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Abstract

The success of modern multimodal representation learning relies on internet-scale datasets. Due to the
low quality of a large fraction of raw web data, data curation has become a critical step in the training
pipeline. Filtering using a trained model (i.e., teacher-based filtering) has emerged as a successful solution,
leveraging a pre-trained model to compute quality scores. To explain the empirical success of teacher-based
filtering, we characterize the performance of filtered contrastive learning under the standard bimodal data
generation model. Denoting η ∈ (0, 1] as the fraction of data with correctly matched modalities among n
paired samples, we utilize a linear contrastive learning setup to show a provable benefit of data filtering:
(i) the error without filtering is upper and lower bounded by 1/η√n, and (ii) the error with teacher-based
filtering is upper bounded by 1/√ηn in the large η regime, and by 1/√n in the small η regime.

1 Introduction

The seminal work of Radford et al. [30] introduced CLIP, a large-scale multimodal training paradigm that
leverages contrastive learning on image and language modalities. This marked a significant advancement
in general purpose representation learning that enabled unprecedented zero-shot downstream performance.
A crucial factor in the success of CLIP and other vision-language models (VLMs) was the shift towards
training on massive datasets [41], often comprising billions of image-text pairs scraped from the internet (e.g.,
LAION-5B [31] and DataComp-1B [11]). The sheer quantity of data unlocks the capability to learn robust
representations [9]. However, due to the inherently noisy nature of web data, this introduces significant
challenges regarding the quality, resulting in the need for data curation. Smaller but higher quality subsets of
the data have been observed to result in better models than larger but noisier datasets [41, 26, 11]. Gadre
et al. [11, Figure 2] observe that training on only a selected 30% of the dataset results in a better performing
model than training on the full corpus. To handle such a significant fraction of low-quality data, data curation
has become a critical step in modern internet-scale pretraining pipeline of foundation models [1].

For vision-language datasets, a number of methods have been introduced for data filtering [10, 37, 19, 8, 33, 23].
Among these, teacher-based filtering, where a pre-trained model is used to score samples and retain high-quality
ones, has emerged as a particularly effective strategy [10, 37]. This approach marks a progression from earlier
efforts which relied on heuristic-based filtering (e.g., the WIT400M dataset used in CLIP [30]). Subsequent
and ongoing curation efforts have increasingly leveraged strong existing models, like CLIP itself, to refine
datasets further [31, 11].

In the theory community, the success of CLIP models has been attributed to two factors: the choice of
using a contrastive loss and the use of multimodal datasets. A series of modeling and analyses followed to
explain the benefits from these two factors under various scenarios [25, 15, 35, 28, 18, 14, 6, 7]. However,
despite the empirical successes of data filtering in the CLIP training pipeline, a theoretical understanding of
this phenomenon has been lacking. Our goal is to provide a deeper understanding of the benefits of using
teacher-based data filtering in the CLIP training pipeline, i.e., multimodal representation learning with a
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contrastive loss. In particular, we aim to understand the benefits of data filtering against the baseline of
contrastive learning without filtering, by focusing on one key parameter of interest: the fraction of high-quality
data present. Using η ∈ (0, 1] to denote the fraction of high-quality data pairs within the dataset, for both the
filtering and no-filtering approaches, we ask the question: How does the quality of the learned representation
behave as a function of η?

The choice of the data corruption model is crucial. In the related field of robust statistics, similar questions
have been studied under adversarial corruptions. However, for large multimodal datasets, we posit that a
stochastic corruption model is more relevant in capturing the nature of real data. For instance, in vision-
language data, a significant portion of the misalignment arises randomly: images paired with irrelevant or
tangentially related captions due to the processes of automated web scraping and the uncontrolled nature of
internet data (see, e.g., [27, Figure 1] for examples). We adopt such a model (detailed in Section 3.1), where
a fraction η of pairs are correctly aligned, while the remaining 1 − η fraction has mismatched modalities.
Under the stochastic corruption model of Section 3.1 and the contrastive learning setup of Section 3.2, we
analyze the performance of teacher-based filtering (Figure 1c) and compare against the baseline of no filtering
(Figure 1a).

Contributions. We demonstrate a provable benefit of data filtering. The error of the unfiltered contrastive
learning with n samples and η clean fraction depends as 1/η

√
n, as shown by an upper bound in Corollary 1

(result from Nakada et al. [25, Theorem 3.1]) and a lower bound in Proposition 1. On the other hand, for
teacher-based filtering (Theorem 1, main result), the dependency on η is improved to 1/√ηn when η is large,
and to 1/

√
n when η is small. Note that our result includes the training of the teacher model on the given

dataset, i.e., we do not assume the existence of any strong pre-trained model. In Section 7, we empirically
demonstrate the benefit of teacher-based data filtering in a synthetic experimental setting. Figure 3a verifies
the 1/η dependence of the unfiltered contrastive learning, and the improved dependence achieved by the
teacher-based filtering in two regimes, namely 1/√η for large η and independent of η for small η. Figure 3b
restates the finding of Fang et al. [10, Figure 4] to show that the qualitative observation of improved η
dependence via filtering holds true even with real data.

2 Related work

Our theoretical investigation of data filtering builds upon existing analyses of multimodal contrastive learning
[25, 15, 35]. In particular, Nakada et al. [25, Theorem 3.1] gives the rate for the unfiltered contrastive learning,
and we study the rate with data filtering. The theory of contrastive learning (CL) has been studied in many
other contexts [14, 6, 7, 18, 28]. Chen et al. [6] build a theoretical understanding for zero-shot transfer in
CLIP-style models. Huang et al. [14] theoretically compare unimodal and multimodal CL, and Daunhawer
et al. [7] study identifiability of the latent factors with the CL objective. We remark that the assumptions on
the data generative model across these works are related but sometimes subtly different.

The practical need for data curation arises from the inherent noise in web-scale datasets used for training vision-
language models [41, 26, 11] and increasingly, large language models [1, 21, 40, 36, 39]. In the multimodal
context, numerous empirical techniques have been developed [10, 37, 19, 23, 8, 33], with community benchmarks
like DataComp [11] facilitating systematic evaluation. Teacher-based filtering, the focus of our work, is a
widely adopted and effective empirical strategy [11, 37, 41], but we note that other approaches have also
been explored, in particular, editing bad data [27] (with some theoretical explanations [29, 43]). However,
theoretical studies of data filtering are limited. Some works include the study of data selection under weak
supervision in general statistical models [20], and selecting data during training [32].

The contemporaneous work of Sun et al. [34] also studies multimodal contrastive learning under data
misalignment, using a closely related model for alignment: [34, Section 3.2] is nearly the same as the spiked
covariance model in Section 3.1, but with an additional sparsity assumption. While Sun et al. [34] do not
characterize the dependence on η, they consider one-hidden-layer neural network encoders and also show the
gain of filtering.
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3 Setup

Section 3.1 describes our model for multimodal data and the assumptions on the related parameters. Section 3.2
formulates the contrastive learning objective on data pairs from the model.

3.1 Bimodal data model

Building on recent theoretical work in multimodal contrastive learning [38, 15, 25], we assume the signal has
a low-rank structure, while the noise is unstructured and dense. Adopting a linear generative model, the

paired bimodal data, x ∈ R
d and x̃ ∈ R

d̃, is expressed as:

x = U z + ξ , x̃ = Ũ z̃ + ξ̃ , (1)

representing, for example, image and text in the case of vision-language data. Here z, z̃ ∈ R
r denote the

latent variables lying in a shared r-dimensional space that captures the common underlying concept. The
first terms Uz and Ũ z̃ represent the signals of interest, residing in r-dimensional subspaces spanned by the
columns of U and Ũ, and the terms ξ and ξ̃ represent the dense noise. For simplicity, we assume that the

maps U ∈ R
d×r and Ũ ∈ R

d̃×r are composed of unit-norm orthogonal columns, fixing the scale.

We say a bimodal paired example is corrupted if the individual modalities do not correspond to the same
latent concept. This models how a large fraction of image-text pairs found on the internet are corrupted by
arbitrary captions that are unrelated to the content of the image. We formalize this in Assumption 1, with η
denoting the clean fraction. Figure 4 in Appendix A provides an illustration. For the noise, we assume a
Gaussian distribution with a diagonal covariance (Assumption 2).

Assumption 1 (Corruption model). Let z1, z2 ∼ N (0, Ir) be two independent draws from the r-dimensional
standard Gaussian. For an η ∈ (0, 1], the joint distribution on (z, z̃) is induced by

w.p. η , z = z1 = z̃ , and (Clean case)

w.p. 1− η , z = z1, z̃ = z2 . (Corrupted case)

Assumption 2 (Noise model). The noise {ξ, ξ̃} are mutually independent and independent of {z, z̃}, and

are zero-mean Gaussian variables given by ξ ∼ N
(
0, γ−1Id

)
and ξ̃ ∼ N

(
0, γ̃−1Id̃

)
.

The signal is unit-scale in r-dimensions since ∥U∥ = 1 and Cov(z) = Ir, hence the signal-to-noise ratios (SNRs)

for the two modalities are γ (r/d) and γ̃ (r/d̃) respectively. This model is parametrized by (η,U, Ũ, γ, γ̃, r, d, d̃),

and the aim is to recover U and Ũ, given paired samples. This is a standard model in bimodal contrastive
learning [38, 15, 25] and is inspired by the spiked covariance model [3, 42]. Consider an extreme case where the
images are matched to randomly shuffled captions. This corresponds to η = 0, and recovering the subspaces
U and Ũ becomes akin to two separate unimodal estimation problems, whose optimal (up to constants) error
rate is known with tight upper and lower bounds [5, Eq. (9)]:

E

[
ERR(Û,

ˆ̃
U)
]
≍

√√√√ r max
{
d γ−1(1 + γ−1), d̃ γ̃−1(1 + γ̃−1)

}

n
, (2)

where ERR is defined via the chordal distance between two subspaces in Eq. (4). This follows from the fact
that E[xx⊤] = UU⊤ + γ−1 Id. The

√
d/n dependence is expected from the concentration, the

√
r dependence

comes from the error metric being chordal (frobenius norm) as opposed to projection (spectral norm), and
γ−1/2 dependence captures how the error vanishes with high SNR. Refer to Appendix B.2 for a description of
how to arrive at Eq. (2) using the result from Cai et al. [5, Eq. (9)]. When η > 0 fraction of data is correctly
matched, our goal is to characterize the error rate achieved by the contrastive learning on the paired data
and show that data filtering can improve the error rate compared to the baseline of no filtering.

Notation. For a matrix Q = USV ⊤ and an integer a, let SVDa(Q) = UaSaV
⊤
a denote the projection of Q

onto its top-a components. Let lsv(Q) denote the left singular vectors of Q, and lsva(Q) denote its top a
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left singular vectors. Similarly, let rsv(Q) and rsva(Q) be defined for the right singular vectors. We use O(.)

to denote asymptotic upper bounds, and Õ(.) to denote upper bounds with only η, n factors (omitting the
dimension and SNR parameters). Similarly, we use the standard notation Ω(.), ω(.) to denote asymptotic
lower bounds. The notation ≳,≲ hides absolute constants, and we write a ≍ b when a ≲ b and a ≳ b holds
simultaneously. Additionally, we will sometimes use the random variable c ∼ Ber(η) ∈ {0, 1} to denote the
(hidden) ‘coin toss’ in accordance with Assumption 1, with c = 1 denoting to the clean case.

3.2 Contrastive learning formulation

We utilize a linear contrastive learning framework from [25, 15]. By linear we mean (i) the encoders that
map the data, x and x̃, to the shared embedding space are linear, and (ii) the contrastive loss computed on
the embeddings is linear. This setting corresponds to the choice of ϵ = 0, ψ = ϕ = Id maps in Nakada et al.
[25, eq 2.1], an equation that captures a more general contrastive loss framework. We refer the reader to
Tian [35, Figure 1] for different contrastive learning setups achieved by different choices of ψ and ϕ.

Let G ∈ R
r×d and G̃ ∈ R

r×d̃ denote the learnable encoders for the input, x and x̃ respectively. Figure 5
in Appendix A provides a helpful visualization. The similarity score of a pair (x, x̃) is computed as the

inner product ⟨Gx, G̃x̃⟩, which is widely used theoretically [25, 15, 16, 35] and empirically [30, 13]. The
multimodal contrastive loss maximizes the similarity of observed pairs, while minimizing the similarity of
‘generated’ pairs. Given n paired samples {(xi, x̃i)}ni=1, the parameters G, G̃ are learned by minimizing the
ρ-regularized objective given by:

Lρ(G, G̃) :=
1

2n(n− 1)

( n∑

i=1

( n∑

j=1
j ̸=i

(sij − sii) +
n∑

j=1
j ̸=i

(sji − sii)
))

+ Rρ(G, G̃) , (3)

where sij := ⟨Gxi, G̃x̃j⟩ for i, j ∈ [n] is the similarity score, and Rρ(G, G̃) := (ρ/2)∥G⊤G̃∥2F is the regularizer
with strength ρ > 0. The regularizer ensures that the learned parameters have finite norms. Indeed, Eq. (6)
shows that this objective has a closed-form solution with a 1/ρ multiplier, which becomes infinite if ρ = 0.
Note that CLIP [30] does not need a regularizer since the inner product is taken with normalized vectors (i.e.
(1/∥Gx∥)Gx instead of Gx).

The parameters G and G̃ assume the knowledge of the latent dimension r (since they are of sizes r × d and

r × d̃). In practice, the latent dimension is typically a design choice and is therefore known at training time.
Theoretically, assuming the latent dimension is known allows us to isolate the effects of data filtering from
the separate, well-studied problem of subspace rank estimation (for e.g., in Cai et al. [5]).

Also note that this objective is in a full-batch setting, i.e. the entire n× n grid of similarities is computed to
maximize the diagonals and minimize the off-diagonals. This does not cause computational issues since the
objective has a closed-form solution, given by Eq. (6).

To measure the quality of a solution, we use the chordal distance between two subspaces in Definition 1. This
is a standard measure of how well G, G̃ recover U, Ũ respectively [25, 15]. In Appendix B.3, we discuss other

potentially relevant metrics of recovering U, Ũ in the model of Section 3.1.

Definition 1. The error metric for a learned embedding G, G̃ is defined as

ERR(G, G̃) := max
{∥∥∥ sinΘ (rsv (G) ,U)

∥∥∥
F
,
∥∥∥ sinΘ

(
rsv

(
G̃
)
, Ũ
)∥∥∥

F

}
. (4)

We note two points. First, the metric only considers the right singular vectors. This is because the essential
information in G, G̃ is contained in the right subspaces. Indeed, the loss in Eq. (3) is only affected by G⊤G̃,

which is preserved under the transformation G ← AG, G̃ ← AG̃ for any orthonormal matrix A. Second,
the metric uses the sinΘ distance, which is a geometrically intuitive way to measure closeness between two
subspaces (refer to Appendix B.1 for a background).
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(c) Teacher-based filtering

Figure 1: Our goal is to analyze the Train-Filter-Train approach illustrated in (c) and show that it improves

upon the no filtering approach of (a). Here ϕ⋆ denotes the ground-truth parameters and ϕ̂ denotes the learned

version. In our setting, ϕ∗ ≡ {U, Ũ} and ϕ̂ ≡ {G, G̃}.

4 Baseline: unfiltered contrastive learning

We study the error rate of the unfiltered contrastive learning (Figure 1a). We show that the error is upper

and lower bounded by Õ (1/η
√
n). The upper bound is given in Corollary 1, which is a result from Nakada

et al. [25]. We show a matching lower bound in Proposition 1.

