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Abstract

Recent advances in deep learning optimization have unveiled two intriguing phenomena

under large learning rates: Edge of Stability (EoS) and Progressive Sharpening (PS), challenging

classical Gradient Descent (GD) analyses. Current research approaches, using either generalist

frameworks or minimalist examples, face significant limitations in explaining these phenom-

ena. This paper advances the minimalist approach by introducing a two-layer network with a

two-dimensional input, where one dimension is relevant to the response and the other is irrel-

evant. Through this model, we rigorously prove the existence of progressive sharpening and

self-stabilization under large learning rates, and establish non-asymptotic analysis of the training

dynamics and sharpness along the entire GD trajectory. Besides, we connect our minimalist

example to existing works by reconciling the existence of a well-behaved “stable set” between

minimalist and generalist analyses, and extending the analysis of Gradient Flow Solution sharp-

ness to our two-dimensional input scenario. These findings provide new insights into the EoS

phenomenon from both parameter and input data distribution perspectives, potentially informing

more effective optimization strategies in deep learning practice.

1 Introduction

Deep learning has revolutionized many fields, from computer vision to natural language processing.

However, this progress has also posed significant challenges to classical optimization theory. Most

classical gradient descent (GD) analysis assumes small learning rates for easing convergence

analysis. Consider minimizing a smooth loss function L(θ) with respect to the parameter θ,

classical analyses show that when choosing a learning rate η such that S(θ) ≤ 2/η, where S(θ)

denotes the largest eigenvalue of the Hessian matrix ∇2L(θ), the optimization is “stable” and the

loss function decreases monotonically to guarantee convergence Nesterov (2013).

Recent works such as Cohen et al. (2021), however, have observed that such a stability assump-

tion does not hold when training modern neural networks with GD. In particular, they summarize

two specific phenomena: The first one is called “Progressive Sharpening”(PS), that is, S(θ), which
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is also referred to as the “sharpness” in Cohen et al. (2021), keeps increasing until it reaches the

instability threshold 2/η during training; The second one is called “Edge of Stability”(EoS), that is,

the sharpness hovers at the instability threshold 2/η after progressive sharpening, with the loss

decreases continuously and nonmonotonically. These two phenomena undoubtedly challenge the

classical analyses and have already attracted the attention of many researchers.

Current research on understanding these phenomena has developed along two lines. The

first line purses a so-called “generalist analysis” frameworks that, while being generic, rely on

hard-to verify assumptions. For example, Li et al. (2022b) analyze GD for training two-layer wide

neural networks. By characterizing the norms of the second-layer weights, they prove a four-stage

behavior, covering the PS and EoS phenomena. However, their analysis requires assumptions that

are hard to verify for two-layer neural networks, e.g., the sharpness being upper bounded, and

only works for extremely wide settings, which diverges from practical scenarios. Damian et al.

(2022) prove a similar four-stage behavior based on a general loss function, and their analysis

also relies on hard-to-verify assumptions, such as the existence of progressive sharpening and the

existence of a certain well-behaved “stable set”, which is doubted and showed badly-behaved for

scalar networks in (Kreisler et al., 2023). Overall speaking, such analysis provide results similar to

real experiments, but their hard-to-verify assumptions significantly restrict their applicability to

practice. Relaxing these assumptions is also extremely challenging.

The second line focuses on minimalist examples, offering more concrete and intuitive insights

without requiring specific theoretical assumptions. For instance, Zhu et al. (2022) study 2d slices

of a 4-layer linear scalar network and prove convergence to a minimum with sharpness slightly

below to 2/η, and Wang et al. (2023) consider the behavior of sharpness with GD on a special

class of 2-layer scalar networks (with nonlinear activation) in the form of F(xy). However, these

works suffer from two drawbacks: (1) They can only characterize the asymptotic sharpness of the

converged minimum. Due to the lack of analyzing sharpness for the entire trajectory, they cannot

provide more desirable nonasymptotic guarantees for the PS and EoS stages; (2) The setting of

scalar networks is over-simplified compared with practice, and the obtained results cannot explain

the role of the input data dimension in the EoS stage.

