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Abstract

Deep learning models are widely used in decision-making
and recommendation systems, where they typically rely on
the assumption of a static data distribution between train-
ing and deployment. However, real-world deployment envi-
ronments often violate this assumption. Users who receive
negative outcomes may adapt their features to meet model
criteria, i.e., recourse action. These adaptive behaviors cre-
ate shifts in the data distribution and when models are re-
trained on this shifted data, a feedback loop emerges: user
behavior influences the model, and the updated model in turn
reshapes future user behavior. Despite its importance, this
bidirectional interaction between users and models has re-
ceived limited attention. In this work, we develop a general
framework to model user strategic behaviors and their inter-
actions with decision-making systems under resource con-
straints and competitive dynamics. Both the theoretical and
empirical analyses show that user recourse behavior tends to
push logistic and MLP models toward increasingly higher de-
cision standards, resulting in higher recourse costs and less
reliable recourse actions over time. To mitigate these chal-
lenges, we propose two methods—Fair-top-k and Dynamic
Continual Learning (DCL)—which significantly reduce re-
course cost and improve model robustness. Our findings draw
connections to economic theories, highlighting how algorith-
mic decision-making can unintentionally reinforce a higher
standard and generate endogenous barriers to entry.

Code — https://github.com/asai-lab/Understanding-
Endogenous-Data-Drift-in- Adaptive-Models-with-
Recourse-Seeking-Users.git

1 Introduction

Deep learning has emerged as a fundamental tool in
decision-making and recommendation systems, typically
structured into two main phases: fraining and predic-
tion (Zhang et al. 2019). In a standard binary classifica-
tion scenario, during the training phase, the model captures
patterns from historical data. In the prediction phase, the
trained model is deployed within a real-time system—such
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as YouTube’s recommendation engine or e-commerce plat-
forms—to drive decisions or recommendations (Qin et al.
2020; Kirdemir et al. 2021; Zhou 2020; Shankar et al. 2017).

This paradigm relies on the assumption that the data dis-
tribution remains unchanged post-deployment. However, in
practice, deployed systems often influence the data they con-
sume. For example, users receiving unfavorable outcomes
(e.g., rejection) may engage in recourse actions: modify-
ing their attributes to better align with the model’s crite-
ria, typically at minimal cost (Karimi et al. 2022; O’Brien
and Kim 2021; Nguyen, Bui, and Nguyen 2023; Poyiadzi
et al. 2020; Yadav, Hase, and Bansal 2022; Venkatasubra-
manian and Alfano 2020). A prominent example of this phe-
nomenon is the proliferation of websites and articles that of-
fer strategies to “beat” an algorithm, teaching users how to
exploit their mechanics on recommendation systems such as
Google, YouTube, Facebook, and so on (MacDonald 2023;
Klug et al. 2021).

However, recourse actions tend to be strategically nar-
row rather than diverse, for two main reasons. First, avail-
able “slots”—such as job positions, loan approvals, or top-
ranked recommendation slots—are inherently limited and
highly competitive, forcing users to tailor their efforts to-
ward aligning with the system’s criteria rather than ex-
ploring varied improvement paths. (Herlocker et al. 2004;
Hennig-Thurau, Marchand, and Marx 2012). Second, users
tend to focus on modifying low-cost, high-impact features.
For example, optimizing for engagement metrics like clicks
and likes because such changes offer relatively high returns
with minimal effort, rather than investing in more substan-
tive improvements (Chen, Wang, and Liu 2023; Estornell
et al. 2023). Although these behaviors may not be explic-
itly dishonest or rule-breaking, they can nevertheless gen-
erate unintended and potentially harmful distortions in the
data. Indeed, studies have shown that social media recom-
mendation systems can amplify polarization and emotion-
ally charged content, further undermining the assumption of
a static data distribution post-deployment (Chitra and Musco
2020; Chen, Wang, and Liu 2023).

While some research addresses the influence of user re-
course behavior and data drift in deployed models (Hardt
and Mendler-Diinner 2025; Altmeyer et al. 2023), few works
explore how such recourse influences model evolution when



the system adapts to new data. Our assumption is that it
would amplify the deviated direction and becomes a vi-
cious circle, creating a feedback loop: behaviors adapt to the
model, the model retrains on these behaviors, thus reinforc-
ing the skew. As an example in video recommendation, Yu-
val Noah Harari (Harari 2024) explains that videos with ex-
tremist content tend to drive higher user engagement. Thus,
a recommendation system designed to maximize user reten-
tion may encourage and promote such content in the end.
Empirical evidence supports this claim. A systematic review
shows that 21 out of 23 recent studies implicated YouTube’s
recommendation system in promoting problematic content
pathways (Yesilada and Lewandowsky 2022). These find-
ings underscore the bidirectional influence between user be-
havior and model updates.

In this work, we investigate the interaction between sys-
tem deployment and user recourse behavior, and how this
dynamic affects both model updates and user features over
time—referred to as model shift and data shift (Hardt et al.
2015). This interaction is inherently bidirectional: the de-
ployed model influences users’ recourse actions, leading to
changes in the data distribution (data drift), and in turn, this
data drift causes the model to update (model shift), complet-
ing a feedback loop. To the best of our knowledge, this is
the first work to discuss the interaction in the long run. Two
prior studies are most relevant to our setting. One focuses on
the resource competition between recourse users when cal-
culating the recourse actions (Fonseca et al. 2023). The other
explores recourse algorithms and conditions that make the
model shift but does not investigate the bidirectional long-
term effects and properties triggered by the interactions be-
tween the system and users (Altmeyer et al. 2023).

