This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Steering Away from Harm: An Adaptive Approach to Defending Vision
Language Model Against Jailbreaks

Han Wang'!, Gang Wang', Huan Zhang!
'University of Illinois Urbana-Champaign

{hanwl4, gangw}@illinois.edu, huan@huan-zhang.com

Abstract

Vision Language Models (VLMs) can produce unintended
and harmful content when exposed to adversarial attacks,
particularly because their vision capabilities create new
vulnerabilities. Existing defenses, such as input preprocess-
ing, adversarial training, and response evaluation-based
methods, are often impractical for real-world deployment
due to their high costs. To address this challenge, we pro-
pose ASTRA, an efficient and effective defense by adaptively
steering models away from adversarial feature directions
to resist VLM attacks. Our key procedures involve finding
transferable steering vectors representing the direction of
harmful response and applying adaptive activation steer-
ing to remove these directions at inference time. To cre-
ate effective steering vectors, we randomly ablate the vi-
sual tokens from the adversarial images and identify those
most strongly associated with jailbreaks. These tokens
are then used to construct steering vectors. During in-
ference, we perform the adaptive steering method that in-
volves the projection between the steering vectors and cal-
ibrated activation, resulting in little performance drops on
benign inputs while strongly avoiding harmful outputs un-
der adversarial inputs. Extensive experiments across mul-
tiple models and baselines demonstrate our state-of-the-
art performance and high efficiency in mitigating jailbreak
risks. Additionally, ASTRA exhibits good transferability, de-
fending against unseen attacks (i.e., structured-based at-
tack, perturbation-based attack with project gradient de-
scent variants, and text-only attack). Our code is available
at https://github.com/ASTRAL-Group/ASTRA.

1. Introduction

Vision Language Models (VLMs) [8, 12, 28, 60] have
attracted significant attention from both the industry and
academia for their remarkable vision-language cognition
capabilities [39]. Despite widespread applications, VLMs
still face safety challenges due to limitations inherent in
their underlying language models. Moreover, integrating
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visual inputs can open up a new surface for adversarial
attacks. These safety issues regarding VLM have led to
a lot of research on jailbreak attacks and defense strate-
gies [17,47, 53, 61].

Jailbreak attacks in VLMs aim to induce models to gen-
erate harmful responses by using jailbreaking image-text
pairs [22-24, 26, 41, 48, 51]. These jailbreak attacks can
be categorized into two types: (i) perturbation-based at-
tacks, which create adversarial images that prompt gen-
eration of the harmful response from VLMs [2, 38, 41,
46], (ii) structured-based attacks, which embeds the ma-
licious queries into images via typography to bypass the
safety alignment of VLMs [17, 30]. Countermeasures
for both attacks have been explored extensively: the in-
put preprocessing-based method [37] or adversarial train-
ing [25] have proven effective for perturbation-based at-
tacks. However, these defenses suffer as they require in-
tensive computations to purify the image or fine-tune the
model. Response evaluation-based [18, 53, 58] defenses
have been proposed for structured-based attacks, but they
all require running model inference multiple times to po-
tentially identify harmful outputs, which dramatically in-
creases the cost of real-world deployment.

In this work, we argue that an efficient defense framework
should not require significant computational resources dur-
ing training or generating responses multiple times dur-
ing inference. Drawing inspiration from recent advance-
ments in activation steering in Large Language Model
(LLM) [4, 20, 43, 52], we propose ASTRA, an efficient and
effective defense by adaptively steering models away from
adversarial feature directions via image attribution activa-
tions to resist VLM attacks. We find that simply borrow-
ing the method from steering LLM for safeguarding VLM
is not empirically workable due to the mismatch between
the steering vectors obtained from textual and visual data,
which necessitates our image attribution approach.

Specifically, ASTRA consists of two steps: constructing
steering vectors via image attribution, and adaptive activa-
tion steering at inference time. We seek to construct steer-
ing vectors representing the direction of harmful responses.


https://github.com/ASTRAL-Group/ASTRA

This can be done by constructing a set of adversarial im-
ages (e.g., using projected gradient descent (PGD) [34] al-
gorithm) and then identifying visual tokens in each adver-
sarial image most likely to trigger the jailbreak. To attribute
such visual tokens, we fit a linear surrogate model using
Lasso and estimate the impact of the inclusion/exclusion of
each visual token on the probability of jailbreaks. The top-k
impactful visual tokens are then used to construct the steer-
ing vectors. This surrogate can be quickly estimated with
only a few inference passes, making the process of build-
ing defense computationally friendly. During inference, we
propose adaptive steering to manipulate the model’s activa-
tion through an activation transformation step. The steering
coefficient is determined by the projection between the cal-
ibrated activation and steering vector, making the steering
have little effect on benign input and a strong effect on ad-
versarial input. This process is also efficient since it only
requires generating a single response.

