (X,Z)
and (2) Outcome Function: Y = fY (X,M,Z). Then, the counterfactual outcome under an alternative
exposure x→ can be computed via: Yx→ = fY (x→, fM (x→, z), z), where we simulate a new mediator
value Mx→ = fM (x→, z) based on the counterfactual exposure x→ and observed covariate z. Then, we
predict the counterfactual outcome Yx→ using the counterfactual exposure x→, the simulated mediator
Mx→ , and the same covariate z.

Example 3 As exemplified in Figure 2-(b), a student with z = LOW-INCOME socioeconomic
status did not receive tutoring (x = 0), studied 5 hours per week (m = 5), and scored 78 on the
exam (y = 78).
We now ask: What would the student’s score have been if they had received tutoring (x→ = 1)?
We compute: (i) Simulated study time: m→ = fM (x→ = 1, z = LOW-INCOME) = 9 and (ii)
counterfactual score: Yx→=1 = fY (x→ = 1, m→ = 9, z = LOW-INCOME) = 85.
We conclude: The tutoring would have increased the student’s score from 78 to 85 (Figure 2-(c)).

3.2 DECOMPOSITIONAL EVALUATION TASK

Counterfactual reasoning is often described as a structured chain of analysis from identifying vari-
ables to modeling causal relations, specifying interventions, and simulating outcomes (Pearl, 2009;
Bareinboim et al., 2022). Recent work in ML and LLMs further emphasizes the importance of
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Table 1: Summary of counterfactual benchmarks including data source, use case, presence of causal
variables (!: present, "#: partially present), the definition of counterfactual condition, included
modalities, and number of instances. Concrete examples are shown in Appendix A.

Data Use Case
Causal Variable Counterfactual

Modality Num
X Z M Y Condition

CRASS (Frohberg & Binder, 2021) Question answering ! "# "# ! “What if ...” condition Text 274
CLOMO (Huang et al., 2023) Text logic parsing ! ! ! ! New premise for textual statement Text 1,100
RNN-Typology (Ravfogel et al., 2019) Text syntax parsing ! ! ! ! New syntactic structure of sentence Text 584
CVQA-Bool (Zhang et al., 2024b) Question answering ! "# "# ! Hypothetical behavioral pattern Text,Image 1,130
CVQA-Count (Zhang et al., 2024b) Numerical reasoning ! "# "# ! Hypothetical numerical pattern Text,Image 2,011
COCO (Le et al., 2023) Text-image matching ! ! "# ! “What if ...” condition Text,Image 17,410
Arithmetic (Wu et al., 2024) Mathematical reasoning ! ! ! ! Change number base Symbol 6,000
MalAlgoQA (Sonkar et al., 2024) Question Answering ! "# "# ! “What if ...” condition Text,Symbol 807
HumanEval-Exe (Chen et al., 2021) Code Execution simulation ! "# ! ! Hypothetical coding criterion Text,Code 981
Open-Critic (Vezora, 2024) Code generation ! "# ! ! Hypothetical descriptive functions Text,Code 8,910
Code-Preference (Vezora, 2024) Code summarization ! "# "# ! Hypothetical code structures Text,Code 9,389

disentangling these steps to evaluate reasoning capacity (Kiciman et al., 2023; Chi et al., 2024).
Motivated by the need for decomposition, we design four evaluation tasks that reflect the full pipeline
of counterfactual reasoning, with each task targeting a distinct capability in counterfactual analysis.

• Task I: Causal Variable Identification. Given inputs containing factual information, a model
is required to identify the values of the causal variables (X,Z,M, Y ). This step serves as the
foundation for subsequent causal modeling and counterfactual reasoning.

• Task II: Causal Graph Construction. Given the identified variables, the model is tasked with
constructing a DAG that captures the causal relationships among them. This step evaluates the
model’s ability to discover causal dependencies.

• Task III: Counterfactual Identification. Given a counterfactual query (e.g., “What if vari-
able X had been different?”), the LLM must identify the new value of (i.e., the intervention). This
task evaluates whether the model can detect intervention in the counterfactual condition.

• Task IV: Outcome Reasoning. Based on the constructed causal graph and identified intervention,
the model is prompted to predict the counterfactual outcome. This step measures whether the
model can simulate the hypothetical scenario while respecting the underlying causal mechanisms.

3.3 BENCHMARKING COUNTERFACTUALS

Next, we introduce the datasets we leverage for the decompositional evaluations:

Data Sources and Use Cases. As shown in Table 1, we collect a diverse set of datasets to ensure
broad coverage across various NLP tasks and modalities. The included use cases are: (1) Question
Answering, evaluated using CRASS (Frohberg & Binder, 2021), CVQA-Bool (Zhang et al., 2024b),
and MalAlgoQA (Sonkar et al., 2024), which involve answering general-purpose textual or visually
grounded questions; (2) Text Parsing, using CLOMO (Huang et al., 2023) for logical structure
reconstruction and RNN-Typolog (Ravfogel et al., 2019) for syntactic structure understanding; (3)
Reasoning Tasks, with CVQA-Count (Zhang et al., 2024b) for numerical reasoning and Arithmetic
(Wu et al., 2024) for symbolic arithmetic computation; (4) Multimodal Matching, represented
by the COCO dataset (Le et al., 2023) for image-text alignment; (5) Code-based Tasks, includ-
ing HumanEval-Exe (Chen et al., 2021) for execution simulation, Open-Critic (Vezora, 2024) for
generation, and Code-Preference (Vezora, 2024) for summarization. These datasets are therefore
intentionally positioned as a prerequisite stage to support safe and informed downstream application.

These datasets span four modalities, natural language text, images, mathematical symbols, and code,
that encompass diverse definitions of counterfactual interventions tailored to each task. Collectively,
they support a comprehensive multimodal evaluation of LLMs’ abilities to reason under varied
counterfactual settings and data types.

Our Preprocessing. To support our decompositional evaluations, we curate those datasets to augment
each instance with three additional aspects of information relevant to Tasks I–III (Section 3.2).
Specifically, we begin by identifying and annotating the causal variables (X,Z,M, Y ) from the
original data, questions, or descriptions. Using these annotations, we construct a DAG to represent
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Table 2: LLMs’ performance in causal variable identification, we report means of F1 across all
instances for each variable. Each value is scaled to 100%. The standard deviation is in Table 8.

Dataset
GPT-5 GPT-o4 Qwen3 Llama4-S Llama4-M Gemini2.5 DeepSeek

v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2

v1 = X (Exposure), v2 = Z (Covariate)

CRASS 92.3 91.1 91.0 89.2 87.3 85.4 88.5 86.9 90.6 89.1 88.6 86.2 89.5 87.1
CLOMO 89.8 87.6 88.1 85.6 83.5 81.9 87.1 85.3 88.8 87.0 84.3 82.8 86.4 84.2
RNN-Topo 87.9 85.4 85.9 83.7 80.4 78.6 84.3 82.6 85.7 84.2 81.7 80.1 83.8 82.0
CVQA-Bool 79.4 76.2 79.8 76.5 72.3 70.5 77.9 75.8 79.1 76.9 68.5 66.9 70.7 68.3
CVQA-Count 74.7 72.3 74.3 72.9 68.9 67.2 73.6 71.9 74.4 72.5 65.8 63.7 67.4 65.1
COCO 72.8 70.2 73.2 71.1 67.2 65.4 72.5 70.8 73.6 71.7 62.6 60.9 65.9 63.2
Arithmetic 88.2 86.5 84.9 82.8 75.7 73.8 80.3 78.6 81.6 79.8 76.9 74.5 78.3 76.1
MalAlgoQA 84.1 81.3 81.5 78.9 72.9 70.6 79.5 77.1 80.6 78.2 73.5 71.2 75.9 73.4
HumanEval-Exe 69.3 66.9 71.4 69.2 63.7 61.9 67.8 65.7 68.9 66.7 59.6 57.3 62.1 59.8
Open-Critic 71.7 69.4 70.1 67.3 61.8 59.7 66.5 64.7 67.6 65.8 57.3 55.9 60.4 58.1
Code-Preference 49.6 68.4 80.2 69.0 72.9 60.5 73.6 61.9 75.2 63.4 68.4 66.5 61.2 59.3

v1 = M (Mediator), v2 = Y (Outcome)

CRASS 87.4 91.7 84.1 89.3 72.8 79.9 81.2 87.4 82.4 88.6 74.1 81.6 76.2 83.5
CLOMO 83.1 89.4 81.3 87.9 68.9 77.4 77.2 84.9 78.6 86.0 71.2 78.9 73.5 80.7
RNN-Topo 81.7 86.3 79.4 85.6 67.1 75.8 75.3 83.1 76.6 84.4 69.3 76.4 71.5 78.9
CVQA-Bool 73.5 79.3 73.9 80.1 59.7 66.9 71.8 78.3 72.9 79.4 57.3 63.2 60.5 68.4
CVQA-Count 69.6 75.2 70.1 76.2 56.8 63.6 68.9 74.8 70.2 75.9 54.7 60.4 57.9 65.1
COCO 67.3 73.4 68.0 74.4 54.2 61.8 66.2 72.1 67.4 73.5 52.8 58.3 55.7 62.6
Arithmetic 82.1 85.6 82.3 73.4 63.6 71.9 79.1 85.1 80.3 86.0 62.8 73.5 65.7 74.9
MalAlgoQA 79.2 83.4 76.8 80.4 61.5 69.3 76.6 81.2 77.8 82.4 60.2 70.5 63.8 72.3
HumanEval-Exe 63.2 67.4 66.0 70.3 51.9 59.7 61.9 66.3 63.0 67.5 49.7 57.0 53.6 60.5
Open-Critic 66.3 70.6 64.1 68.9 49.7 57.2 64.7 69.0 65.6 70.0 47.3 54.8 51.3 58.7
Code-Preference 65.9 75.3 66.3 77.0 50.4 78.6 64.5 79.3 65.7 80.4 48.2 76.1 52.5 59.8

the underlying causal structure of each data instance, which enrich original instances with causal and
counterfactual structures. A running example in Figure 2.