To address this gap, we develop a framework that explic-
itly models the full interaction loop: model deployment —
user response (i.e., recourse actions) — model update. A
key observation in this setting is that the system operates
under limited resources and cannot accommodate all users,
even when many improve their features. As a result, the sys-
tem must update its decision criteria based on the new, com-
petitive data distribution. Our study focuses on two central
questions:

1. Under limited resources, how do recourse users influence
the system and drive long-term model updates?

2. When model updates are driven by recourse users, how
do these changes affect future users and their recourse
behavior over time?

Our Contributions: We examine the iterative dynamics
between user recourse behavior and model updates. Our key
findings are summarized as follows:

1. We provide a theoretical analysis showing that logistic

models tend to evolve toward a higher decision standard

over time. This trend is further supported by simulation

results across a range of settings.

We show that a higher decision standard leads to in-

creased recourse costs and results in less reliable, more

failure-prone recourse actions.

3. To address these challenges, we propose two
strategies—Fair-top-k and Dynamic Continual Learning
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(DCL)—which effectively mitigate the identified issues
and enhance model robustness.

Notably, the first two findings can be related to mul-
tiple economic principles. For instance, competitive en-
vironments often push systems toward producing higher-
quality or higher-standard outcomes—analogous to the
model adopting a stricter decision boundary in our set-
ting (Bikker and Haaf 2002; Ezrachi and Stucke 2015). Fur-
thermore, such dynamics can generate endogenous barri-
ers to entry, making it more difficult for new or less ad-
vantaged users to succeed (McAfee, Mialon, and Williams
2004; Pehrsson 2009). This directly relates to our second
finding: as the model standard rises, recourse actions be-
come increasingly costly and are more likely to fail over
time.

Lastly, our proposed methods show strong empirical re-
sults. Fair-top-k and DCL significantly alleviate the higher
standard issue, improving performance by approximately
50% across all rounds. Recourse costs are reduced by around
70%, and balanced accuracy remains stable, reaching ap-
proximately 90% in the long run—demonstrating improved
robustness compared with other methods.

Experiment: Figure 1 shows the experimental results with
a binary logistic model. The experimental setup is described
in Section 6. Simulations show that the model classifies ac-
cepted and rejected data points around half and half during
the first few rounds. However, as the number of rounds in-
creases, the decision boundary shifts to a higher standard
and rejects majority of users who do not execute recourse
actions.

2 Related Work

Algorithmic recourse offers interpretable and actionable
guidance to help individuals alter model outcomes, en-
hancing transparency and accountability in machine learn-
ing (Gunning et al. 2019; Arrieta et al. 2020; Guidotti et al.
2018). In high-stakes domains, such as finance (Barocas,
Hardt, and Narayanan 2017), healthcare (Bastani, Kim, and
Bastani 2018; Bertossi 2020; Liang et al. 2014), and ed-
ucation (Fiok et al. 2022; Khosravi et al. 2022), recourse
mechanisms help individuals understand the reasoning be-
hind model predictions and identify feasible improvement
steps.

Most algorithmic recourse methods are designed for one-
hop decisions, using gradient-based optimization to identify
minimal input changes that flip the model decision (Shao
and Kersting 2022). FACE uses shortest-path methods with
density-based metrics (Poyiadzi et al. 2020), while GDPR
emphasizes user-centric explanations that support legal and
ethical accountability (Wachter, Mittelstadt, and Russell
2017).

In a real-world setting, users adapt their behavior in re-
sponse to model suggestions, influencing future model in-
puts. Over time, such feedback-driven adaptation can lead to
distributional changes. These observations motivate the in-
tegration of continual learning into recourse-aware systems,
enabling models to adjust dynamically to users’ changing
behaviors.
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Figure 1: The experiment of model evolution with algorithmic recourse, where the model is updated with the top-% labeling.
These figures show the test dataset, which is sampled from the original distribution and remains unchanged across all rounds.

2.1 Data Drift and Continual Learning

Even without the bi-directional effect on the model and re-
course users, it is naturally to have concept shift or data drift
when deploying the model over time. There are several work
address this issue for the algorithms generating recourse ac-
tions. Gao et al. proposed a generative algorithm to miti-
gate social segregation risks in large-scale algorithmic re-
course (Gao and Lakkaraju 2023). Gupta et al. addressed
fairness under data shift by equalizing actionable recourse
across demographic groups (Gupta et al. 2019). Other work
such as Rawal et al. (Rawal, Kamar, and Lakkaraju 2021),
Upadhyay et al. (Upadhyay, Joshi, and Lakkaraju 2021a),
and De Toni et al. (De Toni et al. 2025) address the relia-
bility of the recourse actions under the concept drifts over
time.

From the deployed model side, Continual learning (CL) is
particularly relevant for adapting to different distributional
dynamics because it allows models to learn from a stream of
tasks without catastrophic forgetting (Lopez-Paz and Ran-
zato 2017a; Zenke, Poole, and Ganguli 2017; Shi et al.
2024). Common strategies include regularization-based ap-
proaches (Kirkpatrick et al. 2017), replay-based methods
that store or generate past samples for rehearsal (Rolnick
et al. 2019; Rebuffi et al. 2017), and dynamic architecture
approaches that expand the model structure to accommodate
new tasks (Rusu et al. 2016; Yoon et al. 2018).