Corollary 1 (Corollary of [25, Theorem 3.1]). Given a dataset of pairs {(xi, x̃i)}ni=1 generated i.i.d. according
to the bimodal data model in Eq. (1) satisfying Assumptions 1 and 2, the solution of minimizing the contrastive

loss in Eq. (3) satisfies with probability 1− exp(−Ω(max{d, d̃})):

ERR(G, G̃) ≲
1

η

√
r max{d, d̃} (1 + γ−1) (1 + γ̃−1)

n
+ Õ

(
1

n

)
,

provided the number of samples n ≳ (1/η2) max{d, d̃}
(
1 + γ−1

) (
1 + γ̃−1

)
.

Remark 4.1 (Looseness in SNR parameters compared to Eq. (2)). The dependence on SNR parameters
(γ, γ̃) in Corollary 1 is looser than the unimodal estimation counterpart in Eq. (2). As stated, the error upper
bound in Corollary 1 does not become zero when γ →∞. We remark that this is an artifact of the analysis.
Indeed a tighter analysis is possible that recovers a

√
γ−1γ̃−1 term also in the upper bound, for instance,

using the ideas in Cai et al. [5, Section 7], in particular [5, Eq. (39)].

A complete proof of Corollary 1 is presented in Appendix D, which is largely a reconstruction from Nakada
et al. [25] with some minor corrections. The analysis has three parts. First, the unregularized term of

the contrastive loss in Eq. (3) simplifies to L0(G, G̃) = −Tr
(
GSnG̃

⊤
)
, where Sn ∈ R

d×d̃ denotes the

cross-covariance matrix of the data, defined as

Sn :=
1

n− 1

∑

i∈[n]

(xi − x)
(
x̃i − x̃

)⊤
≈ 1

n

∑

i∈[n]

xix̃
⊤
i . (5)

Second, the regularized contrastive loss, albeit nonconvex, admits a closed-form solution as the SVD of
Sn, given in Eq. (6). Due to this, we can directly analyze the solution without the need for optimization
analysis.

argmin
G,G̃

Lρ

(
G, G̃

)
=

{(
G, G̃

) ∣∣∣ G⊤G̃ =
1

ρ
SVDr (Sn)

}
. (6)

The third key piece is concentration of Sn. We show finite sample concentration of Sn in operator norm,
namely w.h.p.

∥∥Sn − S
∥∥ ≲ 1/ρ

√
n, for the limiting quantity S = (η/ρ)UŨ⊤. Using a Davis-Kahan like result,

we can translate the operator norm concentration to a distance between the angles of subspaces, for both left
and right singular vectors, yielding w.h.p. ERR(G, G̃) ≲ 1/η

√
n. Note the dependence on the regularization

strength ρ vanishes (as long as ρ > 0) due to its appearance in both the numerator (via op-norm concentration)
and denominator (since the singular values of S scale as η/ρ). This sketch describes the 1/η dependence of the

5



unfiltered contrastive learning. In Proposition 1, we show that this dependence is tight. We present a proof
of Proposition 1 in Appendix E by constructing a hard problem instance (parameterized by η).

Proposition 1. Under the setting of Corollary 1, there is a class of problem instances with latent dimension
r = 1 such that the error achieved by the minimizer of Eq. (3) is lower bounded (up to absolute constants)

with probability 1− exp(−Ω(max{d, d̃})) as:

ERR(G, G̃) ≳
1

η

√√√√max
{
d γ−1, d̃ γ̃−1

}

n
.

5 Our approach: teacher-based filtering

In the previous section, we concluded that the unfiltered contrastive learning achieves a tight error dependence
of 1/η. In this section, we ask: can filtering algorithms improve upon the η dependency? Intuitively, we expect
the answer to be yes, since filtering can identify corrupted samples and remove them (increasing the clean
fraction η). Indeed, if the filter could perfectly identify all clean samples, it would achieve a dependence of
1/√η (since this would be akin to the unfiltered contrastive learning with η ← 1 and n← ηn). We will now
study the η dependence of teacher-based filtering.

Teacher-based filtering, which follows a Train-Filter-Train approach, has proven to be a successful method in
practice [10, 37]. In the first training step, a teacher model is trained on (potentially a part of) the dataset.
In the filter step, (the remaining part of) the dataset is filtered by using the teacher to compute a similarity
score to evaluate the quality of each sample. The filtering usually happens by selecting samples with score
above a certain threshold θ ∈ R. In the second training step, a student model is trained on the filtered dataset.
Refer to Figure 1c for an illustration. The student can be initialized at the teacher’s solution, or even at
a fresh random initialization. The intuition is that the teacher can extract useful signal from the dataset
despite the presence of corrupted samples, which can help in identifying and discarding corrupted samples.
Algorithm 1 describes this process in the setup of Section 3. The split of the dataset into two halves is for
the convenience of analysis, by ensuring the filtering rule (which depends on the first half of samples and θ)
is independent of the samples being filtered (the second n/2 samples). We now state our main result.

Algorithm 1 Teacher-based filtering in the setup of Section 3.

Input: Dataset D = {(xi, x̃i)}ni=1, Threshold θ ∈ R.

Step 1 (Train): Obtain GT, G̃T by minimizing Eq. (3) on the first n/2 samples {(xi, x̃i)}i≤n/2.

Step 2 (Filter): Create Dfilt(θ) from {(xi, x̃i)}i>n/2 by retaining sample i iff ⟨GT xi, G̃T x̃i⟩ > θ.

Step 3 (Train): Output G(θ), G̃(θ) by minimizing Eq. (3) on Dfilt(θ).

Theorem 1. Under the model in Eq. (1) satisfying Assumptions 1 and 2 with r ≥ 2, there exists a threshold
θ∗ ∈ R such that, given a dataset of pairs {(xi, x̃i)}ni=1 generated i.i.d. according to the model, the output of

Algorithm 1 satisfies with probability 1− exp(−Ω(max{d, d̃})):

ERR
(
G(θ∗), G̃(θ∗)

)
≲ min {T0.5, T0} ,

provided n ≳ (1/η2) max{d, d̃}
(
1 + γ−1

) (
1 + γ̃−1

)
. Here T0.5, T0 are defined as

T0.5 =

√
r max{d, d̃} poly (γ−1, γ̃−1)

ηn
+ Õ

(
1

n

)
,

T0 =

√
r3 max{d, d̃} poly (γ−1, γ̃−1)

n
+ Õ

(
1

n

)
.

We provide a full proof in Appendix G, and discuss the sketch in Section 6. Certain observations are in
order. First, we see two regimes of behavior. The error behaves as 1/√η for large values of η, and becomes
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independent of η for small values of η (note that η still needs to large enough to satisfy the requirement of
n ≳ 1/η2 for theorem to be valid). Both these regimes exhibit a better dependence on η than the unfiltered
contrastive learning’s rate of 1/η. From the expressions, we note that the switch between the regimes happens
at η = 1/r2 (up to constants). Second, this result is stated for the optimal filtering threshold θ∗. The optimal
choice of this hyperparameter depends on the problem quantities, particularly n and η. Understanding this
dependence is an interesting direction of research, but outside the scope of the current work. Our analysis
considers two fixed choices of θ that recover each of the regimes. We also present a small experiment on
varying the filtering threshold θ in the vicinity of θ∗ in Appendix H. Third, we remark that it remains an
interesting research question to study whether an improved dependence on η (at least something better than
1/η) can be achieved with a single training loop on the data (as the teacher-based filtering is a two-step
training process).

It is perhaps surprising that the error can become independent of the clean fraction η, which is better than
the oracle rate of 1/√η. This counter intuitive benefit stems from the use of the inner product to compute
similarities (Section 3.2) on the corruption model given by Assumption 1. Owing to this, the distribution
of the similarity scores before filtering follows a very typical structure, explained in Figure 2. Filtering can
retain samples from the right tail of the noisy score distribution D0, and these samples provide useful signal
to recover the ground-truth U parameter. Finally, we remark on the assumptions needed for this result.
Assumption 2 makes this setting somewhat special, since Nakada et al. [25] allow for a general covariance
Σξ,Σξ̃ (with bounded norms) on the noise. Handling a more general noise covariance is trivial for unfiltered
contrastive learning, but significantly more challenging in the case of filtering. We argue that Assumption 2
preserves the essential characteristics of the problem though, while simplifying the analysis of filtering. In the
following section, we discuss the proof ideas in more detail.

6 Analysis of the filtering algorithm

In this section, we describe the main ideas behind the proof of Theorem 1. In Section 6.1, we study the
distribution of the scalar score used for filtering samples. In Section 6.2, we use the score characterization to
understand filtering by thresholding on the scores.

6.1 The score used for filtering

For a sample (x, x̃), let S(x, x̃;A) for a matrix A ∈ R
d×d̃ denote the score of the sample, defined in Eq. (7).

This scalar score is meant to capture the quality of the sample (x, x̃). Treating (x, x̃) as a random i.i.d.
sample from the model in Section 3.1, we characterize the distribution of the score. Note that the teacher-
based filtering is simply using A := G⊤

TG̃T to score the data (the subscript is used to denote the teacher’s
parameters). To understand teacher-based filtering, an intermediate step will be to understand filtering using
an ‘oracle’ which has access to the ground-truth problem parameters (refer to Figure 1b). The oracle scores

data using A := UŨ⊤, given in Eq. (8). Since G⊤
TG̃T → (η/ρ)UŨ⊤ as the number of samples n→∞, we

expect the teacher filtering to resemble the oracle filtering in the large n regime. The positive scaling factor
of η/ρ does not affect threshold-based filtering, as the ordering of samples remains unchanged.

S(x, x̃;A) := x⊤Ax̃ , (7)

S(x, x̃;UŨ⊤) = (U z + ξ)
⊤
UŨ⊤

(
Ũ z̃ + ξ̃

)
= z⊤z̃ + z⊤Ũ⊤ξ̃ + ξ⊤U z̃ + ξ⊤UŨ⊤ξ̃︸ ︷︷ ︸

zero-mean terms involving (ξ,ξ̃)

. (8)

Remark 6.1 (Two versions of oracle). There are two possibilities for an ‘oracle’ in this setup. The first kind
has access to the ground-truth problem parameters, which is what we study. The second kind has access to the
clean/corrupted status of each sample. The second kind can trivially achieve an error dependence of 1/√ηn by
choosing to only use the clean samples.

Recalling Assumption 1, since z̃ = z for clean samples, the score in Eq. (8) is defined through the independent

randomness in z, ξ, ξ̃. For corrupted samples, it is defined via the independent randomness in all z, z̃, ξ, ξ̃. We
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characterize the distribution in both cases, detailed in Appendix F. The main observations are illustrated in
Figure 2a. D0 denotes the distribution of the score in the corrupted case, with mean µ(D0) = 0 (since z, z̃ are
independent), and variance σ2

0 = r
(
1 + γ−1

) (
1 + γ̃−1

)
. Similarly, D1 denotes the distribution in the clean

case, with mean µ(D1) = r (since z = z̃ leading to a squared term), and variance σ2
1 = r+r

(
1 + γ−1

) (
1 + γ̃−1

)
.

Note that σ2
0 ≤ σ2

1 ≤ 2σ2
0 .

Since clean and corrupted data are mixed with η, 1− η proportions, the score of a generic sample from the
population is given by the mixture distribution D := ηD1 +(1− η)D0. Figure 2 provides an illustration of the
score distribution D. Due to i.i.d. data, the oracle filtering algorithm’s scores are n i.i.d. draws from D. The
filtering threshold θ can be picked in various ways, leading to various algorithms for filtering. The threshold
θ → −∞ corresponds to no filtering.

0 r

θ ∈ R

σ0 σ1

D0

D1

1− η

η

(a) Theoretical (stylized). (b) Observed.

Figure 2: Distribution of the oracle score S(x, x̃;UŨ⊤) is given by the mixture of D0,D1 with weights
(1 − η), η respectively. Here σ2

0 , σ
2
1 depend on parameters r, γ, γ̃. The threshold θ ∈ R is used to filter the

datapoints (score > θ are retained, others are discarded). Subfigure (b) shows the observed histogram in a
synthetic setting for n = 50000 samples with r = 16, γ = γ̃ = 104.

Remark 6.2. Since σ0 ≤ σ1 =
√
2r (1 + γ−1) (1 + γ̃−1), the condition γ, γ̃ = ω(

√
r) ensures that r/σ1 = ω(1),

leading to a separation between the modes of D0 and D1. In this case, the clean and corrupted data become
well-separated via the oracle score S(x, x̃;UŨ⊤).

6.2 Analysis of thresholding on the score distribution

In this section, we discuss an analysis for the oracle filtering algorithm (Figure 1b), which captures the
main conceptual ideas of data filtering in the setup of Section 3. The proof for the teacher-based filtering
(Theorem 1) is given in Appendix G, which uses the ideas from this section, along with the operator norm
concentration in Corollary 1 to bound the deviation caused by the difference between the teacher scores
and the oracle scores. Given a dataset {(xi, x̃i)}ni=1, let nsel(θ) denote the number of samples retained after
oracle filtering, and let Isel(θ) ⊆ [n] denote the indices of the samples selected, defined by the condition

i ∈ Isel(θ) ⇐⇒ S(xi, x̃i;UŨ⊤) > θ. Analogous to Eq. (5), we define Sn(θ) to be the empirical cross-
covariance of the filtered data, given by Eq. (9).

Sn(θ) :=
1

nsel(θ)− 1

∑

i∈Isel(θ)

(xi − x)
(
x̃i − x̃

)⊤
, Sn(θ) :=

1

nP (θ)

∑

i∈Isel(θ)

xix̃
⊤
i , (9)

S(θ) := E

[
Sn(θ)

]
= E[xx̃⊤ |S(x, x̃;UŨ⊤) > θ ] . (10)

Observe that similar to Eq. (6), the closed-form solution of the optimization holds even on the filtered dataset.
The step that changes is the concentration, namely, the characterization of how Sn(θ) concentrates as n
increases, according to the distributions of the involved random quantities. In the following, we argue that
Sn(θ) concentrates to S(θ), given by Eq. (10), and characterize the behavior of S(θ) to recover a guarantee
akin to Theorem 1.
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Notation. We set up some useful notation on the score distributions D0,D1 from Figure 2a. For any a ∈ R, let
P0(a) = PZ∼D0(Z > a) and P1(a) = PZ∼D1(Z > a) denote the probabilities of the upper tails of the corrupted
and clean parts respectively, and let P (a) = PZ∼D(Z > a) = ηP1(a) + (1− η)P0(a) denote the probability
of selection from the mixture distribution. Similarly for expectations, define E0(a) := EZ∼D0

[Z|Z > a],
E1(a) := EZ∼D1

[Z|Z > a].

Concentration of Sn(θ) to S(θ). We claim that Sn(θ) ≈ Sn(θ) by using two approximations. First, the
un-centered version in Sn(θ) approximates the centered version in Sn(θ). Second, although nsel(θ) is a random
quantity, it concentrates around nP (θ). We formally bound the error due to both these approximations in
the full proof. Since the filtering threshold θ is chosen independent of the samples being filtered, the selected
samples satisfy the i.i.d property under the conditional law of the score being above θ. This allows us to show
that the approximate version, Sn(θ), concentrates around its expectation, S(θ), by bounding the spectral
norm of the difference via a Matrix-Bernstein type inequality. Overall, we get

w.p. 1− exp(−Ω(max{d, d̃})) , ∥Sn(θ)− S(θ)∥ ≲
√

max{d, d̃}
nP (θ)

. (11)

Analysis of S(θ) and P (θ). Simplifying S(θ) reveals that it is simply a scaled version of UŨ⊤, with the
scaling coefficient depending on θ described by the conditional expectations E0(θ) and E1(θ). Concretely,

S(θ) = 1/r (η E1(θ) + (1− η)E0(θ))UŨ⊤. Owing to this, the application of a Davis-Kahan result on Eq. (11)

will dictate the guarantee of recovering U, Ũ for the filtering algorithm. The error behaves as:

ERR ∝ r

(η E1(θ) + (1− η)E0(θ))

1√
η P1(θ) + (1− η)P0(θ)

1√
n
.

