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Abstract
Self-Distillation is a special type of knowledge distillation where the student model
has the same architecture as the teacher model. Despite using the same architecture
and the same training data, self-distillation has been empirically observed to
improve performance, especially when applied repeatedly. For such a process,
there is a fundamental question of interest: How much gain is possible by applying
multiple steps of self-distillation? To investigate this relative gain, we propose
studying the simple but canonical task of linear regression. Our analysis shows that
the excess risk achieved by multi-step self-distillation can significantly improve
upon a single step of self-distillation, reducing the excess risk by a factor as large
as d, where d is the input dimension. Empirical results on regression tasks from the
UCI repository show a reduction in the learnt model’s risk (MSE) by up to 47%.

1 Introduction
Knowledge distillation [12] was initially proposed as a way to transfer the knowledge learnt by a
larger teacher model to a smaller student model, which can then be deployed in limited resource
settings. The process is as follows: Train a teacher (T ) model using ground-truth labels, then use its
predictions to supervise the training of a student (S) model via a combined per-sample loss,

ξ · ℓ
(
ŷT , yS(θ)

)
+ (1− ξ) · ℓ

(
y, yS(θ)

)
, (1)

where ℓ denotes the loss function, y is the ground-truth label, ŷT denotes the teacher’s prediction, and
yS(θ) denotes the student’s prediction, parameterized by the learnable θ. The extra hyperparameter ξ
is called the imitation parameter [25], generally restricted to ξ ∈ [0, 1]. It gives additional freedom
to the student to balance importance between labels and teacher’s predictions. The student trained
via this distillation objective (i.e., utilizing the teacher’s predictions through ξ ̸= 0) has been widely
observed to generalize better than when trained only on the labels (i.e., ξ = 0). This gain has been
attributed to ‘dark knowledge’ that is (i) impossible to be directly extracted from the training data by
the small model, but (ii) easily learnt by the large model and transferred to the small model.

Challenging this interpretation, Li et al. [20] and Furlanello et al. [10] empirically observed perfor-
mance gains through distillation even when the teacher and student are same-sized models. One can
set T and S to have the same architecture, and S trained with the objective in Eq. (1) outperforms
T . This is referred to as Born-Again Networks (BANs) or Self-Distillation (SD). Furthermore,
repeatedly applying self-distillation on the same training data with a student model having the same
architecture provides additional gains on benchmark datasets and architectures [10, 36, 44]. At each
step, the student from the previous step acts as the teacher used to train a new student model under the
self-distillation loss of Eq. (1). For such multi-step self-distillation, there is a fundamental question
of interest: How much more gain can we get by repeatedly applying self-distillation?

Recently, Das and Sanghavi [9] provided theoretical understanding of the original one-step self-
distillation. For the canonical task of fixed design linear regression, considering the standard ridge
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estimator as both the teacher and student model, [9] showed that there is indeed a regime of problem
instances in which the optimal student (i.e., with optimally tuned ridge parameter λ and imitation
parameter ξ) can provably achieve a strictly lower test error than the optimal teacher (i.e. with
optimally tuned λ). However, the amount of this gain has not been characterized in closed form, and
can only be numerically evaluated for a given problem instance. Inspired by this work, we aim to
study the performance gains from multi-step self-distillation under linear regression.

Contributions. We summarize our contributions below.

• Under the fixed design linear regression defined in Section 3.1, we show that the optimal multi-
step self-distilled model (i.e., each ξ value at each step is optimized for the validation accuracy of
the final multi-step self-distilled model) can achieve a test error that is a factor of d smaller than
the optimal one-step self-distillation (Theorem 1), under certain assumptions on the problem
parameters (Assumption 2). Here, d is the dimension of the input. Our analysis in Theorem 1
suggests that the sequence of ξ parameters provides additional freedom that can control the
spectrum of eigenvalues of the linear estimator. Optimally choosing these ξ parameters can
significantly reduce the variance of the estimator, leading to a factor of (up to) d difference in the
overall test errors of multi-step SD compared to 1-step SD. We note that Das and Sanghavi [9]
also observed a bias-variance tradeoff associated with the ξ parameter for 1-step SD compared
to the ridge, which was the reason behind 1-step SD strictly outperforming the ridge.

• We demonstrate the necessity of the main assumption (Assumption 2) both theoretically (Theo-
rems 2 and 3) and numerically (Figure 3). Further, we provide a lower bound for the test error
that any repeated SD can achieve, and show that only r steps of SD (with optimally chosen ξ at
each step) are sufficient to achieve this, when the input data matrix has rank r (Theorem 4).

• By capturing the functional form of the test error in ξ (Theorem 5), we also show a method to
practically select the ξ parameters for real-world regression tasks. In Section 5, we empirically
show that this theoretical insight leads to selecting effective ξ values, which can indeed achieve
a lower test error on real-world regression tasks.

2 Related Work
Knowledge distillation and self-distillation. Hinton et al. [12], Ba and Caruana [3] proposed
knowledge distillation to transfer knowledge learnt by large teacher models into smaller student
models without any substantial performance drop (e.g., [30, 31, 14, 8, 33, 24, 32] and surveys in
[11, 13]). Distillation also provides interpretability [23], robustness to adversarial examples [28],
and defense against backdoor attacks [39, 21, 35], although stronger backdoor attacks have been
proposed that bypass distillation defense [17]. Perhaps surprisingly, empirical observations show
that performance improves when a teacher model is distilled into a student model with the same
architecture on the same training data (self-distillation). Performance gains with one-step self-
distillation of the form Eq. (1) were first demonstrated by Li et al. [20] for AlexNet on YFCC100M.
Further gains can be achieved by repeating self-distillation, as shown for the DenseNet architecture
family on CIFAR10 and CIFAR100 [10, Table 2]. To empirically explain such gains, Zhang and
Sabuncu [44] measured prediction uncertainty on the same multi-step experiments and offered an
interpretation that soft labels capture sample-level uncertainties. Yang et al. [36] also reproduced the
same experiments and explained the gains as knowledge refinement on the class similarities. We will
analytically study the gains that can be achieved with such repeated self-distillation.

Many variations of self-distillation have also been proposed. Snapshot Distillation [37] tries to treat
previous checkpoints (snapshots) of the same model as the teacher. Zhang et al. [43] employ a group
of collaborative students with no teacher. Zhang et al. [42, 41] use it for model self-improvement, and
DINO [7] adopts self-distillation for self-supervised learning. Knowledge distillation is also popular
for transfer learning, where the student model is trained on a different dataset than the teacher model
[38, 40, 1], which is not a setting we address. With the recent scaling of data, [45], [22] are relevant
works using a teacher model for either label editing or data reweighing.

Theory of distillation and self-distillation. Theoretical understanding of distillation started with
Phuong and Lampert [29] studying linear student networks. Mobahi et al. [27] studied self-distillation
theoretically in the restricted setting of ξ = 1 (i.e. only teacher supervision, no ground-truth labels),
showing that in this setting, the SD process acts as a regularizer, with a few steps of SD helping,
but further steps hurting model performance. We study the setting where ξ is not restricted to 1,
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and show a different conclusion. In particular, we observe that more steps of SD always provide an
improvement, if the ξ parameters are chosen optimally. Allen-Zhu and Li [2] analyzed a stylized
setting, where a different view of the data is learned by different models, and show how ensemble
methods can combine the views, achieving improved test accuracy. This framework is used to
show how self-distillation can also improve model accuracy by implicitly performing ensembling.
Menon et al. [26] theoretically studied distillation in the classification setting, and also observed a
bias-variance tradeoff underlying teacher supervision. Das and Sanghavi [9] theoretically studied
one-step self-distillation for fixed design linear regression and binary classification, and showed that
the student can provably achieve a lower test error than the teacher. We take inspiration from them
and study the multi-step SD to characterize this performance gain, showing that the multi-step SD can
outperform one-step SD by a large factor. Borup and Andersen [4] also studied multi-step SD and
obtained an analytical form for the k-step SD similar to ours [4, Theorem 4.1]. The crucial difference
is the freedom of the ξ parameters being different at each step of self-distillation. Whereas [4, Lemma
4.2 and Theorem 4.3] assume the ξ values at each step are equal (similar to [27]), concluding that
after a point, more steps of SD will result in a poorer performing model (similar to [27]); our main
result (Theorem 1) is different as it says that subsequent steps of SD strictly provide more freedom,
and that the best multi-step SD can outperform the best 1-step SD by an Ω(r) factor. Similar to us,
Jeong and Chung [16] also take inspiration from [9], [16] however aim to provide understanding of
multi-step self-distillation in the multi-class classification setting.

3 Problem formulation and background on self-distillation
Focusing on the simple but canonical task of linear regression, we investigate the performance gain
from applying repeated self-distillation.

3.1 Linear regression
For the observed response Y ∈ R and the covariate X ∈ Rd, the following assumption is standard in
linear regression, e.g., [9].

Assumption 1. There exist θ⋆ ∈ Rd and γ > 0 such that (i) E[Y |X] = ⟨θ⋆, X⟩; (ii) Var[Y |X] = γ2

for all X ∈ Rd; and (iii) (Y − E[Y |X]) ⊥⊥ X , i.e. the label noise is independent of X .

The training set of size n is denoted by X ∈ Rd×n, the collection of covariates, and Y ∈ Rn, the
responses; Y = X⊤θ⋆ + η, with η satisfying E[η] = 0, E[ηη⊤] = γ2In. The problem instance is
defined by its parameters (X, θ⋆, γ2), treating X = [X1, X2, · · ·Xn] as fixed but Y as random. The
training set (X,Y) is one occurrence of the random noise η ∈ Rn. In this fixed design setup, the
excess risk of an estimator θ̂ is defined using the standard Σ̂n-norm, ∥v∥Σ̂n

= ∥Σ̂1/2
n v∥2, as

ExcessRisk(θ̂) := Eη

[
∥θ̂ − θ⋆∥2

Σ̂n

]
, (2)

where Σ̂n := (1/n)XX⊤ is the covariance matrix, and the expectation is over the randomness in η.
Measuring the error in the Σ̂n-norm ensures that the signal-to-noise ratio is uniform in all directions.
The popular ridge estimator serves as a baseline, using a single hyperparameter λ > 0:

θ̂(λ) := arg min
θ∈Rd

(
∥Y −X⊤θ∥2 + λ∥θ∥2

)
=
(
XX⊤ + λId

)−1
XY . (3)

We use Ωλ := XX⊤ + λId throughout. We consider only λ > 0, but surprisingly, Kobak et al. [19]
showed that the optimal penalty λ⋆ (one with the lowest risk) can indeed be negative. However we
will largely work in the non-overparameterized case (n > d), where λ⋆ > 0 holds.

3.2 Self-distillation
Applying the self-distillation loss in Eq. (1) to linear regression with hyperparameters λ and ξ,

θ̂(λ, ξ) := arg min
θ∈Rd

(
ξ ∥X⊤θ̂(λ)−X⊤θ∥2 + (1− ξ) ∥Y −X⊤θ∥2 + λ ∥θ∥2

)
(4)

=
(
XX⊤ + λId

)−1
X
(
ξ ·X⊤θ̂(λ) + (1− ξ) ·Y

)
︸ ︷︷ ︸

New label

(5)

=
{
(1− ξ) · Id + ξ ·Ω−1

λ XX⊤}︸ ︷︷ ︸
Pre-conditioner: function of (λ,ξ)

·Ω−1
λ XY︸ ︷︷ ︸

Ridge θ̂(λ)

, (6)
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where ξ ∈ R is not restricted to the conventional [0, 1] interval. This additional freedom is meaningful
since it can result in a strictly better solution, as noted by Das and Sanghavi [9] both theoretically
(Remark 3.6) and empirically (Table 1). It is worth noting that the optimization problem in eq. (4)
remains convex for any ξ ∈ R, since its hessian evaluates to ξ·2XX⊤+(1−ξ)·2XX⊤ = 2XX⊤ ⪰ 0.
On the other hand, the teacher and student use the same ridge penalty λ for simplicity.

We call this estimator 1-step self-distillation. This can be interpreted as (i) assigning new labels that
combine the ground-truth labels with the teacher’s predictions, or (ii) pre-multiplying the usual ridge
estimator with a pre-conditioner. Note that ξ = 0 recovers ridge. Das and Sanghavi [9, Theorem 3.8]
show that under a certain condition, 1-step self-distillation strictly dominates ridge, i.e.,

min
λ≥0,ξ∈R

Eη

[
∥θ̂(λ, ξ)− θ⋆∥22

]
< min

λ≥0
Eη

[
∥θ̂(λ)− θ⋆∥22

]
, (7)

where the risk is measured in the non-standard Euclidean norm. The same strict inequality can be
shown under the standard Σ̂n-norm under a slightly modified condition stated in Proposition B.1.
This naturally leads to a fundamental question: How much more gain can we get by repeatedly
applying self-distillation?