However, these approaches assume that task sequences
are externally defined and overlook evolving data distribu-
tions. In contrast, our setting is behavior-driven: data adapt
to model outputs, leading to feedback-driven distributional
changes, which blurs the boundary between continual learn-
ing and data shift.

2.2 Model Deployment with Recourse

Beyond distributional concerns, recent studies highlight the
need for robust algorithmic recourse under model shifts and
real-world deployment dynamics. Proposed approaches fo-
cus on ensuring recourse coverage, stability under distribu-
tional changes, and resilience to feedback loops that may de-
grade model performance over time (Bui et al. 2025; Upad-
hyay, Joshi, and Lakkaraju 2021b; Rawal et al. 2023). Other
work focus on the algorithms of generating recourse action,

1600

which tends to incentives users to perform truthful improve-
ment rather than deceiving the system (Chen, Wang, and Liu
2023; Estornell et al. 2023). Unlike designing new recourse
algorithms, some work observe and discuss the influence the
of recourse users to the deployed model such as increas-
ing classification errors (Fokkema, Garreau, and van Erven
2024) or affecting reliability and fairness over time (Bell,
Fonseca, and Stoyanovich 2024). Altmeyer et al. examined
evolving models and data shifts in the recourse setting and
proposed mitigation strategies (Altmeyer et al. 2023).

To our knowledge, none of these works investigates the
long-term bidirectional effects and properties triggered by
the interactions between the system and users. Our proposed
research builds on these simulation-based studies and ex-
tends them to explore their long-term impacts on both users
and systems. We design strategies to mitigate these effects,
and foster positive feedback loops benefiting both sides.

3 Framework

We discuss the decision-making scenario with a set of users
and a binary classification model in multiple rounds. Each
user is a data point with d features and the model is a score
function between 0 and 1 (0 means “rejected” and 1 means
“accepted”). In round ¢, a dataset Dt with size N is sam-
pled from a distribution Py,,, which is a mixed distribution
between D! and D (i.e., the original distribution). Then,
D! is modified to D" in which some of the rejected users
in D perform recourse actions to modify their features and
improve their scores in hf, hoping to flip the results. The
system receives the (responded) data set D’ * and labeled it
based on the scores of h' and the constrained resource k.
Lastly, the model is updated to h!*! based on D’ " with the
labels. The procedure of round ¢ is shown in the following.

1. Sample the dataset:
Dt = {a® 2@ (MY,
2. Randomly select rejected users and perform recourse
action:

Randomly select a subset of rejected users S C D? and
Vz € S, ht(z) < 0.5. Modify the features of each user =
using recourse function r. The modified set S’ is:

S ={r(z) |z €S}

with 29 ~ Py



The updated dataset D'" is:
D' = (D'\S)US.

3. Determine new labels for D’* with resource k: For
each user 2 € D', the label is determined by the labeling
function f, which converts the predicted score h!(z) into
a value in [0, 1] with the hard constraint that the number
of accepted samples in D’ " is at most k. That is, for each
ze D", foh!(x) € [0,1] and

S Affoht(x) =1 <k

z€eD’t

4. Update the model: Use the modified dataset D’ K and the
new binary labels {y(V}, where (") = f o h*(2(?), to
update the model by minimizing the loss function L:

t+1 i (ONIHO)
h arg min (% L(h(z"),y'").
z()eD’t

This iterative process allows us to explore how recourse
actions influence the system dynamics, user behavior, and
the evolution of the recommendation model over time. We
are specifically interested in Step 2, 3, 4, which we sequen-
tially denoted by User Response phase, Labeling phase, and
Model Update phase.

3.1 User Response Phase

The user response function 7 on model A’ can be understood
via the recourse action analysis (Verma et al. 2020; Upad-
hyay, Joshi, and Lakkaraju 2021b). The recourse action x’
for a user with features x is determined by solving the fol-
lowing optimization problem:

x = arg min c(z, 2",

st hi(2') =1,

where c(x,x’) represents the cost function associated with
the action. However, this equation is generally challenging
to solve due to the presence of a hard constraint. To ad-
dress this, most approaches reformulate the problem by La-
grangian relaxation:

¢’ = argmin ((h*(2'),1) + Ae(z,2'), (1)
x

where £ : [0, 1] x [0,1] — R is a differentiable loss function
(e.g., binary cross-entropy), ensuring that the gap between
ht(z") and the favorable outcome 1 is minimized. The pa-
rameter A > 0 acts as a trade-off between minimizing the
loss and the cost of the recourse action. In this framework,
the quality of recourse can be controlled by replacing the fa-
vorable outcome 1 with some constant p less than 1. Usually,
p should be larger than 0.5 to ensure the recourse feature z’
can be at least accepted in h'. For example, one typical set-
ting is to consider the Lo distance with constant coefficients
(i.e., c is a vector with all positive values).

¢’ = argmin £(h*(z"),1) + )\Zci(wg —z)%+co (2
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3.2 Labeling Phase

Given the constrained resource k and predicted score h(x), a
classical policy is to apply the top-k function (Fonseca et al.
2023). In this case, the function f sets the largest k values of
h(x) to 1 and the rest to 0:

1 if h(x) is among the top k values

y=fon) =

0 otherwise

3.3 Model Update Phase

Here we consider two settings, a typical setting and con-
tinual learning setting. Both settings use ADAM (Kingma
2014) as the optimizer, where the typical setting uses the
cross-entropy loss. The continual learning uses its specific
loss function mentioned in Section 5.2.