Preprocessing Feasibility. Notably, all datasets are built upon “what-if” conditions or hypothetical
scenarios (as outlined in Table 1) and intervention-style narratives, thus naturally supporting counter-
factual interventions. For each instance, we parse and extract the intervened variables and, guided by
the previously constructed DAG, annotate the corresponding counterfactual outcomes and construct a
matched counterfactual graph. We provide the curated instances in Appendix A.

4 EXPERIMENT

We aim to empirically answer two research questions: RQ1: How well do LLMs perform when
their counterfactual reasoning is decomposed into distinct reasoning tasks? RQ2: What auxiliary
techniques can improve LLMs’ counterfactual reasoning? We defer the experimental settings into
Appendix B.1 and additional results into Appendix B.2.

LLMs. We evaluate reasoning-centric and multimodal LLMs due to the nature of counterfactual
reasoning tasks. Specifically, we leverage GPT-5, GPT-o4-mini-high, Qwen3-VL-235B-A22B-
Thinking, Llama-4-Scout-17B, Llama-4-Maverick-17B-128E, Gemini2.5-Pro, DeepSeek-VL.

Metrics. We use the F1 score for Tasks I, II, and IV, as they involve multiple instances (e.g., M ,
Z, or graph edges) that require set-level evaluation. For Task III, which typically involves a single
intervention on X , we use accuracy to assess whether the LLM correctly identifies the intervened X .

4.1 LLM PERFORMANCE ON DECOMPOSITIONAL TASKS (RQ1)

Setting. We evaluate LLMs independently on each decompositional task. For each task, we explicitly
provide the ground-truth outputs from the preceding tasks to isolate and measure LLMs’ capabilities
specific to that task. For example, when assessing models’ ability to construct causal graphs, we
supply the original inputs along with the ground-truth causal variables.

Task I: Causal Variable Identification. Table 2 presents the performance of LLMs on identifying
causal variables (X,Z,M, Y ). We observe that model performance is strongly influenced by the
modality of the dataset. Specifically, datasets involving more complex modalities (e.g., images,

6
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(a) CRASS (b) COCO (c) MalAlgoQA (d) Open-Critic

Figure 3: Evaluation on causal graph construction. We evaluate F1 score to balance (i) whether the
constructed edges under one category (e.g., X → M ) is correctly constructed if the (X,Z,M, Y ) are
already given. Additional results for all other datasets at Figure 5.

Figure 4: Evaluation of LLMs’ accuracy in identifying the correct intervention (i.e., the counterfactual
value of X). Additional results for all other datasets are provided in Figure 6.

mathematical symbols, codes) tend to reduce LLM accuracy (e.g., <0.7 F1 on Open-Critic), even
when variables like X,Z, Y are explicitly present in the context.

Interestingly, even within the text modality, LLMs show notable difficulty in identifying the implicit
mediator M , which often requires reasoning about the underlying causal pathways connecting X , Z,
and Y . This suggests that the challenge lies not only in the complexity of the input modality but also
in the abstractness and inferential nature of the variable type itself. Together, these findings highlight
the need for improved methods that enhance LLMs’ capacity to handle both cross-modal complexity
and deeper causal reasoning.

Task II: Causal Graph Construction. As described in our experimental setup, we isolate each
decompositional step by providing the ground-truth outputs of preceding steps as inputs. For causal
graph construction, we supply the identified variables X,Z,M, Y and prompt LLMs to construct
the corresponding counterfactual graph. The results are presented in Figures 3 and 5. Notably, the
overall performance mostly exceeds 0.9 F1 scores, indicating that LLMs can accurately construct
graph edges. Moreover, the impact of dataset modality and variable types (e.g., explicit Z vs. implicit
M ) appears to be minimal in this step. We attribute this to the rule-based nature of causal graph
construction: since causal graph structures are well-defined (as shown in Figure 2), it is relatively
less challenging for LLMs to apply construction rules and generate the correct causal relationships.

Insights from causality modeling.

The major challenge in causal modeling lies in causal variable identification, where (1) LLMs are
highly sensitive to the complexity and structure of the input modality, and (2) implicit variables
(i.e., the mediator M ) reveal a critical gap in LLMs’ causal reasoning capabilities.

Task III: Counterfactual Identification. Next, we evaluate LLMs’ capability in identifying inter-
ventions, i.e., determining the counterfactual values of X (i.e., X →). As shown in Figures 4 and 6,
the experimental results indicate that LLMs are generally effective at recognizing the counterfactual
values of X across most datasets and modalities. This demonstrates that LLMs have a solid grasp
of pinpointing intervention points within the context. However, note that the task remains relatively
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Table 3: LLM performance (F1 mean) in reasoning the counterfactual mediator (M →) and outcome
(Y →). Standard deviation is in Table 9.

Dataset
GPT-5 GPT-o4 Qwen3 Llama4-S Llama4-M Gemini2.5 DeepSeek

M → Y → M → Y → M → Y → M → Y → M → Y → M → Y → M → Y →

CRASS 92.1 88.0 90.5 86.2 80.5 73.9 70.1 63.5 84.9 79.5 81.7 75.2 82.9 77.1
CLOMO 90.2 85.3 88.7 83.9 77.8 71.6 67.2 60.9 82.9 77.2 79.3 72.8 80.5 74.3
RNN-Topo 88.9 83.4 87.9 81.6 75.6 69.4 65.2 58.7 80.5 75.0 77.1 70.6 78.3 72.0
CVQA-Bool 81.2 74.5 77.1 70.2 65.4 58.6 54.8 48.1 70.9 64.3 63.2 56.8 66.7 59.8
CVQA-Count 79.2 72.0 76.2 69.3 62.2 55.7 51.7 45.2 67.5 61.0 60.1 53.8 63.5 56.9
COCO 77.8 70.1 75.3 66.9 60.1 53.4 49.3 42.7 65.4 58.7 57.8 51.5 61.3 54.6
Arithmetic 87.8 82.7 85.8 80.9 69.8 63.2 59.1 52.4 76.3 70.6 72.1 65.4 74.0 67.5
MalAlgoQA 85.1 79.6 83.6 77.8 67.5 60.9 57.4 50.7 74.0 68.2 69.6 62.9 71.8 65.1
HumanEval-Exe 75.7 71.5 73.4 66.5 58.2 51.5 47.7 41.2 63.6 56.9 55.8 49.4 59.4 52.7
Open-Critic 75.3 69.4 73.8 67.5 56.0 49.4 45.8 39.2 61.5 54.7 53.7 47.3 57.2 50.6
Code-Preference 77.0 71.0 74.4 66.8 57.1 50.4 46.6 40.0 62.7 55.9 54.7 48.3 58.3 51.6

Table 4: Improvement in LLM performance (comparing with Table 2) for identifying explicit causal
variables. Results are reported on six representative datasets spanning all major modalities.

Dataset
GPT-o4 Qwen3 Llama4-S Gemini2.5

X Z Y X Z Y X Z Y X Z Y

CRASS +6.0 +6.6 +5.5 +10.8 +9.4 +9.7 +15.2 +11.5 +11.9 +6.6 +5.3 +7.1
CLOMO +4.7 +5.1 +7.9 +12.7 +11.3 +12.1 +21.0 +14.4 +16.8 +6.2 +9.4 +15.5
CVQA-Count +17.7 +15.9 +18.2 +21.9 +21.4 +22.7 +32.0 +26.1 +24.1 +18.1 +15.7 +19.3
COCO +5.5 +3.1 +4.4 +8.9 +7.6 +8.2 +7.2 +6.0 +9.7 +6.9 +3.8 +5.2
MalAlgoQA +4.2 +5.9 +2.6 +9.6 +8.1 +6.8 +12.5 +10.2 +6.5 +12.4 +8.5 +8.3
Open-Critic +12.8 +14.5 +7.0 +15.4 +10.9 +8.3 +17.4 +5.1 +1.2 +7.3 +6.1 +9.8

isolated and does not challenge the model’s ability to propagate the effects of the intervention through
downstream variables (e.g., M →, Y →), which we address in Task IV.

Task IV: Outcome Reasoning. In this final task, we evaluate LLMs’ ability to infer the mediator
(M →) and outcome (Y →) under a counterfactual intervention. As shown in Table 3, LLMs consistently
exhibit insufficient performance in inferring these implicit variables across all datasets. Notably,
since both M → and Y → are implicit under the counterfactual condition (whereas only M is implicit in
the factual condition), this result suggests that LLMs lack sufficient capacity to reason over causal
chains, even when the underlying structure is explicitly provided.

Insights from counterfactual reasoning.

Regardless of whether the setting is factual or counterfactual, the primary challenge lies in
identifying causal variables and performing causal reasoning. In particular, the complex input
modality and the implicit nature of mediation hinder effective reasoning through causal pathways.

4.2 AUXILIARY TECHNIQUES TO IMPROVE COUNTERFACTUAL REASONING (RQ2)

Given the insights from previous evaluations, we aim to correspondingly address the limitations
arising from multimodal complexity and intermediate reasoning, we propose augmenting LLMs with
two auxiliary techniques: (i) tool-augmented execution and (ii) advanced elicitation strategies.