Besides, another notable example of the minimalist analysis is Kreisler et al. (2023), which

analyze a variant of sharpness. Specifically, they introduce a concept of Gradient Flow Solution

(GFS), and prove a monotonic decrease in the sharpness of GFS at the EoS stage for scalar networks.

In addition to the aforementioned drawbacks, Kreisler et al. (2023) also suffer from another

drawback: The sharpness of GFS does not directly transfer to that of GD trajectory, thus providing

no immediate explanation for the EoS phenomenon.

In this paper, we aim to address the limitations of the minimalist analysis by providing a more

sophisticated example: A two-layer neural network of width one with a two-dimensional input –

in particular, one input dimension is relevant to the response, and the other input dimension is

irrelevant. We establish nonasymptotic analysis of the training dynamics along the entire trajectory:

(1) We prove the existence of progressive sharpening and self-stabilization under large learning

rates; (2) We provide sharpness guarantees for the entire trajectory, showing that GD trajectory will

never exceed a sharpness upper bound; (3) We prove that the non-monotonically decreasing loss is
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essentially monotonically decreasing when projected to the only relevant dimension. Through such

theory, we provides new insights of why EoS happens from the perspective of both parameters and

input data distribution.

Moreover, we highlight two connections of our theory to existing works: (1) We reduce the gap

on the existence of a well-behaved “stable set” between the minimalist and generalist analyses.

Specifically, Kreisler et al. (2023) prove that the stable set hypothesized in Damian et al. (2022)

can be disjoint in the scalar networks studied by Zhu et al. (2022); Kreisler et al. (2023), which

essentially violates the assumption of Damian et al. (2022). Therefore, the projected GD considered

in Damian et al. (2022) cannot smoothly decrease the loss toward zero. In contrast, we prove that

in our considered two-layer neural network with the two-dimensional input admits a nontrivial

well-behaved set, which is the subset of the stable set defined in Damian et al. (2022). This indicates

a potential separation between the bivariante and scalar inputs for linear networks; (2) We extend

the analysis of Kreisler et al. (2023) and provide the monotonic decrease of GFS sharpness for our

considered two-layer neural network with the two-dimensional input.

2 Related Works

The asymptotic property of GD sharpness was first mentioned in Wu et al. (2018) as an empirical

observation, that is, the minimal sharpness that the GD trajectory with learning rate η ultimately

converges to is always around 2
η .Cohen et al. (2021) made a comprehensive empirical study on

the sharpness of the entire GD trajectory. To be more specific, they summarized two phenomena:

“progressive sharpening” and “edge of stability”, which means the sharpness of gradient descent

with a learning rate η will first increase to 2
η and then stabilize at such a scale during the entire

training process. They also illustrated that the training loss of GD with a learning rate η can

non-monotonically decrease, even when the stable condition, sharpness λ ≤ 2
η (where η is the

learning rate), is not satisfied. The non-monotonic decay property of the training loss with GD has

also been observed in various other settings (Wu et al., 2018; Arora et al., 2018; Xing et al., 2018;

Jastrzebski et al., 2020; Lewkowycz et al., 2020; Wang et al., 2021; Li et al., 2022a).

Recently, several works have attempted to comprehend the mechanism behind EoS with differ-

ent loss functions under various assumptions (Ahn et al., 2022; Ma et al., 2022; Arora et al., 2022;

Lyu et al., 2022; Li et al., 2022b; Zhu et al., 2022). From a landscape perspective, Ma et al. (2022)

defined a special subquadratic property of the loss function and proved that EoS occurs based

on this assumption. Ahn et al. (2022) followed this landscape property and studied the unstable

convergence behavior of GD. Both Arora et al. (2022) and Lyu et al. (2022) investigated the implicit

bias on the sharpness of GD in some general loss function.

There are also some works trying to investigate EoS phenomenon on highly simplified settings.

Zhu et al. (2022) proved the asymptotic sharpness of the converged minimum will be close to 2
η .

Wang et al. (2023) consider the behavior of sharpness with GD on a special class of 2-layer scalar

networks (with nonlinear activation) in the form of F(xy), and also get a asymptotic result and

show some other behavior beyond EoS in their setting. Agarwala et al. (2022) investigate second

order regression models, get a asymptotic result similar to Zhu et al. (2022), and a result loosely
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related to “progressive sharpening”. Chen and Bruna (2023) investigate the behavior beyond edge

of stability in various simplified examples. Kreisler et al. (2023) consider the setting of scalar

networks, and show a new concept gradient flow solution (GFS) will decrease during EoS.