4 Analysis on Logistic Model Evolution

We investigate the influence of recourse users on model evo-
lution. Specifically, we aim to understand how recourse ac-
tions contribute to the internal momentum that shapes the
direction of model updates over time. Our analysis focuses
on the logistic regression model, which serves as a funda-
mental building block for understanding more complex deep
learning architectures.

Definition 1 (Resource saturation). Follow the framework
in Section 3, the system is said to reach resource saturation
at round t if the accepted users in D' is exactly k.

In the subsequent analysis, we assume that the system re-
mains fully saturated at all time steps.

Definition 2 (Higher standard). Given two binary classifiers
h,h' and a data distribution D, we say that model h has a
higher standard than model h' if and only if:

Eyp[h(z)] < Epoplh (2)]-

Theorem 1 (Higher Standard Provides Higher Accuracy).
Let D, h be a dataset and the logistic model respectively at
round t. For the responded dataset D', there exists a model
I that has a higher standard than h and achieves higher ac-
curacy on D' if and only if there exists at least one recourse
user, newly labeled as positive (i.e., class 1), whose score
ranks within the top-k in D’.

The proof is provided in the Appendix. In summary, if
a recourse user enters the top-k ranked scores in D’, the
score threshold corresponding to the k-th user in D’ is higher
than that in the original dataset D. As a result, the deci-
sion boundary of h can be shifted to this higher threshold,
thereby rejecting all users in D’ with scores below the kth
ranked user. This effectively increases the model’s standard
(i.e., makes it stricter) and results in improved classification
accuracy over D',

While Theorem 1 illustrates that pursuing higher accu-
racy may lead to a more strict decision standard, accuracy is
not the typical optimization objective in most learning set-
tings. Therefore, we turn our attention to cross-entropy loss
(CE loss), the standard objective in logistic regression, and
examine how recourse behavior influences model evolution
under this loss.



Lemma 1 (Recourse action). Given a logistic model h and
a Lo cost function c (Equation 2), the recourse action taken
by a user on feature i is proportional to %’ where w; and
c; denote the weights associated with feature i in the model

and the cost function, respectively.

Proof. Denote h(z) 1/(1 4 e~(wa+b)) Referring to
Equation 2, the cost of action a on recourse function r is
in the following.

r(a) = —(logh(z +a)) + A Z cia? + cp.
Since r is convex, we can calculate the optimal action a via
the partial derivative is zero at any dimension i. That is,

or

0 a; B
This implies

—w;(1 — h(x + a)) + 2a;c,A = 0.

_1-h(x+a) wi
B 2)

Q;
C;

O

Lemma 1 illustrates that recourse actions are biased in
proportion to % Based on this insight, our first observation
is that model updates driven by failed recourse users tend to
result in a new model A’ with a higher standard under the
cross-entropy loss. This is formally stated in Proposition 1.

Proposition 1 (Failed Recourse Actions Drive Higher Stan-
dards). Under the cross-entropy loss, let D be a dataset and
h be the logistic model trained on D. If a user x performs
a recourse action resulting in &, but is still assigned label 0
in the updated dataset D', then the resulting model h' will
have a higher standard than h.

Proof. Since Log(h(z),y) is convex, the partial gradient of
it is zero among all dimensions over D. That is, Vi € [1,d]

reD awi
which gives

7 wilh(@) = 1)+ Y wi(h(z))

reD+ zeD~

=0, 3)

where DT, D~ denote the set of users with label 1 and 0,
respectively. Assume w;,z; > 0. In Equation 3, the first
term contributes the negative gradient and the second term
contributes the positive one, denoted by 7—[3 ns Hp,j, TESpEC-
tively. One can think the value of w; is changed in order to
balance the two terms, i.e., sum to zero.

Denote the recourse user before and after the recourse ac-
tion as x and Z. Notice that both x and % belong to D~, D'~
but £ has a higher score and feature value in dimension ¢
(via Lemma 1). Thus, the value of HE),’h is higher. Now,
consider the situation that the updated model &’ is found via
gradient descent starting from the parameters of h. The di-
rection of changes in w; is to balance HE,A ns Hps p,- Since
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x; is unchangeable, the adjustment only affects the output
score of . That is, after A’ fits to D’, we have

S whle) - 1) > 3wt (@) - 1)

zeD+ zeD'+

and

Z z;(h(z)) < Z z;(h (x)).

rzeD~ zeD’'—

The above inequalities show that the updated model i’ pro-
vides lower score than h. O

On the other hand, if the resource is shortened, even if
there is no recourse action, the updated model i’ also leads
to a higher standard.

Proposition 2 (Limiting Resource Drives Higher Standard).
Under the cross-entropy loss, let D, h be the dataset and the
logistic model fit to D. If a user x labeled as 1 in D but 0 in
D' due to the limited resource, it drives the updated model
I into a higher standard.

One can prove Proposition 2 by a similar analysis in
Proposition 1, which we skip here.