4.2.1 TOOL-AUGMENTED EXECUTION IN EXPLICIT VARIABLE IDENTIFICATION

Settings. To enhance LLM performance in identifying explicit variables (X,Z, Y ) across different
modalities, we adopt a tool-augmented approach, where the LLM dynamically calls additional
specialized tools to assist in entity identification, identical to a named entity recognition (NER)
paradigm. We leverage several pretrained models tailored to the multimodality of datasets: (1) Text-
based NER: We use BERT-BASE-NER (Devlin et al., 2018; Tjong Kim Sang & De Meulder, 2003)
to identify candidate entities in text-based data, including mathematical symbols.(2) Vision-based
NER: We employ GROUNDING-DINO-BASE (Liu et al., 2023) to detect all relevant objects in images
and generate focused regions by masking out irrelevant backgrounds. (3) Code analysis: We adopt
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Table 5: Improvement of LLM performance (F1 score) in reasoning implicit variables.
Dataset Elicitation

GPT-o4 Qwen3 Llama4-S Gemini2.5

M M → Y → M M → Y → M M → Y → M M → Y →

CoT +5.6 +4.0 +3.1 +7.4 +5.6 +4.1 +7.9 +5.8 +4.2 +6.8 +4.5 +3.2
CRASS CoT-SC +5.3 +5.0 +5.5 +8.6 +7.3 +6.0 +10.5 +8.2 +5.7 +9.4 +6.8 +5.0

ToT +6.8 +5.2 +4.1 +8.9 +6.7 +5.0 +8.9 +7.4 +4.7 +8.2 +5.9 +4.3
CoT +6.4 +4.9 +3.6 +8.3 +6.5 +4.8 +8.2 +6.9 +5.0 +7.6 +5.3 +3.9

CLOMO CoT-SC +7.0 +5.2 +4.2 +9.6 +7.6 +5.4 +9.9 +7.7 +5.5 +8.9 +6.5 +4.7
ToT +10.1 +3.8 +2.9 +8.7 +5.2 +3.5 +7.2 +5.1 +3.9 +12.4 +4.2 +3.0
CoT +5.7 +4.4 +3.5 +7.9 +6.1 +4.4 +8.2 +6.4 +4.5 +7.3 +5.4 +3.8

CVQA-Count CoT-SC +4.1 +4.2 +2.4 +7.2 +6.6 +4.8 +5.9 +6.8 +5.7 +12.2 +7.6 +4.5
ToT +4.9 +3.8 +3.1 +6.9 +5.3 +4.0 +6.5 +5.2 +4.0 +6.1 +4.5 +3.1
CoT +3.8 +2.9 +2.1 +6.0 +4.6 +3.2 +5.4 +4.0 +2.6 +4.9 +3.4 +2.3

COCO CoT-SC +5.4 +4.1 +3.1 +7.2 +5.7 +4.3 +7.6 +5.9 +3.8 +6.9 +5.1 +3.6
ToT +4.5 +3.5 +2.7 +6.8 +5.1 +3.6 +6.2 +5.0 +3.5 +5.6 +4.3 +3.0
CoT +4.6 +3.5 +2.7 +7.0 +5.5 +4.0 +6.6 +5.0 +3.3 +5.8 +4.0 +2.7

MalAlgoQA CoT-SC +5.5 +4.3 +3.4 +7.7 +6.1 +4.6 +7.9 +6.3 +4.1 +7.2 +5.2 +3.7
ToT +6.2 +4.8 +3.8 +8.5 +6.7 +5.0 +8.6 +7.1 +4.6 +8.1 +6.0 +4.3
CoT +3.5 +2.7 +2.0 +5.3 +4.2 +3.0 +5.0 +3.7 +2.5 +4.5 +3.1 +2.1

Open-Critic CoT-SC +4.2 +3.3 +2.6 +6.1 +4.9 +3.6 +5.8 +4.5 +3.1 +5.0 +3.5 +2.7
ToT +5.0 +3.8 +2.9 +6.7 +5.2 +3.8 +6.1 +5.3 +3.6 +6.3 +4.7 +3.4

GRAPHCODEBERT (Guo et al., 2020) to extract functions, variables, and control structures for
programming tasks.

After identifying candidate entities across each modality, we prompt the LLM to refine and filter the
final set of explicit variables (X,Z, Y ) according to the formal definitions provided in Section 3.1.

Experimental Results. We randomly select three representative LLMs and conduct experiments
across multiple datasets. As shown in Table 4, tool-augmented execution consistently improves LLM
performance in identifying explicit causal variables (X,Z, Y ) across all modalities. For example,
by leveraging GRAPHCODEBERT to parse code structures and forward the results to Llama, which
gains a clearer understanding of programming logic and achieves an F1 improvement up to 0.189.
Similarly, in the vision modality, the object detector GROUNDING-DINO-BASE assists by generating
a set of candidate visual objects, which GPT-o4 can then contextualize and compose into a coherent
factual variable. For instance, detected objects like “Woman,” “Knife,” and “Apple” can be effectively
integrated by GPT-o4 into the causal expression: “A woman cuts an apple with a knife.”

These results demonstrate that tool-augmented learning effectively mitigates modality-specific bottle-
necks by offloading low-level entity recognition to specialized models, allowing the LLM to focus on
higher-level reasoning. Looking forward, there is potential to explore alternative tool configurations
that may yield comparable or even superior performance. Additionally, future work may explore
multi-agent frameworks with specialized agents to collaboratively handle different variable categories.

4.2.2 ADVANCED ELICITATION STRATEGIES FOR REASONING OVER IMPLICIT VARIABLES

Settings. To enhance LLM reasoning over implicit variables, particularly factual M and counter-
factual M →, Y →, we implement advanced elicitation strategies that guide the model through more
structured reasoning. Specifically, we apply Chain-of-Thought (CoT) (Wei et al., 2022), CoT with
Self-Consistency (CoT-SC) (Wang et al., 2022), and Tree-of-Thought (ToT) (Yao et al., 2023):

• CoT: given pre-determined explicit variables, LLMs are encouraged to infer intermediate variables
step-by-step.

• CoT-SC: LLMs are prompted to generate multiple reasoning paths and select the final answer via
majority voting or consensus.

• ToT: LLMs are prompted to explore multiple parallel reasoning paths in a branching structure and
evaluate candidate outputs based on intermediate criteria.

In implementation, both CoT-SC and ToT are executed with k=5 sampled reasoning paths. ToT
further evaluates candidate outputs by scoring their textual similarity using BERTScore (Zhang et al.,
2019), specifically assessing how well the intermediate results align with the original task statement.

Experimental Results. Our experimental results in Table 5 show that advanced elicitation strategies
generally lead to improved performance in reasoning over implicit variables (M,M →, Y →) despite
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Table 6: Overall change of LLM performance (F1 score) with different improvement strategies.
The performance change is compared with Table 3, where results of Y → demonstrate the final
counterfactual reasoning outcomes.

Dataset
Improve Explicit Variable (§4.2.1) Improve Implicit Variable (§4.2.2) Improve Both
G5 QW3 LM4S GM2.5 G5 QW3 LM4S GM2.5 G5 QW3 LM4S GM2.5

CRASS +1.8 +2.3 +3.5 +2.0 +6.2 +7.4 +7.9 +6.8 +9.0 +10.1 +10.5 +9.3
CLOMO +2.1 +3.1 +4.2 +2.6 +5.7 +6.3 +6.1 +6.5 +9.2 +10.4 +11.0 +9.8
COCO +1.2 +1.5 +1.9 +1.4 +4.1 +5.1 +5.9 +5.1 +5.8 +6.4 +6.7 +6.2
Open-Critic +1.6 +2.3 +2.7 +2.0 +3.3 +8.3 +11.2 +4.3 +5.3 +11.5 +14.2 +5.5

factual or counterfactual cases. However, we also observe that more complex prompting strategies
(e.g., CoT-SC and ToT) can sometimes perform slightly worse than simpler approaches (e.g., CoT).
While these advanced methods encourage more exhaustive exploration of reasoning paths, they may
also induce overthinking behavior in LLMs, leading the model to introduce unnecessary causal links
or misinterpret the underlying problem structure. For instance, consider the following context “A
person is running a marathon and collapses.” with expected mediator “Dehydration”. While CoT
and CoT-SC strategies correctly identify the mediator, ToT leads LLMs to overanalyze and identify

“lack of training” or “overexertion” as the mediator. These choices, although related, are not directly
supported by the input data and reflect an over-extension of the reasoning process.

The over-qualification of elicitation strategies (e.g., ToT) highlights that, while advanced prompting
techniques can improve reasoning capabilities, they may also introduce complexities that divert the
model from the most straightforward and contextually supported causal pathways. Therefore, it’s
crucial to balance the reasoning depth while maintaining alignment with the input data.

4.2.3 OVERALL PERFORMANCE IMPROVEMENT

In an end-to-end setting, we incorporate the prior improvements for explicit variable identification
(Section 4.2.1), implicit variable reasoning (Section 4.2.2), and their combinatorial strategy to
evaluate the overall change in counterfactual reasoning performance. Table 6 presents the results
across representative datasets and LLMs.

We have to observations: (i) In general, improving implicit variable reasoning (i.e., for mediators
and outcomes) yields more substantial gains in end-to-end performance, as these variables directly
influence the final counterfactual predictions (Task IV). In contrast, improvements in explicit variable
identification (e.g., for X,Z, Y ) primarily strengthen the early stages of the pipeline, offering
moderate but necessary support. (ii) Notably, the combined strategy achieves the highest overall
improvement, although the gains are not strictly additive. This is due to accumulative reasoning
errors across the decompositional steps, where inaccuracies in earlier predictions may propagate and
compound through the pipeline. These findings highlight both the opportunities and challenges of
modular improvements.

5 CONCLUSION

This work provides a decompositional framework for evaluating counterfactual reasoning in LLMs.
We collect a set of datasets across multimodalities, and then curate them with reference causal
variables, structured graphs, and counterfactual intervention. Next, we use our curated dataset
to study the reasoning process into distinct stages from causal variable identification to outcome
inference. We uncover the qualifications of current LLMs in counterfactual reasoning and where
they fall short. Based on experimental insights, we further propose improvements to offer actionable
insights for enhancing LLM reasoning, particularly in multimodality and implicit reasoning settings.
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A COMPLEMENTARY INFORMATION OF CAUSALITY AND CAUSAL GRAPH

This appendix presents a concise overview of each dataset, followed by its causal structure and
graphical representation, alongside a concrete example. For each dataset, we identify the four variable
types—Exposure, Covariate, Mediator, and Outcome—and distinguish their roles in both factual and
counterfactual scenarios, illustrating each with directed edges in the corresponding causal graph. In
addition, we include a sample prompt used to generate responses on a simple text-parsing Q&A task
dataset.

In evaluation, we rely on a universal prompt template as shown below, wherein only the task-specific
contents are replaced for each dataset.

Prompt Template.

{
**Task Description**
You are asked to perform [Task I / Task II / Task III / Task IV] in

decompositional counterfactual reasoning. Follow the definitions of
causal variables and causal relations strictly.