Another line of work (Lewkowycz et al., 2020; Wang et al., 2021) focuses on the implicit bias

introduced by large learning rates.Lewkowycz et al. (2020) first proposed the “catapult phase” , a

regime similar to the EoS, where loss does not diverge even if the sharpness is larger than 2
η . Wang

et al. (2021) analyze the balance effect of GD with a large learning rate for matrix factorization

problems. More recently, Li et al. (2022b) provided a theoretical analysis of the sharpness along

the gradient descent trajectory in a highly overparameterized two-layer linear network setting

under some hard-to-verify assumptions during the training process. Damian et al. (2022) followed

Li et al. (2022b) to develop a general theory of self-stabilization also under some hard-to-verify

assumptions. Moreover, they proposed a concept called “constrained trajectory” to show that the

trajectory of GD with large learning rate deviates from the gradient flow, which was firstly observed

by Jastrzebski et al. (2020) and confirmed by Cohen et al. (2021).

3 Setup

In this paper, we study a regression problem with two-dimensional input x = (x1,x2)
⊤ ∈ R2 and

scalar response y = f ∗(x) ∈ R. For analytical simplicity, we suppose



x1
x2


 ∼N


0,



λ1 0

0 λ2





 , and f ∗(x) = x2,

where λ1 ≥ 100,λ1λ2 ≤ 1.1 Here x1 is an irrelevant feature with large scale, while small-scale x2
fully determines the response y.

To learn the target function f ∗, we use a two-layer width-one linear network with weights

θ = (α,β1,β2) ∈ R3:

f (x;θ) = αβ1x1 +αβ2x2.

Then the population square loss is given by

L(θ) =
1

2
Ex,y

[
(y − f (x;θ)2

]
=
1

2
λ1(αβ1)

2 +
1

2
λ2(αβ2 − 1)2. (3.1)

The Hessian matrix H(θ) of L(θ) can be written as:

H(θ) =




λ1β
2
1 +λ2β

2
2 2λ1αβ1 2λ2αβ2 −λ2

2λ1αβ1 λ1α
2 0

2λ2αβ2 −λ2 0 λ2α
2



.

Definition 3.1 (Sharpness of L(θ)). We define the largest eigenvalue of H(θ) as the sharpness

parameter of L(θ). We denote it by S(θ).

1The covariance matrix can be generalized to be non-diagonal due to the rotation invariance of GD.
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Our setting is motivated by Rosenfeld and Risteski (2023), where they demonstrate that the

oscillations during the EoS stage in image classification tasks are driven by “large magnitude”

features in the input data. Notably, these features, such as the background color of CIFAR-10

images, show little correlation with the true labels. Inspired by this observation, our setting allows

us to investigate the impact of feature relevance on training dynamics, and provides insights into

the mechanisms behind the EoS phenomena.

To minimize the loss in (3.1), we adopt gradient descent with learning rate η > 0 and gradient

clipping on β1:

α(t +1) = α(t)− η∇αL(θ(t)),

β1(t +1) = Clip

(
β1(t)− η∇β1L(θ(t)),

√
10

6
√
λ1

)
,

β2(t +1) = β2(t)− η∇β2L(θ(t)),

where Clip(x,c) = sign(x) ·max{|x|, c}. The clipping of β1 prevents anomalous behavior in the

dynamics. We provide further discussion in Appendix F.

We initialize the weights within the initialization set X (η), which is defined as the set of

θ = (α,β1,β2) satisfying

√
1.1

λ1η
≤ α ≤

√
2

λ1η
,

max{
√
6ηλ1

20
,

3

20α
,α} ≤ β2 <

1

α
,

λ2β2
500λ1α

(1−αβ2) ≤ β21 ≤
λ2β2
λ1α

(1−αβ2).

Our analyses focus on sufficiently large learning rate η ∈ [2/λ1,0.1], where X (η) is nonempty.