The behavior of the functions E0(θ), E1(θ) and P0(θ), P1(θ) precisely quantify this rate. As a sanity check,
setting θ = −∞ recovers the 1/η behavior of the unfiltered contrastive learning, as E1(−∞) = r, E0(−∞) = 0
and P1(−∞) = 1, P0(−∞) = 1. Since E0(θ), E1(θ) are increasing functions in θ, whereas P0(θ), P1(θ) are
decreasing, we observe a tradeoff. A larger threshold θ results in larger conditional expectations E0(θ), E1(θ),
but smaller probabilities of selection P0(θ), P1(θ). In the Appendix, we formally characterize this behavior,
involving calculations on the conditional expectations and probabilities of the Gaussian distribution. Here,
we discuss the two choices of θ that recover the two regimes of the filtering behavior. The threshold θ = 0
results in E1(0) ≥ r, E0(0) ≥ 2/π and P1(0) ≥ 0.5, P0(0) = 0.5, recovering the independent of η regime. And
the threshold θ = r/2 results in E1(r/2) ≥ r, E0(r/2) ≥ r/2 (using a trivial lower bound for the conditional
expectation), and P1(r/2) ≥ 0.5 (but P0(r/2) is small), recovering the 1/√η regime. The optimal θ∗ will achieve
a rate better than the above two special points, hence the upper bound on the error is given by the min of
these two regimes, recovering the upper bound in Theorem 1.

7 Experiments

In this section, we validate our theoretical results with a synthetic setup. With parameters d = 10, d̃ = 8, r = 4,
and SNR γ = γ̃ = 104, and with randomly generated U, Ũ, we generate n = 10M samples according to
the model in Section 3.1, and vary the clean fraction η. We experiment over 10 values of η geometrically
decreasing from 1 to 10−3. This experiment was run on a cluster of 50 CPUs with 500G memory, and
required less than 10 minutes. Figure 3a shows the result and discusses the observations, which validate
Corollary 1 and Theorem 1. To extend these observations to real settings, the main limitations are posed
by the modeling assumptions in Section 3, and the change in the evaluation metric from subspace recovery
to actual downstream accuracy. Despite the limitations, Figure 3b shows evidence that the qualitative
observation drawn from the theory holds with real image-text data too, namely, the downstream model
performance on reducing the clean fraction η degrades more slowly with data filtering. As the clean fraction
decreases, both approaches exhibit degradation in performance. However, the rate of degradation, represented
by the slope of the lines, is substantially smaller in the filtered setting.
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(a) Synthetic experiment. (b) Real experiment, Fang et al. [10, Figure 4].

Figure 3: (a). Observed dependence of ERR(G, G̃) on η for a synthetic experiment. The error of the
unfiltered contrastive learning follows a 1/η dependence, but deviates for small η since the requirement of
n ≳ 1/η2 in Corollary 1 gets violated. The error of the filtering algorithm follows a 1/√η dependence in the
large η (or small 1/η) regime, and an independent of η dependence in the small η regime. Going beyond
to even smaller η causes deviations since Theorem 1 also requires n ≳ 1/η2. The teacher-based filtering is
with the threshold θ = 0. (b). A similar trend on real data observed by Fang et al. [10]. The y-axis shows
1− Accuracy, which is different than the error metric in (a). However, we note that the qualitative trend
of the orange line having a smaller slope than the blue line still holds. Numbers from Fang et al. [10] are
reproduced with permission.

8 Conclusion and Broader Impacts

This paper presents a theoretical investigation into teacher-based data filtering for multimodal contrastive
learning with stochastically corrupted data. We rigorously establish its benefit, demonstrating that filtering
improves the error dependence on the clean data fraction, η, from 1/η (no filtering) to 1/√η in the large η
regime, and perhaps surprisingly, to independent of η in the small η regime. The latter finding suggests
that teacher-based filtering can be particularly beneficial when data quality is low, achieving performance
independent of the initial clean fraction. Our results provide a formal basis for the empirical success of teacher-
based data filtering. The main limitations are posed by the assumption of linearity in Section 3, and the
model of stochastic corruptions in Assumption 1. Future work could explore the optimal selection of filtering
thresholds and investigate whether similar gains can be achieved with one-step filtering algorithms.

Our contributions are largely on the theoretical understanding of data filtering, and its potential benefits. At
a high-level, effective data filtering can reduce the compute cost needed to train models, which has positive
potential impacts through more judicious use of energy resources. On the other hand, data filtering can
exacerbate the biases present in a dataset by selecting certain subpopulations more than the others. If this
goes unchecked, it has potential negative impacts to society.
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A Additional Illustrations

In this section, we provide some useful illustrations. Figure 4 illustrates the corruption model described in
Assumption 1. Figure 5 illustrates the linear maps G, G̃ used to generate the embeddings from observed
data (according to the model in Fig 4). Figure 6 accompanies Remark A.1.

z ∈ R
r

x ∈ R
d

x̃ ∈ R
d̃

f

f̃

(a) Clean data (w.p. η): z ∼ pZ , z̃ = z.

z, z̃ ∈ R
r

x ∈ R
d

x̃ ∈ R
d̃

f

f̃

(b) Corrupted data (w.p. 1− η): z, z̃ ∼i.i.d. pZ .

Figure 4: Model for stochastic corruptions. In this work, the forward maps f, f̃ are linear (refer to Eq. (1))
and the latent distributions are Gaussians.

x ∈ R
d

x̃ ∈ R
d̃

R
rG

G̃

Figure 5: On seeing multimodal data (x, x̃), linear maps G, G̃ (learnable parameters) create the embeddings
that lie in R

r (the knowledge of r, the true latent dimension, is assumed). The similarity is measured with

the inner product ⟨Gx, G̃x̃⟩.

x

x̃

independent: N (0,Σ0)
correlated: N (0,Σ1)

Figure 6: Illustration of the joint distribution of (x, x̃). The overall distribution is a mixture of two zero mean
Gaussians: the independent case (w.p. 1− η) and the correlated case (w.p. η).

Remark A.1. The distribution of (x, x̃) ∈ R
d+d̃ from Section 3.1 is a mixture of two zero-mean Gaussians.

With weight η, the covariance matrix is Σ1 (for c = 1, i.e. the clean case). With weight 1− η, the covariance
is Σ0 (for c = 0). Figure 6 provides an illustration.

Σ1 =

[
UU⊤ + γ−1Id UŨ⊤

ŨU⊤ ŨŨ⊤ + γ̃−1Id̃

]
, Σ0 =

[
UU⊤ + γ−1Id 0

0 ŨŨ⊤ + γ̃−1Id̃

]
.
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B Background

This section covers some useful background concepts.

B.1 Measuring the distance between subspaces

The concept of principal angles provides a geometrically intuitive way to measure the closeness between two
subspaces. Let X and Y be two r-dimensional subspaces within a larger Euclidean space R

d. There exist r
principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π/2 that describe the relative orientation of these subspaces.

• θ1 represents the smallest possible angle between any two unit vectors x ∈ X and y ∈ Y.

• Subsequent angles θk capture the minimum angles within directions orthogonal to those defining the
previous angles θ1, . . . , θk−1.

• The cosines cos(θi) measure the alignment (1 means aligned, 0 means orthogonal within that principal
direction), while the sines sin(θi) measure the separation or angle.

To aggregate this information into a single distance metric, we often use the frobenius norm of the sine of the
principal angles, denoted ∥ sinΘ(X ,Y)∥F . It is defined as

∥ sinΘ(X ,Y)∥F =

√√√√
r∑

i=1

sin2(θi) .

This metric provides an overall measure of the difference between the subspaces. It’s zero if and only if
X = Y (since all θi = 0), and it increases as the subspaces diverge.

Computing this metric relies on matrix operations involving orthonormal bases for the subspaces. Let
X ∈ R

d×r be a matrix whose columns form an orthonormal basis for X (so X⊤X = Ir). Similarly, let
Y ∈ R

d×r be a matrix with orthonormal columns forming a basis for Y . The distance metric ∥ sinΘ(X ,Y)∥F
can be computed using X and Y via the following formula

∥ sinΘ(X ,Y)∥F =
∥∥X⊤

⊥Y
∥∥
F
.

Here, X⊥ is any d × (d − r) matrix such that its columns form an orthonormal basis for the orthogonal
complement of X , denoted X⊥. This means that the combined matrix [X X⊥] must be a d× d orthogonal
matrix. Notationally, we often just write ∥ sinΘ(X,Y)∥F instead of using X ,Y.

B.2 Optimal unimodal estimation rates in the spiked covariance model

Eq. (1) uses the well-known spiked covariance model for each of the two modalities, originally introduced
by Johnstone [17] and well-studied in the literature [3, 42, 5]. Cai et al. [5] establish optimal (minimax)
estimation rates for the covariance matrix (i.e. UU⊤ + γ−1Id) and the principal subspace (i.e. U) in a more
general sparse spiked covariance model. In particular, [5, Eq. (7)] describes the minimax rate for covariance
estimation, and [5, Eq. (9)] describes the minimax rate for subspace estimation. We use the latter result to
get Eq. (2). Since the problem of subspace estimation is invariant to scaling, we instantiate [5, Eq. (9)] for
the estimation of data with covariance γUU⊤ + Id (since σ = 1 is assumed in [5, Eq. (1)] to fix the problem
scaling). With this, the paramaters map as λ = γ, p = d and k = d (since our model is not sparse). This

establishes a rate (up to constants) of
√

dγ−1(1+γ−1)
n for the estimation in 2-norm. An additional factor of

√
r

appears since we use the Frobenius-norm (i.e. the chordal distance in Definition 1), and Eq. (2) follows.

B.3 Discussion about alternative error metrics

The metric in Definition 1 measures the estimation quality in each modality separately, i.e., quality of
estimation of U and Ũ, and is used in prior work [25] for the multimodal estimation problem of interest.
However, this metric does not capture the alignment between the learned representations of the two modalities.
This can be undesirable because:
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• Practically, Def 1 only captures the requirement when the downstream task uses the individual modality
encoders separately. For example, using the image encoder from CLIP for a vision task like classification
or segmentation (for instance, via finetuning or using a linear-head on top of the vision encoder as
reported in the original CLIP paper Radford et al. [30]). However, many downstream applications
require encoders of both modalities, the most classic example being zero-shot image classification, where
the image and text encoders work together and not in isolation. The metric in Definition 1 does not
evaluate the quality of the learnt solution to reflect this.

• Theoretically, the metric in Def 1 is (left) rotation-invariant. That is, recovering G = U or G = QU

(for an orthonormal matrix Q) results in the same metric value. But the transformation of G = QU

does not preserve the value of G⊤G̃. This is precisely the reason why the metric in Def 1 does not
suffice to measure the quality of cross-modality estimation. Mathematically, the subject of Canonical
Correlation Analysis (CCA) is highly related to this problem of alignment. In particular, Def 1 is using
the PCA metric for a CCA-like problem. The CCA metric (introduced in Def 2) in particular captures
the cross-modality linkage, and is perhaps desirable in this problem.

Figure 7 shows how the metric in Definition 1 (dubbed ERRssd for ‘separate sine distance’) is ‘solved’ by
applying unimodal PCA to the observed data, but the CCA metric (dubbed ERRccd for ‘cross-correlation
distance’) requires the linkage of data across modalities.

(a) ERRssd from Def 1, i.e. PCA metric, [5, Eq. (8)]. (b) ERRccd from Def 2, i.e. CCA metric, [12, Eq. (6)].

Figure 7: Comparison of error metrics from Defs 1 and 2.

We will now introduce certain new metrics that capture different notions of parameter recovery (of U, Ũ) in
our problem. For ease of naming and reference, we will call the metric in Def 1 as ERRssd, where SSD refers
to separate sine distance.

Motivated by the literature on CCA, we reuse the following notion of error from Gao et al. [12, Eq. (6)],
which we call the cross-correlation distance (CCD).

Definition 2. For a learnt solution G, G̃, the CCD metric is defined as

ERRccd(G, G̃) :=

∥∥∥∥∥∥∥∥
UŨ⊤
︸ ︷︷ ︸
d×d̃

− lsvr(G
⊤G̃)︸ ︷︷ ︸

Û

rsvr(G
⊤G̃)⊤︸ ︷︷ ︸

̂̃
U

⊤

∥∥∥∥∥∥∥∥
F

. (12)

Similarly, Definition 3 measures a different but related notion of subspace recovery.
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Definition 3. For a learnt solution G, G̃, the error is

ERR(G, G̃) :=

∥∥∥∥∥∥∥∥∥∥∥∥

U⊤
lsvr(G

⊤G̃)︸ ︷︷ ︸
Û︸ ︷︷ ︸

r×r

− Ũ⊤
rsvr(G

⊤G̃)︸ ︷︷ ︸
̂̃
U

∥∥∥∥∥∥∥∥∥∥∥∥
F

. (13)

Motivated by downstream use case, Definition 4 measures: For a fresh sample under the clean marginal of
the underlying distribution, with no noise, what is the error in recovering the latent representation? We call
this metric the label prediction error (LPE).

Definition 4. For a learnt solution G, G̃, for x := Uz and x̃ := Ũz, the LPE metric is

ERRlpe(G, G̃) :=

√√√√√√√Ez∼N (0,Ir)




∣∣∣∣∣∣∣∣
x⊤ lsvr(G

⊤G̃)︸ ︷︷ ︸
Û

rsvr(G
⊤G̃)⊤︸ ︷︷ ︸

̂̃
U

⊤

x̃ − z⊤z

∣∣∣∣∣∣∣∣

2
 . (14)

Remark B.1. Using the substitution M := U⊤Û ̂̃
U

⊤
Ũ− Ir, we can simplify the error to

ERRlpe(G, G̃) :=
√
Tr(M)2 +Tr(M2) + Tr(M⊤M) . (15)

In Figures 7 and 8, we compare all four metrics.

Figure 8: Comparison of error metrics from Defs 3 and 4.

C Lemmas

This section presents Lemmas used in the proofs. The first three Lemmas are standard results in the literature,
and we include them without proof.

Lemma 1 (Weyl’s Inequality). For matrices A,B ∈ R
m×n, let p = min(m,n) and let σ1(M) ≥ σ2(M) ≥

· · · ≥ σp(M) ≥ 0 denote the singular values for M ∈ {A,B}. Then, for all j = 1, . . . , p, it holds that

|σj(A)− σj(B)| ≤ ∥A−B∥2 .
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Lemma 2 (Wedin’s Theorem). Let A, Â ∈ R
m×n be matrices of the same size. Let r ≤ min(m,n) be the

rank of both A, Â, and let the SVDs be A = UΣV ⊤ and Â = Û Σ̂V̂ ⊤. Let σr(A) > 0 denote the rth singular
value of A, and assume σr(A) > ∥Â−A∥2. Then it holds that:

∥∥∥sinΘ(Û , U)
∥∥∥
F
≤ ∥Â−A∥F
σr (A)− ∥Â−A∥2

,

∥∥∥sinΘ(V̂ , V )
∥∥∥
F
≤ ∥Â−A∥F
σr (A)− ∥Â−A∥2

.