T S 1-step self-distillation
ξ

S0 S1 S2 · · · Sk k-step self-distillation
ξ
(k)
1 ξ

(k)
2 ξ

(k)
k

Figure 1: The standard 1-step self-distillation defined in Eq. (1) with parameter ξ and k-step self-
distillation that repeatedly applies Eq. (1) with parameter ξ(k) = [ξ

(k)
1 , ξ

(k)
2 , . . . , ξ

(k)
k ] ∈ Rk.

3.3 Repeated self-distillation
The standard repeated application of self-distillation starts with the teacher model, T (which we also
refer to as the zeroth model, S0), and applies self-distillation sequentially for k steps. At each step i,
Eq. (1) is applied with the (i− 1)th model, Si−1 as the teacher, and the ith model, Si as the student,
with an imitation parameter ξ(k)i , i.e., θ̂ ∈ argminθ

{
ξ
(k)
i ℓ

(
ŷSi−1

, ySi
(θ)
)
+(1− ξ

(k)
i )ℓ

(
y, ySi

(θ)
)}

for i ∈ [k]. The collection of parameters is denoted by ξ(k) = [ξ
(k)
1 , ξ

(k)
2 , . . . , ξ

(k)
k ] ∈ Rk.

This repeated self-distillation has been studied, for example, theoretically in [27] and empirically in
[10]. We aim to understand its gain under linear regression, where we prove that

θ̂(λ, ξ(k)︸︷︷︸
∈Rk

) =

{(
1−

k∑
i=1

ξ̄
(k)
i

)
Id +

k∑
i=1

ξ̄
(k)
i

(
Ω−1

λ XX⊤)i}
︸ ︷︷ ︸

Pre-conditioner: P(λ,ξ(k))

·Ω−1
λ XY︸ ︷︷ ︸

Ridge θ̂(λ)

, (8)

with ξ̄
(k)
i := (1 − ξ

(k)
k−i)

∏k
l=k−i+1 ξ

(k)
l for each i ∈ [k], and we let ξ(k)0 = 0. The proof that

repeated SD with ξ(k) ∈ Rk results in Eq. (8) is provided in Appendix C.2. Here ξ(k) ∈ Rk denote
the imitation parameters, λ denotes the ridge coefficient for all the models, and ξ̄(k) ∈ Rk is a
reparametrization of ξ(k) ∈ Rk (details in Appendix C.2). We call this k-step self-distillation.
Note the increasing flexibility in the pre-conditioner matrix. The increasing powers of Ω−1

λ XX⊤

in the above expression are still numerically stable, since, for λ > 0, Ω−1
λ XX⊤ is PSD with all

eigenvalues in [0, 1]. As an aside, one can also consider a version of SD where the ith model receives
supervision from all S<i instead of just Si−1. Appendix C.1 shows that this version provides no extra
representational capacity over the repeated version presented above, when all k entries of ξ(k) are
optimized as free parameters. Hence, the procedure in Figure 1 suffices for analysis.

4 Main results for linear regression
The main object of our study is to theoretically demonstrate the gains from repeated self-distillation.
Concretely, we aim to show that there can be a significant multiplicative separation between the
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excess risk achieved by r-step SD (Self-Distillation), where r is the rank of the input X; compared to
the ridge estimator, as well as the 1-step SD (Section 4.1). The necessity of the two main assumptions
is shown in Section 4.2. The sufficiency of r steps of SD is shown in Section 4.3. In Section 4.4, we
provide an exact characterization of the excess risk achieved by k-step SD (for any k).

4.1 The r-step self-distillation significantly improves upon the 1-step self-distillation
We show the desired separation under the following assumption (and two more mild technical
assumptions specified fully in Appendix E).

Assumption 2. Assume the following two conditions hold on the problem instance
(
X, θ⋆, γ2

)
:

1. No two non-zero singular values of X collide, i.e. s1 > s2 > · · · > sr > 0, where {sj}rj=1
denote the non-zero singular values of the input data matrix X whose rank is denoted by r.

2. For a β ∈ [0, 1), there exists an index j ∈ [r] such that ⟨θ⋆,uj⟩2 ≥ (1− β) · ∥θ⋆∥2; where
{uj}dj=1 denote the eigenvectors of XX⊤, u1 being the leading one.

Assumption 2 is needed to show that r-step SD achieves a small excess risk in Eq. (9). The quantity
β captures the similarity of the (unknown) θ⋆ to the eigenbasis directions. The case of β = 0 entails
perfect alignment of θ⋆ with one of uj , j ∈ [r]. As we will see in the result in Theorem 1, the gains
provided by multi-step SD are large when β is small. In general, both these conditions are somewhat
necessary for the separation, as we show in Theorems 2 and 3. We now state our main result. We
show that under the above assumption, there exists a family of problem instances, (X, θ⋆, γ2), such
that the excess risk achieved by r-step SD is a factor of r := rank(X) smaller than that of the ridge
estimator and the 1-step SD.

Theorem 1. Under the fixed design linear regression in Assumption 1, there exists a family of problem
instances satisfying Assumption 2 such that for any instance (X, θ⋆, γ2) in the family, it holds that

∃λ > 0, ∃ξ(r) ∈ Rr, ExcessRisk
(
θ̂(λ, ξ(r))

)
≤ γ2

n

(
1 + β

∥θ⋆∥2s21
γ2

)
, (9)

∀λ > 0, ∀ξ ∈ R, ExcessRisk
(
θ̂(λ, ξ)

)
≥
(
0.99

211

)
(1− β)

rγ2

n
, and (10)

∀λ > 0, ExcessRisk
(
θ̂(λ)

)
≥ 0.98

(
1− β

1− 0.99β

)2
rγ2

n
, (11)

where r := rank(X), n is the number of samples, θ̂(λ, ξ(r)) and θ̂(λ, ξ) are the r-step and 1-step SD
estimators defined in Eqs. (8) and (4) respectively, and θ̂(λ) is the ridge estimator defined in Eq. (3).

This theorem captures a general result for the gains of multi-step SD. In particular, the special case of
β = 0 (i.e. θ⋆ being completely aligned with one of the eigenvectors uj , j ∈ [r]) presents an Ω(r)
multiplicative separation between the excess risk of r-step SD and {1, 0}-step SD. We provide precise
conditions and a proof in Appendix E. Since each k-step SD includes (k−1)-step SD as a special case
with the proper choice of ξ(k), the hyperparameter-tuned excess risk of repeated SD is monotonically
non-increasing. However, it is perhaps unexpected that the multiplicative separation between r-step
SD and 1-step SD can be as large as Ω(r), demonstrating the gains of repeated SD. Figure 2 illustrates
this Ω(r) multiplicative separation on a synthetic family of problems. Note that Ω(d) separation can
be achieved by choosing the problem instance to have rank r = d, at the cost of requiring many more
steps of SD. This Ω(d) factor is the largest multiplicative separation possible with self-distillation,
as shown by the fundamental lower bound in Theorem 4 for any pre-conditioning based approach.
In general, if β = O

(
γ2

∥θ⋆∥2s21

)
(akin to the inverse signal-to-noise ratio), then there exists an Ω(r)

multiplicative separation between r-step SD and {1, 0}-step SD. In our particular construction of the
problem instance for Theorem 1, the additional technical condition (i.e. Condition #2 in the detailed
theorem statement in Appendix E) effectively translates this to β = O(1/r).

Remark 4.1. SD significantly outperforms ridge by primarily reducing the variance. For the lower
bound on ridge’s excess risk, i.e., Eq. (11), we ignored the bias term and only used the variance term.
The repeated SD (Eq. (9)) primarily reduces the variance to improve the excess risk over Eq. (11).
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Figure 2: On a synthetic problem family with dimension d = 100, noise variance γ = 0.1, and
θ⋆ = u1 (agreement with Asmp. 2.2); we set the singular values of X with a power law from
s1 = 1 to sr = {0.8, 0.5} (left and right panels) and vary r = rank(X). Both plots show a
linear increase of the relative gain of r-step self-distillation in excess risk, i.e. the ratio A/B where
A := minλ>0 ExcessRisk

(
θ̂(λ)

)
and B := minλ>0,ξ(r)∈Rr ExcessRisk

(
θ̂(λ, ξ(r))

)
; demonstrating

that r-step SD outperforms ridge by a factor of Ω(r), with the constant inside the Ω (i.e. slope of the
line) changing with the effective condition number, s1/sr.

4.2 Necessity of Assumption 2
In Figure 3, we empirically show on synthetic tasks how violating Assumption 2.1 or 2.2 leads to
higher excess risks, even for the r-step SD (r = 4 in the example). This supports the necessity of
both assumptions, which we analytically investigate in the following.

Necessity of Assumption 2.1 on X. We assume that the non-zero singular values of X are unique.
This allows us to tightly upper bound the excess risk achieved by r-step SD in Eq. (9) via Theorem 4.
We show in the following that some version of Assumption 2.1 is also necessary. For a more detailed
explanation of why we need Assumption 2.1, we refer the reader to Remark 4.2.

Theorem 2. Under the hypotheses of Theorem 1 except for Assumption 2.1, if the singular values of
X satisfy s1 = . . . = sr = 1, where r = rank(X), for all k ≥ 1, λ > 0, and ξ(k) ∈ Rk, we have

ExcessRisk
(
θ̂
(
λ, ξ(k)

))
≥ rγ2

n

(
1 +

rγ2∑r
j=1⟨θ⋆,uj⟩2

)−1

. (12)

Furthermore, there exists λ > 0 such that the ridge, θ̂(λ), achieves this lower bound with equality.

We provide a proof in Appendix F. This implies that when there is no gap in the singular values of
the input X, there is no separation between ridge and SD estimators (repeated or not). Intuitively,
if the sj are all equal, the pre-conditioner for ridge (i.e., Ω−1

λ ) and the pre-conditioner for the
repeated SD, both are restricted to have all eigenvalues to be equal. (Repeated) SD has no degrees
of freedom to deviate from this. However, sj’s being unequal provides the freedom for the ξ(k) to
control the SD’s pre-conditioner matrix, and reduce the excess risk. This is also why in Remark
4.2, we hypothesize that numerically, the optimal

(
ξ(k)

)⋆
depends inversely on the min-gap of the

singular values. Figure 4 demonstrates this increasing relationship of the magnitude of the optimal ξ
parameters w.r.to the decreasing singular gap.

Necessity of Assumption 2.2 on θ⋆. Theorem 1 shows that there is a large separation in the
performance of repeated SD over ridge when Assumption 2.2 holds with a small β. In general,
this translates to θ⋆ being highly aligned with any one of the eigenvectors of XX⊤ (not necessarily
the leading eigenvector). We show next that if θ⋆ is equally (mis)aligned with all the eigenvectors
{uj}rj=1 of XX⊤, then again there is no separation between ridge and repeated SD.
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(a) s := [1, 1/2, 1/3, 1/4], θ⋆ = u1 (b) s := [1, 1, 1/2, 1/3] (c) θ⋆ := 0.5(u1 + u2 + u3 + u4)

Figure 3: On a synthetic task (explained in Section 5.1), X has rank 4 with (a) θ⋆ = u1 and distinct
sj’s; (b) s = [1, 1, 1/2, 1/3]; (c) θ⋆ = 0.5(u1 + u2 + u3 + u4). Each additional step of SD with
optimal choice of ξ(k) reduces ExcessRisk(θ̂(λ, (ξ(k))⋆)) for any choice of λ on the x-axis. Panel
(a) satisfies Asmp. 2 and hence 4-step SD is necessary to achieve the optimal excess risk. This is
no longer true when Asmp. 2.1 is violated (b) or Asmp. 2.2 is violated (c). Excess risk achieved by
4-step SD (i.e. the green lines) in panels (a) and (c) exactly match the numerical value given by RHS
of eq. (14), i.e. the fundamental lower bound for any SD estimator. But this is not the case in panel
(b) [which has the same lower bound from eq. (14) as panel (a)], because Asmp. 2.1 is violated.