**Input Context**
Here is the factual instance from the dataset:
[Insert factual context or multimodal description]

**Intermediate Outputs**
If applicable, use the following ground-truth results from previous tasks

:
Exposure (X): [...]
Covariate(s) (Z): [...]
Mediator(s) (M): [...]
Outcome (Y): [...]

**Instruction for the Current Task**
Task I (Variable Identification): [description about domain specific

meanings of causal variables X, Z, M, and Y and the identification
task]

Task II (Graph Construction): [instruction about constructing the causal
graph by listing all directed edges among X, Z, M, Y.

Task III (Intervention Identification): [instruction about identifying
which variable is intervened on in the counterfactual query.]
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Task IV (Outcome Reasoning): [instruction about inferring] the
counterfactual mediator M’ and outcome Y’ under the specified
intervention.

**Output Format**
Provide the answer using the following structure:
Exposure (X): [...]
Covariate(s) (Z): [...]
Mediator(s) (M): [...]
Outcome (Y): [...]
Causal Edges: [...]
Intervention: [...]
Counterfactual Mediator (M’): [...]
Counterfactual Outcome (Y’): [...]
}

CRASS Example. The Counterfactual Reasoning Assessment for Structured Scenarios (CRASS)
dataset is designed to evaluate whether language models can reason about hypothetical alternatives to
factual events. Each example in CRASS presents a factual scenario (e.g., “A woman opens a treasure
chest”) followed by a counterfactual question (e.g., “What would have happened if the woman had
not opened the treasure chest?”). Models are asked to select the most logically consistent outcome
from multiple-choice options, such as “The treasure chest would have remained closed”, which is
labeled as correct. The following displays a full example:

{
"input": "A woman opens a treasure chest. What would have happened if

the woman had not opened the treasure chest?",
"target_scores": {

"The treasure chest would have been open.": 0,
"That is not possible.": 0,
"The treasure chest would have remained closed.": 1,
"I don’t know.": 0

}
}

CRASS Causality & Causal Graph.
{

"factual_roles": {
"Exposure": ["act of opening treasure chest"],
"Covariate": ["key possession", "physical capability"],
"Mediator": ["lock mechanism release"],
"Outcome": ["chest opened"]

},
"counterfactual_roles": {

"Exposure": ["omission of opening action"],
"Covariate": ["key possession", "physical capability"],
"Mediator": ["lock state preservation"],
"Outcome": ["chest remains closed"]

},
"causal_graph": {

"factual_edges": [
["key possession", "act of opening treasure chest"],
["key possession", "lock mechanism release"],
["key possession", "chest opened"],
["physical capability", "act of opening treasure chest"],
["physical capability", "lock mechanism release"],
["physical capability", "chest opened"],
["act of opening treasure chest", "lock mechanism release"],
["lock mechanism release", "chest opened"],
["act of opening treasure chest", "chest opened"],

],
"counterfactual_edges": [
["key possession", "lock state preservation"],
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["key possession", "chest remains closed"],
["physical capability", "lock state preservation"],
["physical capability", "chest remains closed"],
["omission of opening action", "lock state preservation"],
["lock state preservation", "chest remains closed"],
["omission of opening action", "chest remains closed"],

]
}

}

CLOMO Example. The Counterfactual Logical Modification (CLOMO) dataset is designed
to evaluate whether large language models can perform controlled, counterfactual edits to natural
language arguments in a logically coherent way. Each example presents a base argument and two
premises: Premise 1 has a logical sensitivity with the original argument, while Premise 2 does not.
The model is instructed to modify the argument such that Premise 2 has a logical sensitivity with
the original argument, while Premise 1 no longer is. For instance, given an argument attributing the
rise in gasoline prices fully to government policies, the model must produce a revised version (e.g.,
changing “fully responsible” to “partly leads”) of an argument that shifts logical sensitivity from one
premise to another without introducing new claims. The following displays a full example:

{
"instruction": "In the following, you will see an argument and 2

premises, where Premise 1 provides a necessary assumption to the
Argument. Please modify the Statements in the Argument until
Premise 2 provides a necessary assumption to the Argument instead,
while Premise 1 fails to provide a necessary assumption to the

Argument. Note that no additional statement should be added. ",
"input": "Argument: Statement1: Consumer advocate : there is no doubt

that the government is responsible for the increased cost of
gasoline, because the government’s policies have significantly
increased consumer demand for fuel, and as a result of increasing
demand, the price of gasoline has risen steadily.Premise1: The
government can bear responsibility for that which it indirectly
causes.Premise2: Consumer demand for gasoline cannot increase
without causing gasoline prices to increase.Please write the
modified argument below: ",

"output": "Statement1: Consumer advocate : there is no doubt that the
government partly leads to the increased cost of gasoline, because
the government’s policies have significantly increased consumer

demand for fuel, and as a result of increasing demand, the price
of gasoline has risen steadily undoubtedly."

}

CLOMO Causality & Causal Graph.
{

"factual_roles": {
"Exposure": ["Premise 1 as necessary assumption"],
"Covariate": [
"Government’s policy impact on demand",
"Demand-price relationship assumption"

],
"Mediator": ["Causal attribution mechanism (direct vs indirect)"],
"Outcome": ["Full responsibility attribution to government"]

},
"counterfactual_roles": {

"Exposure": ["Premise 2 as necessary assumption"],
"Covariate": [
"Government’s policy impact on demand",
"Demand-price relationship assumption"

],
"Mediator": ["Responsibility attribution modifier (partial vs full)"]

,
"Outcome": ["Partial responsibility attribution to government"]
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},
"causal_graph": {

"factual_edges": [
["Government’s policy impact on demand", "Premise 1 as necessary

assumption"],
["Government’s policy impact on demand", "Causal attribution

mechanism"],
["Government’s policy impact on demand", "Full responsibility

attribution to government"],
["Demand-price relationship assumption", "Premise 1 as necessary

assumption"],
["Demand-price relationship assumption", "Causal attribution

mechanism"],
["Demand-price relationship assumption", "Full responsibility

attribution to government"],
["Premise 1 as necessary assumption", "Causal attribution mechanism

"],
["Causal attribution mechanism", "Full responsibility attribution

to government"],
["Premise 1 as necessary assumption", "Full responsibility

attribution to government"]
],

"counterfactual_edges": [
["Government’s policy impact on demand", "Responsibility

attribution modifier"],
["Government’s policy impact on demand", "Partial responsibility

attribution to government"],
["Demand-price relationship assumption", "Responsibility

attribution modifier"],
["Demand-price relationship assumption", "Partial responsibility

attribution to government"],
["Premise 2 as necessary assumption", "Responsibility attribution

modifier"],
["Responsibility attribution modifier", "Partial responsibility

attribution to government"],
["Premise 2 as necessary assumption", "Partial responsibility

attribution to government"]
]

}
}

RNN-Typology Example. This is a synthetic dataset contains sentence pairs that reflect syntactic
alterations to word orders (e.g., converting English from subject-verb-object (SVO) to subject-object-
verb (SOV) order). For example, the factual sentence “Tim saw Lucas.” (SVO) is transformed to its
SOV equivalent “Tim Lucas saw.”.

"tim saw lucas.": "tim lucas saw."

RNN-Typology Causality & Causal Graph.

{
"factual_roles": {
"Exposure": ["subject-verb-object order"],
"Covariate": ["syntactic rule", "Lexical items (Tim, saw, Lucas)"],
"Mediator": ["SOV reordering operation"],
"Outcome": ["tim saw lucas."]

},
"counterfactual_roles": {

"Exposure": ["subject-object-verb order"],
"Covariate": ["syntactic rule", "Lexical items (Tim, saw, Lucas)"],
"Mediator": ["SVO restoration operation"],
"Outcome": ["tim lucas saw."]

},
"causal_graph": {
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"factual_edges": [
["syntactic rule", "subject-verb-object order"],
["syntactic rule", "SOV reordering operation"],
["syntactic rule", "tim saw lucas."],
["Lexical items (Tim, saw, Lucas)", "subject-verb-object order"],
["Lexical items (Tim, saw, Lucas)", "SOV reordering operation"],
["Lexical items (Tim, saw, Lucas)", "tim saw lucas."],
["subject-verb-object order", "SOV reordering operation"],
["SOV reordering operation", "tim saw lucas."],
["subject-verb-object order", "tim saw lucas."]

],
"counterfactual_edges": [

["syntactic rule", "SVO restoration operation"],
["syntactic rule", "tim lucas saw."],
["Lexical items (Tim, saw, Lucas)", "SVO restoration operation"],
["Lexical items (Tim, saw, Lucas)", "tim lucas saw."],
["subject-object-verb order", "SVO restoration operation"],
["SVO restoration operation", "tim lucas saw."],
["subject-object-verb order", "tim lucas saw."]