Extensive experiments demonstrate that ASTRA effec-
tively mitigates perturbation-based attacks while preserving
model utility across standard VLM benchmarks. The main
contributions of this work are as follows:

o We introduce ASTRA, a defense that adaptively steers
models away from adversarial feature directions via
image attribution activations to resist VLM attacks.
ASTRA is also highly efficient, which only needs sev-
eral times of inference passes to build the defense, and
does not affect inference time deploying the defense.

o We propose an adaptive steering approach by consid-
ering the projection between the steering vectors and
calibrated activations, resulting in little performance
drops on benign inputs while strongly avoiding harm-
ful outputs under adversarial inputs.

o ASTRA achieves a substantial improvement in defend-
ing against perturbation-based attacks. Compared to
state-of-the-art methods JailGuard [58], with a Tox-
icity Score of 12.12% and an Attack Success Rate
of 17.84% lower, and 9x faster in MiniGPT-4. AS-
TRA is also transferable to some unseen attacks (i.e.,
structure-based attack, perturbation-based attack with
PGD variants, and text-only attack), and still be effec-
tive against adaptive attacks.

2. Related Work

Jailbreak Attacks on VLM. Jailbreak attacks aim to al-
ter the prompt to trick the model into answering forbid-
den questions. Apart from the LLM-based textual jail-
break strategies [19, 31, 56, 63], additional visual in-
puts expose a new attack surface to VLM attacks. There
are two main types of attacks: perturbation-based attacks
and structured-based attacks [53]. Perturbation-based at-
tacks create adversarial images to bypass the safeguard of
VLMs [2, 6, 41, 46, 55, 59]. Structued-based attacks con-
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vert the harmful content into images through typography
or text-to-image tool (e.g., Stable Diffusion [44]) to induce
harmful responses from the model [17, 27, 29, 30, 33] We
study our defense on both types of attacks.

Defenses on VLM. Researchers have explored two direc-
tions for defense: training-time alignment and inference-
time alignment. Training-time alignment safeguards VLMs
through supervised fine-tuning (SFT) [9, 26, 61] or training
a harm detector to identify the harmful response [40], all re-
quiring considerable high-quality annotation and sufficient
computation resources to train. Inference-time alignment
is relatively more resource-friendly. Some strategies design
alignment prompts to defend against attacks [17, 54]. Oth-
ers build a response evaluation pipeline to assess the harm-
fulness of VLM responses, often followed by iterative re-
finement to ensure safe outputs [18, 58]. Another way is
to disturb input queries and analyze response consistency to
identify potential jailbreak attempts [58]. However, these
methods still introduce a non-trivial cost to inference time
due to the need for generating the response multiple times.

Activation Engineering of LLM. The activation space of
many language models appears to contain interpretable di-
rections, which play a crucial role during inference [5, 36].
The basic idea of activation engineering is to identify a di-
rection (i.e., steering vector) in activation space associated
with certain semantics and then shift activations in that di-
rection during inference. Turner et al. [50] locates the direc-
tion by taking the difference in intermediate activations of
a pair of prompts at a particular layer and token position in
a transformer model. Rimsky et al. [43] construct a dataset
of contrast pairs rather than using a single pair to get the
steering vector. Wang et al. [52] locate the “safety” steer-
ing vectors from a well-aligned language model. Ball et
al. [4] investigate whether different types of jailbreak tem-
plates employ distinct mechanisms to trigger unsafe regions
in the model’s representation space. Some other methods
try to learn high-level concepts in the representation space
and use them to control the output [20, 62, 64]. However,
most previous works focus on utilizing textual prompts to
construct steering vectors, which might not be empirically
workable for steering VLM in some cases due to the gap
between visual and textual domains.

3. Methodology

In this work, we propose ASTRA, an efficient and effective
defense by adaptively steering (Section 3.2) models away
from adversarial directions via image attribution activations
(Section 3.1) to resist VLM attacks.

Notation. Let Pypy be an autoregressive vision language
model, which defines a probability distribution over a se-
quence of preceding tokens from a vocabulary V. Specif-
ically, we consider a VLM which takes a sequence of n
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Figure 1. Illustration of our framework ASTRA. Our key procedures involve finding transferable steering vectors representing the direction
of harmful response and applying adaptive activation steering to remove these directions at inference time. To create effective steering
vectors, we randomly ablate the visual tokens from the adversarial images and identify those most strongly associated with jailbreaks.
These tokens are then used to construct steering vectors. During inference, we perform an adaptive steering method that involves the

projection between the steering vectors and calibrated activation, resu

Iting in little influence on benign inputs and a strong impact on

adversarial inputs. The solid and dotted lines denote the activations k! and calibrated activations h! — h} respectively. The blue refers to
the calibration activation k). The color red denotes the case of adversarial inputs.