Figure 4: On the synthetic problem from Figure 3a, we fix λ = 0.125 and set the singular values of X
as sj = {1− (j − 1)ϵ}, i.e. consecutive values are separated by ϵ. For k-step SD with k = {1, 2, 3},
we plot (ξ(k))⋆(λ) (i.e. optimal values of the ξ parameters) by varying ϵ ∈ {0.2, 0.1, 0.05, 0.02, 0.01}.
The magnitude of ξ(k)k values increases as the singular gap ϵ decreases, verifying Remark 4.2.

Theorem 3. Under the hypotheses of Theorem 1 except for Assumption 2.2, if the true parameter θ⋆
satisfies ⟨θ⋆,uj⟩2 = z for all j ∈ [r], it holds that for all z > 0, k ≥ 1, λ > 0, and ξ(k) ∈ Rk,

ExcessRisk
(
θ̂(λ, ξ(k))

)
≥ γ2

n

r∑
j=1

(
1 +

γ2

zs2j

)−1

. (13)

Furthermore, there exists λ > 0 such that the ridge, θ̂(λ), achieves this lower bound with equality.

We provide a proof in Appendix G. Similar conditions are needed when analyzing 1-step SD in [9] as
well; [9, Eq. (9) in Theorem 3.8] is required for the 1-step SD to strictly outperform ridge. Observe
that Eq. (9) is violated when either (i) sj’s are all equal or (ii) ⟨θ⋆,uj⟩2’s are all equal.

4.3 r steps of self-distillation are sufficient
For a given problem instance (X, θ⋆, γ2), the excess risk achieved by the k-step SD with parameter
ξ(k) can be exactly characterized (Theorem 5), but it is complicated and can only be evaluated
numerically in general. On the other hand, we show that there exists a fundamental lower bound
that holds for a linear family of estimators including all repeated SD, and this lower bound has a
simple characterization (Lemma 4.1). Furthermore, we show that under a mild assumption on the
eigenvalues of XX⊤ in Assumption 2.1, the r-step SD achieves the lower bound (Theorem 4). This
allows a precise characterization of the performance of r-step SD.
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Theorem 4. Under the fixed design linear regression in Assumption 1, the excess risk of any k-step
SD estimator on an instance (X, θ⋆, γ2), is lower bounded for all k ≥ 1, λ > 0, and ξ(k) ∈ Rk by

ExcessRisk
(
θ̂(λ, ξ(k))

)
≥ γ2

n

r∑
j=1

⟨θ⋆,uj⟩2(
⟨θ⋆,uj⟩2 + γ2

s2j

) , (14)

where (sj ,uj) is the jth eigenvalue and eigenvector of X and r := rank(X). Furthermore, if
Assumption 2.1 holds then there exists λ > 0 and ξ(r) ∈ Rr such that the equality is achieved by the
r-step SD estimator θ̂(λ, ξ(r)).

Proof sketch. (Proof in Appendix H). The lower bound in Eq. (14) is an instantiation of Lemma 4.1,
since θ̂(λ, ξ(k)) is a specific linear family estimator with P = P

(
λ, ξ(k)

)
Ω−1

λ defined in Eq. (8).
To show achievability, we need to show that P

(
λ, ξ(k)

)
Ω−1

λ = P⋆ for some value of k, λ, and ξ(k).
This holds when the below system of r linear equations admits a solution for the k parameters (i.e.
ξ(k)), with an extra free parameter λ > 0. We show that with k = r and under Assumption 2.1, there
exists λ > 0 that will ensure the existence of a solution for this system of equations.1−

k∑
i=1

ξ̄
(k)
i

1−

(
s2j

λ+ s2j

)i

 s2j

λ+ s2j
=

⟨θ⋆,uj⟩2

⟨θ⋆,uj⟩2 + γ2

s2j

∀j ∈ [r] (15)

Remark 4.2 (Necessity of Assumption 2.1). This assumption is required for (15). Otherwise, the
LHS would be the same for indices j and j + 1 if sj = sj+1, but the RHS could still be different
as ⟨θ⋆,uj⟩ ̸= ⟨θ⋆,uj+1⟩ generally. If Assumption 2.1 does not hold, there might not be any ξ(k)

satisfying the set of equations for a general θ⋆ ∈ Rd. Further, the system of linear equations in
Eq. (15) becomes more ill-conditioned as the singular values sj , j ∈ [r] get closer to each other.
Capturing this dependence explicitly is outside the scope of this paper.

Lower bound for a linear family. Consider a linear family of estimators of the form θ̂(P) := P·XY,
for P := UdS̃U

⊤
d , whose eigenspace coincides with that of XX⊤ (i.e., Ud = [u1, . . . ,ud]) and has

d degrees of freedom represented by the eigenvalues S̃ = diag[s̃1, · · · , s̃d]. This is a generic form of
any linear estimator, albeit with the restriction of the eigenvectors matching the underlying Ud. In
particular, k-step SD is an instantiation of this with P = P(λ, ξ(k))Ω−1

λ (refer to Eq (8)).

Lemma 4.1. The Excess Risk for θ̂(P) = P ·XY where P := UdS̃U
⊤
d , satisfies

ExcessRisk
(
θ̂(P)

)
≥ γ2

n

r∑
j=1

⟨θ⋆,uj⟩2(
⟨θ⋆,uj⟩2 + γ2

s2j

) , (16)

with equality achieved at P = P⋆ = UdS̃
⋆U⊤

d , given by

s̃⋆j =

{ ⟨θ⋆,uj⟩2

(⟨θ⋆,uj⟩2s2j+γ2)
, j ≤ r (i.e., sj > 0)

any real value , j ≥ r + 1 (i.e., sj = 0)
. (17)

Proof sketch. (Proof in Appendix H.1). One can expand the excess risk for θ̂(P), which is a quadratic
expression in s̃j , j ∈ [d]. Completing the squares gives the result immediately.

4.4 The excess risk for the k-step SD estimator is quadratic in ξ̄(k) ∈ Rk

We give an explicit formula for the excess risk achieved by for the k-step SD estimator from Eq. (8).
Since θ̂(λ, ξ(k)) is linear in each of ξ̄(k)i , i ∈ [k] (recall that ξ̄(k) is a reparametrization of ξ(k)), the
overall excess risk is quadratic in ξ̄(k) as shown below. Appendix I provides a proof and the expres-
sions for M (k), m(k), and c. This quadratic form will be especially useful in experiments.

Theorem 5 (Informal version of Theorem 7 in Appendix I). Under the fixed design linear regression
in Assumption 1, the excess risk achieved by the k-step SD is quadratic in ξ̄(k) ∈ Rk:

ExcessRisk
(
θ̂(λ, ξ(k))

)
=
(
ξ̄(k)

)⊤
M (k)︸ ︷︷ ︸
∈Rk×k

(
ξ̄(k)

)
+ 2

(
ξ̄(k)

)⊤
m(k)︸︷︷︸
∈Rk

+ c . (18)
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From the detailed expressions given in Appendix I, we note that M (k) is a sum of r symmetric rank-1
matrices, which means it can have a maximum rank of r. This implies that M (k) ∈ Rk×k for k > r
is rank-deficient (causing no additional decrease in the excess risk if the ξ̄(r) ∈ Rr were chosen
optimally to minimize the excess risk). This indicates that r steps of SD might be sufficient to achieve
the optimal excess risk, which is indeed what we observe in Theorem 4.

5 Experiments
In this section, we empirically show that multi-step SD can outperform the ridge and single-step SD.
We first present a synthetic setting (section 5.1) to validate our theory. In section 5.2, we discuss a
strategy to select ξ parameters based on the theoretical insight from section 4.4. In section 5.3, we
implement that strategy on real-world regression tasks and show that it can indeed select performant
ξ values that provide multi-step SD estimators that achieve a smaller test risk.

5.1 Synthetic Experiments
We validate our theoretical results with a fixed design synthetic experiment. We consider a problem
with d = r = 4, and set problem parameters (X, θ⋆, γ2). Namely, X’s singular values are set as
sj := 1/j for j ∈ [4], and θ⋆ := u1 as in Theorem 1. Figure 3 shows the result for γ = 0.125, along
with two more settings that validate the necessity of our assumptions (validating Theorems 2 and
3). Figure 3a confirms that repeated steps of SD do provide a reduction in the excess risk, since the
lowest point of the curve for each k reduces as k increases. Also note that the optimal λ for each k
(one that produces lowest excess risk estimator) is different. Appendix J presents some more settings,
including θ⋆ := 1/

√
2(u1 + u2) for comparison with [9]. An interesting phenomenon in Figure 3 is

that local maxima in k-step SD’s curve coincide with local minima in (k− 1)-step SD’s curve, which
was proven for k = 1 in [9], and we observe empirically for all values of k.

Explanation of Figures 3, 5. For the fixed design synthetic experiment in Figure 3 and the random
design real-world experiment in Figure 5 (section 5.3), the curves plotted are with the optimal (ξ(k))⋆
for each λ. Hence, the curve of k-step SD will point-wise be lower/equal to the curve of (k − 1)-step
SD, since more steps of SD only provide more freedom. We say k-step SD strictly dominates
(k − 1)-step SD when the minimum value of k-step SD’s excess risk is strictly lower than that of
(k − 1)-step SD. For Figure 3, the optimal (ξ(k))⋆ is found analytically from the problem parameters.
For real-world datasets in Figure 5, we use the strategy in section 5.2 to find (ξ(k))⋆.

5.2 Choosing the hyperparameters ξ for real-world datasets
We have shown that at the cost of introducing additional hyperparameters and setting them to their
optimal values, one can extract a large (upto Ω(d)) performance gain. However, how does one select
these ξ’s for real-world datasets? The standard practice is to use a validation set, and perform a
grid search. But this becomes infeasible for k-step SD for larger values of k, since performing a
search over parameters in Rk+1 (i.e k values of ξ(k) and 1 value of λ) quickly becomes impractical.
However, our theoretical analysis provides an insight that can be used to directly compute the optimal
ξ(k) ∈ Rk (for a chosen λ) given a few evaluations on the validation set with certain chosen ξ(k)

values. Namely, Theorem 5 tells us that the ExcessRisk is quadratic in ξ̄(k) (the reparameterized
version). Now the coefficients of the quadratic depend on unknown quantities (like θ⋆, γ2), however
just knowing the quadratic nature of the functional, we can use the validation set to estimate these
coefficients. To estimate the coefficients for k-step SD, we need k(k+3)/2 + 1 evaluations on the
validation set. Appendix K provides more discussion, and a detailed illustration of the above process
for k = 1, 2. Note that this is feasible when the cost/time needed for a single training run of a k-step
SD is small (since we need to perform it O(k2) times), which holds true for linear regression.

5.3 Real-world regression experiments
We implement multi-step SD for real-world regression tasks from the UCI repository [18], and
demonstrate that 2-step SD can outperform ridge and 1-step SD. Note that for this section, the test
set will contain fresh samples of X ∈ Rd, i.e. random design linear regression instead of fixed
design. Our metric for an estimator’s performance will now be mean squared error (MSE) on a test
set of unseen examples, which is the empirical version of total risk (i.e. excess risk translated by
the unknown noise variance γ2). Using the training and validation splits, we compute (i) Optimal
ridge: θ̂(λ⋆

0), (ii) Optimal 1-step SD: θ̂(λ⋆
1, ξ

⋆), and (iii) Optimal 2-step SD: θ̂
(
λ⋆
2, (ξ

⋆
1 , ξ

⋆
2)
)
. The

procedure is to plot the MSE on the validation set for a grid of λ values for all three estimators, and
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choose the λ that achieves the lowest error for each one (for any given λ, the optimal ξ⋆(λ) is chosen
by the strategy described in Section 5.2). Finally, we evaluate the MSE of all three selected estimators
(i.e. with the chosen optimal hyperparameters) on the test set, which serves as our performance
metric (refer to Table 1). Appendix L explains the overall methodology in greater detail. We apply
this methodology on three datasets (dataset descriptions in Appendix L.1).

Table 1 describes the results we observe. For two of the three datasets, 2-step SD can outperform
both ridge and 1-step SD. For the Air Quality dataset, 2-step SD significantly outperforms both ridge
and 1-step SD, reducing the MSE by 47.2% compared to the optimal ridge. In contrast, for the AEP
dataset, we observe that the SD process cannot improve upon the ridge at all. The MSE curves in
Figure 5 also shed light on these observations. Notice how Figures 5a, 5b show a gap in the ridge and
2-step SD (similar to Figure 3a), whereas Figure 5c shows no such gap (similar to Figure 3c).