Lemma 3 (Whittle’s Inequality). Let X1, X2, . . . be a sequence of independent random variables such that:
(i) E[Xk] = 0 for all k ≥ 1, and (ii) the distribution of each Xk is symmetric about zero (i.e., Xk and −Xk

have the same distribution). Let Sn =
∑n

k=1Xk be the partial sum (with S0 = 0). If ϕ : R→ R is a convex
function such that ϕ(0) = 0, then the sequence E[ϕ(Sn)] is non-decreasing in n. That is, for all n ≥ 1:

E[ϕ(Sn)] ≥ E[ϕ(Sn−1)] .

Lemma 4. Let A,B ∈ R
m×n with rank(A) = r ≥ 1. If ∥A−B∥2 < σr(A), then for every t ∈ [0, 1], it holds

that rank
(
(1− t)A+ tB

)
≥ r.

Proof. Let Xt = (1− t)A+ tB. For any matrices M,N and any k,

σk(M) ≥ σk(N)− ∥M −N∥2,

which follows Lemma 1. Applying this with M = Xt, N = A, and k = r,

σr(Xt) ≥ σr(A)− ∥Xt −A∥2 = σr(A)− t∥A−B∥2 ≥ σr(A)− ∥A−B∥2 > 0,

for all t ∈ [0, 1] because ∥A−B∥2 < σr(A). Hence σr(Xt) > 0, so rank(Xt) ≥ r.

Lemma 5. Let X be a random variable with a log-concave density, mean µX , and variance σ2
X . It holds that

E[X |X > θ] ≤ θ + e σX , for θ ≥ µX .

Proof. Let m(x) = E[X − x |X > x] be the mean residual life function. We want to bound E[X |X > θ] =
θ +m(θ) for θ ≥ µX . Due to log-concavity of X, m(x) is non-increasing (see, eg, Bagnoli and Bergstrom [2,
Theorem 6]). Since m(x) is non-increasing, m(θ) ≤ m(µX) = E[X − µX |X > µX ]. We will now bound the
conditional expectation for this case of θ = µX .

Let Y = X − µX . Then E[Y ] = 0 and V(Y ) = σ2
X . m(µX) = E[Y |Y > 0] = E[Y +]

P(Y >0) , where Y + = max(0, Y ).

We know E[Y +] ≤
√
E[(Y +)2] ≤

√
E[Y 2] = σX . As for the denominator, we know that for any random

variable X with a log-concave density and mean µX , P(X ≥ µX) ≥ 1/e (see, eg, Lovász and Vempala [22,
Lemma 5.4]). Thus, m(µX) ≤ σX

1/e = e σX .

Lemma 6. Let x, y ∈ R
d and x̃, ỹ ∈ R

d̃ be random vectors. Assume that the pair (x, x̃) is independent

of the pair (y, ỹ). Let A be a fixed d × d̃ matrix and let θ ∈ R be a scalar threshold. Define the events
Cx = {x⊤Ax̃ > θ} and Cy = {y⊤Aỹ > θ}. Assume that these events have non-zero probability, i.e.,
P(Cx) > 0 and P(Cy) > 0. Then the conditional expectation of the outer product xỹ⊤ given both events Cx

and Cy factorizes as follows:

E
[
xỹ⊤ | x⊤A x̃ > θ, y⊤A ỹ > θ

]
= E

[
x | x⊤A x̃ > θ

]
·
(
E
[
ỹ | y⊤A ỹ > θ

])⊤
.
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Proof. The definition of conditional expectation given multiple events is conditioning on their intersection.
Here I denotes the indicator function.

E [xỹ⊤ |Cx, Cy ] = E [xỹ⊤ |Cx ∩ Cy ] =
E [xỹ⊤ICx∩Cy

]

P(Cx ∩ Cy)
.

The event Cx is determined solely by the random variables x and x̃. The event Cy is determined solely by
the random variables y and ỹ. By the initial assumption, the pair (x, x̃) is independent of the pair (y, ỹ).
Therefore, the event Cx is independent of the event Cy. This implies P(Cx ∩ Cy) = P(Cx)P(Cy). Hence the
denominator factorizes (and is non-zero since P(Cx) > 0 and P(Cy) > 0).

Now consider the numerator. Since Cx and Cy are independent, ICx∩Cy
= ICx

ICy
, which implies

E [xỹ⊤ ICx∩Cy
] = E [xỹ⊤ ICx

ICy
] = E [x ICx

] · E [ỹ ICy
]⊤ ,

again, due to independence of the pairs. Hence the numerator also factorizes.

Lemma 7. Let x ∈ R
d and x̃ ∈ R

d̃ be random vectors such that their joint distribution is a multivariate
normal distribution with zero mean. Let A be a fixed d × d̃ matrix, and consider the conditioning event
R = {(x, x̃) | x⊤A x̃ > θ} for some threshold θ ∈ R. Assume that the probability of this event is non-zero,
i.e., P(R) > 0. Then

E [x | x⊤Ax̃ > θ] = 0d .

Proof. Let Z = (x, x̃) ∈ R
d+d̃. The joint probability density function of Z, denoted by p(Z), corresponds to

the N (0,Σjoint) distribution for some covariance matrix Σjoint. The conditional expectation is defined as:

E [x | x⊤A x̃ > θ] = E [x | Z ∈ R] =
∫
R x p(Z) dZ∫
R p(Z) dZ

=

∫
R x p(Z) dZ

P (R)

We focus on the numerator integral and show that it is zero owing to symmetry. First note that p(Z) is

symmetric around the origin. That is, p(Z) = p(−Z) for all Z ∈ R
d+d̃. Second, observe that under the

transformation Z 7→ −Z, the condition becomes (−u)⊤A(−ũ) > θ, which simplifies to u⊤Aũ > θ. Thus, the
region R is symmetric with respect to the origin: Z ∈ R ⇐⇒ −Z ∈ R.

Lemma 8. Consider the random variable z := uv, where u, v are jointly Gaussian as

(
u

v

)
∼ N

(
0,

(
σ2
u γ

γ σ2
v

))
, with 0 < σ2

u, σ
2
v , and 0 ≤ γ < σuσv .

Let {zk}rk=1 be r independent copies. The conditional expectation is upper and lower bounded as

E

[
zi

∣∣∣∣
r∑

k=1

zk > θ

]
≥ max

{
γ,
θ

r

}
for all θ ∈ R ,

E

[
zi

∣∣∣∣
r∑

k=1

zk > θ

]
≤ max

{
γ,
θ

r

}
+ e

√
σ2
uσ

2
v + γ2

r
for θ ≥ 0 .

For the specific case of γ = 0 (i.e. u, v independent) and θ = 0, a stronger lower bound is

E

[
zi

∣∣∣∣
r∑

k=1

zk > 0

]
≥ 2

πr
σu σv .

19



Proof. Simplify the expression. Observe that zk are i.i.d. random variables. The expectation is
E[zk] = E[uv] = γ (since E[u] = 0 = E[v]). Let S =

∑r
k=1 zk, and let pS(.) denote the PDF of S. The

expectation is E[S] = rγ, and the variance is V[S] = r
(
σ2
uσ

2
v + γ2

)
.

Due to the symmetry among the i.i.d. variables zk, the conditional expectation E[zi |S > θ] is the same for
all i ∈ {1, . . . , r}. Let Q(θ) = E[zi |S > θ]. By linearity of expectation, we have

E[S |S > θ] = E

[
r∑

k=1

zk

∣∣∣∣S > θ

]
=

r∑

k=1

E[zk |S > θ] = r Q(θ) .

=⇒ Q(θ) =
1

r
E[S |S > θ] . (16)

Proof of lower bounds: general case lower bound θ
r . Observe that

E[S |S > θ] =

∫∞
θ
s pS(s)ds∫∞

θ
pS(s)ds

(17)

≥
∫∞
θ
θ pS(s)ds∫∞

θ
pS(s)ds

= θ .

Combining this with Eq. (16) shows the θ/r lower bound.

Proof of lower bounds: general case lower bound γ. For this, we show E[S |S > θ] is non-decreasing
in θ. Let h(θ) = E[S |S > θ]. Using Eq. (17), its derivative is given by

h′(θ) =
−θ pS(θ)

∫∞
θ
pS(s)ds+ pS(θ)

∫∞
θ
s pS(s)ds

P(S > θ)2

=
pS(θ)

P(S > θ)2

∫ ∞

θ

(s− θ)︸ ︷︷ ︸
≥0

pS(s)ds ≥ 0 . (18)

Thus E[S |S > θ] is non-decreasing in θ. In particular, E[S |S > θ] ≥ E[S] (i.e. the unconditional limit in the
limit θ → −∞). Since E[S] = rγ, using this in Eq. (16) shows the lower bound of γ.

Proof of lower bounds: the specific case of γ = 0 and θ = 0. Since the distribution of zk is symmetric
around zero, the distribution of S =

∑
k zk is also symmetric around zero. Therefore, P(S > 0) = 1/2. Using

this, we get

E[S |S > 0] =

∫∞
0
s pS(s)ds

P(S > 0)
= 2

∫ ∞

0

s pS(s)ds . (19)

Also, the expectation of the absolute value is E[|S|] =
∫∞
−∞ |s| pS(s)ds. Due to symmetry (i.e. pS(−s) = pS(s)),

we get

E[|S|] =
∫ 0

−∞
(−s) pS(s)ds+

∫ ∞

0

s pS(s)ds = 2

∫ ∞

0

s pS(s)ds . (20)

Using Eq. (19) and Eq. (20), we get

E[S |S > 0] = E[|S|] = E

[∣∣∣∣
r∑

k=1

zk

∣∣∣∣

]

≥(†)
E[|z1|]

= E[|u1v1|] = E[|u1| |v1|] = E[|u1|]E[|v1|] (using independence)

= σuσv E[|a|]2 =
2

π
σuσv . (for a ∼ N (0, 1))

Eq (†) holds intuitively. To formally show it, we invoke Lemma 3 (Whittle’s inequality) on the convex function
ϕ(x) = |x|. Using this with Eq. (16) gives the desired result.
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Proof of the upper bound. The probability density function of z = uv is given by

fz(x) =
1

πσuσv
√
1− ρ2

exp

(
ρx

σuσv(1− ρ2)

)
K0

( |x|
σuσv(1− ρ2)

)
,

where ρ = γ/(σuσv) denotes the correlation factor. Note that |ρ| < 1 is ensured via γ < σuσv in the lemma
statement. The function K0(a|x|) is log-concave for a > 0. The term exp(bx) is log-linear (hence log-concave).
The product of log-concave functions is log-concave. Thus, fz(x) is log-concave. Since S is a sum of r i.i.d.
random variables with log-concave densities, S also has a log-concave density. We use Lemma 5 to get
that E[S |S > θ] ≤ θ + e

√
r (σ2

uσ
2
v + γ2) for θ ≥ rγ. For θ ∈ [0, rγ], we use the non-decreasing property of

E[S |S > θ] from Eq. (18). Plugging into Eq. (16) concludes the argument.

Lemma 9. Consider Gaussian random variables x, y ∈ R
r, such that

(
x

y

)
∼ N

(
0,

(
axIr axy Ir

axy Ir ayIr

))
, with ax, ay > 0, axy ≥ 0 .

For θ ∈ R, define A(θ) := E
[
xy⊤ |x⊤y > θ

]
. It holds that A(θ) satisfies

A(θ) = f(θ) Ir ,

where f(θ) is a scalar function of θ ∈ R, such that

max

{
axy,

θ

r

}
+ e

√
axay + a2xy

r
≥ f(θ) ≥ max

{
axy,

θ

r

}
.

In the special case of axy = 0, it further holds that f(0) ≥ 2
√
axay/πr.

Proof. We first build an intuition for the quantity A(θ) ∈ R
r×r. For θ = −∞, A(θ) becomes the unconditional

expectation, which is axy Ir according to the given covariance structure. As θ increases in R, we expect A(θ)
to increase.

A(θ) is diagonal. We first show that A(θ) is a diagonal matrix. The (i, j)-th entry is A(θ)ij = E[xiyj |Z > θ],
where Z = x⊤y =

∑r
l=1 xlyl. Consider the transformation Ti : R

2r → R
2r that maps (x, y) to (x′, y′) where

x′l = xl for l ̸= i, x′i = −xi, and y′l = yl for l ̸= i, y′i = −yi.
First, note that Z ′ =

∑
l ̸=i xlyl + (−xi)(−yi) = Z. Hence the condition Z > θ is invariant under the

transformation Ti. Second, due to independence and the block diagonal structure of the covariance, the
overall joint density is a product of univariate Gaussians centered around zero. Due to the symmetry of
a univariate Gaussian, the overall density is also invariant under Ti. Third, the entry xiyj becomes −xiyj
under the transformation Ti. Due to this symmetry, we conclude that the off-diagonal entries are zero.

All the diagonal entries of A(θ) are equal by symmetry. The diagonal entries are A(θ)ii = E[xiyi |Z >
θ]. Let Zi = xiyi, meaning Z =

∑r
l=1 Zl. Due to the block diagonal structure on (x, y), each Zi is independent

and identically distributed. Hence, A(θ)ii = A(θ)jj for any i, j ∈ [r].

Properties of f(θ). From the above two steps, we conclude that A(θ) = f(θ) Ir for some scalar function
f : R→ R. Using the trace trick, we see that

f(θ) · Tr(Ir) = Tr
(
E[xy⊤ |x⊤y > θ]

)

=⇒ f(θ) =
1

r
E[x⊤y |x⊤y > θ] .

Since the covariances of x, y are scaled identity, each xiyi, i ∈ [r] is identically distributed. This distribution
is akin to uv for u ∼ N (0, ax), v ∼ N (0, ay) with Cov(u, v) = axy. Hence

f(θ) = E

[
u1v1

∣∣∣∣
r∑

i=1

uivi > θ

]
,
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for ui, vi i.i.d. according to the described distribution. Lemma 8 shows the required properties on this
conditional expectation, showing the desired inequalities in the statement of this lemma.

Lemma 10. Let x ∈ R
d and x̃ ∈ R

d̃ be jointly Gaussian vectors with mean zero and joint covariance matrix

Σfull which is positive definite. Consider MO,MT ∈ R
d×d̃ satisfying rank(MO) ≥ 2 and ∥MT −MO∥ <

σrank(MO)(MO). For any A ∈ R
d×d̃, let YA := x⊤A x̃. For a real θ ≥ 0, define:

∆P (θ) := |P{YMT
> θ} − P{YMO

> θ} | , (21)

∆E(θ) :=
∥∥E[xx̃⊤I(YMT

> θ)]− E[xx̃⊤I(YMO
> θ)]

∥∥
2
, (22)

where the randomness is over the Gaussian (x, x̃). Then, there exist constants CP (θ,Σfull,MO) > 0 and
CE(θ,Σfull,MO) > 0 that depend on θ, the covariance Σfull, and MO, such that:

∆P (θ) ≤ CP (θ,Σfull,MO) ∥MT −MO∥2 , (23)

∆E(θ) ≤ CE(θ,Σfull,MO) ∥MT −MO∥2 . (24)

Proof. We prove the two bounds using differentiability arguments. Define ∆M := MT −MO, and define the
scalar Yt := x⊤(MO + t∆M) x̃. Note that we have overloaded notation by reusing Y ; it shall be clear from
the context that Yt for a scalar t and YA for a matrix A mean different things.