Algorithm 1 Pipeline of constructing steering vectors

Input: VLM Pyim, a set D of adversarial visual tokens x,,
harmful instruction tokens x, number of ablations NV, template
tokens Xemplate, @' () is the activation of layer [ in the VLM
Initialize ¢ <— 0, n < 0, specify r as tokens of “Sure, ...”
while i < |D| do
n+< 0
while n < N do
Compute: f(gn) = logPvim(r|Ablate(X., gn),X:)
n+e—n+1
Fit a linear surrogate model f using Lasso based on the pairs
of {(g1, f(91)),---, (9w, f(gn))} X
Mask the visual tokens with the Top-k weights in the f and
get Mask(xy)
Construct the steering vector v
al (Mask(Xy ), Xtemplae )
14—1+1
Average across the set v! =

1

i = ai(xv,xnmplam) -

D] 1

i=0 Vi
Output: steering vector v'
textual tokens x; = {zi,,...,T¢, } and m visual tokens

Xy = {Tyy, -y Ty, } t0 generate responses r = {ry, ..., 75}
We generate the ith token r; of the response as follows:

Ti NPVLM(' | IUl'l"'1Iﬂm1$t1)"':Itn':'rl:"":'ri—]-)

3.1. Constructing Steering Vectors

Not all visual tokens from the adversarial images contribute
to the jailbreak equally. We seek to locate certain visual to-
kens that have a higher chance of inducing jailbreaking via
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image attribution. In this way, we can isolate the represen-
tation most associated with jailbreak-related information in
these tokens.

Adversarial Image Attribution. Image attribution aims to
find the input visual tokens that are more likely to trigger
the specified responses. In our case, we seek to locate vi-
sual tokens from adversarial images generated by the PGD
attack with a higher chance of inducing the jailbreak.

We conduct random ablation of certain tokens and compute
the impact of exclusion/inclusion on inducing the jailbreak.
We define visual token ablation as the process of masking
specific tokens in a visual input. Let Ablate(x,, g) repre-
sent ablated visual tokens x,,, where g ~ {0,1}™ is an
ablation vector that designates which tokens to mask (zeros
in ¢ indicate masked tokens). Given an ablation vector g,
the image attribution is expected to quantify the impact on
the log probability of generating specified responses r,

f(g) := logPyim(r|Ablate(xy, g), %),

changes as a function of g, where x; are textual tokens of
harmful instructions, r as tokens of “Sure, ...” to denote
the case of jailbreaking, and Pypm(r | Ablate(xy, g),X¢)
as the product of the probability of generating specified re-
sponse r given the Ablate(x,, g), X;-

Following prior work in machine learning explanation [10,
42], we fit a linear surrogate model f to analyze the in-
fluence of masking subsets of visual tokens on the like-
lihood of jailbreaks and select the visual tokens that are
highly relevant for triggering the jailbreaking responses.



Sraered (b) Activations for

different inputs may
4 cluster far from
’,’-‘;-._‘ the origin.

(a) Linear Steering

Activation

= |

Calibration
Activa- .
tion h'

Sluurmgi Steering
Vector v Direction -

~

“alibration Activation hj

(c1) Adaptive Steering —

Calibrated
Activation

Calibration Activation hEp

(¢3) Adaptive Steering -

((:Z]Adapllve Steering — Projection
1 Steering

between calibrated
activations and
steering vector

Since 8; > 90°,

By < 90°, we

only steer the

R activations for

(. (h'—hg) " v ,0) adversarial input
{ G [

h! —h}

Figure 2. Illustration of steering. The colors red and green denote the activations for adversarial and benign inputs. The colors blue and

brown denote the calibration activations k) and steeri ng vectors v .

Specifically, we (1) sample a dataset of ablation vectors
g1, - - -, gn and compute f(g;) for each g; by multiple times
of ablations and forwards, (2) train the surrogate model
f: {0,1}™ — R using Lasso to approximates f based
on the pairs (g;, f(g;)), and (3) attribute the behavior of the
surrogate model f to individual visual tokens. Finally, we
can get a surrogate model f with its weights that can be
interpreted as the attribution scores for triggering the jail-
break. The higher the score, the more relevant the token
results in jailbreak.

Harmful Feature Extraction. With attribution scores for
each token, we extract the representation of those tokens
strongly correlated with jailbreak. Additionally, we hope
our steering vectors generalize rather than overfitting to spe-
cific instructions and enjoy good transferability to a wider
range of jailbreaks. Thus, we utilize visual tokens with Top-
k attribution scores from the surrogate model f' paired with
the empty user query to construct the steering vectors.