]
}

}

CVQA-Bool Example. Counterfactual Visual Question Answering(CVQA) is designed to assess
the ability of vision-language models to perform counterfactual reasoning over images. Each example
presents a factual visual query-answer pair (e.g., “Is there a red sandal here?” → yes) grounded in a
COCO image, along with a corresponding counterfactual query that modifies a key visual condition
(e.g., “Would there be a red sandal here if all shoes were removed?” → no). The task requires the
model to infer changes in object presence or relationships under hypothetical alterations to the scene.
The dataset focuses on a boolean query type. The following displays an example:

real image query answer new query new answer type

Is there a red sandal here? yes Would there be a red sandal here if all
shoes were removed?

no boolean

CVQA-Bool Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["presence of red sandal"],
"Covariate": ["original shoe collection in cart", "visual recognition

capability"],
"Mediator": ["sandal-as-shoe categorical inclusion"],
"Outcome": ["yes"]

},
"counterfactual_roles": {

"Exposure": ["removal of all shoes"],
"Covariate": ["original shoe collection in cart", "visual recognition

capability"],
"Mediator": ["sandal-shoe categorical dependency"],
"Outcome": ["no"]

},
"causal_graph": {

"factual_edges": [
["original shoe collection in cart", "presence of red sandal"],
["original shoe collection in cart", "sandal-as-shoe categorical

inclusion"],
["original shoe collection in cart", "yes"],
["visual recognition capability", "presence of red sandal"],
["visual recognition capability", "sandal-as-shoe categorical

inclusion"],
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["visual recognition capability", "yes"],
["presence of red sandal", "sandal-as-shoe categorical inclusion"],
["sandal-as-shoe categorical inclusion", "yes"],
["presence of red sandal", "yes"]

],
"counterfactual_edges": [
["original shoe collection in cart", "sandal-shoe categorical

dependency"],
["original shoe collection in cart", "no"],
["visual recognition capability", "sandal-shoe categorical

dependency"],
["visual recognition capability", "no"],
["removal of all shoes", "sandal-shoe categorical dependency"],
["sandal-shoe categorical dependency", "no"],
["removal of all shoes", "no"]

]
}

}

CVQA-Count Example. Visual Counterfactual Query Dataset (CVQA) also evaluates whether
language models can perform a direct or indirect numerical counterfactual reasoning grounded in
visual inputs. Each example consists of a factual visual question (e.g., “How many plates are there?”
→ 1) paired with a corresponding counterfactual query that modifies the quantity in a clearly defined
way (e.g., “How many plates would there be if 2 more plates were added?” → 3). The model must
integrate visual perception (e.g., detecting a single white plate in an image) with numerical logic
(e.g., adding 2) to produce the correct answer. The dataset focuses on a counting query type. The
following displays an example:

real image query answer new query new answer type

How many plates are there 1 How many plates would there be if 2
more plates were added?

3 direct counting

CVQA-Count Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["current plate presence (1 unit)"],
"Covariate": ["original plate count (1)", "visual counting capability

"],
"Mediator": ["visual plate detection mechanism"],
"Outcome": ["1"]

},
"counterfactual_roles": {

"Exposure": ["addition of 2 plates"],
"Covariate": ["original plate count (1)", "visual counting capability

"],
"Mediator": ["numerical addition operation"],
"Outcome": ["3"]

},
"causal_graph": {

"factual_edges": [
["original plate count (1)", "current plate presence (1 unit)"],
["original plate count (1)", "visual plate detection mechanism"],
["original plate count (1)", "1"],
["visual counting capability", "current plate presence (1 unit)"],
["visual counting capability", "visual plate detection mechanism"],
["visual counting capability", "1"],
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["current plate presence (1 unit)", "visual plate detection
mechanism"],

["visual plate detection mechanism", "1"],
["current plate presence (1 unit)", "1"]

],
"counterfactual_edges": [
["original plate count (1)", "numerical addition operation"],
["original plate count (1)", "3"],
["visual counting capability", "numerical addition operation"],
["visual counting capability", "3"],
["addition of 2 plates", "numerical addition operation"],
["numerical addition operation", "3"],
["addition of 2 plates", "3"]

]
}

}

COCO Example. Common Objects in Context(COCO) dataset provides automatically constructed
counterfactual examples for evaluating multimodal reasoning in image-text pairs. Each instance
contains two images and two near-identical captions that differ only in a key noun (e.g., “A big burly
grizzly bear is shown with grass in the background” vs. “A big burly grizzly bear is shown with deer
in the background”). The dataset is designed to test whether models can detect minimal semantic
changes and determine whether the new image visually aligns with the counterfactual caption. The
goal is to assess visual-textual consistency and a model’s sensitivity to causal or identity-based
alterations in structured multimodal contexts. The following displays an example:

Factual Caption Image 0 Counterfactual Caption Image 1

A big burly grizzly bear is shown with
grass in the background.

A big burly grizzly bear is shown with
deer in the background.

COCO Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["original image (bear with grass)"],
"Covariate": ["bear presence", "background context"],
"Mediator": ["grass visual detection"],
"Outcome": ["caption with ’grass’"]

},
"counterfactual_roles": {

"Exposure": ["modified image (bear with deer)"],
"Covariate": ["bear presence", "background context"],
"Mediator": ["deer-grass substitution mechanism"],
"Outcome": ["caption with ’deer’"]

},
"causal_graph": {

"factual_edges": [
["bear presence", "original image (bear with grass)"],
["bear presence", "grass visual detection"],
["bear presence", "caption with ’grass’"],
["background context", "original image (bear with grass)"],
["background context", "grass visual detection"],
["background context", "caption with ’grass’"],
["original image (bear with grass)", "grass visual detection"],
["grass visual detection", "caption with ’grass’"],
["original image (bear with grass)", "caption with ’grass’"]

],
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"counterfactual_edges": [
["bear presence", "deer-grass substitution mechanism"],
["bear presence", "caption with ’deer’"],
["background context", "deer-grass substitution mechanism"],
["background context", "caption with ’deer’"],
["modified image (bear with deer)", "deer-grass substitution

mechanism"],
["deer-grass substitution mechanism", "caption with ’deer’"],
["modified image (bear with deer)", "caption with ’deer’"]

]
}

}

Arithmetic Example. Base-computation Arithmetic dataset evaluates counterfactual numerical
reasoning by testing arithmetic operations across multiple numeral systems(e.g. Base-8, 9, 10, 11, 16).
Each example pairs a factual base-10 calculation with a counterfactual alternate-base computation
(e.g., base-8: 148 + 578 = 738, base-16: EC16 + DD16 = 1C916). The dataset includes inputs
(num1, num2), the numeral system (e.g., "8" for octal, "16" for hexadecimal), and the base-specific
result (addrst). It assesses models’ ability to adapt numeral system transitions and consistency
in counterfactual reasoning. The following display a base-8 computation example and a base-16
example:

{
"8": {

"num1": "14",
"num2": "57",
"addrst": "73"

},
"16": {

"num1": "EC",
"num2": "DD",
"addrst": "1C9"

}
}

Base-8 Arithmetic Causality & Causal Graph.
{

"factual_roles": {
"Exposure": ["10-based system"],
"Covariate": ["14", "57"],
"Mediator": ["base-10 arithmetic operation"],
"Outcome": ["71"]

},
"counterfactual_roles": {

"Exposure": ["8-based system"],
"Covariate": ["14", "57"],
"Mediator": [
"base-8 to base-10 conversion",
"base-10 sum conversion to base-8"

],
"Outcome": ["73"]

},
"causal_graph": {

"factual_edges": [
["14", "10-based system"],
["14", "base-10 arithmetic operation"],
["14", "71"],
["57", "10-based system"],
["57", "base-10 arithmetic operation"],
["57", "71"],
["10-based system", "base-10 arithmetic operation"],
["base-10 arithmetic operation", "71"],
["10-based system", "71"]
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],
"counterfactual_edges": [
["14", "base-8 to base-10 conversion"],
["14", "73"],
["57", "base-8 to base-10 conversion"],
["57", "73"],
["8-based system", "base-8 to base-10 conversion"],
["base-8 to base-10 conversion", "base-10 sum conversion to base-8"

],
["base-10 sum conversion to base-8", "73"],
["8-based system", "73"]

]
}

}

Base-16 Arithmetic Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["10-based system"],
"Covariate": ["EC", "DD"],
"Mediator": ["N.A."],
"Outcome": ["N.A."]

},
"counterfactual_roles": {

"Exposure": ["16-based system"],
"Covariate": ["EC", "DD"],
"Mediator": [
"hex-to-decimal conversion",
"decimal-to-hex reversion"

],
"Outcome": ["1C9"]

},
"causal_graph": {

"factual_edges": [
["EC", "10-based system"],
["DD", "10-based system"]

],
"counterfactual_edges": [
["EC", "hex-to-decimal conversion"],
["hex-to-decimal conversion", "decimal-to-hex reversion"],
["EC", "1C9"],
["DD", "hex-to-decimal conversion"],
["DD", "1C9"],
["16-based system", "hex-to-decimal conversion"],
["decimal-to-hex reversion", "1C9"],
["16-based system", "1C9"]

]
}

}

MalAlgoQA Example (Malformed Algorithmic Question Answering (MalAlgoQA) dataset
is designed intentionally including factual and counterfactual rationales between multiple-choice
question answering to validate a language model’s ability to discern sound reasoning in the presence
of rationales(factual or counterfactual). Each question is presented alongside a factual rationale that
supports the correct answer (e.g., “Correctly ordered the values from greatest to least: 276, 254,
237, 235.” → C), and is paired with counterfactual rationales (e.g., “Ordered least to greatest”) that
correspond to plausible but incorrect or altered answers (e.g., A). Each example is decomposed into
factual and counterfactual role pairs, allowing researchers to assess how changes in reasoning paths
(rationales) lead to different answer choices. The following display an example of raw data and its
decomposed data points:

{
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"Question":"Which list shows the following number in order from
highest to lowest?",

"Answer":"C",
"Choice_A":" 235 237 254 276 ",
"Choice_B":" 237 276 235 254 ",
"Choice_C":" 276 254 237 235 ",
"Choice_D":" 276 254 235 237 ",
"Rationale_A":"Ordered least to greatest",
"Rationale_B":"Ordered greatest to least by ones place.",
"Rationale_C":"Correctly ordered the values from greatest to least:

276, 254, 237, 235.",
"Rationale_D":"Switched last 2 numbers."

}

{
{

"Question":"Which list shows the following number in order from
highest to lowest?",

"Answer": "C",
"Counterfactual Answer":"A",
"Choice_A":" 235 237 254 276 ",
"Choice_B":" 237 276 235 254 ",
"Choice_C":" 276 254 237 235 ",
"Choice_D":" 276 254 235 237 ",
"Counterfactual Rationale":"Ordered least to greatest",
"Rationale_C":"Correctly ordered the values from greatest to

least: 276, 254, 237, 235."
},

{
"Question":"Which list shows the following number in order from

highest to lowest?",
"Answer":"C",
"Counterfactual Answer":"B",
"Choice_A":" 235 237 254 276 ",
"Choice_B":" 237 276 235 254 ",
"Choice_C":" 276 254 237 235 ",
"Choice_D":" 276 254 235 237 ",
"Counterfactual Rationale":"Ordered greatest to least by ones

place",
"Rationale_C":"Correctly ordered the values from greatest to

least: 276, 254, 237, 235."
}.