Using Lemma 4 with the given condition on ∥MT−MO∥, we conclude that rank(MO+t∆M) ≥ rank(MO) ≥ 2
for all t ∈ [0, 1]. Since (x, x̃) is jointly Gaussian, rank ≥ 2 ensures that Yt for all t ∈ [0, 1] have a smooth and
bounded density everywhere. This is because the random variable YA is equivalent to the quadratic form on
a Gaussian, (1/2)z⊤H z with

z :=

(
x

x̃

)
∼ N (0,Σfull) , H =

(
0 A

A⊤ 0

)
.

This quadratic form has a known characteristic function as below (Mathai and Provost [24, Sec 3.2])

ϕ(t) ∝ 1√
det (I − 2itΣfull H)

.

One can see that rank(H) = 2 · rank(A) and |ϕ(t)| decays as |t|−rank(H)/2 as |t| → ∞. This shows that
rank(H) ≥ 4 ensures at least a |t|−2 decay, which ensures boundedness everywhere.

(i) Probability Difference Bound (eq. (23)). Define the path h(t) := P{Yt > θ} for t ∈ [0, 1]. Then by
the Mean Value Theorem, it holds that

∆P (θ) = |h(1)− h(0)| = |h′(ξ)| for some ξ ∈ (0, 1).

Since Yt has a finite and bounded density everywhere, h(t) is differentiable and its derivative is

h′(t) =
d

dt
P{Yt > θ} = E [δ(Yt − θ) · Y ′

t ] = E
[
δ(Yt − θ) · x⊤∆M x̃

]
,

where δ is the Dirac delta function. Using the Cauchy–Schwarz inequality, we can write

|h′(t)| ≤ E
[
δ(Yt − θ) · |x⊤∆M x̃|

]

≤ ∥∆M∥ · E [δ(Yt − θ) · ∥x∥ · ∥x̃∥]
= ∥∆M∥ · fYt

(θ) · E [∥x∥∥x̃∥ | Yt = θ] ,

where fYt
(θ) is the density of Yt at θ. Because Yt is non-degenerate for t ∈ [0, 1], both fYt

(θ) and the
conditional expectation are finite and bounded over t. Thus the linear dependence on ∥∆M∥ in Eq. (23)
follows, since any ξ ∈ (0, 1) satisfies the above conditions.
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(ii) Expectation Difference Bound (eq. (24)). Define H(t) := E[xx̃⊤ · I{Yt > θ}]. Then by the Mean
Value Theorem, we have

∆E(θ) = ∥H(1)−H(0)∥ = ∥H ′(ξ)∥ for some ξ ∈ (0, 1).

Differentiating under the expectation gives

H ′(t) = E
[
xx̃⊤ · δ(Yt − θ) · x⊤∆M x̃

]
.

For any matrix norm, we have

∥H ′(t)∥ ≤ E[∥x∥ · ∥x̃∥ · |x⊤∆Mx̃| · δ(Yt − θ)]
≤ ∥∆M∥ · E[∥x∥2 · ∥x̃∥2 · δ(Yt − θ)]
= ∥∆M∥ · fYt

(θ) · E[∥x∥2∥x̃∥2 | Yt = θ].

Again, all terms other than ∥∆M∥ are bounded for t ∈ [0, 1], yielding the desired Eq. (24).

Lemma 11. Let x1, . . . , xn ∈ R
d be n i.i.d. random vectors drawn from a Gaussian distribution N (0,Σ),

where Σ is a d × d positive definite covariance matrix, d ≥ 1, n ≥ 1. Let S be a random subset of indices
{1, . . . , n} generated by including each index j ∈ {1, . . . , n} independently with probability p ∈ (0, 1]. Let
nc = |S| denote the number of selected samples, and define the sample covariance matrix for nc > 0 as
Σ̂nc

= (1/nc)
∑

i∈S xix
⊤
i . For a failure probability δ ∈ (0, 1), assume that np > 8 log(2/δ) holds. Then, with

probability at least 1− δ, both nc ≥ np/2 and the sample covariance matrix of the selected data satisfies:

∥∥∥Σ̂nc
− Σ

∥∥∥
2
≲ ∥Σ∥2

√
d+ log 1

δ

np
.

Proof. Define kmin :=
⌈
np−

√
2np log(2/δ)

⌉
. Note that kmin ≥ np/2 due to the assumption. Let

F1 := {nc < kmin} , F2 :=



nc ≥ kmin and

∥∥∥Σ̂nc
− Σ

∥∥∥
2
> ∥Σ∥2

√
d+ log 1

δ

kmin



 .

denote the failure events. A union bound over the two failure probabilities will give the desired result. Below
we bound the individual failure probabilities.

Bounding P(F1): Define ∆0 :=
√
2 log(2/δ)/(np), so that kmin = ⌈(1−∆0)np⌉. Since we assumed np >

8 log(2/δ), ∆0 < 0.5. By a standard Chernoff bound for binomial distributions, P(nc < (1 − ∆0)np) ≤
exp(−np∆2

0/2) = exp(− log(2/δ)) = δ/2. Since kmin ≥ (1−∆0)np (due to the ceil operation), it follows that
P(F1) = P(nc < kmin) ≤ P(nc ≤ (1−∆0)np) ≤ δ/2.
Bounding P(F2): Using the law of total probability, we write

P(F2) =

n∑

k=kmin

P



∥∥∥∥∥∥
1

k

∑

i∈S,|S|=k

xix
⊤
i − Σ

∥∥∥∥∥∥
2

> ∥Σ∥2

√
d+ log 1

δ

kmin

∣∣∣∣∣∣
nc = k


P(nc = k)

For any k ≥ kmin, we have 1/
√
k ≤ 1/

√
kmin. Thus, for k ≥ kmin:

P



∥∥∥∥
1

k

∑
xix

⊤
i − Σ

∥∥∥∥
2

> ∥Σ∥2

√
d+ log 1

δ

kmin

∣∣∣∣∣∣
nc = k


 ≤

P



∥∥∥∥
1

k

∑
xix

⊤
i − Σ

∥∥∥∥
2

> ∥Σ∥2

√
d+ log 1

δ

k

∣∣∣∣∣∣
nc = k


 .

And the right hand side is bounded by δ/2 owing to standard matrix concentration results. So, P(F2) ≤∑n
k=kmin

(δ/2)P(nc = k) ≤ δ/2.
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D A proof of Corollary 1

We present a proof of Corollary 1, which follows the proof presented in Nakada et al. [25] while fixing some
typos. Before diving into the proof, we make some remarks.

First, the result stated in Corollary 1 is tighter than its counterpart Nakada et al. [25, Theorem 3.1] by
a dimension factor. This is because we use tighter concentration, as detailed in the explanation between
Eqs (32) and (33). Second, as remarked in Remark 4.1, Corollary 1 is not tight in the SNR parameters
γ, γ̃. Third, the result in Nakada et al. [25] is for a general covariance on the signal, Σz, and the noise, Σξ,
whereas our setting is more restricted from Assumptions 1 and 2. This restriction is required for the analysis
of filtering in Theorem 1.

Fourth, the result in [25] is stated with probability 1−O(1/n), whereas we state it with probability 1−exp(−d).
Due to this, Corollary 1 as stated does not have a log n factor inside the square root, unlike Nakada et al. [25,
Theorem 3.1]. Fifth, there is a small subtle difference in the setting of [25] and ours. We use η to denote the
fixed probability of clean samples in Assumption 1, whereas Nakada et al. [25] use η to denote the fraction
of clean samples in the sampled dataset, which is a random quantity. Using nc to denote the number of
clean samples, we go through the additional step of controlling the error in |nc/n− η|, which scales as 1/

√
n,

since this source of error is 1-dimensional. Sixth, the result in Nakada et al. [25, Theorem 3.1] is stated
as min{√r, .}. While it is true that the sinΘ metric can be at most

√
r, the final step in the proof is the

application Lemma 2, which requires a condition that translates to n ≳ (1/η2)max{d, d̃} (1 + γ−1)(1 + γ̃−1).
And so this is how we state the result in Corollary 1, which makes the stated upper bound always smaller
than

√
r.

For clarity, we write the algorithm:

Input. X ∈ R
n×d, X̃ ∈ R

n×d̃, r ∈ Z+, ρ ∈ (0,∞).

Output. G⊤G̃ ∈ R
d×d̃ (with rank = r, since G ∈ R

r×d, G̃ ∈ R
r×d̃) by minimizing Eq. (3).

Step 1: Reduction of loss. We show that

L0(G, G̃) = −Tr
(
GSnG̃

⊤
)
, (25)

where Sn denotes the cross covariance matrix of the data, given by (Eq. (5) rewritten)

Sn =
1

n− 1

n∑

i=1

(xi − x)
(
x̃i − x̃

)⊤
∈ R

d×d̃ .

Proof. Expand the LHS as

L0(G, G̃) =
1

2n(n− 1)




n∑

i=1




n∑

j=1
j ̸=i

(sij − sii) +
n∑

j=1
j ̸=i

(sji − sii)







=(a) 1

n(n− 1)




n∑

i=1




n∑

j=1
j ̸=i

(sij − sii)







=
1

n(n− 1)


∑

i

∑

j ̸=i

sij − (n− 1)
∑

i

sii




=
1

n(n− 1)


∑

i

∑

j ̸=i

sij


− 1

n

(
∑

i

sii

)
, (X)

where eq (a) holds because the overall sum over the n× n similarity matrix is the same whether done over
rows or columns.
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For the RHS, we first rewrite Sn as

Sn =
1

n− 1

(
n∑

i=1

xix̃
⊤
i − nxx̃

⊤
)

=
1

n− 1

(
n∑

i=1

xix̃
⊤
i

)
− 1

n(n− 1)

(
n∑

i=1

xi

)(
n∑

i=1

x̃i

)⊤

=
1

n− 1

(
∑

i

xix̃
⊤
i

)
− 1

n(n− 1)


∑

i

xix̃
⊤
i +

∑

i

∑

j ̸=i

xix̃
⊤
j




=
1

n− 1

(
1− 1

n

)(∑

i

xix̃
⊤
i

)
− 1

n(n− 1)


∑

i

∑

j ̸=i

xix̃
⊤
j




=
1

n

(
∑

i

xix̃
⊤
i

)
− 1

n(n− 1)


∑

i

∑

j ̸=i

xix̃
⊤
j


 .

Using the above, we rewrite the RHS as

−Tr
(
GSnG̃

⊤
)
= −Tr


 1

n

(
∑

i

Gxix̃
⊤
i G̃

⊤
)
− 1

n(n− 1)


∑

i

∑

j ̸=i

Gxix̃
⊤
j G̃

⊤






=
1

n(n− 1)


∑

i

∑

j ̸=i

Tr
(
Gxix̃

⊤
j G̃

⊤
)

− 1

n

(
∑

i

Tr
(
Gxix̃

⊤
i G̃

⊤
))

(Linearity of Trace)

=
1

n(n− 1)


∑

i

∑

j ̸=i

⟨Gxi, G̃x̃j⟩


− 1

n

(
∑

i

⟨Gxi, G̃x̃i⟩
)

(Cyclic nature of Trace)

=
1

n(n− 1)


∑

i

∑

j ̸=i

sij


− 1

n

(
∑

i

sii

)
. (Definition of sij)

Comparing the above to eq (X) concludes the proof.

Step 2: Closed-form solution. We show that (Eq. (6) rewritten)

argmin
G,G̃

Lρ

(
G, G̃

)
=

{(
G, G̃

) ∣∣∣ G⊤G̃ =
1

ρ
SVDr (Sn)

}
.

Hence, even though the optimization problem is non-convex, there is a closed-form solution, and no optimization
analysis is needed. In particular, the right singular vectors of G, G̃ are determined independent of the choice
of ρ. This result is from Nakada et al. [25, Lemma 2.1].

Proof. Using Step 1’s result, we can write

min
G,G̃

Lρ(G, G̃) ≡ max
G,G̃

Tr
(
GSnG̃

⊤
)
− ρ

2
∥G⊤G̃∥2F . (26)

The objective can be rewritten as

Tr
(
GSnG̃

⊤
)
− ρ

2
∥G⊤G̃∥2F =

ρ

2

(∥∥∥∥
Sn

ρ

∥∥∥∥
2

F

−
∥∥∥∥G

⊤G̃− Sn

ρ

∥∥∥∥
2

F

)
.

The optimization variables appear only in the second term. Since rank
(
G⊤G̃

)
= r, by the Eckart-Young-

Minsky Theorem, the solution is given by the best rank r approximation of Sn/ρ.
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Step 3: Relating error to op-norm concentration of Sn. We show the below, where Sn concentrates
to S = ηUŨ⊤.

∥SVDr (Sn)− S∥ ≤ 2 ∥Sn − S∥ . (27)

Proof. By triangle inequality, we have

∥SVDr (Sn)− S∥ ≤ ∥SVDr (Sn)− Sn∥+ ∥Sn − S∥ .

And for the first term on the right hand side, we use

∥SVDr (Sn)− Sn∥ = σr+1 (Sn)

≤(†) σr+1 (S) + ∥Sn − S∥
≤(††) ∥Sn − S∥ .

In Eq. (†), we used Lemma 1, and Eq. (††) holds because σr+1 (S) = 0, since S is rank r.

Step 4: Concentration of Sn. We show that with probability 1− exp
(
−Ω(max{d, d̃})

)
,

∥Sn − S∥ ≲

√
max{d, d̃} (1 + γ−1)(1 + γ̃−1)

n
+ Õ

(
1

n

)
. (28)

Before we prove this, we remark that the condition of n ≳ n0 (for the appropriate n0 stated in the statement

of Corollary 1) ensures that the Õ(1/n) term is at Õ(η2) whereas the first term is Õ(η). This ensures that
we are in the regime where the 1/

√
n term dominates.

Proof. We start with the expansion of Sn,

Sn =
1

n− 1

n∑

i=1

xix̃
⊤
i −

n

n− 1
xx̃

⊤
=

1

n

n∑

i=1

xix̃
⊤
i

︸ ︷︷ ︸
S

(1)
n

− 1

n(n− 1)

n∑

i=1

n∑

j=1
j ̸=i

xix̃
⊤
j

︸ ︷︷ ︸
S

(2)
n

.

The main term that dictates the convergence is S
(1)
n . The term S

(2)
n concentrates around zero (since samples

i ̸= j, i, j ∈ [n] are independent), and the rate of convergence is Õ(1/n) due to averaging over n2 terms, which
is a higher order term. Let nc be a random variable that denotes the number of clean data points. We expand

the sum in S
(1)
n below.

nS(1)
n =

n∑

i=1

xix̃
⊤
i =

nc∑

i=1

Uziz̃
⊤
i Ũ⊤

︸ ︷︷ ︸
J1

+

n∑

i=nc+1

Uziz̃
⊤
i Ũ⊤

︸ ︷︷ ︸
J2

+

n∑

i=1

Uziξ̃
⊤
i

︸ ︷︷ ︸
K1

+

n∑

i=1

ξiz̃
⊤
i Ũ⊤

︸ ︷︷ ︸
K2

+

n∑

i=1

ξiξ̃
⊤
i

︸ ︷︷ ︸
K3

.

We control the error in each term separately. For terms J2,K1:3, we need a result like Nakada et al. [25,

Proposition C.1] in the simple case of X ⊥ X̃. For term J1, we need it for X = X̃.