In Appendix L.2, we explain the lack of gains from self-distillation on the AEP dataset from the lens
of Assumption 2.2. Recall that Theorem 1 says that the gains of repeated SD are most prominent
with a small β in Assumption 2.2. Figure 10 shows that the θ⋆ for the AEP dataset is at most ∼ 35%
aligned with any of the eigenbasis directions, corresponding to a β ≈ 0.65. The same alignment for
the other two datasets is ∼ 80%, corresponding to a much smaller β ≈ 0.2. In Appendix L.3, we
also verify that the strategy described in section 5.2 indeed selects performant ξ values.

Table 1: Chosen hyperparameter values and the achieved test set MSE for ridge and 1, 2-step SD.
Dataset Optimal ridge Optimal 1-step SD Optimal 2-step SD

Air Quality Optimality hyperparameters λ⋆
0 = 102 λ⋆

1, ξ
⋆ = 103,−4.1 λ⋆

2, (ξ
⋆
1 , ξ

⋆
2) = 103, (−0.9,−16.2)

Test set MSE 2.01 1.99 1.06

Airfoil Optimality hyperparameters λ⋆
0 = 102 λ⋆

1, ξ
⋆ = 100, 66.5 λ⋆

2, (ξ
⋆
1 , ξ

⋆
2) = 103, (−1.8,−7.8)

Test set MSE 1.34 1.22 1.19

AEP Optimality hyperparameters λ⋆
0 = 102.5 λ⋆

1, ξ
⋆ = 102.5, 0.1 λ⋆

2, (ξ
⋆
1 , ξ

⋆
2) = 102.5, (−2.4,−2.3)

Test set MSE 0.62 0.62 0.63

(a) Air Quality dataset (b) Airfoil dataset (c) AEP dataset

Figure 5: Validation set MSE vs λ for three estimators: Ridge, 1-step SD and 2-step SD.

6 Conclusion and Broader Impacts
In this paper, we theoretically studied the multi-step self-distillation for fixed design linear regression,
with the goal of characterizing its performance compared to the single-step SD. Perhaps surprisingly,
we demonstrated that the optimal multi-step SD can outperform the optimal single-step SD by a factor
as large as d in the estimator’s excess risk, where d is the input dimension of the regression. Our
analysis is limited by the fixed design assumption, and it would be useful to study the case of random
design linear regression as well. We empirically demonstrated the gains from using 2-step SD on
simple linear regression tasks. Larger scale empirical studies of multi-step SD, especially leveraging
the insights of Section 5.2 on hyperparameter search, remain as a direction of future work.

Our contributions are largely on the theoretical understanding of multi-step self-distillation, and its
potential performance gains. At a high-level, self-distillation can use data more effectively, since it
allows us to extract more knowledge from the same training dataset. In today’s age with data being
one of the most important resources, this has positive potential impacts through more judicious use of
data. On the other hand, we propose to use multiple steps of self-distillation, requiring more compute
and potentially contributing to higher environmental costs.
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A Notation
In this short section, we collect some notation used throughout the proofs.

Decomposition of X. Let rank(X) = r and the SVD of X be X =
∑r

j=1 sjujv
T
j where s1 ≥

s2 ≥ · · · ≥ sr > 0, and each uj ∈ Rd and vj ∈ Rn. Further, let {u1,u2, · · · ,ud} be the full set of
left singular vectors of X (even those corresponding to zero singular values), forming an orthonormal
basis of Rd. Let Ud ∈ Rd×d and Ur ∈ Rd×r denote the left singular matrix of X for the full and
truncated set of left singular vectors respectively. Similarly, let Vd ∈ Rn×d and Vr ∈ Rn×r denote
the full and truncated right singular matrix. Let Sd ∈ Rd×d and Sr ∈ Rr×r denote the collection of
the singular values (with and without zeros respectively). Then, it holds that

X = UrSrV
⊤
r = UdSdV

⊤
d . (19)

Indices. Throughout the text, the indices i lie in [k], i.e. they denote subsequent steps of self-
distillation. The indices j lie in [r] or [d], ie they denote dimensions of the d-dimensional space
(aligned with vectors of Ur or Ud). vj , Vi,j will denote indexing into a vector v, matrix V . There is
one exception to vj denoting a vector’s jth element, which is the below.
Components of θ⋆ on Ud. We will denote θ⋆j := ⟨θ⋆,uj⟩2, j ∈ [d] as the components of θ⋆ onto
X’s left singular space. Note that

∑d
j=1 θ

⋆
j = ∥θ⋆∥22.

B Discussion on norm used in excess risk metric
We point out that Das and Sanghavi [9] used the ∥.∥2 norm instead of the more natural ∥.∥Σ̂n

norm
to measure their fixed design excess risk (in eq (2)). Almost all our results have an equivalent version
in the ∥.∥2 norm setting also, since the only difference is in the relative weighing of the underlying
dimensions of variation, i.e. with the ∥.∥Σ̂n

norm, ∀j ∈ [d], direction uj is weighed by s2j/n instead
of a constant 1 weight (independent of j). In particular, we also present the version of [9, Eq. (9)
from Theorem 3.8] that will result in a strict dominance like Eq. (7) under the Σ̂n norm, i.e.

min
λ≥0,ξ∈R

Eη

[
∥θ̂(λ, ξ)− θ⋆∥2

Σ̂n

]
︸ ︷︷ ︸

=ExcessRisk(θ̂(λ,ξ))

< min
λ≥0

Eη

[
∥θ̂(λ)− θ⋆∥2

Σ̂n

]
︸ ︷︷ ︸

=ExcessRisk(θ̂(λ))

. (20)

Proposition B.1. Let λ⋆ := argminλ>0ExcessRisk(θ̂(λ)). Then Eq. (20) holds on a problem
instance (X, θ⋆, γ2) when

r∑
k=1

k−1∑
j=1

s4js
4
k

(
s2j − s2k

) (
⟨θ⋆,uk⟩2 − ⟨θ⋆,uj⟩2

)(
λ⋆ + s2j

)4
(λ⋆ + s2k)

4
< 0 . (21)

Note that this differs from [9, Eq. (9)] in just one respect: it has s4js
4
k instead of s2js

2
k.

C Details on ξ parameters for general k-step SD
C.1 Full k-step SD is representationally no larger than Repeated k-step SD
We first illustrate the Full k-step SD in Figure 6. The repeated version introduces k extra hy-
perparameters in the form of ξ(k) ∈ Rk parameters, whereas the full version introduces k(k+1)/2.

S0 S1 S2 · · · Sk Repeated k-step self-distillation

S0 S1 S2 · · · Sk Full k-step self-distillation

Figure 6: Illustrating two possible generalizations of 1-step SD to a k-step process.

Consider the case of k = 2, since that is the lowest value of k for which the full version and the
repeated version differ. Figure 7 illustrates this difference explicitly. We will show that the freedom
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of ξ̃ ∈ R3 is no more than the freedom of ξ ∈ R2. This shows the equivalence of the full 2-step and
the repeated 2-step versions, when ξ̃ ∈ R3, ξ ∈ R2 are free parameters optimized over the entire
respective spaces. Such equivalence for the general k-step case is then easy to see.

Nodes S0, S̃0 are both solving the ridge regression problem (3). Let θ0 = θ̃0 = Ω−1
λ XY denote

the estimator for both these nodes. Similarly S1 and S̃1 are solving the same problem, although
with different parameters. We have θ1(ξ1) = Ω−1

λ X
(
ξ1 ·X⊤θ̄0 + (1− ξ1) ·Y

)
(and similarly, one

can write θ̃1 with ξ̃1 instead of ξ1). Now the node S2 is also solving a 1 parameter supervised SD
problem, so θ2(ξ1, ξ2) = Ω−1

λ X
(
ξ2 ·X⊤θ1(ξ1) + (1− ξ2) ·Y

)
. Expanding this gives

θ2(ξ1, ξ2) =
{
(1− ξ2) · Id + (ξ2 − ξ1ξ2) ·Ω−1

λ XX⊤ + ξ1ξ2 · (Ω−1
λ XX⊤)2

}
Ω−1

λ XY . (22)

But the optimization problem for S̃2 is a 2 parameter supervised SD. It evaluates to

argminθ∈Rd

(
ξ̃2a
2
∥X⊤θ̃0 −X⊤θ∥2 + ξ̃2b

2
∥X⊤θ̃1 −X⊤θ∥2 + (1− ξ̃2a − ξ̃2b)

2
∥Y −X⊤θ∥2 + λ

2
∥θ∥2

)
.

Following through a similar calculation, we observe that θ̃2 for node S̃2 is given by

θ̃2(ξ̃1, ξ̃2a, ξ̃2b) =
{
(1− ξ̃2a − ξ̃2b) · Id + (ξ̃2a + ξ̃2b − ξ̃1ξ̃2b) ·Ω−1

λ XX⊤ + ξ̃1ξ̃2b · (Ω−1
λ XX⊤)2

}
Ω−1

λ XY .

(23)

S0 S1 S2 Repeated 2-step self-distillation
ξ1 ξ2

S̃0 S̃1 S̃2 Full 2-step self-distillation
ξ̃1 ξ̃2b

ξ̃2a

Figure 7: Repeated vs Full 2-step SD. We show that the extra freedom of the parameter ξ̃2a does not
provide any additional freedom, when the other two ξ̃1, ξ̃2b are optimized as free parameters.

Equations (22) vs (23) show that the full 2-step offers the same freedom as the repeated 2-step.
However the repeated version has one shortcoming. To generate the optimal 2-step SD estimator,
ξ1 needs to be different than the value needed for generating the optimal 1-step SD estimator. That
is, the repeated k-step version, with its k free parameters, allows only to generate the final kth-step
estimator as the optimal one (i.e. if we choose the (ξ1, ξ2) values so that the 2nd estimator is the
optimal 2-step SD estimator, then the 1st estimator with the chosen ξ1 won’t be the optimal 1-step
SD estimator). Whereas the full k-step version, with all its k(k + 1)/2 free parameters, allows us to
generate a sequence of all k optimal estimators.

C.2 Proof that k-step SD estimator with ξ(k) ∈ Rk will have the form given in eq (8)
Consider Figure 1. ξ(k) ∈ Rk is the set of actual imitation parameters used for running k-step
(repeated) SD. Let θ̂(λ, ξ(k)) denote the k-step estimator generated by using ξ(k) parameters. In
what follows, we will prove that θ̂(λ, ξ(k)) will have the form given in eq (8), with ξ̄(k) ∈ Rk as the
described reparametrization of ξ(k) ∈ Rk. Since we’re in the repeated version, the kth step objective
will be a combination of losses w.r.to ground-truth labels and predictions from the (k − 1)th step. So,
the objective for the kth step is

θ̂(λ, ξ(k)) := argminθ∈Rd

(
ξ
(k)
k

2
∥X⊤θ̂(λ, ξ(k−1))−X⊤θ∥2 +

(1− ξ
(k)
k )

2
∥Y −X⊤θ∥2 + λ

2
∥θ∥2

)
.

(24)
Note that θ̂(λ, ξ(k)) recursively depends on predictions from the previous θ̂(λ, ξ(k−1)). This objective
is of the form in eq (4), so similar to eq (5), we have the following expression

θ̂(λ, ξ(k)) =
(
XX⊤ + λId

)−1
X
{
ξ
(k)
k ·X⊤θ̂(λ, ξ(k−1)) + (1− ξ

(k)
k ) ·Y

}
(25)
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=
{
(1− ξ

(k)
k ) ·Ω−1

λ XY + ξ
(k)
k ·Ω−1

λ XX⊤θ̂(λ, ξ(k−1))
}

. (26)

Using this, we can inductively prove that the general form of this estimator is captured by Eq. (8).
Claim. With the described reparametrization, i.e., ξ̄(k)i := (1− ξ

(k)
k−i)

∏k
l=k−i+1 ξ

(k)
l for each i ∈ [k]

(where we let ξ(k)0 = 0), Eq. (8) is the solution to the recursive form Eq. (26).

Proof. We will prove this by induction.
Base Case. From eqs (8) and (26), the case for k = 1 is true (with ξ̄(1) = ξ(1)).
Inductive Step. Assuming Eq. (8) captures the solution of Eq. (26) for k − 1, we get

θ̂(λ, ξ(k)) =

{{
1− ξ

(k)
k

}
Id + ξ

(k)
k Ω−1

λ XX⊤

({
1−

k−1∑
i=1

ξ̄
(k−1)
i

}
Id +

k−1∑
i=1

ξ̄
(k−1)
i

(
Ω−1

λ XX⊤)i)} ·Ω−1
λ XY .