However, the system becomes complicated when some re-
course users replacing the non-recourse users via top-k pol-
icy. To see that, denote by u the user labeled as 1 in D and
replaced by some recourse user Z via top-k policy. With a
similar analysis with partial derivative on ¢, we have

Hp, ), = Hpj, — zih(z) + uih(u),

and

Hp = Hp jy + @i(A(&) = 1) — ui(h(u) = 1).
Reorganizing,

Hp o+ Hp oy = wi — wih(x) — & + #:h(2).

Denote the above term by F'(z;, Z;, h(x), h(Z),u;). The

positivity of F' subject to the following constraints.
0<x; <@y
h(z) < h(z)
0<h(z)<.5
S5 <h(u)<1
S5<h(@) <1

Subject to:

Due to the complexity of £, which involves 5 variables and
product of variables, we explicit list some conditions that
make F' positive or negative.

>0, u; > (1—a)d;
>0, x;<wu; <d;and & >
F (2 Ai7h ah’ L s Ug ) Ti
(wis @i, h(z), h(Z), ws) <0, w;<zjand P <
<0, w< 3w,
A “4)
where o = h(2) — h(x), 8 = }:Zgg

Generally, we observe three key patterns. First, if the re-
placed user has a significantly higher feature value (i.e.,



u; > x;), the resulting model A’ tends to adopt a higher stan-
dard; conversely, if the value is much lower (e.g., u; < %xi),
the standard tends to drop. Second, the greater the score im-
provement from the recourse action, the more likely 4’ is to
shift towards a higher standard. Third, when the change in
the feature value z; is disproportionately large compared to
the resulting score change—indicated by a high 8 value—h’
tends to adopt a higher standard. The second and third ob-
servations suggest that intense and biased recourse behavior
can drive the model toward a more strict decision threshold.

5 Methods Toward Robust Model Evolution

Section 5.1 and Section 5.2 are our two proposed methods
to address the issue of standard shifting.

5.1 Fair Top-k Policy

To address the issue of standard shifting, the intuition is to
select a set of users that are “diverse” from each other. That
is, if a set of points with high scores is similar to each other,
we would decrease the chance of selecting all of them as
accepted points. To do so, we use kernel density estimation
(KDE) to assess the density of similar data points, which
provides a measure of local crowdedness. Next, we gen-
erate a biased weight vector v by combining each kernel
density score inverse with kg;, where x is a dimensionless
weighting factor that balances the contribution of ¢;. Using
this weighted distribution, we randomly select k£ data points
from those where f(¢;) = 1. The remaining unselected data
points are assigned y; = 0, indicating rejection.

v = KDE ™ () + K 6)

However, after the labeling phase, the accepted and rejected
data become mixed due to random selection, which can neg-
atively impact model training. To mitigate this issue, we re-
move some negative data points from the training set if they
satisfy h(z;) > 0.5.

5.2 Continual Learning and DCL

To prevent model from drastic shifting, we use continual
learning as a method to memorize past distributions. Specif-
ically, we adapt Synaptic Intelligence (SI) (Zenke, Poole,
and Ganguli 2017), a classical continual learning method to
achieve our goal. The original SI is a regularization-based
continual learning method, with loss regularization defined
as follows:

Lo=Li+7Y Qh(0k — 04) (6)
k

o= Yk 7

* ;mzwe @

In equation (6) , 7 is a dimensionless scaling factor that reg-
ulates the contribution of the previous task’s weight. 0}, rep-
resents each individual parameter of the current parameter
set and 6, = 0 (t — 1). Qt is the per-parameter regulariza-
tion strength. In equation (7) ,w} is the per-parameter loss
in each task while A} = 6 (u) — 05 (u — 1). € is a small
value to prevent zero-division.
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In our scenario, we are not interested in the loss among
all past distributions but only a few past-rounds. To focus on
short-term tasks rather than all tasks before task ¢, we mod-
ify the function 2}, by introducing a learning range  and a
dimensionless weight constant w,,. The weight w,, follows
a cubic distribution, assigning greater importance to tasks

closer to ¢.
t—1

> v
st Wu (A¥)?2 + e
The previous continual learning setting set constant value 7
among all rounds, which is not flexible when facing different
data distributions. To address this, we introduce Dynamic
Continual Learning (DCL) by modifying 7 to

QL — @®)

o T
"~ JSD;_4

Here we use the Jensen-Shannon Divergence (JSD) €
[0,1] (Lin 1991) as an evaluation metric to measure the dis-
tance between the positive and negative data distributions.
It allows the strength of past tasks to be adjusted based on
the previous round’s level of chaos. Hence, if the last task is
nearly collapsed, JSD;_; decreases, leading to an increase
in 7;. This prevents the model from aggressively learning
new patterns that could introduce further instability into the
model.

9
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6 Experiments and Observations

The experiments aim to simulate a virtual scenario where
the decision model that incorporates a recourse function over
the long term, starting with training on a fixed distribution of
data points. Our experimental setup follows the framework
introduced in Section 3. We use classical two-layers MLP
and logistic regression as the decision models on three dif-
ferent datasets. The resource constraint k is set to % The
labeling phase includes Top-k and our proposed method:
Fair-top-£. In the model update phase, we use ADAM with
Binary Cross Entropy (BCE) loss, continual learning loss,
and dynamic continual learning (DCL) loss we described in
Section 5.2. Both The constant 7 used is 10~° in DCL and
typical continual learning. The hyperparameter « for Fair-
top-k is set as 1074,

We use both synthetic and two real-world data to simu-
late our virtual environment. The synthetic dataset is gen-
erated in R2°, with 17 dimensions that are all actionable
(mutable). UCI defaultCredit dataset (Yeh and Lien 2009)
is related to customers’ default payments and has 23 fea-
tures with 19 of them are actionable. In Credit dataset we
referred the work from Ustun et al. (Ustun, Spangher, and
Liu 2019) and set 11 actionable features.