Given a set D of (x,,, Mask(x,)) and textual tokens Xempiate
of chat template with an empty user query, where x,, is the
input visual tokens, and Mask(x,) is input visual tokens
masked with Top-k attributed tokens, we calculate the mean
difference vector for a layer [ as:

1
UI’:W Z

Xy, Mask(x, )€D

al (Xu, Xlemp]ale) —a (Mask(x,

where a' captures the activations at the last token in layer
[. The difference between these pairs isolates the represen-
tation most associated with jailbreak-related information in
visual tokens with Top-k attribution scores.

3.2. Adaptive Activation Steering

The key idea of activation steering is using steering vec-
tors to shift a language model’s output distribution toward
a specified behavior during inference. After constructing
steering vectors with harmful semantics, we strive to re-
move these components by steering LLM’s activations.

Unfortunately, simply applying a fixed scaling coefficient to
the steering vector for modifying the language model’s out-
put [4, 43, 50, 52] is not workable as a defense due to dra-
matic utility performance degradation in benign cases [1].
The main problem is that the linear steering used in prior

)1 Xlemp]ale

work unconditionally alters the activation no matter whether
the input leads to harmful outputs or not (Fig. 2(a)):

vl

It

where h! is the activation of the last token at the layer I,
and « is a scaling coefficient. To address this challenge, we
propose adaptive steering based on conditional projection:

R=h—a-

BTyt 1
(!)1-:,0)' v;
A4 [l [l

When h! does not contain any positive component of the
steering vector (harmful direction), the max term is 0, leav-
ing activations unchanged. This minimized the negative im-
pact on the benign performance.

ht = B! — a - max(

Since the angle between k! and ! matters for adaptive pro-
jection, we must ensure that it can effectively distinguish
harmful and benign activations at layer I. However, we
notice that the activations for different inputs may clus-
ter around a point distant from the origin. As a result,
the angles among these vectors may all become similar
(Fig. 2(b)). To address this, we propose a activation cal-
ibration step before steering. We use the calibration acti-
Jvation hL, which can be seen as the center of the activation
for many different inputs, to calibrate the projection term in
our adaptive steering:

ht — Rt
W =h —a- max(|( o) v

0 " R0
VAL Iu I 0)-

HW
R}, is the calibration activation at the layer [, h! — h}, is the
calibrated activation. We do not calibrate v! here since the
mean component has been canceled out when subtracting
the two token activations. To obtain the calibration activa-
tion hf), we collect image-text queries from a large number
of test data and compute the average of the generated token
features at the layer [ to get hl,.

We show the full process of our adaptive steering approach
in Fig. 2 (c1) - (c3). It can help reduce malicious outputs in
adversarial scenarios while preserving performance in be-
nign cases. During inference, we apply steering only to the
activations of newly generated tokens, leaving the activa-
tions of input tokens unaltered.
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Table 1. The performance comparison on MiniGPT-4. | means the lower the better defense. The steering vectors for each attack with e
are constructed using the adversarial images with the corresponding e value.

‘ Toxicity (Perturbation-based Attack) — Toxicity Score (%) | ‘

Jailbreak (Perturbation-based Attack) — ASR (%) |

Benign image 30.65 30.65 30.65 30.65 ‘ 24.55 24.55 24.55 24.55
Adversarial image | € =16/255 €=232/255 €=064/255 unconstrained | e=16/255 ¢=32/255 ¢=064/255 unconstrained
VLM defenses
w/o defense 39.73 48.52 54.70 52.12 44.55 47.27 49.09 53.64
Self-reminder [54] 38.97 48.71 45.15 50.12 35.45 36.36 41.82 43.64
JailGuard [58] 16.51 18.93 20.93 21.23 30.00 32.73 27.27 28.18
ECSO [18] 34.59 32.42 38.54 42.86 40.91 42.73 29.09 37.27
LLM Steering
Refusal Pairs [43] 25.76 30.28 31.99 35.71 20.00 22.73 17.27 16.36
Jailbreak Templates [4] 19.73 25.03 30.10 22.78 33.64 38.15 38.18 42.73
ASTRA (Ours) 11.30 8.84 4.51 4.48 ‘ 9.09 13.18 15.46 9.09

Table 2. The performance comparison on Qwen2-VL. | means the lower the better defense. The steering vectors for each attack with €
are constructed using the adversarial images with the corresponding e value.