This again satisfies the form in equation (8), when the following coefficients match

ξ
(k)
k =

k∑
i=1

ξ̄
(k)
i ,

ξ
(k)
k · (1−

k−1∑
i=1

ξ̄
(k−1)
i ) = ξ̄

(k)
1 ,

ξ
(k)
k · ξ̄(k−1)

i−1 = ξ̄
(k)
i ∀i ∈ {2, 3, · · · , k} .

One can then see that the described reparametrization makes the above hold true.

Remark. Since θ̂(λ, ξ(1)) is simply the 1-step SD estimator with the form θ̂(λ, ξ(1)) = P ·Ω−1
λ XY

for some preconditioner P, plugging this in the equation eq (26), we realize that we can factor
out Ω−1

λ XY (i.e. the ridge solution) from the expression on the right side. That is, θ̂(λ, ξ(2)) =

P′ ·Ω−1
λ XY for some different pre-conditioner P′. This is why inductively we get that θ̂(λ, ξ(k)),

k ≥ 1 all produce a pre-conditioning on the ridge solution, as shown in eq (8). Further, eq (26) also
dictates why we get increasing powers of the term Ω−1

λ XX⊤ in the final expression.

C.3 Explicit reparametrization for k = 2, 3

We explicitly demonstrate the reparametrization for k = 2, 3. As noted in Section 5.2 (and Appendix
K), owing to the quadratic form of excess risk in ξ̄(k), one can find the optimal ξ̄(k) analytically. It
can then be translated back to the original ξ(k) as follows.

For k = 2, the form is (dropping the .(2) for ease)

ξ1 = 1− ξ̄1(
ξ̄1 + ξ̄2

) , ξ2 = ξ̄1 + ξ̄2 . (27)

For k = 3, the form is (dropping the .(3) for ease)

ξ1 = 1− ξ̄2
ξ̄2 + ξ̄3

, ξ2 = 1− ξ̄1
ξ̄1 + ξ̄2 + ξ̄3

, ξ3 = ξ̄1 + ξ̄2 + ξ̄3 . (28)

D Algebraic expansion of θ̂(λ, ξ(k)) from eq (8)

Lemma D.1. The estimator θ̂(λ, ξ(k)) given in eq (8) can be expanded as

θ̂(λ, ξ(k)) =
d∑

j=1

1−
k∑

i=1

ξ̄
(k)
i

1−

(
s2j

λ+ s2j

)i

 · s2j

λ+ s2j
· ⟨θ⋆,uj⟩ · uj

+
d∑

j=1

1−
k∑

i=1

ξ̄
(k)
i

1−

(
s2j

λ+ s2j

)i

 · sj

λ+ s2j
· ⟨η,vj⟩ · uj

Proof. The expansion relies on XX⊤ = UdS
2
dU

⊤
d and XX⊤ + λId = Ud(S

2
d + λId)U

⊤
d . Ud is

orthonormal (UdU
⊤
d = Id = U⊤

d Ud), which neatly cancels all occurences of Ud in the middle, and
allows us to directly combine the matrices in the eigenvalue space.
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E Detailed version and a proof of Theorem 1
We first write a detailed version of the theorem that exactly characterizes the family of problem
instances that admits the separation. We then present a proof. We point the reader to Appendix A for
notations used throughout the proof.

Theorem 6 (Detailed version). Consider the following conditions on θ⋆,X that characterize a family
of problem instances {(X, θ⋆, γ2)}:

1. θ⋆ satisfies ∃j ∈ [r], ⟨θ⋆,uj⟩2 ≥ (1− β) · ∥θ⋆∥2 [Assumption 2.2]

2. ∥θ⋆∥2 ≥ 198 ·
(
rγ2

/s2r
)
· (s1/sr)4

3. Assumption 2.1 holds on the singular values of X [Assumption 2.1]

4. (s
2
1/s2r) ≤ 2 holds on the singular values of X

Under Condition #1 + Condition #3, it holds that

∃λ > 0, ∃ξ(r) ∈ Rr, ExcessRisk
(
θ̂(λ, ξ(r))

)
≤ γ2

n

(
1 + β

∥θ⋆∥2s21
γ2

)
(Rewriting eq (9))

Under Condition #1 + Condition #2 + Condition #4, it holds that

∀λ > 0, ∀ξ ∈ R, ExcessRisk
(
θ̂(λ, ξ)

)
≥ 0.99

211
(1− β)

rγ2

n
(Rewriting eq (10))

Under Condition #1 + Condition #2, it holds that

∀λ > 0, ExcessRisk
(
θ̂(λ)

)
≥ 0.98

(
1− β

1− 0.99β

)2
rγ2

n
(Rewriting eq (11))

Proof. We will analyze all three: k-step SD, ridge, and 1-step SD.

Let j′ ∈ [r] be the index that corresponds to the maximum (unsigned) alignment between θ⋆ and
uj , among all j ∈ [r]. If it is not unique, pick any of the corresponding indices. That is, j′ satisfies
⟨θ⋆,uj′⟩2 ≥ ⟨θ⋆,uj⟩2 for all j ∈ [r]. Then, Condition #1 translates to the below two inequalities,

θ⋆j′ ≡ ⟨θ⋆,uj′⟩2 ≥ (1− β) · ∥θ⋆∥2 , (29)
r∑

j=1,j ̸=j′

θ⋆j ≡
r∑

j=1,j ̸=j′

⟨θ⋆,uj⟩2 ≤
d∑

j=1,j ̸=j′

⟨θ⋆,uj⟩2 ≤ β · ∥θ⋆∥2 . (30)

k-step SD: Since Assumption 2.1 holds, from Theorem 4 we directly have

∃λ > 0, ∃ξ(r) ∈ Rr, ExcessRisk
(
θ̂
(
λ, ξ(r)

))
=

γ2

n

r∑
j=1

θ⋆j(
θ⋆j +

γ2

s2j

) (31)

=
γ2

n

 θ⋆j′(
θ⋆j′ +

γ2

s2
j′

) +
r∑

j=1,j ̸=j′

θ⋆j(
θ⋆j +

γ2

s2j

)


(32)

≤ γ2

n

1 +
r∑

j=1,j ̸=j′

θ⋆j(
θ⋆j +

γ2

s2j

)
 (33)

≤ γ2

n

1 +
r∑

j=1,j ̸=j′

θ⋆j(
γ2

s2j

)
 (34)
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≤ γ2

n

1 +
s21
γ2

d∑
j=1,j ̸=j′

θ⋆j

 . (35)

Using eq (30) in the above, we have

≤ γ2

n

(
1 + β

∥θ⋆∥2s21
γ2

)
. (36)

This completes the proof for eq (9).

Ridge: We will now show (11), by characterizing the Excess Risk for the ridge estimator in this
regime, showing that it can be upto r times worse. From Lemma I.1, we realize that the Excess Risk
expression for the simple ridge estimator θ̂(λ) is given by

∀λ > 0, ExcessRisk
(
θ̂(λ)

)
=

1

n

r∑
j=1

(
λ2θ⋆j + γ2s2j

)
· s2j

(λ+ s2j )
2

(37)

≥ γ2

n

r∑
j=1

s4j
(λ+ s2j )

2︸ ︷︷ ︸
Just the Variance term

. (38)

Inequality (38) above comes from ignoring the bias term (since it is non-negative). Note that the
variance term is a decreasing function of λ. And again from Lemma I.1, we get the following
expression for λ⋆ > 0 that minimizes the ExcessRisk.

λ⋆ = γ2 ·

∑r
j=1

s4j

(λ⋆+s2j)
3∑r

j=1

θ⋆
j s

4
j

(λ⋆+s2j)
3

(39)

≤ γ2 ·

∑r
j=1

s4j

(λ⋆+s2j)
3

θ⋆
j′s

4
j′(

λ⋆+s2
j′

)3

(Ignoring positive terms in the denominator above)

=
γ2

θ⋆j′
·

 r∑
j=1

s4j
s4j′
·
(
λ⋆ + s2j′

)3(
λ⋆ + s2j

)3
 (Rearranging the above)

≤ γ2

(1− β)∥θ⋆∥2
·

 r∑
j=1

s4j
s4j′
·
(
λ⋆ + s2j′

)3(
λ⋆ + s2j

)3
 (Using eq (29))

=
γ2

(1− β)∥θ⋆∥2
·

 j′∑
j=1

s4j
s4j′
·
(
λ⋆ + s2j′

)3(
λ⋆ + s2j

)3 +
r∑

j=j′+1

s4j
s4j′
·
(
λ⋆ + s2j′

)3(
λ⋆ + s2j

)3


≤ γ2

(1− β)∥θ⋆∥2
·

 j′∑
j=1

s4j
s4j′

+
r∑

j=j′+1

s4j
s4j′
·
(
λ⋆ + s2j′

)3(
λ⋆ + s2j

)3
 (Since sj′ ≤ sj for j ≤ j′)

≤ γ2

(1− β)∥θ⋆∥2
·

 j′∑
j=1

s4j
s4j′

+
r∑

j=j′+1

s4j
s4j′
·
s6j′

s6j

 (Since
λ⋆+s2

j′

λ⋆+s2j
≤ s2

j′

s2j
for j > j′, as λ⋆ > 0)

=
γ2

(1− β)∥θ⋆∥2
·


j′∑

j=1

s4j
s4j′︸ ︷︷ ︸

≤r·( s1
sr
)
4

+
r∑

j=j′+1

s2j′

s2j︸ ︷︷ ︸
≤r·( s1

sr
)
2


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≤
(

1

1− β

)
· γ2

∥θ⋆∥2
· r

((
s1
sr

)4

+

(
s1
sr

)2
)

≤
(

1

1− β

)
· γ2

∥θ⋆∥2
· 2r

(
s1
sr

)4

. (40)

Now since the variance term in (38) is a decreasing function of λ, we can use the upper bound of λ⋆

from (40) to lower bound the ExcessRisk of optimal ridge as

ExcessRisk
(
θ̂(λ⋆)

)
≥ γ2

n
·

r∑
j=1

1(
1 + λ⋆

s2j

)2 (Rewriting eq (38))

≥ rγ2

n
· 1(

1 + λ⋆

s2r

)2 (Since 0 < sr ≤ sj for all j)

≥ rγ2

n
· 1(

1 +
(

1
1−β

)
· 2rγ2

∥θ⋆∥2s2r
·
(

s1
sr

)4)2 (Using eq (40))

≥ rγ2

n
· 1(

1 + 1
99(1−β)

)2 (Using Condition #2)

=
rγ2

n
· (99(1− β))

2

(100− 99β)
2 (41)

=
rγ2

n
·
(

99

100

)2

︸ ︷︷ ︸
≥0.98

(1− β)
2

(1− 0.99β)
2 . (42)

This completes the proof of eq (11).