Moreover, we show that X (η) is a large set. For instance, when λ1 = 100 and η = 0.1, it suffices to

select α and β2 such that

√
3

5
≤ α ≤

√
5

5
, and

√
5

5
≤ β2 <

√
5,

and then choose β1 accordingly. Notably, this initialization allows us to explore the training

dynamics across a wide range of learning rates, all starting from the same initial point. Additional

details are provided in Appendix C.

The GD dynamics of our model exhibits interesting EoS phenomena. As shown in Fig 1, we

observe that while the loss decreases over long timescales, it exhibits non-monotonic behavior with

periodic spikes. Meanwhile, the sharpness grows and oscillates around 2/η, with rapid alternation

between progressive sharpening and self-stabilization phases. These characteristics align with the

EoS phenomena observed in Cohen et al. (2021) and Damian et al. (2022), and extend beyond the

scalar network setting studied in Zhu et al. (2022). We provide further discussion in Section 6.1.
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Figure 1: Set λ1 = 100 and λ2 = 0.01. We train our model with learning rate η = 1/20 for 10000

iterations.

4 Theoretical Results

In this section, we develop a nonasymptotic analysis of the GD dynamics throughout the entire

trajectory. In section 4.1, we identify three distinct phases in the GD dynamics, proving the

existence of progressive sharpening and self-stabilization. Furthermore, in Section 4.2, we establish

that the loss (non-monotonically) converges to zero, with a rate that depends explicitly on the input

data variance.

Throughout our analysis, we use a learning late η ∈ [2/λ1,0.1], and initialization within the set

X (η) unless otherwise specified. Our choice of η is sufficiently large to guarantee the occurrence of

EoS phenomena.

4.1 Gradient Descent Dynamics

To begin with, we present the three distinct phases identified in the GD dynamics.

Phase 1: Progressive sharpening before EoS. The loss L decreases monotonically, while the loss

sharpness gradually increases, yet remains below the stability threshold 2/η.

Phase 2.1: Progressive sharpening during EoS. As the dynamics enters the EoS (Edge of Stability)

stage, the sharpness continues to increase monotonically and exceeds the stability threshold 2/η.

Phase 2.2: Self-stabilization during EoS. In this phase of the EoS stage, the dynamics self-stabilize

as the sharpness decreases monotonically until it falls below 2/η.

Following Phase I, the dynamics enter a cyclical pattern alternating between Phases II.1 and

II.2. Through this process, we further demonstrate that GD ultimately converges to global minima

with a limiting sharpness bounded by 2/η.

Theorem 4.1 (Global Convergence). For any δ > 0 and ϵ > 0, there exists a time T (δ,ϵ), such that

for any t ≥ T (δ,ϵ), we have

L(θ(t)) ≤ ϵ and S(θ(t)) ≤ 2+ δ

η
. (4.1)

To rigorously characterize the GD dynamics, we first present the following properties of the

parameters θ(t) = (α(t),β1(t),β2(t)):
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Lemma 4.2. For all t ≥ 0, use v(t) to denote the eigenvector corresponding to the largest eigenvalue

of H(θ(t)), we have:

(i) λ1α
2(t) ≤ S(θ(t)) ≤ 1.12λ1α

2(t);

(ii) |cos(v(t), (0,1,0))| > 0.9;

(iii) β2(t +1) > β2(t).

We make the following remarks for Lemma 4.2.

Sharpness dominated by α Property (i) demonstrates that λ1α
2 dominates the sharpness S(θ)

along the trajectory, suggesting that analyzing α1 suffices to reveal the dynamics of sharpness.

Instability of β1 The top eigenvector v(t) of H(θ(t)) identifies the direction of maximum curvature

in L(θ(t)). When the sharpness is as large as 2/η, updates along v(t) can induce oscillatory instability

in the GD dynamics. Property (ii) reveals that the oscillating direction v(t) closely aligns with β1.

Furthermore, we will show that β1 induces spikes in the loss L in Section 4.2.

Monotonic Increase of β2 In contrast to β1, β2 is a stable direction. This stability difference

arises from their respective second-order partial derivatives: ∂2L
∂β2

(θ) = λ2α
2 is much smaller than

∂2L
∂β1

(θ) = λ1α
2. Property (iii) confirms this stability, proving that β2 increases monotonically

throughout the GD trajectory.