‘ Toxicity (Perturbation-based Attack) — Toxicity Score (%) | ‘

Jailbreak (Perturbation-based Attack) — ASR (%) |

Benign image 38.52 38.52 38.52 38.52 ‘ 0.00 0.00 0.00 0.00
Adversarial image | € =16/255 €=32/255 €=064/255 unconstrained | ¢=16/255 €=32/255 ¢=64/255 unconstrained
VLM defenses
w/o defense 50.50 51.62 55.59 53.43 67.27 70.46 71.82 76.36
Self-reminder [54] 30.47 27.53 32.84 29.09 50.00 47.27 40.00 58.18
JailGuard [58] 29.37 24.68 28.74 27.76 19.09 20.00 21.82 15.45
ECSO [18] 50.09 50.68 56.08 51.57 30.00 27.27 31.82 32.73
LLM Steering
Refusal Pairs [43] 46.14 46.83 46.83 40.53 29.09 31.82 21.82 52.73
Jailbreak Templates [4] 66.74 63.35 67.15 68.29 68.18 68.18 65.45 74.55
ASTRA (Ours) 15.52 5.45 2.39 0.07 ‘ 6.06 5.00 18.18 15.45

4. Experiments

In this section, we conduct experiments to address the fol-
lowing research questions:

e RQ1: How does ASTRA perform in adversarial scenar-
ios compared to VLM defense baselines and LLM steer-
ing methods? Is our defense transferable to a different
distribution of inputs and different types of attacks?

e RQ2: How does ASTRA perform in benign cases? Can
we reduce model harmfulness without hurting utility?

e RQ3: What are the impacts of design choices in AS-
TRA? Are all components (e.g., image attribution, acti-
vation calibration) necessary for best performance?

4.1. Experimental Setup

Steering Vector Construction. We sample benign images
with different classes from ImageNet [13] and apply the
PGD attack [34] to generate 16 adversarial images for steer-
ing vectors construction. The perturbation radius e is set to
%, %, %, unconstrained}. Details on the PGD attack
configuration can be found in Appendix 8.1.
Evaluation Datasets. We choose Toxicity and Jailbreak
setups using the perturbation-based attack. We sample 55
benign images from ImageNet [13] and apply the PGD at-

tack [34] to generate 25 and 30 adversarial images for vi-
sual validation, and test sets respectively. The perturbation
radius € is set to %, %, %, unconstrained }. For textual
prompts, we choose 50 and 100 queries from RealToxic-
ityPrompt [16] to construct the validation and test set for
Toxicity setup. We choose 110 and 110 queries from both
Advbench [63] and Anthropic-HHH [15] to construct the
validation and test set for Jailbreak setup. All text prompts
are different from the instruction-response pairs used for
steering vector construction. During the evaluation, we pair
each textual prompt with a random adversarial image.

For the evaluation of utility performance in benign scenar-
ios, we employ two established benchmarks, MM-Vet [57]
and MM-Bench [32]. Additionally, we include safe instruc-
tions from XSTest [45] to assess the overrefusal case. Full
Details of dataset statistics can be found in Appendix 8.1.

Evaluation Metrics. For the toxicity setup, we follow Qi
et al. [41] and use the Detoxify classifier [21] to calculate
the toxicity score. We report the average scores of Toxicity
attribute across the test set. The scores range from 0 (least
toxic) to 1 (most toxic). For the jailbreak setup, we choose
the classifier from HarmBench [35] to compute the attack
success rate (ASR).
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Table 3. The performance against adaptive attacks. The adversary has complete knowledge of the model, our steering vectors and adaptive
steering defense mechanism. Under this strong (often unrealistic) attack setting, ASTRA still noticeably outperform undefended models.

Toxicity (Perturbation-based Attack) — Toxicity Score (%) |

Jailbreak (Perturbation-based Attack) — ASR (%) |

€=16/255 €=32/255 ¢=064/255 unconstrained | ¢ =16/255 €=232/255 ¢=064/255 unconstrained

MiniGPT-4

Attack on undefended VLM 39.73 48.52 54.70 52.12 44.55 47.27 49.09 53.64

Adaptive Attack on defended VLM 15.47 19.23 20.50 17.04 13.64 13.64 24.55 22.73
Qwen2-VL

Attack on undefended VLM 50.50 51.62 55.59 53.43 67.27 70.46 71.82 76.32

Adaptive Attack on defended VLM 24.56 24.21 9.27 11.60 58.16 60.00 59.09 69.09
LLaVA-v1.5

Attack on undefended VLM 83.70 84.40 85.54 85.44 51.82 56.36 55.45 53.64

Adaptive Attack on defended VLM 60.24 63.59 68.87 67.86 30.00 34.55 32.73 32.73

Toxicity on MiniGPT-4

ailbreak on MiniGPT-4
10.00

€=16/255
&€=32/255]
£=64/255
Unconstrained
Avg. 10.13 10.80 5.78 3.00

9.09
18.18
22.73
14.55 4.55 6.36

Defense

£= ‘6'7—55 3 ’32'7'55 £ 6M155\)r\cons\‘amed
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Figure 3. Transferability in ID scenarios. Avg. denotes the average of steering vectors derived from the adversarial images with e values in
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Table 4. Inference Time per token (ms). “Single inference” indi-
cates whether the method requires generating responses multiple
times during evaluation. We report inference time per token since
the total inference time may vary depending on the length of the
generated tokens.