1-step SD: To evaluate 1-step SD’s ExcessRisk, we make use of Theorem 5. Observe that since
k = 1, the ExcessRisk is a simple quadratic in one variable. We will call ξ(1) ∈ R as just ξ (similar
to eq (6)). And similarly, we will call M (1),m(1) as just M,m, both real-valued. We then have

ExcessRisk
(
θ̂(λ, ξ)

)
= Mξ2 + 2mξ + c

≥ c− m2

M
∀ξ ∈ R , (By simple quadratic min)

=
Mc−m2

M
. (43)

Note that M,m, c are all functions of λ. Now we evaluate their expressions. c is simply ExcessRisk
of ridge, which we will fetch from Lemma I.1. Evaluate M from Theorem 5:

M =
1

n

r∑
j=1

(
λθ⋆

j

ρj
+ γ2

)
(1 + ρj)2

· Cj(1) · Cj(1)

=
1

n

r∑
j=1

(
λθ⋆

j

ρj
+ γ2

)
(1 + ρj)2

·
ρ2j

(1 + ρj)2
(Using Cj(1) = 1− 1

1+ρj
)

=
1

n

r∑
j=1

(
λθ⋆j ρj + γ2ρ2j

)
(1 + ρj)4

=
1

n

 r∑
j=1

(
λ2θ⋆j s

6
j + γ2λ2s4j

)
(λ+ s2j )

4

 . (Using ρj =
λ
s2j

)
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Evaluate m from Theorem 5:

m =
1

n

r∑
j=1

(
λθ⋆j − γ2

)
(1 + ρj)2

· Cj(1)

=
1

n

r∑
j=1

(
λθ⋆j − γ2

)
(1 + ρj)2

· ρj
1 + ρj

(Using Cj(1) = 1− 1
1+ρj

)

=
1

n

 r∑
j=1

(
λ2θ⋆j s

4
j − γ2λs4j

)
(λ+ s2j )

3

 . (Using ρj =
λ
s2j

)

We now write the expressions together for comparison, before we use them. That is,

n ·M = λ2
r∑

j=1

θ⋆j s
6
j

(λ+ s2j )
4
+ λ2γ2

r∑
j=1

s4j
(λ+ s2j )

4
,

n ·m = λ2
r∑

j=1

θ⋆j s
4
j

(λ+ s2j )
3
− λγ2

r∑
j=1

s4j
(λ+ s2j )

3
,

n · c = λ2
r∑

j=1

θ⋆j s
2
j

(λ+ s2j )
2
+ γ2

r∑
j=1

s4j
(λ+ s2j )

2
. (Directly from Lemma I.1)

With all these pieces, for the numerator in eq (43), we have
n2 ·

(
Mc−m2

)
= T1 + T2 + T3 ,

where we use T1, T2, T3 to capture terms of different forms. T1 will capture the θ⋆j product terms, T2

will capture the γ2 product terms, and T3 will capture the cross terms. Namely,

T1 = λ4
r∑

j=1

r∑
l=1

θ⋆j θ
⋆
l s

2
js

2
l

(λ+ s2j )
2(λ+ s2l )

2
·

(
s4j

(λ+ s2j )
2
+

s4l
(λ+ s2l )

2
−

2s2js
2
l

(λ+ s2j )(λ+ s2l )

)

= λ4
r∑

j=1

r∑
l=1

θ⋆j θ
⋆
l s

2
js

2
l

(λ+ s2j )
2(λ+ s2l )

2
·

(
s2j

(λ+ s2j )
− s2l

(λ+ s2l )

)2

≥ 0 . (†)

T2 = λ2γ4
r∑

j=1

r∑
l=1

s4js
4
l

(λ+ s2j )
2(λ+ s2l )

2
·

(
1

(λ+ s2j )
2
+

1

(λ+ s2l )
2
− 2

(λ+ s2j )(λ+ s2l )

)

= λ2γ4
r∑

j=1

r∑
l=1

s4js
4
l

(λ+ s2j )
2(λ+ s2l )

2
·

(
1

(λ+ s2j )
− 1

(λ+ s2l )
2

)2

≥ 0 . (††)

T3 = λ2γ2

 r∑
j=1

θ⋆j s
6
j

(λ+ s2j )
4

 r∑
j=1

s4j
(λ+ s2j )

2


+ λ4γ2

 r∑
j=1

θ⋆j s
2
j

(λ+ s2j )
2

 r∑
j=1

s4j
(λ+ s2j )

4


+ 2λ3γ2

 r∑
j=1

θ⋆j s
4
j

(λ+ s2j )
3

 r∑
j=1

s4j
(λ+ s2j )

3


≥ λ2γ2

 r∑
j=1

θ⋆j s
6
j

(λ+ s2j )
4


︸ ︷︷ ︸

Z1

 r∑
j=1

s4j
(λ+ s2j )

2


︸ ︷︷ ︸

Y1

+λ4γ2

 r∑
j=1

θ⋆j s
2
j

(λ+ s2j )
2


︸ ︷︷ ︸

Z2

 r∑
j=1

s4j
(λ+ s2j )

4


︸ ︷︷ ︸

Y2

.

(Ignoring the 3rd term)

20



We lower bound the terms Z1, Y1 and Z2, Y2 in the above lower bound on T3 using simple functional
analysis. Consider the fact that the function fp(z) :=

z2p

(λ+z2)p over z > 0 is strictly monotonically

increasing for any p ∈ N, since f ′
p(z) =

2pλz2p−1

(λ+z2)p+1 > 0 for all z > 0. We will use the instantiation
f4 for Z1 and Y2, and f2 for Z2 and Y1. For Z1, we get

Z1 =
r∑

j=1

θ⋆j ·
1

s2j
·

s8j
(λ+ s2j )

4

≥ s8r
(λ+ s2r)

4

r∑
j=1

θ⋆j ·
1

s2j
(Using monotone increasingness of f4)

≥ s8r
(λ+ s2r)

4
· 1
s21

r∑
j=1

θ⋆j︸ ︷︷ ︸
≥θ⋆

j′

(Using monotone decreasingness of f(z) := 1/z2)

≥ s8r
(λ+ s2r)

4
· (1− β)∥θ⋆∥2

s21
(Using eq (29))

≥ (1− β)∥θ⋆∥2 · 1
s21
· s8r
(λ+ s2r)

4
. (44)

Following a similar analysis scheme, we get

Z2 ≥ (1− β)∥θ⋆∥2 · 1
s21
· s4r
(λ+ s2r)

2
, (45)

Y1 ≥ r · s4r
(λ+ s2r)

2
, (46)

Y2 ≥ r · 1
s41
· s8r
(λ+ s2r)

4
. (47)

Using eqs (44), (45), (46), (47), we get an overall lower bound on T3. For the overall lower bound on
the numerator of eq (43), we combine this with eqs (†), (††) for the terms T1 and T2. We get

n2 ·
(
Mc−m2

)
≥ rγ2 · (1− β)∥θ⋆∥2

s21
· s12r
(λ+ s2r)

6

(
λ2 +

λ4

s41

)
. (48)

And for the denominator in eq (43), we have

n ·M = λ2
r∑

j=1

θ⋆j s
6
j

(λ+ s2j )
4
+ λ2γ2

r∑
j=1

s4j
(λ+ s2j )

4

= λ2

 r∑
j=1

θ⋆j s
6
j

(λ+ s2j )
4
+ γ2

r∑
j=1

s4j
(λ+ s2j )

4

 . (49)

Upper Bound ∝ λ2 from eq (49):

≤ λ2

 r∑
j=1

θ⋆j s
6
j

s8j
+ γ2

r∑
j=1

s4j
s8j


≤ λ2

 r∑
j=1

θ⋆j
s2j

+ γ2
r∑

j=1

1

s4j


≤ λ2

 1

s2r

r∑
j=1

θ⋆j +
γ2

s4r

r∑
j=1

1


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≤ λ2

s4r

s2r

r∑
j=1

θ⋆j + γ2
r∑

j=1

1

 (‡)

≤ λ2

s4r

(
∥θ⋆∥2s2r + rγ2

)
≤ λ2

s4r

(
∥θ⋆∥2s21 + rγ2

)
. (50)

Upper Bound ∝ 1/λ2 from eq (49):

≤ λ2

 r∑
j=1

θ⋆j s
6
j

λ4
+ γ2

r∑
j=1

s4j
λ4


=

1

λ2

 r∑
j=1

θ⋆j s
6
j + γ2

r∑
j=1

s4j


≤ 1

λ2

s61

r∑
j=1

θ⋆j + γ2s41

r∑
j=1

1

 (‡‡)

≤ s41
λ2

(
∥θ⋆∥2s21 + rγ2

)
. (51)

Note that we used
∑r

j=1 θ
⋆
j ≤

∑d
j=1 θ

⋆
j = ∥θ⋆∥2 in eqs (‡, ‡‡). Now we put together the numerator

lower bound from eq (48), with the denominator upper bound from eq (50) for the first term, and
from eq (51) for the second term. We then get

n · Mc−m2

M
≥ rγ2 · (1− β)∥θ⋆∥2

s21
· s12r
(λ+ s2r)

6

(
s4r

(∥θ⋆∥2s21 + rγ2)
+

λ6

s81 (∥θ⋆∥2s21 + rγ2)

)
= (1− β) · rγ2 · ∥θ⋆∥2s4r

s21 (∥θ⋆∥2s21 + rγ2)

(
s12r

(λ+ s2r)
6
+

s8r
s81
· λ6

(λ+ s2r)
6

)
= (1− β) · rγ2 · s

4
r

s41
· 1(

1 + rγ2

∥θ⋆∥2s21

)
︸ ︷︷ ︸

Q1

(
s12r

(λ+ s2r)
6
+

s8r
s81
· λ6

(λ+ s2r)
6

)
︸ ︷︷ ︸

Q2

. (52)

Under Condition #2, it holds that rγ2

∥θ⋆∥2s21
≤ 1

198 ·
s6r
s61
≤ 1

198 (since sr ≤ s1). This gives

Q1 ≥
198

199
≥ 0.99 . (53)

And now we analyze Q2 using simple calculus. Note that

Q2 =
t1 + t2λ

6

(λ+ s2r)
6
, where t1 = s12r , t2 =

s8r
s81

.

Simple calculus shows that this function is minimized at λ̄ = (t1/(t2s2r))
0.2

=
(
s81s

2
r

)0.2
. And the min

value of the function (evaluated at λ̄) can be used as a lower bound for this, giving

Q2 ≥
t1

s2r
(
λ̄+ s2r

)5 =
1(

1 +
(

s1
sr

)1.6)5 ≥
1

25

(
sr
s1

)8

. (54)

Combining eqs (43), (52), (53), (54), we get

∀λ > 0, ∀ξ ∈ R ExcessRisk
(
θ̂(λ, ξ)

)
≥ (1− β) · rγ

2

n
· 0.99

25
·
(
sr
s1

)12

.

Using Condition #4 in the above gives the desired eq (10).
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F Proof of Theorem 2
We point the reader to Appendix A for notations used throughout the proof.

Proof. Under the condition of ∀j ∈ [r], sj = 1, we need to analyze the ExcessRisk for both k-step
SD and ridge. Denote Q :=

∑r
j=1 θ

⋆
j for simplicity.

k-step SD: Since assumption 2.1 is violated, we cannot use Theorem 4 for the k-step SD. Instead,
we will work with the quadratic expansion of ExcessRisk from Theorem 5. We will rewrite the
expressions from Appendix I for the quadratic coefs. Note that ρj = λ/s2j = λ for all j ∈ [r]

becomes independent of j in this case. And so Cj(i) = 1 − 1
(1+λ)i for all j ∈ [r], i ∈ [k] also

becomes independent of j. Let C(i) := 1 − 1
(1+λ)i denote the coefs Cj(i), since they’re now

independent of j. Let ω := [C(1), C(2), · · · , C(k)] ∈ Rk. Then, we get

∀(i1, i2) ∈ [k]× [k] M
(k)
i1,i2

=
1

n

r∑
j=1

θ⋆j + γ2

(1 + λ)2
· C(i1) · C(i2)

=
1

n
· Q+ rγ2

(1 + λ)2
· C(i1) · C(i2)

=⇒ M (k) =
1

n
· Q+ rγ2

(1 + λ)2
· ωω⊤ ∈ Rk×k becomes a rank-1 matrix

Similarly, for m(k) we get

∀i1 ∈ [k] m
(k)
i1

=
1

n

r∑
j=1

λθ⋆j − γ2

(1 + λ)2
· C(i1)

=⇒ m(k) =
1

n
· λQ− rγ2

(1 + λ)2
· ω ∈ Rk

And similarly, for c we get

c =
1

n
· λ

2Q+ rγ2

(1 + λ)2
∈ R

Using the above expressions, we rewrite the overall ExcessRisk for any k-step SD (k ≥ 1) as

ExcessRisk
(
θ̂(λ, ξ(k))

)
=

1

n

(
Q+ rγ2

(1 + λ)2
· ⟨ω, ξ̄(k)⟩2 + 2 · λQ− rγ2

(1 + λ)2
· ⟨ω, ξ̄(k)⟩+ λ2Q+ rγ2

(1 + λ)2

)
We’re aiming for a lower bound on the above quantity, so we can first minimize with respect to ξ(k),
and then analyze the remaining as a function of λ. Note that this is a quadratic in the scalar ⟨ω, ξ̄(k)⟩.
Since q(x) := ax2 + 2bx+ c = c− b2

a + a
(
x+ b

a

)2 ≥ c− b2

a , we have

∀k ≥ 1, ∀ξ(k) ∈ Rk ExcessRisk
(
θ̂(λ, ξ(k))

)
≥ 1

n
· 1

(1 + λ)2

(
λ2Q+ rγ2 −

(
λQ− rγ2

)2
Q+ rγ2

)

=
1

n
· 1

(1 + λ)2

(
λ2Qrγ2 +Qrγ2 + 2λQrγ2

Q+ rγ2

)
=

1

n
· Qrγ2

Q+ rγ2

=
rγ2

n
· 1

1 + rγ2

Q

Note this expression is independent of λ. Hence the above lower bound holds ∀k ≥ 1, ∀ξ(k) ∈
Rk, ∀λ > 0. This concludes the proof of eq (12).
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Ridge: For ridge, we can simply borrow the expression of c from above for its ExcessRisk. That is

ExcessRisk
(
θ̂(λ)

)
=

1

n
· λ

2Q+ rγ2

(1 + λ)2

Let λ⋆ denote its minimizer over λ > 0. Simple calculus gives λ⋆ = rγ2

Q . Plugging this in, we get
the same expression

ExcessRisk
(
θ̂(λ⋆)

)
=

rγ2

n
· 1

1 + rγ2

Q

This completes the proof of ridge achieving the lower bound in eq (12).