{
"Question":"Which list shows the following number in order from

highest to lowest?",
"Answer":"C",
"Counterfactual Answer":"D",
"Choice_A":" 235 237 254 276 ",
"Choice_B":" 237 276 235 254 ",
"Choice_C":" 276 254 237 235 ",
"Choice_D":" 276 254 235 237 ",
"Rationale_C":"Correctly ordered the values from greatest to

least: 276, 254, 237, 235.",
"Counterfactual Rationale":"Switched last 2 numbers."

}
}

Take the first decomposed sample as an example showing MalAlgoQA Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["Ordered from greatest to least"],
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"Covariate": ["Number set (276, 254, 237, 235)"],
"Mediator": ["Descending comparison logic"],
"Outcome": ["Choice C"]

},
"counterfactual_roles": {

"Exposure": ["Ordered least to greatest"],
"Covariate": ["Number set (276, 254, 237, 235)"],
"Mediator": ["Ascending comparison logic"],
"Outcome": ["Choice A"]

},
"causal_graph": {

"factual_edges": [
["Number set (276, 254, 237, 235)", "Ordered from greatest to least

"],
["Number set (276, 254, 237, 235)", "Descending comparison logic"],
["Number set (276, 254, 237, 235)", "Choice C"],
["Ordered from greatest to least", "Descending comparison logic"],
["Descending comparison logic", "Choice C"],
["Ordered from greatest to least", "Choice C"]

],
"counterfactual_edges": [
["Number set (276, 254, 237, 235)", "Ordered least to greatest"],
["Number set (276, 254, 237, 235)", "Ascending comparison logic"],
["Number set (276, 254, 237, 235)", "Choice A"],
["Ordered least to greatest", "Ascending comparison logic"],
["Ascending comparison logic", "Choice A"],
["Ordered least to greatest", "Choice A"]

]
}

}

HumanEval-Exe Example This dataset performs a programming-related task: code execution. It is
designed to probe the ability of code-execution language models to perform counterfactual reasoning
in the context of program behavior. Each example consists of a function definition and a test case
input, and the model is asked to predict the output under a factual assumption (e.g., Python’s default
0-based indexing). The example is paired with a counterfactual version of the same test case, where a
hypothetical condition is introduced—such as switching to 1-based indexing. The model must then
predict the corresponding counterfactual output. For instance, given a function that checks for close
floating-point elements in a list, the model is expected to reason whether the list and threshold would
yield a different outcome if indexing conventions were altered. The full example is shown as follows:

{
"instruction": "from typing import List\n\n\ndef has_close_elements(

numbers: List[float], threshold: float) -> bool:\n \"\"\"
Check if in given list of numbers, are any two numbers closer to
each other than\n given threshold.\n >>> has_close_elements
([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.
0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"",

"input": "[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3",
"output": "True",
"counterfactual_output": "True"

}

HumanEval-Exe Causality & Causal Graph.
{

"factual_roles": {
"Exposure": ["0-based indexing"],
"Covariate": [
"List values [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]",
"Threshold 0.3",
"Pairwise comparison algorithm"

],
"Mediator": ["Range iteration logic (0 <= i < j < len(numbers))"],
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"Outcome": ["True"]
},
"counterfactual_roles": {

"Exposure": ["1-based indexing"],
"Covariate": [
"List values [1.0, 2.0, 3.9, 4.0, 5.0, 2.2]",
"Threshold 0.3",
"Pairwise comparison algorithm"

],
"Mediator": ["Range iteration logic (1 <= i < j <= len(numbers))"],
"Outcome": ["True"]

},
"causal_graph": {

"factual_edges": [
["List values [...]", "0-based indexing"],
["Threshold 0.3", "0-based indexing"],
["Pairwise comparison algorithm", "0-based indexing"],
["0-based indexing", "Range iteration logic (0 <= i < j < len(

numbers))"],
["Range iteration logic (0 <= i < j < len(numbers))", "True"],
["List values [...]", "True"],
["Threshold 0.3", "True"]

],
"counterfactual_edges": [
["List values [...]", "1-based indexing"],
["Threshold 0.3", "1-based indexing"],
["Pairwise comparison algorithm", "1-based indexing"],
["1-based indexing", "Range iteration logic (1 <= i < j <= len(

numbers))"],
["Range iteration logic (1 <= i < j <= len(numbers))", "True"],
["List values [...]", "True"],
["Threshold 0.3", "True"]

]
}

}

Open-Critic Example This dataset performs a programming-related task: code generation. It is
a synthetic code editing benchmark designed to train and evaluate large language models on their
ability to identify and fix bugs in code. Each example consists of a natural language task description,
a correct code solution that satisfies the task, and a counterfactual explanation that describes bugs
introduced into a similar but faulty implementation. The objective is for the model to learn to
generate or repair the bugged version of the code based on the bug descriptions as a counterfactual
scenario. For instance, given a correct nested loop that prints all valid digit combinations excluding
the number 5 and repetitions, the counterfactual explanation points out altered range values (e.g.,
using range(100) and range(1)), leading to an incomplete iteration logic. The full example is
shown as follows:

{
"task": "Create a nested loop to print every combination of numbers

between 0-9, excluding any combination that contains the number
5. Additionally, exclude any combination that contains a
repeating digit. Implement the solution without using any built-
in functions or libraries to check for repeating digits.",

"correct_code": "for i in range(10): # First digit\n for j in
range(10): # Second digit\n for k in range(10): # Third digit\
n # Checking for the conditions\n if i != 5 and j != 5 and k
!= 5 and i != j and i != k and j != k:\n print(i, j, k)",

"correct_explanation": "This code will generate and print every
combination of three digits between 0-9 that do not contain the
number 5 and do not have any repeating digits.",

"bugged_code": "for i in range(10): \n for j in range(100): \n
for k in range(1): \n if i != 5 and j != 5 and k != 5 and i !=
j and i != k and j != k:\n print(i, j, k)",
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"counterfactual_explanation": "Reading through this code, I notice
that:\n\n* The second loop is set to ‘range(100)‘ instead of ‘
range(10)‘, which means it will only iterate over the numbers
from 0 to 99. This will cause the script to miss some
combinations.\n* The third loop is set to ‘range(1)‘, which means
it will only iterate over the number 0. This will cause the

script to only print combinations with one digit, instead of
three.\n\nThese bugs will prevent the script from generating and
printing all possible combinations of three digits between 0-9
that do not contain the number 5 and do not have any repeating
digits.\n\nTips for avoiding these mistakes:\n\n* Double-check
the range values in each loop to ensure they are correct.\n* Make
sure the loops iterate correctly over the desired range of

values."
}

Open-Critic Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["Correct explanation (valid ranges and checks)"],
"Covariate": [
"Task requirements (0-9 digits)",
"Exclusion logic (no 5/repeats)",
"Nested loop structure"

],
"Mediator": ["Proper range initialization (range(10) x3)"],
"Outcome": ["Correct triple-nested loop code"]

},
"counterfactual_roles": {

"Exposure": ["Counterfactual explanation (invalid ranges)"],
"Covariate": [
"Task requirements (0-9 digits)",
"Exclusion logic (no 5/repeats)",
"Nested loop structure"

],
"Mediator": [
"Flawed range parameters (range(100)/range(1))",
"Incomplete digit iteration"

],
"Outcome": ["Bugged code with limited iterations"]
},

"causal_graph": {
"factual_edges": [
["Task requirements", "Correct explanation"],
["Exclusion logic", "Correct explanation"],
["Nested loop structure", "Correct explanation"],
["Task requirements", "Proper range initialization"],
["Exclusion logic", "Proper range initialization"],
["Nested loop structure", "Proper range initialization"],
["Correct explanation", "Correct triple-nested loop code"],
["Task requirements", "Correct triple-nested loop code"],
["Exclusion logic", "Correct triple-nested loop code"],
["Correct explanation", "Proper range initialization"],
["Proper range initialization", "Correct triple-nested loop

code"],
["Correct explanation", "Correct triple-nested loop code"]

],
"counterfactual_edges": [
["Task requirements", "Flawed range parameters"],
["Exclusion logic", "Flawed range parameters"],
["Nested loop structure", "Flawed range parameters"],
["Task requirements", "Bugged code with limited iterations"],
["Exclusion logic", "Bugged code with limited iterations"],
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["Nested loop structure", "Bugged code with limited iterations"
],

["Counterfactual explanation", "Flawed range parameters"],
["Flawed range parameters", "Incomplete digit iteration"],
["Incomplete digit iteration", "Bugged code with limited

iterations"],
["Counterfactual explanation", "Bugged code with limited

iterations"]
]

}
}

Code-Preference Example This dataset performs a programming-related task: code summarization.
It contains pairs of duplicate code examples, with the only difference being the bugged code example
has the bugged code ’surgically transplanted in’ while the corrected code is left the same. Each
example consists of a natural language instruction, a correct code solution that satisfies the instruction,
and a bug explanation that describes bugs. The objective is for the model to learn to summarize
and generate the bug descriptions as a counterfactual scenario. For instance, given a correct nested
loop that prints all valid digit combinations excluding the number 5 and repetitions compared with
a bugged loop, the bug description generated by the model will be able to point out altered range
values (e.g., using range(100) and range(1)) leading to an incomplete iteration logic in its
summarized response of bug explanation. The full example is shown as follows:

{
"Instruction": ’Create a nested loop to print every combination of

numbers between 0-9, excluding any combination that contains the
number 5. Additionally, exclude any combination that contains a
repeating digit. Implement the solution without using any built-
in functions or libraries to check for repeating digits.’,

"bugged_code": ’What are the problems with this code? ‘‘‘\npython\
nfor i in range(10): \n for j in range(100): \n for k in
range(1): \n if i != 5 and j != 5 and k != 5 and i != j and i !=
k and j != k:\n print(i, j, k)\n‘‘‘’,

"bug_explanation": ’Reading through this code, I notice that:\n\n*
The second loop is set to ‘range(100)‘ instead of ‘range(10)‘,
which means it will only iterate over the numbers from 0 to 99.
This will cause the script to miss some combinations.\n* The
third loop is set to ‘range(1)‘, which means it will only iterate
over the number 0. This will cause the script to only print

combinations with one digit, instead of three.\n\nThese bugs will
prevent the script from generating and printing all possible

combinations of three digits between 0-9 that do not contain the
number 5 and do not have any repeating digits.\n\nTips for
avoiding these mistakes:\n\n* Double-check the range values in
each loop to ensure they are correct.\n* Make sure the loops
iterate correctly over the desired range of values.\n\nHere is
the corrected code:\n\n‘‘‘python\nfor i in range(10): # First
digit\n for j in range(10): # Second digit\n for k in range
(10): # Third digit\n # Checking for the conditions\n if i
!= 5 and j != 5 and k != 5 and i != j and i != k and j != k:\n

print(i, j, k)\n‘‘‘’,
"correct_code": ’Here is an example of a nested loop in Python to

print every combination of numbers between 0-9, excluding any
combination that contains the number 5 or repeating digits:\n\n
‘‘‘python\nfor i in range(10): # First digit\n for j in range
(10): # Second digit\n for k in range(10): # Third digit\n #
Checking for the conditions\n if i != 5 and j != 5 and k != 5
and i != j and i != k and j != k:\n print(i, j, k)\n‘‘‘\n\
nThis code will generate and print every combination of three
digits between 0-9 that do not contain the number 5 and do not
have any repeating digits.’