During the recourse phase, Equation 1 is used to gen-
erate the recourse action. The cost function is calculated
among all mutable features. Denote x =< z1,-- , 24 >
and 2’ =< af,--- x>

D

i,5€mutable

2
cla',x) = ci (zh — ;)" + co-

We set ¢g to 0 so there is no cost if no action is taken. In
real-world datasets, the weights {¢;} are set to reflect the



real-world scenarios. In the synthetic dataset, we try differ-
ent weight distributions including uniform, inverse gamma
distribution, and logarithm distribution.

6.1 Metrics

We use several metrics to evaluate the model stability, model
robustness, and recourse fairness of the interaction between
system and users.

Short-Term Balanced Accuracy We adapt the concept of
Average Accuracy (AA) (Chaudhry et al. 2018; Lopez-Paz
and Ranzato 2017b) and modify it to the evaluation focuses
on recent performance. Let a; ; € [0, 1] represent the clas-
sification accuracy of the j-th round task on the ¢-th round

model.
1 t
AAt = ; z; atﬂj
Jj=

Given that data will become imbalanced over rounds, neg-
atively impacting prediction accuracy, we replace a; ; with
balanced accuracy b; ; (Brodersen et al. 2010). Balanced ac-
curacy is calculated as the average of recall and specificity,
making it a more suitable metric for imbalanced datasets.
Here, the balanced accuracy b; ; is defined as:

) 4_1( TP, TN, ;
“ T 92\TP,;+ FN;; TNy, +FPi;

(10)

) an

To capture the short-term focus, we introduce r to the
equation, defining the number of past rounds considered in
the calculation.

t—1
STBA = Y by; (12)

j=t—r
Additionally, we exclude the current round from the calcu-

lation to ensure an unbiased evaluation of the model’s true
performance, as the model is trained on the ¢-th task.

Higher Standard The details of this metric are explained
in Definition 2. Here, D represents the test dataset, and we
track the value of the expected output logit before the sig-
moid layer: E,p[h/(z)]. Notably, due to the sigmoid func-
tion’s asymptotic nature, its output is not ideal for observa-
tion (values become very close in each round). Therefore,
we analyze h'(x), the model output logit prior to the sig-
moid transformation. Furthermore, since the sigmoid func-
tion is monotonically increasing, this change does not affect
the inequality relationships among higher standard values.

Average Recourse Cost For each recourse user, their re-
course cost is Sl — @)+ co, as described in Equa-
tion 2. We set ¢y to O because there is no cost if no action
was taken. This metric calculates the average recourse cost
of each recourse user.

Fail to Recourse (FTR) Users care about the effective-
ness of their recourse actions. While ensuring stability, sys-
tem also needs to maintain fairness for recoursed users.
Hence, we introduce Fail to Recourse (FTR) to quantify the
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overall effectiveness of recourse action, regarding the sys-
tem. It calculates the proportion of recoursed data in round
t that fail to be classified as positive in ¢ 4+ 1 round. While
Fonseca et al. (Fonseca et al. 2023) proposed recourse reli-
ability (RR) as the proportion of recoursed data in round ¢
that classified as positive in t+ 1 round, we do it the opposite
way. R; denotes the subset of all recoursed data and N;4
denotes the subset of classification result which is negative
after t 4+ 1 round of training.

- |Rt N Nt+1|

FTR; = X
t

13)

Test-Acceptance Rate To quantify the increasing decision
boundary, we introduce the Test-Acceptance Rate (TAR) as
an indicator to observe the model’s classification standards.
Specifically, we examine the ratio of labels 1 and O at ¢-th
round in the test dataset, which reflects the original distribu-
tion of the test data, to understand how the model’s classifi-
cation criteria change. Here 7! denotes the data with label 1
and 70 denotes the data with label 0 in the test data.

|y

TAR: = 79

(14)

il

6.2 Top-k Labeling with Static Learning

Figure 2 shows the simulation result in the static learning
when the top-k policy is used in labeling phase and cross-
entropy loss is set in model update phase. The x-axis is the
number of rounds, and the y-axis is the value of the mea-
sured metric, which from left to right are Higher Standard,
Test Acceptance rate, and Short-term Balanced Accuracy.
Each row represents one of the datasets. We have three ob-
servations.

Higher Standard occurred. As illustrated in Figure 2,
the higher standard metric shows that the model outputs
lower score, leading to stricter acceptance criteria across the
three datasets, as evidenced by the decreasing test accep-
tance rates. The test acceptance rates across three datasets
are all close to zero after a few rounds, where the value
is generally greater than 0.5 in the initial distribution. The
highest value is around 0.25 after a few rounds, shown from
MLP model in synthetic dataset. This indicates that there
are less than 20% samples that will be accepted after several
rounds if they are from the initial distribution.