G Proof of Theorem 3
We point the reader to Appendix A for notations used throughout the proof.

Proof. Under the condition of ∀j ∈ [r], θ⋆j = z > 0, we need to analyze the ExcessRisk for both
k-step SD and ridge.

k-step SD: Again from Theorem 4, any k-step SD estimator’s ExcessRisk is

∀k ≥ 1, ∀λ > 0, ∀ξ(k) ∈ Rk, ExcessRisk
(
θ̂(λ, ξ(k))

)
≥ γ2

n

r∑
j=1

θ⋆j(
θ⋆j +

γ2

s2j

)
≥ γ2

n

r∑
j=1

1(
1 + γ2

z ·
1
s2j

)
(Since ∀j ∈ [r], θ⋆j = z)

This completes the proof of eq (13).

Ridge: Now for the ridge estimator, we will use Lemma I.1. From eq (61), we get an exact expression
for λ⋆ > 0 that minimizes the ExcessRisk. Namely

λ⋆ =
γ2

z

Substituting this in eq (60), we get

ExcessRisk
(
θ̂(λ⋆)

)
=

1

n

r∑
j=1

(
(λ⋆)2θ⋆j + γ2s2j

)
· s2j

(λ⋆ + s2j )
2

=
γ2

n

r∑
j=1

(
λ⋆ + s2j

)
· s2j

(λ⋆ + s2j )
2

(Since λ⋆θ⋆j = γ2

z z = γ2)

=
γ2

n

r∑
j=1

1

(1 + λ⋆

s2j
)

=
γ2

n

r∑
j=1

1

(1 + γ2

z ·
1
s2j
)

(Substituting λ⋆ = γ2

z )

This completes the proof of ridge achieving the lower bound in eq (13).

H Proof of Theorem 4
We point the reader to Appendix A for notations used throughout the proof.

Proof. The proof of (14) is a simple instantiation of Lemma 4.1. Since the SD estimator is a particular
instance of the general θ̂(P), i.e.

θ̂
(
λ, ξ(k)

)
= θ̂

(
P← P

(
λ, ξ(k)

)
·Ω−1

λ

)
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Eq (14) follows from the lower bound in Lemma 4.1.

For proving the equality being achieved, we will work with the general k-step SD estimator, and
show that: Under assumption 2.1, k = r steps are sufficient to provide enough freedom to ξ(k) so
that the k-step SD estimator achieves the lowest possible ExcessRisk.

Using lemma 4.1, note that the condition P
(
λ, ξ(k)

)
· Ω−1

λ = P⋆ is sufficient to ensure that
θ̂
(
λ, ξ(k)

)
= θ̂(P⋆), which would mean that the k-step SD estimator admits the lowest possible

ExcessRisk. Since the eigenspaces for both sides of the equation are the same (Ud), we only need to
ensure that the eigenvalues match on both sides. That is, we need the following condition (for indices
j ≥ r + 1, there’s no condition since lemma 4.1 tells us that any real value of s̃j suffices).

∀j ∈ [r]

1−
k∑

i=1

ξ̄
(k)
i

1−

(
s2j

λ+ s2j

)i

 · 1

λ+ s2j
= s̃⋆j (55)

⇐⇒ ∀j ∈ [r]

1−
k∑

i=1

ξ̄
(k)
i +

k∑
i=1

ξ̄
(k)
i

(
s2j

λ+ s2j

)i
 · s2j

λ+ s2j
=

θ⋆j

θ⋆j +
γ2

s2j

(56)

Let aj(λ) :=
s2j

λ+s2j
. Since λ > 0, aj ∈ (0, 1), ∀j ∈ [r]. The above condition can then be written

succinctly in matrix form as
A(k)(λ)︸ ︷︷ ︸
∈Rr×k

· ξ̄(k)︸︷︷︸
∈Rk

= α(λ)︸︷︷︸
∈Rr

(57)

With the following describing the elements of A(k)(λ), α(λ) as

[α(λ)]j := 1−
(
λ+ s2j

)
s̃⋆j j ∈ [r][

A(k)(λ)
]
j,i

:= 1− (aj(λ))
i

j ∈ [r], i ∈ [k]

The notation A(k)(λ), α(λ) explicitly denotes the dependence on λ.

Now, A(k)(λ) being invertible would ensure that ∃ξ̄(k) ∈ Rk that makes equation (57) hold true
(i.e. the system of equations admits a solution). For that, we need (1) k = r and (2) A(r)(λ) being
full-rank. The first condition is stated in the lemma. In what follows, we will prove that ∃λ > 0 such
that the second condition is satisfied, i.e. A(r)(λ) being full-rank. Decompose A(r)(λ) as

A(r)(λ) =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


r×r︸ ︷︷ ︸

W

−


a1(λ) a1(λ)

2 · · · a1(λ)
r

a2(λ) a2(λ)
2 · · · a2(λ)

r

...
...

. . .
...

ar(λ) ar(λ)
2 · · · ar(λ)

r


r×r︸ ︷︷ ︸

V (λ)

Where W = 11⊤ is the matrix of all ones, and V (λ) is akin to the square Vandermonde matrix (only
difference being that the standard definition of Vandermonde also has a column of ones).

Using the Matrix Determinant Lemma, we can write

det(A(r)(λ)) =
(
1− 1⊤V (λ)−11

)
· det(−V (λ))

First note that, with the determinant expansion rule based on the first row

detV (λ) = det

[
1 0⊤

1 V (λ)

]
(r+1)×(r+1)

The matrix on the right is exactly the Vandermonde matrix with a0 = 0, a1(λ), a2(λ), · · · ar(λ).
Using the formula for the det of a standard (with a row of ones) Vandermonde matrix, we get

detV (λ) =
∏

0≤i<j≤r

(aj(λ)− ai(λ)) =
∏

1≤i≤r

ai(λ) ·
∏

1≤i<j≤r

(aj(λ)− ai(λ))
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Since aj(λ) ∈ (0, 1) for all j ∈ [r], and aj(λ)’s are all distinct, we conclude that detV (λ) ̸= 0,
i.e. V (λ) is full-rank. What remains to show is that the scalar

(
1− 1⊤V (λ)−11

)
is non-zero for

some λ > 0. With the SVD of V (λ) = CDE−1 where C,E are orthonormal and D is diagonal with
positive entries, one can expand this term as:

1⊤V (λ)−11 = (E−11)⊤D−1(C−11) =⇒ |1⊤V −11| ≥ 1

dmax
· |⟨C−11, E−11⟩|

Now observe that as λ → ∞, aj(λ) → 0 for all j ∈ [r], which means that V (λ) → 0r×r, which
means that (1) dmax → 0+, and (2) C ↔ E (since V (λ) becomes closer to a symmetric matrix,
allowing its left and right singular matrices to approach equality to each other). That is, 1

dmax
→∞

and ⟨C−11, E−11⟩ → ∥1∥2 = r. This would ensure that |1⊤V (λ)−11| > 1, meaning that the scalar
(1− 1⊤V (λ)−11) would be non-zero. Hence ∃λ > 0, such that A(r)(λ) is full-rank.

H.1 Proof of Lemma 4.1
Proof. The estimator θ̂(P) expands as

θ̂(P) = UdS̃S
2
dU

⊤
d θ

⋆ +UdS̃SdV
⊤
d η .

Expanding the Excess Risk shows

ExcessRisk
(
θ̂(P)

)
=

d∑
j=1

((
s̃j · s2j − 1

)2 · θ⋆j · wj

)
︸ ︷︷ ︸

Bias

+ γ2
d∑

j=1

(
s̃2j · s2j · wj

)
︸ ︷︷ ︸

V ariance

,

where wj =
s2j
n for all j ∈ [d]. This is a simple quadratic expression in s̃. Completing the squares

gives the desired optimal values of s̃⋆j , j ∈ [d].

I Quadratic ExcessRisk: detailed version of Theorem 5 and a proof
We point the reader to Appendix A for notations used throughout the proof.

Theorem 7 (Formal version of Theorem 5). The Excess Risk is quadratic in ξ̄(k) ∈ Rk. Namely

ExcessRisk
(
θ̂(λ, ξ(k))

)
=
(
ξ̄(k)

)⊤
M (k)︸ ︷︷ ︸
∈Rk×k

(
ξ̄(k)

)
+ 2

(
ξ̄(k)

)⊤
m(k)︸︷︷︸
∈Rk

+ c (58)

where the below holds, for indices (i1, i2) in [k]× [k],

M
(k)
i1,i2

=
λ

n

r∑
j=1

θ⋆j
ρj(1 + ρj)2

· Cj(i1) · Cj(i2)︸ ︷︷ ︸
B

(k)
i1,i2

+
γ2

n

r∑
j=1

1

(1 + ρj)2
· Cj(i1) · Cj(i2)︸ ︷︷ ︸

V
(k)
i1,i2

=
1

n

r∑
j=1

(
λθ⋆

j

ρj
+ γ2

)
(1 + ρj)2

· Cj(i1) · Cj(i2) ,

m
(k)
i1

=
λ

n

r∑
j=1

θ⋆j
(1 + ρj)2

· Cj(i1)︸ ︷︷ ︸
b
(k)
i1

+
γ2

n

r∑
j=1

(−1)
(1 + ρj)2

· Cj(i1)︸ ︷︷ ︸
v
(k)
i1

=
1

n

r∑
j=1

(
λθ⋆j − γ2

)
(1 + ρj)2

· Cj(i1) ,

c =
λ

n

r∑
j=1

θ⋆j ρj

(1 + ρj)2︸ ︷︷ ︸
From Bias

+
γ2

n

r∑
j=1

1

(1 + ρj)2︸ ︷︷ ︸
From Variance
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=
1

n

r∑
j=1

(
λθ⋆j ρj + γ2

)
(1 + ρj)2

.

The B, b and V, v notation is used to indicate the (squared) Bias and Variance terms respectively.
Here ρj , j ∈ [r] is used to simplify the notation, and is defined as ρj := λ

s2j
, j ∈ [r].

And the coefs Cj , j ∈ [r] with i ∈ [k] have the form

Cj(i) := 1− 1

(1 + ρj)i
j ∈ [r], i ∈ [k] . (59)

Proof. We first use the expansion from Lemma D.1. Secondly, expand θ⋆ =
∑d

j=1⟨θ⋆,uj⟩uj . Using
these, we can expand Excess Risk as

ExcessRisk
(
θ̂(λ, ξ(k))

)
= Eη

[∥∥∥θ̂(λ, ξ(k))− θ⋆
∥∥∥2
Σ̂n

]

=
d∑

j=1

s2j
n︸︷︷︸

Σ̂n weighing

·θ⋆j ·

(
s2j

λ+ s2j

)2

·

 λ

s2j
+

k∑
i=1

ξ̄
(k)
i ·

1−

(
s2j

λ+ s2j

)i

2

+
d∑

j=1

s2j
n︸︷︷︸

Σ̂n weighing

·γ2 ·
s2j

(λ+ s2j )
2
·

−1 + k∑
i=1

ξ̄
(k)
i ·

1−

(
s2j

λ+ s2j

)i

2

Writing down the above expansion and collecting the corresponding quadratic, linear and constant
terms’ coefficients in the ξ̄(k), give the desired expressions.

I.1 ExcessRisk for ridge
Since we will compare the ridge estimator’s ExcessRisk to the k-step SD estimator, we state the
ExcessRisk expression for the ridge estimator (eq (3)) formally here.

Lemma I.1. The ridge estimator θ̂(λ) satisfies

∀λ > 0, ExcessRisk
(
θ̂(λ)

)
=

1

n

r∑
j=1

(
λ2θ⋆j + γ2s2j

)
· s2j

(λ+ s2j )
2

. (60)

And the optimal penalty λ⋆ > 0 that minimizes this ExcessRisk satisfies

λ⋆ = γ2 ·

∑r
j=1

s4j

(λ⋆+s2j)
3∑r

j=1

θ⋆
j s

4
j

(λ⋆+s2j)
3

. (61)

Proof. Eq (60) is a simple instantiation of Theorem 5 in the vacuous case of k = 0. Specifically,
the quantity c captures exactly what we need. Borrowing its expression from the detailed theorem
statement (Appendix I) gives us eq (60). Now, taking the derivative of the expression in eq (60) and
setting it to zero, we get the stated expression for λ⋆ > 0.