}
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Code-Preferencec Causality & Causal Graph.

{
"factual_roles": {

"Exposure": ["Correct code (range(10) loops)"],
"Covariate": [
"Task requirements (0-9 digits)",
"Exclusion logic (no 5/repeats)",
"Nested loop structure"

],
"Mediator": ["Proper range initialization (range(10) x3)"],
"Outcome": ["Correct explanation (valid ranges and checks)"]

},
"counterfactual_roles": {

"Exposure": ["Bugged code (range(100)/range(1))"],
"Covariate": [
"Task requirements (0-9 digits)",
"Exclusion logic (no 5/repeats)",
"Nested loop structure"

],
"Mediator": ["Flawed range parameters", "Incomplete digit iteration"]

,
"Outcome": ["Bug explanation (incorrect ranges analysis)"]

},
"causal_graph": {

"factual_edges": [
["Task requirements (0-9 digits)", "Correct code (range(10) loops)"

],
["Exclusion logic (no 5/repeats)", "Correct code (range(10) loops)"

],
["Nested loop structure", "Correct code (range(10) loops)"],
["Task requirements (0-9 digits)", "Proper range initialization (

range(10) x3)"],
["Exclusion logic (no 5/repeats)", "Proper range initialization (

range(10) x3)"],
["Nested loop structure", "Proper range initialization (range(10)

x3)"],
["Task requirements (0-9 digits)", "Correct explanation (valid

ranges and checks)"],
["Exclusion logic (no 5/repeats)", "Correct explanation (valid

ranges and checks)"],
["Correct code (range(10) loops)", "Proper range initialization (

range(10) x3)"],
["Proper range initialization (range(10) x3)", "Correct explanation

(valid ranges and checks)"],
["Correct code (range(10) loops)", "Correct explanation (valid

ranges and checks)"]
],
"counterfactual_edges": [
["Task requirements (0-9 digits)", "Flawed range parameters"],
["Task requirements (0-9 digits)", "Incomplete digit iteration"],
["Task requirements (0-9 digits)", "Bug explanation (incorrect

ranges analysis)"],
["Exclusion logic (no 5/repeats)", "Flawed range parameters"],
["Exclusion logic (no 5/repeats)", "Incomplete digit iteration"],
["Exclusion logic (no 5/repeats)", "Bug explanation (incorrect

ranges analysis)"],
["Nested loop structure", "Flawed range parameters"],
["Nested loop structure", "Incomplete digit iteration"],
["Nested loop structure", "Bug explanation (incorrect ranges

analysis)"],
["Bugged code (range(100)/range(1))", "Flawed range parameters"],
["Flawed range parameters", "Incomplete digit iteration"],
["Incomplete digit iteration", "Bug explanation (incorrect ranges

analysis)"],
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(a) CLOMO (c) CVQA-Bool (d) CVQA-Count(b) RNN-Topology

(e) Arithmetic (g) Code-Preference(f) HumanEval-Exe

Figure 5: Additional evaluation on causal graph construction, complementing to Figure 3.

["Bugged code (range(100)/range(1))", "Bug explanation (incorrect
ranges analysis)"]

]
}

}

B COMPLEMENTARY EXPERIMENT

B.1 SETTING

This section lists the experimental settings used in this study.

Table 7: LLM query hyperparameters used during all experiments.
Hyperparameter Value Description
Temperature 0.7 Controls randomness in generation
Top-p (nucleus sampling) 0.95 Probability mass for sampling
Max tokens 2048 Maximum number of tokens to generate
Stop sequences ["\n", "Q:"] Used to truncate responses
Prompt format CoT, CoT-SC, ToT Prompting strategy used in Section 4.2.2
Tool-calling API Enabled (Selective) Used in tool-augmented experiments

Computational Resources. All experiments were conducted on a high-performance computing
server equipped with six NVIDIA RTX 6000 Ada Generation GPUs, each with 49 GB of dedicated
VRAM. The system utilized CUDA version 12.8 and NVIDIA driver version 570.124.06. These
GPUs supported parallel execution of model querying, evaluation, and tool-augmented tasks across
our benchmark datasets. The hardware configuration ensured sufficient memory bandwidth and
processing capability to accommodate large-scale inference, particularly for multimodal tasks and
multi-sample prompting strategies such as CoT-SC and ToT. No resource-related constraints were
encountered during experimentation.

B.2 ADDITIONAL RESULT AND DISCUSSION

This part presents additional experimental results that complement the main evaluation in the body of
the paper. These supplementary findings, together with what has been presented in previous sections,
offer comprehensive insights into LLMs capabilities across different decompositional tasks.
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Table 8: LLMs’ performance (F1 standard deviations, scaled to 100%) in causal variable identification
(reordered; adjusted variability).

Dataset
GPT-5 GPT-o4 Qwen3 Llama4-S Llama4-M Gemini2.5 DeepSeek

v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2

v1 = X (Exposure), v2 = Z (Covariate)

CRASS 4.6 4.9 9.1 9.9 5.6 6.2 8.3 7.9 3.5 4.4 4.5 5.3 4.8 5.0
CLOMO 4.8 5.1 9.3 10.0 6.8 7.2 9.6 8.9 5.0 5.5 5.9 6.5 5.3 5.7
RNN-Topo 5.0 5.3 9.5 10.2 7.3 7.8 10.2 9.5 5.4 5.9 6.4 6.9 5.8 6.2
CVQA-Bool 5.4 5.7 9.8 10.4 9.7 10.2 12.4 13.1 8.9 9.4 10.8 11.5 9.4 10.1
CVQA-Count 5.6 5.9 9.9 10.5 10.6 11.3 13.7 14.2 9.8 10.5 11.5 12.3 10.3 11.2
COCO 5.8 6.1 10.0 10.6 11.9 12.6 15.2 15.8 11.1 11.8 12.9 13.7 11.6 12.5
Arithmetic 5.2 5.5 9.4 10.1 8.9 9.5 11.3 12.0 7.5 8.1 8.4 9.1 7.9 8.6
MalAlgoQA 5.3 5.6 9.6 10.3 9.5 10.1 12.2 12.9 8.2 8.7 9.0 9.7 8.5 9.2
HumanEval-Exe 6.0 6.3 10.2 10.8 12.8 13.6 16.3 17.1 11.7 12.4 13.9 14.7 12.5 13.4
Open-Critic 6.1 6.4 10.3 10.9 13.5 14.2 17.1 17.8 12.6 13.3 14.6 15.3 13.7 14.5
Code-Preference 6.0 6.2 10.1 10.7 13.1 13.9 16.7 17.4 12.2 12.9 14.3 15.0 13.1 13.9

v1 = M (Mediator), v2 = Y (Outcome)

CRASS 4.9 5.2 9.2 10.0 9.6 7.4 12.1 9.7 8.5 6.1 9.1 6.8 8.7 6.2
CLOMO 5.0 5.3 9.4 10.2 10.5 8.1 12.9 10.3 9.2 6.6 9.8 7.5 9.3 6.8
RNN-Topo 5.1 5.4 9.6 10.3 11.1 8.5 13.6 10.8 9.6 7.0 10.5 7.9 9.8 7.2
CVQA-Bool 5.7 6.0 10.0 10.6 13.8 11.3 16.9 14.2 12.4 10.0 14.1 12.5 13.2 10.7
CVQA-Count 5.9 6.2 10.1 10.7 14.6 12.1 17.8 15.1 13.3 10.8 15.0 13.3 14.1 11.6
COCO 6.0 6.3 10.2 10.8 15.3 12.8 18.5 15.9 14.0 11.5 15.7 14.1 14.8 12.4
Arithmetic 5.4 5.7 9.5 10.2 12.5 9.8 15.4 12.5 11.0 8.6 13.1 9.2 11.3 8.7
MalAlgoQA 5.6 5.9 9.7 10.4 13.1 10.4 16.1 13.2 11.6 9.2 13.8 10.0 12.0 9.3
HumanEval-Exe 6.2 6.5 10.4 11.0 16.2 13.6 19.3 16.7 14.8 12.3 16.5 14.8 15.5 13.1
Open-Critic 6.3 6.6 10.5 11.1 16.9 14.4 8.1 17.5 15.5 13.0 17.2 15.5 16.1 13.9
Code-Preference 6.1 6.4 10.3 10.9 16.5 14.0 19.7 17.0 15.2 12.6 16.9 15.1 15.8 13.5

Figure 6: Additional evaluation of LLMs’ intervention identification, complementing to Figure 4.

To deepen our understanding of how LLMs handle counterfactual reasoning, we analyze representative
datasets that cover text, multimodal, symbolic, and code-based modalities. We aim to uncover
impediments at each decompositional stage. Below, we highlight dataset-level characteristics that
either enable or hinder performance.