The following two facts are going to be used multiple times. Here X,Y denote random quantities, and all
others are fixed quantities (matrices/vectors).

w.h.p. ∥X −A∥ ≤ EA, ∥Y −B∥ ≤ EB =⇒ w.h.p. ∥X + Y − (A+B)∥ ≤ EA + EB , (29)
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w.h.p. ∥X −A∥ ≤ EA =⇒ w.h.p. ∥MXN −MAN∥ ≤ ∥M∥∥N∥EA . (30)

For the independent terms (J2,K1:3), we will use the below generic result. For R
dx ∋ x ∼ N (0,Σx) and

R
dy ∋ y ∼ N (0,Σy) and N i.i.d. draws from both, we have the below result from the application of a

Matrix-Bernstein result.

w.p. 1− e−t,

∥∥∥∥∥
1

N

N∑

i=1

xiy
⊤
i

∥∥∥∥∥ ≲

√
∥Σx∥ · ∥Σy∥

N
(t+ log (dx + dy)) . (31)

For the dependent term (J1), we will use the below. Let R
dx ∋ x ∼ N (0,Σx) and N i.i.d. draws from this.

This is also known in the literature, for e.g., Bunea and Xiao [4, Theorem 2.2].

w.p. 1− e−t,

∥∥∥∥∥
1

N

N∑

i=1

xix
⊤
i − Σx

∥∥∥∥∥ ≲ ∥Σx∥
√
t+ log (dx)

N
. (32)

Note that the above two concentration results are tighter than Nakada et al. [25, Proposition C.1] by a factor
of dimension, since the proposition has trace terms too, whereas only operator norms appear in the above
two equations. This manifests in Corollary 1 as stated being tighter than Nakada et al. [25, Theorem 3.1] by
a dimension factor inside the square root (since we avoided log n but did not incur an additional dimension
due to the failure probability of exp(−d)). Finally, since nc = Bin(n, η), the ratio nc/n concentrates to η,
with the error described by Hoeffding’s inequality as

P

(∣∣∣nc
n
− η
∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2nϵ2

)
. (33)

Using these results, we bound the individual terms of deviation. We first bound the independent terms
using Eq. (31) with t := max{d, d̃}. The choice of N is given with each setting. With probability 1 −
exp(−Ω(max{d, d̃})), the following hold:

∥∥∥∥
K1

n

∥∥∥∥ ≲

√
∥Σz∥ · ∥Σξ̃∥ ·max{d, d̃}

n
=

√
max{d, d̃} γ̃−1

n
, (N := n)

∥∥∥∥
K2

n

∥∥∥∥ ≲

√
∥Σz∥ · ∥Σξ∥ ·max{d, d̃}

n
=

√
max{d, d̃} γ−1

n
, (N := n)

∥∥∥∥
K3

n

∥∥∥∥ ≲

√
∥Σξ∥ · ∥Σξ̃∥ ·max{d, d̃}

n
=

√
max{d, d̃} γ−1 γ̃−1

n
, (N := n)

∥∥∥∥
J2
n

∥∥∥∥ ≲

√
1− nc

n
·

√
∥Σz∥2 ·max{d, d̃}

n
=

√
1− nc

n
·

√
max{d, d̃}

n
. (N := n− nc)

We now bound the dependent term using Eq. (32). We need some additional machinery to deal with the random
denominator, which we capture in Lemma 11. The requirement of np ≳ log(1/δ) in the lemma translates

to n ≳ max{d,d̃}/η, since we have p := η and δ := exp(−max{d, d̃}). As we will see later, step 5 of the proof

requires n ≳ max{d,d̃}/η2, hence this requirement is already satisfied. With probability 1−exp(−Ω(max{d, d̃})),
it holds:

∥∥∥∥
J1
nc
−UŨ⊤

∥∥∥∥ ≲
∥∥∥UŨ⊤

∥∥∥ ·

√
max{d, d̃}

nη
(34)

=⇒
∥∥∥∥
J1
n
− nc

n
UŨ⊤

∥∥∥∥ ≲
nc

n

√
1

η
·

√
max{d, d̃}

n

=⇒
∥∥∥∥
J1
n
− ηUŨ⊤

∥∥∥∥ ≲
nc

n

√
1

η
·

√
max{d, d̃}

n
+
∣∣∣nc

n
− η
∣∣∣ .
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For the concentration of nc/n, we use Eq. (33) to get that with probability 1− exp(−Ω(max{d, d̃})):

∣∣∣nc
n
− η
∣∣∣ ≲

√
max{d, d̃}

n
. (35)

We now add all the error bounds. For the combined error from terms J1 and J2, we note that
√
1− nc/n ≤ 1,

and (nc/n√η) ≤ 2 with high probability (since nc/n concentrates around η). The failure probability of this can
be absorbed into the overall failure probability. Eq. (28) follows.

Step 5: Relating singular vector recovery error to operator norm concentration. We will
apply Lemma 2 (a Davis-Kahan type result) to relate the sinΘ metric to the operator norm. Combining

Eqs. (28), (27) and (6), we get that with probability 1− exp(−Ω(max{d, d̃})):

∥∥∥∥G
⊤G̃− η

ρ
UŨ⊤

∥∥∥∥ ≲
1

ρ



√

max{d, d̃} (1 + γ−1)(1 + γ̃−1)

n
+ Õ

(
1

n

)
 . (36)

The instantiation for Lemma 2 is as follows: A = η
ρUŨ⊤, Â = G⊤G̃. Note that both A, Â are rank-r, and

σr(A) = η/ρ. We get

∥∥∥sinΘ
(
lsv(G⊤G̃),U

)∥∥∥
F
≤

∥G⊤G̃− η
ρUŨ⊤∥F

η
ρ − ∥G⊤G̃− η

ρUŨ⊤∥2
. (37)

Now we will use three things. First, for the numerator, we use ∥M∥F ≤
√
rank(M) · ∥M∥2 for any matrix M .

Second, for the denominator, we will need the additional condition of n ≳ (1/η2)max{d, d̃}(1 + γ−1)(1 + γ̃−1)

to ensure the second term is at most half of the first term. This also ensures that the Õ(1/n) does not

dominate the 1/
√
n term. Third, triangle inequality with the fact that

∥∥∥sinΘ
(
lsv(G⊤G̃), rsv(G)

)∥∥∥
F
= 0

gives the final result. To see this fact, write

G⊤G̃ = VG
(
ΣGU

⊤
GUG̃

Σ
G̃

)
V ⊤
G̃

= VGPSQ
⊤V ⊤

G̃
. (Using SVD of the middle component)

Using the uniqueness of SVD, we get that lsv
(
G⊤G̃

)
= VGP and rsv

(
G⊤G̃

)
= V

G̃
Q. Since P,Q are just

orthogonal transforms, the subspace spanned by VG and VGP are the same, implying ∥ sinΘ(VG, VGP )∥F = 0
(and analogously for V

G̃
and V

G̃
Q).

Combining Eqs. (36) and (37) gives the desired result. Since the upper bound is valid for recovery of both U

and Ũ, Corollary 1 as stated follows.

E A proof of Proposition 1

Consider the following construction for the hard problem instance (lower bound): (i) the latent dimension

r = 1, and (ii) the noise ξ̃ = 0 (i.e. γ̃ = ∞), but ξ ̸= 0 (i.e. γ is finite). This means the following proof

recovers the dγ−1 part from the max{d γ−1, d̃ γ̃−1} term in Proposition 1. A similar argument can be made

for the case when ξ = 0, ξ̃ ̸= 0, leading to the max over both errors.

Owing to r = 1, this becomes a 1-dimensional vector recovery problem. Let u, ũ ∈ R
d denote the vectors

to recover. Upon seeing Sn, there is no error in estimating ũ since ξ̃ = 0, but there is error in estimating
u. To calculate this error, define un to be the top-left singular vector of Sn. Note that Sn has only one
non-zero singular value, since it fully lies on ũ in the right singular vector space (i.e. Snv = 0 for any v ⊥ ũ).
Hence

Sn = ∥Sn∥ · unũ
⊤ . (38)
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Step 0. Writing down Sn.

Sn =
1

n− 1

n∑

i=1

xix̃
⊤
i −

1

n(n− 1)

(
n∑

i=1

xi

)(
n∑

i=1

x̃i

)⊤

=
1

n

n∑

i=1

xix̃
⊤
i

︸ ︷︷ ︸
S

(1)
n

− 1

n(n− 1)




n∑

i=1

n∑

j=1
j ̸=i

xix̃
⊤
j




︸ ︷︷ ︸
S

(2)
n

.

We expand S
(1)
n below, using nc to denote the random variable denoting the clean samples. Note that

Enc = ηn. Similarly one can expand S
(2)
n , however, the error of S

(2)
n will behave as O(1/n) due to averaging

over n2 samples, which is a higher order term in the overall rate. That is, the behavior (in the large n regime)

will be largely dictated by S
(1)
n .

S(1)
n =

1

n

n∑

i=1

xix̃
⊤
i =

1

n

nc∑

i=1

(ziu+ ξi)(ziũ)
⊤ +

1

n

n∑

i=nc+1

(ziu+ ξi)(z̃iũ)
⊤ .

As for the expectations, they are given by:

E

[
S(1)
n

]
=

1

n
E

[
nc∑

i=1

z2i

]
uũ⊤ =

1

n
E [nc]uũ

⊤ = η uũ⊤ ,

E

[
S(2)
n

]
= 0 (since all random quantities are zero-mean and independent) .

Step 1. Decompose sin θ metric. Our goal is a high probability lower bound on |sin θ(un,u)|, where un is
the random quantity. Note that

|sin θ(un,u)| =
∥∥(Id − uu⊤)un

∥∥ . (39)

To see this, note that LHS =

√
1− (u⊤un)

2
. Squaring both sides and expanding suffices.

Step 2. Compute the metric for this case. Using Eq. (38) in Eq. (39), we can write

|sin θ(un,u)| =
∥∥(Id − uu⊤)Snũ

∥∥
∥Sn∥

. (40)

Step 3. Computing the high probability bound. We will give high probability lower bound on the
numerator and denominator of Eq. (40) separately.

Step 3.1. For the numerator: We first expand S
(1)
n as

S(1)
n ũ =

1

n

nc∑

i=1

(z2i u+ ziξi) +
1

n

n∑

i=nc+1

(ziz̃iu+ z̃iξi)

=⇒
(
Id − uu⊤)S(1)

n ũ =
(
Id − uu⊤)

(
1

n

nc∑

i=1

ziξi +
1

n

n∑

i=nc+1

z̃iξi

)

d
=
(
Id − uu⊤)

(
1

n

n∑

i=1

ziξi

)
.

Similarly, for S
(2)
n we have

(
Id − uu⊤)S(2)

n ũ =
(
Id − uu⊤)




1

n(n− 1)

n∑

i=1

n∑

j=1
j ̸=i

z̃jξi



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d
=
(
Id − uu⊤)




1

n(n− 1)

n∑

i=1

n∑

j=1
j ̸=i

zjξi


 .

Combining the two, we get

(
Id − uu⊤)Snũ =

(
Id − uu⊤)

(
1

n− 1

n∑

i=1

(zi − z)
(
ξi − ξ

)
)

︸ ︷︷ ︸
wn

.

Now we want to compute a high confidence lower bound on the norm of the above. We first relate∥∥(Id − uu⊤)wn

∥∥ to ∥wn∥. This is because wn is spherically symmetric, and
(
Id − uu⊤) is a rank-(d− 1)

matrix with all non-zero eigenvalues equal to one. We get

∥∥(Id − uu⊤)wn

∥∥ = ∥wn∥ ·
√
1− (u⊤ŵn)

2
.

Now due to wn being spherically symmetric, ∥wn∥ (the magnitude) and ŵn (the direction) are independent
random quantities. Further, ŵn is uniformly distributed on Sd−1.

For ∥wn∥, we will use sharp Gaussian concentration. The intuition is that ∥wn∥ cannot be too smaller than√
d γ−1

/n, for large d. Concretely, it holds that

w.p. 1− δ,
∥∥∥∥∥

1

n− 1

n∑

i=1

(zi − z̄)
(
ξi − ξ̄

)
∥∥∥∥∥ ≥

√
γ−1

n
·
(
√
d−

√
2 ln

1

δ
−
√
2

)
. (41)

An appropriate choice of δ = exp(−d/4), which results in

w.p. 1− exp (−d/4) , ∥wn∥ ≳
√
d γ−1

n
. (42)

For the second term (with the direction ŵn), this will be at least Ω(1) with high probability, since u⊤ŵn

will be large only with very small probability when then dimension d is big enough. Concretely, it holds
that

w.p. 1− 2 exp (−d/4) ,

√
1− (u⊤ŵn)

2 ≥
√

1

2
. (43)

Overall, for the numerator, we conclude that

w.p. 1− c exp (−d/4) , Numerator ≳

√
d γ−1

n
. (44)

Step 3.2. For the denominator: We need a high confidence upper bound on ∥Sn∥. We can use
Matrix-Bernstein type analysis. Note that E[Sn] = η uũ⊤. And the deviation is dominated by

Sn − ESn ≈
1

n

∑

i∈[n]

ziξiũ
⊤ +

1

n

∑

i∈[n(1−η)]

ziz̃iuũ
⊤ .

Again, the dominating term is the first one. This means that we only have to show high confidence upper
bound on ∥(1/n)∑i ziξi∥, and hence the problem has reduced to vector concentration instead of matrix
concentration. Analogous to Eq. (41), one can show

w.p. 1− δ,
∥∥∥∥∥
1

n

n∑

i=1

ziξi

∥∥∥∥∥ ≤
√
γ−1

n
·
(
√
d+

√
2 ln

1

δ

)
. (45)
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Overall, using the triangle inequality, we have

w.p. 1− exp(−d/4), ∥Sn∥ ≤ ∥ESn∥︸ ︷︷ ︸
=η

+2

√
d γ−1

n
. (46)

Step 4. Combined result: From 3.1 and 3.2, for n ≥ 4d γ−1
/η2 (so the high-conf UB for ∥Sn∥ is 2η),

w.p. 1−O (exp(−d/4)) , |sin θ(un,u)| ≳
1

η

√
d γ−1

n
. (47)

F Characterizing the score distribution of the oracle

The Bernoulli variable c ∈ {0, 1} captures the status of clean/corrupted nature of a sample. We first
characterize the score distribution in both cases separately, and then create the relevant mixture distribution
using the proportions η, 1− η for clean, corrupted samples respectively.

Before the calculations, we state some Lemmas that will be used.

Lemma 12. Let X be distributed as N (0,Ω). For a fixed matrix A, it holds:

E[X⊤AX] = Tr (AΩ) ,

V[X⊤AX] =
1

2
Tr

((
A+A⊤)Ω

(
A+A⊤)Ω

)
.

Lemma 13. Let X be distributed as N (0,Ω), and X̃ be distributed as N (0, Ω̃). Let X, X̃ be independent of
each other. For a fixed matrix A, it holds:

E[X⊤AX̃] = 0 ,

V[X⊤AX̃] = Tr
(
ΩAΩ̃A⊤

)
.

Consider a block matrix X given as below

X =

[
A B

C D

]
.

Lemma 14. For a block matrix X given as above, it holds that

Tr(X) = Tr(A) + Tr(D) .

Lemma 15. For a block matrix X given as above, with A,D are square matrices, it holds that

X2 =

[
A2 +BC AB+BD

CA+DC CB+D2

]
.

Case 0: Corrupted samples (c = 0 case). Let Z0
d
= {S(x, x̃;UŨ⊤) | c = 0}, with distribution D0.