Single Toxicity (Perturbation-based Attack)

Inference | MiniGPT-4 LLaVA-vl.5 Qwen2-VL
w/o defense v 173.19 40.68 27.43
Self-reminder [54] v 173.36 41.09 27.94
JailGuard [58] X 1557.98 366.02 245.42
ECSO [18] X 457.55 116.44 70.22
ASTRA(Ous) | v | 11377 40.69 27.98

Baselines. We compare ASTRA with three VLM defense
baselines and two LLM steering approaches. For the VLM
defenses, self-reminder [54] is a system prompt based de-
fense, JailGuard [58] perturbs the input images several
times and computes the divergence between responses, and
ECSO [18] adaptively transforms unsafe images into texts
to activate the intrinsic safety mechanism of pre-aligned
LLM in VLMSs. For the LLM steering, we follow Rimsky et
al. [43] and Ball et al. [4] to construct steering vectors with
the semantics of refusal and textual jailbreak templates.

Models & Implementations details. We conduct all the
experiments on three popular open-sourced VLMs, includ-
ing Qwen2-VL-7B [3], MiniGPT-4-13B [60], and LLaVA-
v1.5-13B [28]. We set the number of ablations N as 96, k
as 15. For the selection of a, refer to Appendix 8.6. The
steering layer [ is 20 for 13B models and 14 for 7B mod-
els. The chat configurations use a temperature of 0.2 and
p = 0.9 for LLaVA-v1.5 and Qwen2-VL, and a tempera-
ture of 1 and p = 0.9 for MiniGPT-4.

unconstrained}. Additional results for LLaVA-v1.5 can be found in Appendix, Fig. 6.

4.2. Defense Performance Comparision (RQ1)

Table 1, 2, and 8 (in appendix) report the performance of our
defense in the perturbation-based attack across Toxicity and
Jailbreak setup. Bold denotes the best defense performance
(represented by Toxicity Score or ASR).

Comparison with Existing VLM Defenses. As shown in
Table 1, 2, 8, most VLM defenses struggle to consistently
safeguard the model against perturbation-based attacks with
different e. While most existing VLM defenses are based on
pre- or post-processing model inputs or outputs, our adap-
tive steering approach effectively steers the internal model
activations away from harmful contents, achieving state-of-
the-art performance across almost all cases.

Additionally, we report the average inference time per to-
ken for each VLM defense baseline in Table 4. We empha-
size two key benefits that lead to high efficiency: (1) AS-
TRA does not need to re-train or fine-tune the model, and
the process of constructing steering vectors (Section 3.1) is
cheap and straightforward. In contrast, input preprocessing-
based method [37] needs to denoise each input image us-
ing the Diffusion model and adversarial training [25] needs
to update the entire model, both are quite costly compared
to our approach. (2) ASTRA does not affect inference
time when deploying the defense - the steering step in Sec-
tion 3.2 has almost negligible cost. As shown in Table 4,
ASTRA are faster than those methods requiring multiple in-
ference passes (e.g., JailGuard [58] and ECSO [18]). While
JailGuard [58] can defend against perturbation-based at-
tacks effectively, it requires generating nine responses to
deploy the defense and can be highly costly. While self-
reminder [54] does not impact inference time, it fails to pro-
tect VLMs against perturbation-based attacks in most cases.
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Table 5. Transferability in OOD scenarios. We evaluate the transferability of steering vectors derived from the Jailbreak adversarial images

. _ 16
with € = 955

5=+ and choose the same « tuned on the Jailbreak validation set. The transferability is evaluated across multiple unseen attack

categories: structured-based attack from MM-SafetyBench [29], perturbation-based attack with various PGD variants, and text-only attack.