High recourse cost and a high failure rate are ob-
served in MLP models. Figure 3a presents the average re-
course cost for both the Logistic and MLP models. The MLP
model yields a higher recourse cost compared to the Logistic
model. The MLP model is more flexible to the new data dis-
tribution, so the model tends to shift more, therefore requir-
ing users to exert more effort to satisfy its criteria, leading to
higher recourse cost. Furthermore, the inherent flexibility of
MLP model can also introduce instability issues. According
to Figure 3b, the MLP model’s Fail to Recourse is markedly
higher than that of the logistic model. As indicated by the
higher standard metric in Figure 2, the drastic changes in the
MLP’s output logits underscore the model instability and the
difficulty in aligning recourse.
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Figure 2: Higher Standard, Test Acceptance Rate, and STBA on Logistic Regression Model and MLP across three datasets.
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cording to Figure 2, the Short-Term Balanced Accuracy is
notably low for the Credit dataset. This can be attributed to
the data distribution of Credit, where positive samples in the
Credit dataset are closer to the decision boundary. Conse-
quently, the test acceptance rate for positive instances drops
significantly, leading to only a few positive samples existing
in the test dataset. Therefore, the balanced accuracy calcula-
tion is heavily penalized if the classification of these positive
instances changes between rounds. This leads to a great fluc-
tuation on all Short-Term Balanced Accuracies.

The above observations are also consistent across varying
levels of recourse quality (from 0.7 to 1.0) and different ra-
tios of recourse users (from 0.2 to 0.7). While other factors
may also influence these patterns, due to space constraints,
we provide a summary in Table 1 and include the full ex-
perimental details in the Appendix. Overall, increasing the
recourse quality and the proportion of recourse users tends
to raise the decision standard and reduce the robustness of
the model’s predictions.
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Table 1: Effect of Different Settings on top-k£ Method.

6.3 Fair-top-%k, Continual Learning, and DCL

This subsection compares our proposed methods (Fair-
top-k and Dynamic continual learning) with the classical
method (Top-k with typical update) and the typical continual
learning(Top-k with continual learning update). The com-
parison shows similar trends across all three datasets, thus
we report the results on the Credit dataset and put the rest of
them in Appendix.

Figure 4 illustrates the comparison of five different strate-
gies: Fair-top-k labeling with a typical update (orange), Fair-
top-k labeling with a DCL update (red), Top-k labeling with
a DCL update (green), Top-k labeling with a typical update
(purple), and Top-k labeling with continual learning (blue).

Higher standard is eased among all settings. The
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Figure 4: Higher Standard, Test Acceptance Rate, and STBA on Logistic Regression Model and MLP on Credit data. The
outlier of Higher Standard on MLP with Top-k & CL method is -776.66, -132.24 at round 40, 41 and -360.13 at round 60.

Dataset Methods Average Recourse Cost Fail to Recourse Higher Standard
Logistic MLP Logistic MLP Logistic MLP
Top-k 0.60 £0.02 1.46 +£0.05 0.324+0.01 0.654+0.01 —7.64+0.16 —12.05+ 0.30
Top-k & CL 0.25£0.01 0.60=£0.03 0.33+0.01 0.70+0.01 —-833+£0.10 —4.50=+0.50
Synthetic Top-k & DCL 0.38 £0.01 0.55+0.02 0.33+0.01 0.544+0.01 —879+0.11 —11.28+0.43
Fair-top-k 0.19 £0.01 1.05+0.02 0.394+0.01 0.524+0.01 —5.05+0.09 047 +0.11
Fair-top-k & DCL 0.15 £ 0.00 0.61 +0.03 0.41+0.01 0.53+0.01 5.36+0.10 —0.46 £ 0.46
Top-k 0.984+0.02 1.24 +0.04 0.34+0.01 0.46+£0.01 —8984+0.19 —20.18 +0.49
Top-k & CL 0.58 £0.01 0.90£0.05 0.30 +0.01 0.61+0.02 —10.82+0.13 —27.41 +£8.51
Credit Top-k & DCL 0.56 £0.01 1.02+0.05 0.30 & 0.01 0.43 4+ 0.01 —10.90 +0.15 —19.16 + 0.96
Fair-top-k 0.48 £0.01 1.33+0.04 0.434+0.01 0.45+0.01 —-5.38+0.07 —12.74+0.25
Fair-top-k & DCL 0.42 + 0.01 0.26 +0.02 0.43 £0.01 0.47+0.01 —5.5140.08 —2.05+ 0.24
Top-k 0.75£0.02 1.22+0.03 0.31 +0.01 0.494+0.01 —7.21+0.18 —24.01 £+ 0.62
Top-k & CL 0.41+0.01 0.53+0.04 0.39+0.01 0.65+0.01 —7.084+0.10 —2.914+0.43
UClcredit Top-k & DCL 0.42+0.02 0.54+0.03 0.38+£0.01 0.61+0.01 —-7.16+0.10 —7.104+0.49
Fair-top-k 0.23+0.01 1.43+0.04 0.45+0.01 0.46 +0.01 —5.15+0.08 —5.13+0.23
Fair-top-k & DCL 0.18 £ 0.00 0.40 £+ 0.03 0.45+0.01 0.58 £0.01 —-5.224+0.08 1.10 & 0.19

Table 2: Average Recourse Cost, Fail to Recourse, and Higher Standard across three datasets on Logistic and MLP Models

Higher Standard metric across the five methods shows
that both Fair-top-k solutions (orange and red lines) main-
tain values that are approximately 50% better than other
methods, indicating a more stable and consistent standard
throughout the rounds. In contrast, the methods without the
fair-top-k policy (green, blue, and purple lines) exhibit a
drastic decrease in both models. Furthermore, the fair-top-
k solutions also achieve a higher Test Acceptance Rate, as
implied by the stable Higher Standard. Overall, Fair-top-%
labeling policy can ease the higher standard problem.