This (scalar) random variable is equivalent to X⊤UŨ⊤X̃, where X, X̃ are independent and follow X ∼
N
(
0,UU⊤ + γ−1 Id

)
, X̃ ∼ N

(
0, ŨŨ⊤ + γ̃−1 Id̃

)
. This is in-line with Remark A.1. We invoke Lemma 13

to get the first two moments.

1. Mean: 0.
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2. Variance: r (1 + γ−1)(1 + γ̃−1).

Variance = Tr

((
UU⊤ + γ−1 Id

)
UŨ⊤

(
ŨŨ⊤ + γ̃−1 Id̃

)
ŨU⊤

)

= Tr

(
U⊤ (UU⊤ + γ−1 Id

)
U Ũ⊤

(
ŨŨ⊤ + γ̃−1 Id̃

)
Ũ

)

= Tr

((
Ir + γ−1Ir

) (
Ir + γ̃−1Ir

))
.

3. Tails: Since X, X̃ are independent, the tails are described by the quadratic form on two independent
Gaussians. This random variable is (i) symmetric, and (ii) uni-modal, and the tails decay exponentially.

Case 1: Clean samples (c = 1 case). Let Z1
d
= {S(x, x̃;UŨ⊤) | c = 1}, with distribution D1. This random

variable is equivalent to X⊤BX, where X = [x, x̃]⊤ follows X ∼ N (0,Σ1) (refer to Remark A.1); and B is a
block matrix given as below. We invoke Lemma 12 to get the first two moments.

B =

[
0d×d UŨ⊤

0d̃×d 0d̃×d̃

]

(d+d̃)×(d+d̃)

1. Mean: r.

Mean = Tr(BΣ1)

= Tr(

[
UU⊤ .

. 0

]
)

= Tr(UU⊤) = Tr(Ir) = r . (Using Lemma 14)

2. Variance: r + r (1 + γ−1)(1 + γ̃−1).

Variance =
1

2
Tr

((
B+B⊤)Σ1

(
B+B⊤)Σ1

)

=
1

2
Tr

(



UU⊤

T1︷ ︸︸ ︷
UŨ⊤ + γ̃−1UŨ⊤

ŨU⊤ + γ−1ŨU⊤
︸ ︷︷ ︸

T2

ŨŨ⊤




2

)

=
1

2
Tr

([
UU⊤ +T1T2 .

. T2T1 + ŨŨ⊤

])
(Using Lemma 15)

= Tr(Ir) + Tr(T1T2) . (Using Lemma 14)

3. Tails: Since X, X̃ are dependent, the tails are described by the quadratic form on two dependent
Gaussians. The tails decay exponentially, and are described by the Hanson-Wright inequality. A similar
calculation as the variance provides the exact parameters, and the inequality becomes:

P (|Z1 − EZ1| > t) ≲ exp

(
− cmin

{
2 t2

r (1 + (1 + γ−1)(1 + γ̃−1))
,

√
2 t√

r (1 + (1 + γ−1)(1 + γ̃−1))

})
. (48)
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G A proof of Theorem 1

In this section, we present a proof of Theorem 1. We first define one additional piece of notation. For U, let
U⊥ ∈ R

d×(d−r) denote the completion of the orthonormal basis. That is, the matrix Ufull = [U U⊥] ∈ R
d×d

is such that U⊤
fullUfull = Id = UfullU

⊤
full. Similarly define Ũ⊥ ∈ R

d̃×(d̃−r).

Recall that we have n samples of the form {(xi, x̃i)}ni=1, i.i.d from the mixture distribution (with η, 1−η ratios
for clean, corrupted respectively). Let nT samples be used to train the teacher, and let N = nT − n samples

be used to train the student. Let ρT, ρ be the respective regularization parameters, and let (GT, G̃T), (G, G̃)
denote the respective embedding matrices at the solution of Eq. (3). Consider a general threshold θ ∈ R that
is used to filter the dataset based on the teacher scores. Note that we have ensured that θ is independent
of the N samples to be filtered, since it depends only on the nT samples used for teacher training. For the
teacher, from Corollary 1, we know that with probability 1− exp(−Ω(max{d, d̃})):

∥∥∥∥G
⊤
TG̃T −

η

ρT
UŨ⊤

∥∥∥∥ ≤
1

ρT



√

max{d, d̃} (1 + γ−1) (1 + γ̃−1)

nT
+ Õ

(
1

nT

)
 . (49)

Here (GT, G̃T) are random quantities that depend on the nT samples used. For the rest of the analysis,
we will assume them to be fixed (since they don’t depend on the randomness of the remaining N samples).
Finally, we will give a high probability guarantee that will use the confidence bound in Eq. (49) as one of the
terms in the combined error bound, with an appropriate choice of nT and ρT. We now study the student
with data filtering. It is useful to define

MT := G⊤
TG̃T , MO := (η/ρT)UŨ⊤ . (50)

These are the matrices used for scoring the samples by the teacher and its oracle version, respectively. Note
that rank(MO) = r since both U, Ũ are rank-r matrices. From the teacher guarantee in Eq. (49), it holds
that MT →MO as nT →∞. Recall that the scoring function is S(x, x̃;M) = x⊤M x̃, and a sample (x, x̃) is
selected/retained iff S(x, x̃;MT) > θ.

We define certain quantities that will be central to the analysis. Akin to Eq. (5), we define the empirical
cross-covariance matrix of the data after selection in Eq. (51). Let nsel,T(θ) be the number of samples selected,
which is a random variable with E[nsel,T(θ)] = N PT(θ). Let Isel,T(θ) ⊆ [N ] denote the indices of the points
selected. That is, i ∈ Isel,T(θ) ⇐⇒ S(xi, x̃i;MT) > θ. Similarly, define nsel,O(θ) and Isel,O(θ). Construct
the empirical cross-covariance matrix for the filtered dataset:

SN,T(θ) :=
1

nsel,T(θ)− 1

∑

i∈Isel,T(θ)

(xi − x(θ))
(
x̃i − x̃(θ)

)⊤

︸ ︷︷ ︸
QN,T(θ)

. (51)

To analyze its asymptotic limit, we define S(θ) as the limit of the cross-covariance, for both the teacher
and the oracle. Similarly, let P (θ) denote the probability mass of data that is retained (also in the limit of
n→∞), for both the teacher and the oracle. These are described in Eqs (52), (53).

ST(θ) = E
[
xx̃⊤

∣∣S(x, x̃;MT) > θ
]
∈ R

d×d̃ , PT(θ) = P {S(x, x̃;MT) > θ} ; (52)

SO(θ) = E
[
xx̃⊤

∣∣S(x, x̃;MO) > θ
]
∈ R

d×d̃ , PO(θ) = P {S(x, x̃;MO) > θ} . (53)

Note that ST(θ),SO(θ) are the limits of SN,T(θ),SN,O(θ) as N → ∞. The threshold θ → −∞ recovers
the no filtering case, i.e. both SN,T(θ), SN,O(θ) approach SN . We will now follow proof steps similar to
Section D. Steps 1 and 2 hold for a general cross covariance matrix, and can be used directly. Steps 3 and 4
are concerned with the limit of Sn(θ) as n→∞, and how it concentrates around the limit. These steps will
change significantly. Finally, we will be able to reuse Lemma 2 for step 5. We detail each of these proof steps
below.

33



Step 1. Following the exact same proof steps as in Section D, the unregularized contrastive loss objective on
the nsel,T(θ) samples is equivalent to

L0(G, G̃) = −Tr
(
GSN,T(θ) G̃

⊤
)
. (54)

Step 2. Again, following the exact same proof steps as in Section D, the solution to the ρ-regularized
minimization problem is given by

argmin
G,G̃

Lρ

(
G, G̃

)
=

{(
G, G̃

) ∣∣∣ G⊤G̃ =
1

ρ
SVDr (SN,T(θ))

}
. (55)

Step 3. This step changes from Section D. We use the following:

∥SVDr (SN,T(θ))− SO(θ)∥ ≤ σr+1 (SO(θ)) + 2 ∥SN,T(θ)− SO(θ)∥ . (56)

By triangle inequality, we have

∥SVDr (SN,T(θ))− SO(θ)∥ ≤ ∥SVDr (SN,T(θ))− SN,T(θ)∥+ ∥SN,T(θ)− SO(θ)∥ .

And for the first term on the right hand side, we use

∥SVDr (SN,T(θ))− SN,T(θ)∥ = σr+1 (SN,T(θ))

≤(†) σr+1 (SO(θ)) + ∥SN,T(θ)− SO(θ)∥ ,

where we used Lemma 1 in Eq (†).

Step 3’. Analysis of SO(θ): The main difference in Eq. (27) and Eq. (56) is the term σr+1(SO(θ)). This
additional step of the proof analyzes the properties of SO(θ). In particular, we will show that SO(θ) is rank-r,
and hence σr+1(SO(θ)) = 0. Additionally, we establish upper and lower bounds on the singular values of
SO(θ) that will be used later in the proof. From Eq. (53), we simplify to write

SO(θ) = E

[
xx̃⊤

∣∣x⊤UŨ⊤x̃ >
θρT

η

]
,

where (x, x̃) is drawn from the mixture model: η · N (0,Σ1) + (1− η) · N (0,Σ0). To simplify notation, define

θ̈ := (θρT)/η. From the conditioning event, it seems that U⊤x and Ũ⊤x̃ is a good ‘basis’ for a decomposition.
Pre-multiply and post-multiply to recover this basis for the xx̃⊤ term inside the expectation as

SO(θ) = UfullU
⊤
full︸ ︷︷ ︸

=Id

E

[
xx̃⊤

∣∣x⊤UŨ⊤x̃ > θ̈
]
ŨfullŨ

⊤
full︸ ︷︷ ︸

=I
d̃

= Ufull E







r×r︷ ︸︸ ︷
(U⊤x)(Ũ⊤x̃)⊤

r×(d̃−r)︷ ︸︸ ︷
(U⊤x)(Ũ⊤

⊥x̃)
⊤

(U⊤
⊥x)(Ũ

⊤x̃)⊤︸ ︷︷ ︸
(d−r)×r

(U⊤
⊥x)(Ũ

⊤
⊥x̃)

⊤
︸ ︷︷ ︸

(d−r)×(d̃−r)




∣∣∣∣∣ (U
⊤x)⊤(Ũ⊤x̃) > θ̈




Ũ⊤
full .

Call the top left entry in this decomposition to be the ‘dominant’, and the other three as ‘non-dominant’. We
will show the non-dominant entries will be zero. The following reparametrization makes things cleaner.

U⊤x = z +U⊤ξ︸︷︷︸
ε

, U⊤
⊥x = U⊤

⊥ξ︸︷︷︸
ε⊥

; Ũ⊤x̃ = z̃ + Ũ⊤ξ̃︸︷︷︸
ε̃

, Ũ⊤
⊥x̃ = Ũ⊤

⊥ξ̃︸︷︷︸
ε̃⊥

.

Let’s further simplify the expressions with another transformation. The subscripts S,N denote the signal
(containing some noise) and noise part.

xS︸︷︷︸
∈Rr

← z + ε, xN︸︷︷︸
∈Rd−r

← ε⊥ ; x̃S︸︷︷︸
∈Rr

← z̃ + ε̃, x̃N︸︷︷︸
∈Rd̃−r

← ε̃⊥ .

34



Due to the diagonal structure of Σξ,Σξ̃, we infer the distributions as

ε ∼ N
(
0,

1

γ
Ir

)
, ε⊥ ∼ N

(
0,

1

γ
I(d−r)

)
; ε̃ ∼ N

(
0,

1

γ̃
Ir

)
, ε̃⊥ ∼ N

(
0,

1

γ̃
I(d̃−r)

)
.

And crucially, due to the diagonal structure of Σξ,Σξ̃, we infer that {ε, ε⊥, ε̃, ε̃⊥} are all mutually independent,

and independent of z, z̃. This entails that the transformed vector is Gaussian with mean zero and covariance
given as below.




xS

xN

x̃S

x̃N


 ∼ N


0,




(1 + 1/γ) Ir 0 0 (Ir) 0

. (1/γ) I(d−r) 0 0

. (.) . (1 + 1/γ̃) Ir 0

. . . (1/γ̃) I(d̃−r)





 . (57)

The above is for the corrupted case (w.p. 1− η). In the clean case (w.p. η), the blue entries change to Ir
due to the relation of z = z̃. Our E[.] notation includes the expectation over this randomness along with
the randomness of x, x̃. Denote by Ω0 and Ω1 the covariances of the signal part, i.e. (xS , x̃S) in these two
cases:

Ω0 :=

(
(1 + 1/γ) Ir 0

0 (1 + 1/γ̃) Ir

)
, Ω1 :=

(
(1 + 1/γ) Ir Ir

Ir (1 + 1/γ̃) Ir

)
. (58)

Overall, under the transformation, the expectation simplifies to

SO(θ) = Ufull E

[(
xS x̃

⊤
S xS x̃

⊤
N

xN x̃
⊤
S xN x̃

⊤
N

) ∣∣∣∣∣x
⊤
S x̃S > θ̈

]
Ũ⊤

full . (59)

Due to xN , x̃N being independent of all other entries via Eq. (57), and since the conditioning event in Eq. (59)
only involves xS , x̃S , we conclude that the non-dominant entries in the expectation will be zero. Hence we
are left with the simplified rank-r form for the d× d̃ matrix:

SO(θ) = UE

[
xS x̃

⊤
S |x⊤S x̃S > θ̈

]
Ũ⊤ = U

(
η · E(xS ,x̃S)∼N (0,Ω1)

[
xS x̃

⊤
S |x⊤S x̃S > θ̈

]

+ (1− η)·E(xS ,x̃S)∼N (0,Ω0)

[
xS x̃

⊤
S |x⊤S x̃S > θ̈

])
Ũ⊤ .

We will now use Lemma 9 to simplify both the terms above. Note that Ω1,Ω0 satisfy the lemma’s requirement
of the block diagonal covariance.

SO(θ) = U
(
η f1(θ) Ir + (1− η) f0(θ) Ir

)
Ũ⊤ =

(
η f1(θ) + (1− η) f0(θ)

)
UŨ⊤ , (60)

where the following conditions hold on f1, f0 (converting back from θ̈ to θ):

max{1, (θρT)/η r}+ e

√
((1+γ−1)(1+γ̃−1)+1)/r ≥ f1(θ) ≥ max{1, (θρT)/η r} ,

max{0, (θρT)/η r}+ e

√
((1+γ−1)(1+γ̃−1))/r ≥ f0(θ) ≥ max{0, (θρT)/η r} .

Using the above equations, and the special case of θ = 0 in Lemma 9, we conclude:

f1(0) ≥ 1, f0(0) ≥
2

πr
·
√
(1 + γ−1)(1 + γ̃−1) , (61)

f1

(
rη

2ρT

)
≥ 1, f0

(
rη

2ρT

)
≥ 1

2
. (62)

We will use these inequalities in step 5. In particular, since ∥SO(θ)∥ = η f1(θ) + (1− η) f0(θ),

for θ ∈ [0, rη/2ρT] , ∥SO(θ)∥ ≥
2

πr
·
√
(1 + γ−1)(1 + γ̃−1) . (63)
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Step 4. Concentration of SN,T(θ) to SO(θ): We break this into subparts as below.