We use the classifier from HarmBench [35] to compute the ASR.

|  Structured-based Attack |

Perturbation-based Attack ‘ Text-only Attack

PGD [34]

Auto-PGD [11] MI-FGSM [14]

3
SD SD.TYPO  TYPO e=16/255 €=32/255 €=16/255 €=232/255 €=16/255 €=32/255 ‘ GCG 03]
MiniGPT-4
w/o defense 13.75 43.25 43.75 70.91 78.18 74.55 76.36 78.18 79.09 58.18
ASTRA (Ours) 3.75 8.75 11.25 5.45 12.73 5.45 1091 16.37 13.64 9.09
Qwen2-VL
w/o defense 20.00 61.25 38.75 74.55 80.00 76.37 71.57 80.00 78.18 81.82
ASTRA (Ours) 11.25 40.00 33.75 21.82 14.55 15.76 15.76 18.18 18.18 3091
LLaVA-v1.5
w/o defense 18.75 55.00 22.50 69.09 74.55 80.60 90.30 87.28 89.09 92.73
ASTRA (Ours)  8.75 25.00 6.25 1.82 1.82 1.21 0.61 0.00 0.00 14.55

Overall, these empirical results validate both the effective-
ness and efficiency of our framework in defending against
VLM perturbation-based attacks.

Comparison with LLM Steering. Our results in Ta-
ble 1, 2, 8 indicate that directly adapting steering techniques
from LLMs to VLM defenses is ineffective. While steering
vectors infused with refusal semantics can shift output dis-
tribution toward refusal and lower harmful response rates,
this approach has a critical drawback: it indiscriminately
increases refusal rates across all inputs, which diminishes
model utility [1]. Furthermore, our experiments reveal that
steering with textual jailbreak templates is insufficient to
counteract perturbation-based attacks on images, suggest-
ing that textual and visual jailbreaks exploit different mech-
anisms to circumvent VLM safeguards. These findings em-
phasize the importance of developing VLM defenses that
operate at the visual representation level.

Adaptive Attack. Adaptive attack [49] is a critical evalua-
tion procedure for assessing defense effectiveness when the
defense mechanism is known to the attacker. In this setup,
we assume the attacker can access the model parameters,
steering vector v, the calibration activation h%, and steer-
ing coefficient «, and employs the PGD attack to gener-
ate 30 adversarial images specifically targeting the defended
model. As shown in Table 3, ASTRA continues to provide
robust protection for the VLM in most cases. These find-
ings emphasize the potential of our method as a practical
and resilient defense mechanism in real-world applications.

Transferability. In real-world scenario, unknown types of
adversarial attacks highlight the need for a robust and trans-
ferable defense framework. To evaluate transferability of
ASTRA, we construct two test cases: in-distribution (ID)
and out-of-distribution (OOD).

In ID scenario, adversarial images used for steering vec-
tor construction and test evaluations are drawn from same
classes in ImageNet [13], ensuring similar image distribu-
tions. We assess whether steering vectors derived from ad-

versarial images with a specific € value can defend against
adversarial images with varying e levels. As illustrated
in Fig. 3 and 6, the results demonstrate the effective-
ness of our steering vectors defending against adversar-
ial attacks with different e values. We also report the
Avg. performance, in which we take the mean of steer-
ing vectors derived from adversarial images with e values
in {%, %, %, unconstrained}. Despite that the defense
with € = unconstrained does not work quite well against
perturbation-based attacks with ¢ = {55, 2% 5L} re-
maining defense validate the transferability of ASTRA
across PGD attacks with different intensities.

In OOD scenario, we test whether steering vectors derived
from the Jailbreak adversarial images with € = % can gen-
eralize to different types of attacks. Specially, we evalu-
ate the defense transability on structured-based attack from
MM-SafetyBench [29], perturbation-based attack with sev-
eral PGD variants, and text-only attack. Please refer Ap-
pendix 8.1 for details of structured-based attack. For the
perturbation-based attack, we collect 12 images with dis-
tributions differing from images used for steering vector
construction (e.g., stripes, sketch, painting, etc). We use
55 instruction-response pairs from JailbreakBench [7] to
conduct perturbation-based attacks with PGD variants (i.e,
PGD, MI-FGSM [14], and Auto-PGD [11]) and text-only
attack (i.e., GCG [63]). We use the same 55 instructions
from JailbreakBench [7] to evaluate performance.

Results in Table 5 confirm the defense transferability across
different unseen attacks, indicating great potential for real-
world deployment. This impressive OOD transferability
may arise from the steering vectors encapsulating a com-
mon harmful feature direction that persists regardless of
how the harmful behavior is triggered. Although models
can be jailbroken by different types of attacks, eventually,
there exists a certain direction in the feature space that rep-
resents the harmfulness. By accurately steering away from
this direction, we can effectively safeguard models against
diverse types of jailbreaks.
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Table 6. Utility performance in benign and adversarial scenarios. “Direct” denotes the performance of original VLMs. Bold=better.