Textual Question-Answering and Logic Parsing. Datasets built on natural language (e.g., textual
QA and logical modification tasks) generally facilitate the recognition of explicit causal variables
such as exposures and outcomes. Models can easily link a stated intervention (“if tutoring was not
provided”) to its corresponding variable. However, mediators are often described abstractly (through
latent constructs like “trust,” “motivation,” or “belief states”) rather than explicit entities. This makes
Task I disproportionately difficult for mediators compared to exposures or outcomes. Errors at this
stage then propagate to Task IV, where the model must simulate how such mediators would affect
outcomes under intervention. Even when causal graph construction (Task II) is near-perfect due to the
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Table 9: LLM performance (F1 standard deviation) in reasoning the counterfactual mediator (M →)
and outcome (Y →).

Dataset
GPT-5 GPT-o4 Qwen3 Llama4-S Llama4-M Gemini2.5 DeepSeek

M → Y → M → Y → M → Y → M → Y → M → Y → M → Y → M → Y →

CRASS 4.2 5.0 4.8 5.6 6.7 8.5 10.0 12.5 5.0 7.1 6.3 8.1 5.5 7.4
CLOMO 4.4 5.2 5.0 5.9 7.2 9.0 10.6 13.0 5.4 7.5 6.7 8.6 6.0 7.9
RNN-Topo 4.6 5.4 5.1 6.0 7.8 9.5 11.0 13.5 5.6 7.7 7.2 9.1 6.5 8.4
CVQA-Bool 4.8 5.6 5.2 6.1 11.2 13.3 14.5 16.8 9.0 11.1 12.1 14.0 10.4 12.5
CVQA-Count 5.0 5.8 5.3 6.3 12.0 14.1 15.2 17.6 9.8 11.9 12.9 14.9 11.2 13.3
COCO 5.1 6.0 5.4 6.4 12.7 14.8 15.9 18.3 10.5 12.7 13.6 15.6 11.9 14.0
Arithmetic 4.5 5.2 5.1 6.0 9.5 11.6 12.8 15.3 7.4 9.5 9.0 11.1 8.3 10.4
MalAlgoQA 4.7 5.3 5.2 6.1 10.1 12.2 13.4 15.9 7.9 10.0 9.7 11.8 8.9 11.0
HumanEval-Exe 5.2 6.2 5.5 6.5 13.3 15.4 16.5 18.9 11.0 13.2 14.2 16.2 12.5 14.7
Open-Critic 5.3 6.3 5.6 6.6 13.9 16.0 17.0 19.6 11.6 13.8 14.8 16.9 13.1 15.3
Code-Preference 5.1 6.1 5.5 6.5 13.6 15.7 16.7 19.2 11.3 13.5 14.5 16.5 12.8 15.0

structured nature of logical relations, the absence of explicit mediators limits downstream reasoning
fidelity.

Vision-Language Counterfactuals. Multimodal datasets combining images with text pose unique
challenges. When asked to identify causal variables, LLMs must ground textual descriptions in
visual objects. For example, distinguishing “presence of a ball” (exposure) from “action of kicking”
(mediator) requires fine-grained alignment of object attributes with causal semantics. This grounding
step introduces errors in Task I, especially when visual scenes are cluttered or ambiguous. Even
when interventions (Task III) are identified correctly, outcome reasoning (Task IV) suffers because
models struggle to propagate visual changes into numerical or behavioral predictions. For instance,
recognizing that “removing a ball” should reduce the count of possible goals involves chaining
visual detection, counting logic, and causal propagation—steps that current LLMs rarely integrate
coherently.

Symbolic and Mathematical Reasoning. Datasets built on arithmetic or algorithmic transformations
highlight another bottleneck: reliance on memorized patterns instead of causal mechanisms. In
variable identification (Task I), explicit quantities are correctly recognized. In causal graph con-
struction (Task II), rules linking operations (e.g., “base conversion influences the final number”) are
applied consistently. However, in outcome reasoning (Task IV), models frequently fail to simulate
the correct causal pathway, often defaulting to template-based responses rather than computing the
actual counterfactual result. This suggests that while symbolic data supports high precision in explicit
structure, it exposes the weakness of LLMs in mechanistic simulation of causal processes.

Code-Based Reasoning. Programming-oriented datasets such as code execution, code generation,
or preference tasks are particularly difficult across all stages. In Task I, identifying exposures and
outcomes is hindered by the abstractness of programming constructs (e.g., “function signature” as
exposure, “program output” as outcome). Mediators (such as intermediate execution states) are even
harder to capture, as they are not explicitly represented in the code text but must be inferred from
semantics. In Task II, while models can generate plausible causal graphs describing dependencies
among variables or functions, these graphs often overgeneralize or miss critical execution details.
Task IV is especially challenging: even when interventions like “changing a loop to recursion” are
recognized, LLMs often fail to simulate downstream program behavior, producing outcomes that
are logically plausible but incorrect. This reflects a persistent gap between syntactic recognition and
semantic reasoning.

Cross-Cutting Observations. Across modalities, two key impediments recur:

(1) Complex modalities impede variable identification. Images and code introduce higher error rates
in Task I, since grounding or semantic parsing must precede causal reasoning.

(2) Implicit mediators bottleneck outcome reasoning. Regardless of modality, when mediators are
abstract or not explicitly present, performance in Task IV drops substantially. LLMs can identify
interventions reliably, but they fail to propagate their effects along causal chains to yield consistent
counterfactual outcomes.
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These findings suggest that LLMs are “eligible” for decompositional reasoning in structured settings
with explicit causal variables (e.g., clean text or arithmetic). However, when confronted with modality
complexity or implicit causal pathways, their reasoning capacity is significantly impeded.

B.3 WORKING MEMORY PERSPECTIVE TO INTEPRET COUNTERFACTUAL REASONING

Prior research (Zhang et al., 2024a) has demonstrated that language models exhibit notable difficulty
in temporally storing and manipulating information even in n-back tasks that are cognitively simpler
than explicit reasoning. This underlying limitation in working memory capacity poses constraints
on long-term and multi-step reasoning. To explore the connection between memory bottlenecks and
mediator identification challenges, we conducted additional experiments in more depth.

Experiments on Working Memory. To examine how working memory affects mediator reason-
ing, we designed a controlled n-back Mediator Recall task. While most benchmarks involve only
single-step mediation, the Open-Critic dataset (code modality) includes examples of multi-step causal
mediation. For instance, adjusting code inputs requires reasoning over prior inputs and transforma-
tions. In this task, the mediator must be inferred from causal variables presented n steps earlier in the
input. We vary n from 1 to 3 and report F1 scores consistent with Table 10.

Table 10: LLM performance (F1) in n-back mediator recall
Model 1-hop 2-hop 3-hop

GPT-o4 72.2% 63.5% 9.7%
Qwen 58.3% 39.6% 12.1%
Gemini 66.4% 26.1% 7.5%
LLaMA4-Scout 45.5% 47.2% 3.6%

Findings and insights. These results reveal a sharp performance drop as the number of intermediate
steps increases. From a working memory perspective, this suggests that current LLMs struggle to
retain or reconstruct causal paths to mediators when they are separated by multiple reasoning hops.
This degradation highlights a key constraint in long-horizon causal reasoning.

These findings align with our earlier observation that mediator reasoning is a consistent bottleneck
in decompositional analysis. By framing this in terms of working memory capacity, we offer a
mechanistic explanation for why LLMs falter on such tasks and why enhanced memory mechanisms
(e.g., intermediate supervision or tool-assisted retrieval) may be necessary for progress.

B.4 INFLUENCE OF MODEL SCALE

Table 11: LLM performance in reasoning variables (X,Z,M, Y,M →, Y →).

Dataset
Qwen-VL-2B Qwen-VL-4B Qwen-VL-8B

X Z M Y M → Y → X Z M Y M → Y → X Z M Y M → Y →

CRASS 44.2 27.1 20.3 37.2 18.2 16.5 47.0 29.5 22.1 39.4 20.3 18.7 52.8 34.4 26.7 44.5 25.8 23.6
CLOMO 23.8 18.4 11.6 15.3 8.3 5.1 26.0 20.2 13.0 17.0 9.6 6.4 30.5 24.0 16.5 20.8 12.5 9.3
CVQA-Count 23.1 16.2 15.6 18.4 11.5 7.4 25.4 18.0 17.1 20.3 13.1 8.9 29.7 21.3 20.4 23.8 16.4 11.8
MalAlgoQA 17.2 14.0 10.5 14.6 8.5 6.2 19.1 15.6 12.0 16.3 10.2 7.6 23.4 19.3 15.7 19.7 13.6 10.5

Besides comparing GPT and Llama families, we further conduct a controlled scaling study over the
Qwen-VL series to examine how model size influences both causal variable identification and down-
stream counterfactual reasoning. Table 11 summarizes the performance of Qwen-VL-2B, 4B, and
8B across factual variables (X,Z,M, Y ) and counterfactual targets (M →, Y →). Overall, we observe
a clear but non-uniform scaling trend. Moving from 2B to 4B yields modest and consistent gains,
particularly on explicit variables (X,Z, Y ), suggesting that moderate scaling primarily improves
surface-level grounding and extraction. In contrast, the 8B model shows more noticeable improve-
ments across both explicit and implicit variables, including the more challenging mediators (M , M →)
and counterfactual outcomes (Y →). These gains indicate that larger Qwen models are better able to
propagate interventions through the underlying causal structure rather than solely memorizing lexical
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associations. However, even the 8B model retains substantial gaps on tasks requiring multi-hop causal
reasoning, especially when mediators are implicit or visually grounded. Taken together, the scaling
analysis suggests that increased model capacity helps alleviate some of the bottlenecks identified in
smaller models, but does not by itself resolve the fundamental challenges of counterfactual mediation
and outcome inference.

C LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

Large language models were used only for minor grammar revision and sentence-level polishing
during manuscript preparation. They were not employed in ideation, methodological design, ex-
perimental execution, or result analysis. The scientific contributions, benchmarks, and evaluations
presented in this work were entirely conceived and developed by the authors. LLM involvement was
minimal in the research process.
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