Recourse cost is significantly reduced and model ac-
curacy is enhanced. In Table 2, Fair-top-k & DCL consis-
tently show lower Average Recourse Cost than other meth-
ods. For example, the cost of our methods is generally 70%
or lower than top-k. This metric exhibits a strong correla-
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tion with the increase in the standard; higher standards corre-
spond to higher recourse costs. However, the cost-invalidity
trade-off (Guo et al. 2023) persists, as observed in both Fail
To Recourse and Average Recourse Cost. This means that
a higher cost typically corresponds to a lower Fail To Re-
course rate. Even within this trade-off, Fair-top-k & DCL
still achieve a significant cost reduction, while at most incur-
ring a 14% higher possibility of failing to recourse. On both
models, Fair-top-k policies (with and without DCL) achieve
a strong, stable and sustained short-term balanced accuracy
of approximately 90% in the long term. For the MLP model,
the top-k with typical update method achieves the best short-
term balanced accuracy in later rounds on the MLP model.
This is attributed to its model quickly shifting to a higher
standard early on, as seen in the test acceptance rate drop-



Situation Non-robust | Recourse | Recourse | Higher
Setting Model Cost | Fail Rate | Standard
Higher recourse
quality T + + T
More
recourse users T T T T
Larger k values J i + +
Inverse gamma 3 1 3 i
cost weights
Higher ratio of
original distri. T + - T
From logistics
to MLP T T T v

Table 3: Effect of Different Settings on Fair-top-k Method.

ping to about 0 before 20 rounds, which then stabilized with
minimal changes in later rounds.

Continual learning reduces the recourse cost. As
shown in Table 2, methods employing a continual learning
approach always achieve a lower cost compared to those us-
ing the same labeling policy without it. This advantage stems
from continual learning’s ability to retain knowledge from
past models, ensuring the recourse actions remain stable and
relevant over time.

Our proposed methods provides tradeoff solutions in
MLP models.

The aforementioned three observations are also confirmed
across other datasets, different recourse quality and ratio of
recourse users. The summary of other factors is shown in
Table 3 and the details are included in the appendix.

7 Discussion, Conclusion, and Future Work

In this work, we study model evolution in the presence of
recourse users under limited system resources. Our anal-
ysis and experiments indicate that recourse behavior nat-
urally pushes the model toward a higher decision stan-
dard, thereby increasing the difficulty of future recourse ac-
tions—reflected in higher recourse costs and failure rates. To
address these challenges, we proposed the Fair-top-k strat-
egy and a dynamic continual learning algorithm. Both meth-
ods significantly mitigate the problems identified and en-
hance model robustness, as evidenced by improved balanced
accuracy over time in logistic models.

Nevertheless, this work represents only an initial step to-
ward understanding the broader implications of recourse be-
havior in learning systems. There remain many open direc-
tions for further exploration, particularly in connection to
fields such as strategic decision-making and social sciences.
Below, we outline a few promising directions:

The prediction of the momentum in model evolution
is still quite open. We showed that under certain condi-
tions, model evolution tends to favor higher standards. How-
ever, it remains an open question whether one can theoreti-
cally characterize how recourse actions systematically influ-
ence the direction of model evolution. Specifically, what are
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the theoretical links between cost functions, recourse algo-
rithms, and real-world constraints? On the other hand, the
momentum in other configurations are still open, such as
other models (e.g., random forests, complicated deep learn-
ing models, . .. etc.), gaming framework, online & real-time
system, extreme resource constraints (in our experiments,
when k£ < .3 all methods trigger higher standard and make
short-term accuracy low).

The social impact on top-k policy. The Top-k strategy
ultimately depends on a single score to determine classifi-
cation results'. Consequently, users are driven to optimize a
single “golden standard,” pushing the model toward stricter
decision boundaries and reducing overall diversity. In our
experiments, this reliance on a single metric not only causes
model shifts towards a higher standard but can also generate
social challenges such as user stress and anxiety (Halko and
Sadksvuori 2017; Feri, Innocenti, and Pin 2013). Recent re-
search from Purdue University indicates that an increasing
number of content creators experience burnout or stop cre-
ating content on platforms like YouTube due to the compet-
itive and stressful environment (Thorne 2023).

On the other hand, the cost of features is crucial in al-
gorithmic recourse, yet it is rarely considered in model fit-
ting and evolution. Although strategic learning (Hardt et al.
2015; Levanon and Rosenfeld 2021) addresses this issue, its
primary focus is often single-step accuracy rather than long-
term dynamics. In reality, the cost function determines the
direction of the data distribution’s shift, so inferring fea-
ture costs can help predict the trajectory of model evolu-
tion and even steer it intentionally. Additionally, the seman-
tic meaning of features may play a significant role. For in-
stance, should a video’s predicted quality rely more on its
content-related characteristics or on socially driven metrics
such as the number of likes? After all, careful system de-
sign and monitoring are probably essential to mitigate unin-
tended consequences and ensure long-term stability and fair-
ness (Bell et al. 2024). Finally, we note that even if the cost
function is unmeasurable or acts as a black box, one can still
design strategies—such as the Fair-Top-%k approach—that
accept diverse points and mitigate the pitfalls of focusing
on a single score.
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