J Discussion on synthetic experiments
This section follows up Section 5.1 with more details and examples about the synthetic problem.
Figure 8 shows four more settings, with γ ∈ {0.125, 0.25} and θ⋆ ∈ {u1, 1/

√
2(u1 + u2)}.

Figure 8a validates that repeated steps of SD do provide a reduction in the excess risk, since the
lowest point of the curve for each k is reducing as k increases. Observe that at k = r = 4 steps of
SD, the curves in Figure 8 become flat. This is because we stated Theorem 4 with a "∃λ > 0" such
that r-step SD can achieve the lower bound, but in practice it can happen "∀λ > 0".
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(a) γ = 0.125, θ⋆ = u1 (b) γ = 0.25, θ⋆ = u1

(c) γ = 0.125, θ⋆ = 1/
√
2(u1 + u2) (d) γ = 0.25, θ⋆ = 1/

√
2(u1 + u2)

Figure 8: Plot of excess risk of k-step SD with optimal ξ(k) for each λ, for k ∈ {0, 1, 2, 3, 4} on a
synthetic problem (Section 5.1).

K Discussion on choosing ξ parameters

For the k-step SD estimator (eq (8)), for any chosen λ, Theorem 5 tells us that the ExcessRisk is
quadratic in ξ̄(k) ∈ Rk. To estimate the coefficients of this quadratic from certain chosen evaluations
of ξ(k), we need a total of k(k+3)/2 + 1 evaluations. This is because the number of unknown
coefficients are (i) k for square terms, (ii) k(k−1)/2 for cross-square terms, (iii) k for linear terms, and
(iv) 1 for the constant term. After estimating the coefficients of the quadratic, we only need to perform
a grid search over one parameter, which is λ. We now illustrate this in detail for k = 1, 2.

K.1 Illustration for k = 1

For 1-step SD, we know that the ExcessRisk(θ̂(λ, ξ)) = Aξ2 + 2Bξ + C for unknown A,B,C
(that depend on λ). Training 3 specific 1-step SD estimators, with ξ = {−1, 0, 1}, and measuring
each of those 3 estimators’ Risk on the validation set, lets us estimate A,B,C. We then know that
ξ⋆ = −B/A, for the chosen value of λ.

K.2 Illustration for k = 2

S0 S1 S2

ξ1 ξ2

Figure 9: Illustrating 2-step SD.
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For 2-step SD, the ExcessRisk for a chosen λ has the following form

ExcessRisk
(
θ̂(λ, ξ︸︷︷︸

∈R2

)
)
= Aξ̄21 +Bξ̄22 + 2Cξ̄1ξ̄2 + 2Dξ̄1 + 2Eξ̄2 + F

where the reparametrization is ξ̄1 ← ξ2(1− ξ1), and ξ̄2 ← ξ2ξ1 (refer to Appendix C.3 for details on
this reparametrization). Let EVAL(ξ2, ξ1) denote the result of measuring this estimator’s Risk on the
validation dataset. We get the below system of equations.

F = EVAL(ξ2 = 0, ξ1 = 0)

A+ 2D + F = EVAL(ξ2 = 1, ξ1 = 0)

A− 2D + F = EVAL(ξ2 = −1, ξ1 = 0)

B + 2E + F = EVAL(ξ2 = 1, ξ1 = 1)

B − 2E + F = EVAL(ξ2 = −1, ξ1 = 1)

A+B

4
+

C

2
+D + E + F = EVAL(ξ2 = 1, ξ1 = 0.5)

The above 6 EVAL operations help us identify all the 6 unknown coefficients. Given AB − C2 > 0
([15]), we will have the below ξ̄⋆1 , ξ̄

⋆
2 minimizing the test loss (i.e. giving the optimal 2-step SD coefs

for the chosen λ). And using them, we calculate the actual ξ⋆1 , ξ
⋆
2 by doing the inverse mapping of the

reparametrization.

ξ̄⋆1 =
CE −DB

AB − C2
, ξ̄⋆2 =

CD −AE

AB − C2

ξ⋆1 =
ξ̄⋆2

(ξ̄⋆1 + ξ̄⋆2)
, ξ⋆2 = ξ̄⋆1 + ξ̄⋆2

L Details on regression experiments
We note that all experiments run on a single CPU within 60 seconds (wall-clock time). We utilize
sklearn’s implementation of the RIDGE.

Methodology. We now explain our methodology in detail, which is followed for all datasets:

1. First, split the original dataset into three parts for a Train-Validation-Test split. We divide all
datasets in a 30 − 30 − 40 split. Note that 30% of the data suffices for training since we
work with small datasets which have d on the order of ten (and total number of samples n
on the order of thousands). For datasets that have a temporal notion (e.g. date/timestamps),
we do the three-way split sequentially.

2. Perform two standard transformations on all three splits of the data: (i) Remove records
with missing values, and (ii) coordinate-wise whitening for all X features and the Y target,
i.e., subtracting the mean (computed on the train set) and dividing by the standard deviation
(also computed on the train set).

3. Select a grid of λ values (and ensure that it is large enough so that the optimal λ lies in it). The
grid has a factor of

√
10 difference between consecutive values (e.g., {1,

√
10, 10, · · · , 104}).

Then, for all λ in the grid, compute:

• The ridge estimator θ̂(λ) using the train set.

• The 1-step SD estimator θ̂(λ, ξ⋆) using the train set, where ξ⋆ for each λ is found using
the validation set by the strategy described in Section 5.2.

• The 2-step SD estimator θ̂(λ, (ξ(2))⋆) using the train set, where (ξ(2))⋆ for each λ is
found using the validation set by the strategy described in Appendix K.2.

Let λ⋆
0 denote the optimal penalty for ridge that minimizes the MSE on the validation set.

Similarly, let (λ⋆
1, ξ

⋆) and
(
λ⋆
2, (ξ

⋆
1 , ξ

⋆
2)
)

denote the optimal parameters for 1-step, 2-step
SD, again chosen via the validation set.

4. Evaluate the MSE on the test set (unseen as yet) for all three computed estimators: θ̂(λ⋆
0),

θ̂(λ⋆
1, ξ

⋆), θ̂
(
λ⋆
2, (ξ

⋆
1 , ξ

⋆
2)
)
.
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L.1 Description of the datasets used
UCI Air Quality. The UCI Air Quality dataset [34] contains records of hourly averaged readings from
5 metal oxide chemical sensors (which serve as covariates), along with ground-truth hourly averaged
concentrations of the pollutants from a co-located reference certified analyzer. The recordings are
from an Italian city over a one year period in 2004-2005. After removing records with missing entries,
this dataset has n = 6941 rows and we consider d = 8 relevant covariates (5 values of the metal oxide
chemical sensor readings + 3 values of Temperature, Relative Humidity, and Absolute Humidity).
We explicitly mention the field names (all real-numbered non-negative).

• X covariates’ names in the dataset: [PT08.S1(CO), PT08.S2(NMHC), PT08.S3(NOx),
PT08.S4(NO2), PT08.S5(O3), T, RH, AH]

• Y target’s name in the dataset: NO2(GT)

UCI Airfoil Self-Noise. The UCI Airfoil Self-Noise dataset [5] contains data obtained from NASA’s
aerodynamic and acoustic tests of airfoil blade sections. It contains 5 real-valued covariates, which
are relevant physical quantities. The target is also real-valued, which is the sound pressure created
(in dB). There are no missing entries. This dataset has n = 1503 rows and d = 5 covariates. We
explicitly mention the field names:

• X covariates’ names in the dataset: [frequency, attack-angle, chord-length,
free-stream-velocity, suction-side-displacement-thickness]

• Y target’s name in the dataset: scaled-sound-pressure

UCI Appliances Energy Prediction. The UCI AEP dataset [6] contains energy appliances’ data
collected at 10 min frequency for about 4.5 months. This dataset has no missing entries, and a
total of 19735 instances with 28 covariates. We downsample the dataset to hourly frequency, giving
n = 3290 rows with d = 24 relevant covariates (removing degenerate covariates: ‘date’, ‘lights’,
‘windspeed’, ‘visiblity’). The full list of covariates is 24 long, and so we do not list it out here (we
already mentioned the 4 we removed from the total of 28).

L.2 Measuring the alignment between θ⋆ and the eigenbasis directions for the datasets
The goal here is to compute the alignment between the θ⋆ and the eigenbasis directions {uj}dj=1
for the three real-world datasets. The eigenspace Ud is known from the design matrix X, but θ⋆ is
unknown for real-world tasks. As a proxy, we use the ridge solution θ̂λ (with a small λ).

Methodology of choosing λ: We considered using the OLS solution θ̂OLS := (XX⊤)−1XY as the
proxy for θ⋆, but (XX⊤)−1 was numerically unstable for these datasets, so we instead used the ridge
solution θ̂λ with a small λ. We calculated this λ methodically for all datasets as a constant fraction of
the sum of squared singular values. Explicitly, we (i) computed the SVD of the design matrix X,
and (ii) set λ := C ·

∑d
j=1 s

2
j using the obtained singular values. The value C := 10−5 was chosen

arbitrarily (and the above trend is stable across other reasonably small values of C).

Figure 10 shows the result. The sum of all bars in a single plot is one, since {uj}dj=1 are unit-norm
vectors that form an orthogonal basis of Rd. We infer two things. Firstly, for multi-step SD to
outperform ridge (as is the case for the Air Quality and Airfoil datasets), θ⋆ can be well-aligned with
any of the uj , j ∈ [d]; not necessarily u1. Secondly, this gives insight into why multi-step SD could
not outperform ridge on the AEP task (Table 1). Unlike the other two datasets, the θ⋆ for the AEP
dataset is not strongly aligned with any of the uj , j ∈ [d]. The top component in AEP only explains
∼ 35% of the total θ⋆ norm, whereas that number is close to ∼ 80% for the Air Quality and Airfoil
datasets. This indicates a large β value for the AEP dataset in Assumption 2.2.

L.3 Observed quadratic nature of MSE w.r.t. ξ parameters
In this section, we show that the optimal ξ values given in Table 1, selected via the strategy in
section 5.2, are indeed the ones that minimize the validation MSE. By inspecting the minima of each
of the curves in Figure 11, we observe that the values of ξ⋆ for 1-step SD in Table 1 (found through
the strategy described in section 5.2) indeed coincide with the minima producing values in the below
curves. Further, Figure 11 empirically demonstrates the quadratic nature of risk (MSE) vs ξ described
in Theorem 5.
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(a) Air Quality dataset (λ = 0.167) (b) Airfoil dataset (λ = 0.023) (c) AEP dataset (λ = 0.237)

Figure 10: The alignment of θ⋆ to the eigenbasis directions {uj}dj=1 for the three datasets used in
the experiments. The low-alignment of θ⋆ to any of the eigenbasis directions for the AEP dataset
explains why SD provides no gain over ridge in the test set MSE values observed in Table 1. Details
of the methodology used to compute the alignment are provided in Appendix L.2.

(a) Air Quality dataset (b) Airfoil dataset (c) AEP dataset

Figure 11: Observed quadratic nature of MSE (on validation set) of 1-step SD vs ξ for λ = λ⋆
1. This

agrees with Theorem 5 and validates the hyperparameter tuning strategy outlined in section 5.2.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We present a transparent top-level summary of all our results in the abstract
and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Wherever applicable, limitations have been discussed (e.g. Remark 4.2).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems and lemmas have been stated with the precise assumptions used,
and the Appendix provides all the proofs. Further, proof sketches and main ideas have been
presented in the main paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of the experiments (dataset, methodology used) are provided in the
main paper and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our main contributions are theoretical results, however we plan to release
relevant code on github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all relevant details in the paper (especially refer to Section 5.2 for
how we exactly select our hyperparameters).

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Since our experiments don’t have randomized components (estimators have a
closed-form solution), we do not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments are smaller scale and all experiments run on a single CPU
within a minute. We mention this in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We uphold the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Although our work is largely theoretical, it does contribute to the understanding
of self-distillation, and we mention potential societal impacts in the Conclusion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We write our own code. All data used is indeed permissible to use for research
purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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