| Benign Scenarios — Utility Score 1 |

Adversarial Scenarios — Perplexity |

MM-Vet [57] MMBench [32] XSTest [45] Toxicity (Perturbation-based)  Jailbreak (Perturbation-based) Jailbreak (Structured-based)
Direct ASTRA | Direct ASTRA | Direct ASTRA | Direct ASTRA | Direct ASTRA | Direct ASTRA |
MiniGPT-4 | 19.40  20.62 | 3590 3582 87.60  87.60 51.42 10.14 3.95 5.82 2.62 4.29
LLaVA-vl.5 | 32.62  30.55 7294 7323 | 98.00 98.80 63.68 59.28 3.68 8.59 3.82 4.61
Qwen2-VL | 49.13  48.66 | 78.00  78.69 | 73.60  74.00 | 140.44 40.14 6.80 8.86 30.00 30.92

Table 7. Ablation study of adaptive steering on Qwen2-VL. “Random Noise” means steering with Gaussian noise, “Entire Img” refers to
steering with the entire image activation, “Img Attr” represents steering using the image attribution activation, and “Calibration Activation”
indicates whether the calibration activation is incorporated into the projection term.

Steering with

‘ Toxicity (Perturbation-based Attack) — Toxicity Score (%) | ‘

Jailbreak (Perturbation-based Attack) — ASR (%) |

Steering Vector (/:iltli}ﬁlttifr? e=16/255 €=232/255 €=064/255 unconstrained | ¢ =16/255 €=32/255 ¢ =64/255 unconstrained
Random Noise v 44.10 53.80 61.09 55.10 64.55 67.27 69.09 76.36
Entire Img X 42.60 44.40 49.61 29.53 60.91 44.55 63.64 75.45
Img Attr X 40.49 41.80 33.90 10.50 50.00 24.55 51.82 7273
Entire Img v 37.70 35.28 21.59 5.24 46.82 47.28 42.73 22.73
Img Attr (Ours) v 15.52 5.45 2.39 0.07 6.06 5.00 18.18 15.45

4.3. General Utility (RQ2)

In Section 4.2, our framework demonstrates its effective-
ness in defending against VLM jailbreaks. Furthermore, we
need to ensure that our defended model retains utility per-
formance in benign scenarios and generates valid responses
in adversarial scenarios.

Utility Performance. We calculate utility scores in MM-
Vet [57], MMBench [32], and safe instructions from
XSTest [45] for benign scenario evaluation and perplex-
ity for adversarial scenario evaluation. See Appendix 8.1
for detailed descriptions of utility scores. As shown in Ta-
ble 6, our defended models demonstrate considerable utility
performance in benign scenarios compared to those with-
out defenses. These comparisons demonstrate that our de-
fense results in little performance drops on benign inputs.
We owe these results to our adaptive steering approach,
which mitigates utility degradation by computing the pro-
jection between the language model’s calibrated activation
and steering vectors, thereby avoiding the drawbacks of a
fixed steering coefficient. In adversarial contexts, the per-
plexities of ASTRA are still within a reasonable range, indi-
cating that our defended models consistently provide valid,
non-harmful responses to harmful instructions. Additional
cases are provided in Appendix 8.4.

4.4. Ablation Study (RQ3)

Adaptive Steering. We demonstrate the roles of calibration
activation and image attribution in our adaptive steering op-
eration using Qwen2-VL. As shown in table 7, both designs
significantly influence defense performance. Specifically,
after calibration activation, the projection term can more
accurately reflect the spatial relationship between steering
vectors and activations within the feature space, leading to
a consistent defense effectiveness in both Toxicity and Jail-
break setups. Furthermore, we compare the performance of

steering vectors derived from the image attribution activa-
tion versus those derived from the entire image activation.
Steering vectors from the entire image are constructed by
averaging a! (X, Xiemplate) — @' (X", Xiemplate) across the
set of 16 adversarial images for vector construction, where
X, is the adversarial image, Xiemplae 18 the chat template,
and x3™" is an empty image. The results demonstrate the
importance of our image attribution procedure. By narrow-
ing down to certain visual tokens strongly associated with
the jailbreak behavior, our image attribution better isolates
jailbreak-related information. We also conducted experi-
ments using random noise vectors to assess the potential
influence of noise on our framework. These results sug-
gest that steering with image attribution activations offers
superior performance compared to steering with entire im-
age activations or random noise, providing a more targeted
and effective defense mechanism.

Please refer to Appendix 8.5 for more ablation studies on
steering coefficient o, number of adversarial images used
for steering vector construction, and steering layer selec-
tion.

5. Conclusion

In this paper, we propose ASTRA, an efficient and effec-
tive defense framework by adaptively steering models away
from adversarial feature directions to resist VLM attacks.
Our key procedures involve finding transferable steering
vectors representing the direction of harmful response via
image attribution and applying adaptive activation steering
to remove these directions at inference time. Extensive
experiments across multiple models and baselines demon-
strate our state-of-the-art performance and high efficiency.
We hope our work will inspire future research on applying
more sophisticated steering for LLM/VLM safety.
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