Step 4.1. Concentration of SN,T(θ) to ST(θ): Using the below substeps, we show that with probability

1− exp(−Ω(max{d, d̃})):

∥SN,T(θ)− ST(θ)∥ ≤
√

max{d, d̃} poly(γ−1, γ̃−1)

N PT(θ)
+ Õ

(
1

N PT(θ)

)
. (64)

Step 4.1.1. Replacing the random denominator: Recall nsel,T(θ) =
∑N

i=1 I{S(xi, x̃i;MT) > θ} is the
(random) number of selected samples. Since the teacher’s score matrix MT and threshold θ are fixed
independently of these N samples, the indicators are i.i.d. Bernoulli random variables with mean PT(θ). By a
standard Chernoff bound for sums of independent Bernoulli variables, nsel,T(θ) concentrates sharply around
its expectation: for any 0 < δ < 1,

P

{
|nsel,T(θ)−NPT(θ)| ≥ δ NPT(θ)

}
≤ 2 exp

(
− Ω(δ2NPT(θ))

)
.

In particular, choosing δ =

(√
max{d,d̃}/N PT(θ)

)
, we conclude that

w.p. 1− exp(−Ω(max{d, d̃})) , nsel,T(θ) =


1±

√
max{d, d̃}
N PT(θ)


 NPT(θ) . (65)

On this high-probability event, the following holds (recall the definition of QN,T(θ) from Eq. (51)).

∥∥∥ 1

nsel,T(θ)− 1
QN,T(θ)−

1

NPT(θ)− 1
QN,T(θ)

∥∥∥ =
|nsel,T(θ)−N PT(θ)|

(nsel,T(θ)− 1) (N PT(θ)− 1)
∥QN,T(θ)∥

≲(†) |nsel,T(θ)−N PT(θ)|
(N PT(θ)− 1)2

∥QN,T(θ)∥

≲(††)

√
max{d,d̃}/N PT(θ) ·N PT(θ)

(N PT(θ)− 1)2
∥QN,T(θ)∥

≲

√
max{d, d̃}
NPT(θ)

·
∥∥∥∥
QN,T(θ)

N PT(θ)

∥∥∥∥

≲(†††)

√
max{d, d̃}
NPT(θ)

.

In (†), we used Eq. (65), which implies that 0.5N PT(θ) ≤ nsel,T(θ) ≤ 1.5N PT(θ) when NPT(θ) ≳ max{d, d̃}
(which is indeed true, since in Step 5 we set N = n/2 & n ≳ max{d, d̃} is assumed in Theorem 1, and
in Step 4.3 we ensure that PT(θ) ≳ 1). In (††), we again used Eq. (65) directly. In (†††), we used that
∥QN,T(θ)∥ grows on the order of NPT(θ) (since it is the sum of nsel,T(θ) i.i.d. outer products each with
bounded expectation). Thus, overall, replacing the random nsel,T(θ) by NPT(θ) in the normalization incurs

an error of order
√

max{d,d̃}/NPT(θ) with high probability. In the subsequent analysis, we may therefore work

with the fixed denominator NPT(θ) for convenience.

Step 4.1.2. The centered vs un-centered version: We have that

1

N PT(θ)− 1

∑

i∈Isel,T(θ)

(xi − x(θ))
(
x̃i − x̃(θ)

)⊤
=

1

N PT(θ)

∑

i∈Isel,T(θ)

xix̃
⊤
i −

1

N PT(θ) (N PT(θ)− 1)

∑

i∈Isel,T(θ)

∑

j∈Isel,T(θ)

j ̸=i

xix̃
⊤
j .
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The second term on the right hand side concentrates to E
[
xỹ⊤ | x⊤MT x̃ > θ, y⊤MT ỹ > θ

]
, where (x, x̃) and

(y, ỹ) are i.i.d. from the joint mixture distribution. This expectation is zero, which we formally characterize

in Lemmas 6 and 7. The rate of concentration is Õ
(

1
N PT(θ)

)
, due to averaging over (N PT(θ))

2
terms, and

is hence a higher order term.

Step 4.1.3. Analysis of the fixed-denominator un-centered version: The selected samples satisfy the
property of being i.i.d from the conditional law of the selection rule. In particular, for each i ∈ Isel,T(θ) the
matrix Xi := xix̃

⊤
i has expectation E[Xi] = ST(θ) and these matrices {Xi : i ∈ Isel,T(θ)} are independent.

Using a Matrix-Bernstein concentration result (Eqs. (31) and (32)), it follows that with probability 1 −
exp(−Ω(max{d, d̃})):

∥∥∥∥∥∥
1

N PT(θ)

∑

i∈Isel,T(θ)

xix̃
⊤
i − ST(θ)

∥∥∥∥∥∥
≲

√
max{d, d̃} poly(γ−1, γ̃−1)

N PT(θ)
.

Step 4.2. Error between teacher and oracle: We show that ∥ST(θ)− SO(θ)∥ scales proportionally to
∥MT −MO∥, and the latter is precisely bounded by Eq. (49). To show this, we first simplify the conditional
expectation in SO(θ),ST(θ), define EO(θ), ET(θ) as:

EO(θ) := E
[
xx̃⊤ I(x⊤MOx̃ > θ)

]
⇐⇒ SO(θ) = EO(θ)/PO(θ) ; (66)

ET(θ) := E
[
xx̃⊤ I(x⊤MTx̃ > θ)

]
⇐⇒ ST(θ) = ET(θ)/PT(θ) . (67)

where I(.) denotes the indicator. Let ∆E(θ) := ET(θ)− EO(θ) and ∆P (θ) := PT(θ)− PO(θ). Also define
∆I(θ;x, x̃) := I(x⊤MTx̃ > θ)− I(x⊤MOx̃ > θ). Then, we write

ST(θ)− SO(θ) =
ET(θ)

PT(θ)
− EO(θ)

PO(θ)

=
(EO(θ) + ∆E(θ))PO(θ)−EO(θ) (PO(θ) + ∆P (θ))

PT(θ)PO(θ)
=

∆E(θ)

PT(θ)
− ∆P (θ)

PT(θ)
· EO(θ)

PO(θ)︸ ︷︷ ︸
SO(θ)

.

=⇒ ∥ST(θ)− SO(θ)∥2 ≤
1

PT(θ)
(∥∆E(θ)∥2 + |∆P (θ)| · ∥SO(θ)∥2) .

We will now bound ∥∆E(θ)∥2 and |∆P (θ)| in terms of ∥MT −MO∥2. Recall that (x, x̃) follow the mixture
distribution (Remark A.1). Decomposing the expectations and probabilities into respective mixtures, we
get

∆E(θ) = η E(x,x̃)∼N (0,Σ1)

[
xx̃⊤∆I(θ;x, x̃)

]
+ (1− η)E(x,x̃)∼N (0,Σ0)

[
xx̃⊤∆I(θ;x, x̃)

]
,

∆P (θ) = η E(x,x̃)∼N (0,Σ1) [ ∆I(θ;x, x̃) ] + (1− η)E(x,x̃)∼N (0,Σ0) [ ∆I(θ;x, x̃) ] .

From the above, since both η, 1− η are smaller than 1, we get that

∥∆E(θ)∥2 ≤ ∥∆E1(θ)∥2 + ∥∆E0(θ)∥2 , |∆P (θ)| ≤ |∆P1(θ)|+ |∆P0(θ)| ,

where the subscripts 1, 0 denote the fully clean, corrupted cases respectively (i.e. η = 1, η = 0 respectively).
Lemma 10 captures the general form of this, and we invoke this lemma on both the clean data (with covariance
Σ1) and the noisy data (with covariance Σ0). Note that rank(MO) ≥ 2 is satisfied since rank(MO) = r
and we assumed r ≥ 2 in the statement of Theorem 1. Further, the condition of ∥MT −MO∥ < σr(MO)

is satisfied due to n ≳ (1/η2) max{d, d̃}
(
1 + γ−1

) (
1 + γ̃−1

)
, since MO has r non-zero singular values all

equal to η/ρT and Eq. (49) with the condition on n implies that ∥MT −MO∥ ≲ η/ρT (note that implicitly

the condition also ensures that the contribution of the Õ(1/n) term is bounded). The appropriate constants
inside the ≳ notation will ensure the required condition. Overall, we get

∥ST(θ)− SO(θ)∥2 ≲
1 + ∥SO(θ)∥2

PT(θ)
∥MT −MO∥2 . (68)
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Step 4.3. Analysis of PT(θ) and PO(θ): In this part, we show that both PT(θ) and PO(θ) can be lower
bounded by an absolute constant (say, 1/10) for the relevant regime of filtering threshold θ.

Argument for PT(θ): Using Step 4.2, we have PT(θ) ≥ PO(θ) − |∆P (θ)|, and the deviation is small since
|∆P (θ)| ≲ ∥MT −MO∥. Using Eq. (49), we note that a large ρT can make ∥MT −MO∥ arbitrarily small.
Indeed in Step 5, we will set ρT to a large value. Since the deviation is small, we can use, for instance,
PT(θ) ≥ (1/2)PO(θ). Hence, arguing PO(θ) is large suffices, which we do below.

Argument for PO(θ): Next, we show that PO(θ) is ‘large enough’ for the choices of θ ∈ {0, rη/2ρT}, and we
will use these fixed points in Step 5. Recall from Section 6.2, due to the mixture distribution, the below holds.
Here we have accounted for the scaling factor in the definition of MO.

PO(θ) = η P1

(
θρT

η

)
+ (1− η)P0

(
θρT

η

)
. (69)

In Step 5, we will consider the fixed points θ ∈ {0, rη/2ρT}, and so we need lower bounds on P0(0), P0(r/2)
and P1(0), P1(r/2). We state them below:

P0(0) ≥ 0.5 , P1(0) ≥ c , (70)

P0(r/2) ≥ 0 , P1(r/2) ≥ c , (71)

where c > 0 is an absolute constant. For P0(.), we have lower bounds 0.5 (due to symmetry) and 0 (trivially).
For P1(.), we simply invoke the observation that both {0, r/2} are below the mean of the distribution (refer
to Figure 2a), and so an appropriate constant c exists satisfying the above. Overall, we conclude that
PO(0) = Ω(1) and PO(rη/2ρT) = Ω(η).

Step 5. Final guarantee via application of Lemma 2: Using Eqs. (64) and (68) in Eq. (56) with Eq. (55),

and combining the guarantee from Eq. (49), with probability 1− exp(−Ω(max{d, d̃})):
∥∥∥∥G

⊤G̃− 1

ρ
SO(θ)

∥∥∥∥ ≲
1

ρ

(√
max{d, d̃} poly(γ−1, γ̃−1)

N PT(θ)
+ Õ

(
1

N PT(θ)

))

+
1

ρ ρT

(
1 + ∥SO(θ)∥2

PT(θ)

)(√
max{d, d̃} (1 + γ−1) (1 + γ̃−1)

nT
+ Õ

(
1

nT

))
.

We set nT = n/2, and so N = n − nT = n/2 (as in Algorithm 1). For ρT, we note that it can be chosen
arbitrarily large to reduce the second term in the error above. This is because any ρT > 0 will allow the
teacher parameters GT, G̃T to recover the subspace spanned by U, Ũ respectively, but a large choice of ρT

will make the operator norm small. This does not cause the filtering to change, since the threshold θ changes
multiplicatively with ρT (effectively scaling the picture in Figure 2).

The condition of n ≳ 1
η2 max{d, d̃}(1+ γ−1)(1+ γ̃−1) is inherited from Corollary 1 (to be able to use eq (49)).

The additional condition on n, from the application of Lemma 2 to the above equation (similar to Eq. (37)),
results in a larger factor than 1/η2, hence is already satisfied.

Now we apply Lemma 2 on the above equation, and follow the argument similar to step 5 in Section D. An
additional factor of

√
r appears due to the norm being the chordal distance (frobenius norm). Using Eq. (60)

and Eq. (69), we get that with probability 1− exp(−Ω(max{d, d̃})), the error ERR
(
G, G̃

)
is upper bounded

(up to constants) by:

1

[ηf1(θ) + (1− η)f0(θ)]︸ ︷︷ ︸
from ∥SO(θ)∥

√
η P1 (θρT/η) + (1− η)P0 (θρT/η)︸ ︷︷ ︸

from
√

PT(θ)

√
r max{d, d̃} poly(γ−1, γ̃−1)

n
.
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Finally, we plug in the values θ ∈ {0, ηr/2ρT} to recover the terms T0, T0.5 as stated in Theorem 1. Using
Eq. (61) and (70), the scaling term of the error above becomes

1

[η + (1− η) (2/πr)] ·
√
η c+ (1− η) (1/2)

≲ r for any η ∈ (0, 1] .

Using Eq. (62) and (71), the scaling term of the error above becomes

1

[η + (1− η) (1/2)] · √η c ≲
1√
η
.

The above describes both regimes of behavior, and why an extra factor of r appears in the term T0, compared
to the term T0.5, in Theorem 1. This concludes the argument.

H Discussion on robustness of the choice of filtering threshold

We note that the error achieved by teacher-based filtering can be fairly robust to the choice of θ, the filtering
threshold. Our synthetic experiment in Figure 3a was conducted with a fixed, untuned threshold of θ = 0.
Further, we conduct an experiment measuring the sensitivity of the final error with respect to the choice of θ.
In the setting of Figure 3a with n = 10000 samples, we fix η = 0.3 (in-line with the empirically observed
clean fraction in CLIP data [11]) and (implicitly) vary the filtering threshold θ of the teacher-based filtering
(by explicitly varying the fraction of data retained in the filtering step). The below table shows that the
error of teacher-based filtering is relatively flat for values of θ in the vicinity of the optimal threshold θ∗. An
analogous experiment on real data [11, Figure 2] makes a similar observation.

Fraction of data retained Mean error (±1σ) (×10−4)

1% 28.76± 4.00

10% 11.79± 1.20

20% 9.85± 1.39

30% 9.08± 1.15

40% 8.97± 1.09

50% 8.71± 1.05

100% 16.51± 2.03

Table 1: Mean error vs. fraction of data retained.

I Discussion on the potential of robust statistics for the analysis of

filtering

An initial instinct based on Figure 2 is to use ideas from robust statistics. As discussed in Remark 6.2, we
can expect D0 and D1 to be well-separated, which means there will exist some θ ∈ R (a reasonable guess is
θ ≈ r/2) such that the selected data is mostly clean. After filtering, the picture resembles the robust statistics
setting: an α corruption on the clean distribution for some small α. This is a reasonable approach overall,
but has two shortcomings. First, this approach will not achieve zero error as n→∞. We are shooting for
f(η) · 1/√n which is better than 1/

√
n + g(η), since the latter is non-zero even when n→∞. This approach

will end up getting the latter. This is because the canonical rate in robust statistics is
√

d/nsel + α. Under
filtering, nsel and α are functions of θ. One can determine the optimal θ to balance the tradeoff, but to
get a final rate of the form f(η) · 1/√n, this will require some conditions on n, η (possibly η bigger than
a threshold, and n smaller than a threshold). Since our case has stochastic corruption which is weaker
than adversarial corruption, we can expect to prove something for all n and all η. Second, this approach
performs a “reductive" operation of treating data as only clean v/s corrupted, and assuming the corrupted
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part provides no signal. This is a closely linked argument to the first one above. The crucial observation
is that the right tail of the corrupted data (i.e. D0 in Figure 2) actually provides ‘close to clean’ samples.
This is because these just happened to be samples such that the z, z̃ – albeit independently sampled in a
high-dimensional space – happened to have a high inner product (small angle). Our adopted approach, based
on the conditional properties of the Gaussian distribution, formalizes this intuition that the right tail of D0

also provides signal.
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