Now we are ready to characterize the sharpness along the GD trajectory, and demonstrate the

existence of progressive sharpening and EoS in the following theorem.

Theorem 4.3 (Progressive Sharpening). Let T1 to be the first time such that λ1ηα
2(T1) ≥ 1.5 (T1

can be∞). Then for any 0 ≤ t < T1, α > 0 increases monotonically, and

1.1

η
≤ S(θ(t)) ≤ 1.7

η
.

For t ≥ T1, we have

1.5

η
≤ S(θ(t)) ≤ 4.71

η
.

Theorem 4.3 guarantees that the phenomenon of progressive sharpening before entering the

EoS stage (Phase I) and the sharpness bounded near 2/η during EoS (Phase II). Specifically, when

t < T1, the sharpness keeps growing, as evidentiated by the monotonic increase of α, yet stays below

2/η. When t ≥ T1, the sharpness is bounded from below and above, near 2/η, indicating the GD

trajectory stays in the flat region and never escapes to a sharper region during EoS.

Furthermore, we prove the progressive sharpening (Phase II.1) and self-stabilization (Phase

II.2) during EoS, when θ = (α,β1,β2) is initialized within a more stable set X̃ (η):

X̃ (η) := { (α,β1,β2) ∈ X (η)| α ≤
√
1.5/(λ1η), β2 ≤ 0.2/α, β21 ≤

λ2β2
50λ1α

(1−αβ2) }.

Here X̃ (η) forms a significant subset of X (η). It represents a relatively flat region in X (η). Then we

can derive the following theorem:

7



Theorem 4.4 (Edge of Stability). Let θ(0) ∈ X̃ (η). There exist T2 and T3 with 0 < T2 < T3, such that:

• (Progressive Sharping) For t ∈ [0,T2], we have

α(t +1) > α(t), and S(θ(T2)) >
2.37

η
;

• (Self-stabilization) For t ∈ (T2,T3], we have

α(t +1) < α(t), and S(θ(T3)) <
2

η
+ η.

Theorem 4.4 give a precise characterization of the progressive sharpening phenomenon and

self-stabilization, which is consistent with the empirical observation in Damian et al. (2022) and Li

et al. (2022b). When t < T2, the sharpness keeps increasing, as α grows monotonically, and exceeds

the stability threshold 2/η. When T2 < t ≤ T3, the sharpness drops, as α decrease monotonically.

Additionally, we empirically demonstrate that the GD dynamics alternates between progressive

sharpening (Phase II.1) and self-stabilization (Phase II.2) during EoS in Figure 1.

4.2 Loss Decay Rate

In this section, we estimate a monotonic decay rate of the non-monotonic loss. Recall the loss

function defined in (3.1):

L(θ) =
1

2
λ1(αβ1)

2

︸       ︷︷       ︸
L1: oscillatory term

+
1

2
λ2(αβ2 − 1)2

︸            ︷︷            ︸
L2: convergence term

. (4.2)

The loss L has two components, an oscillatory term L1 and a convergence term L2. The first term

L1 corresponds to learning the irrelevant feature x1, and contains an oscillatory parameter β1, as

shown in (ii) of Lemma 4.2. Empirically, L1 exhibits drastic fluctuations, but rapidly drops to zero

every time the GD trajectory goes back to the stable region where S(θ) ≤ 2/η, as demonstrated

in Figure 7. We thereby deduce that L1 contributes to the spikes appearing in the loss dynamics,

while L2 dominates the loss descent.

Notably, L1 barely influences the overall loss descent rate. This motivates us to focus on L2 to

estimate the monotonic decay rate. Our numerical experiments in Figure 7 indicate that L2 well

approximates the descent trend of L. However, L2 is still non-monotonic, due to the fluctuations of

α. Thereby, we consider

L̂(θ) =
1

2

(
1−
√
2β2(t)√
λ1η

)2
,

by restricting α =
√
2/(λ1η). We first show that L̂ is a good estimate for L2:

Lemma 4.5. Let θ(0) ∈ X (η). For any 0 ≤ t ≤ T4, where

T4 := min{t ≥ 0 : β2(t) ≥ 0.5
√
λ1η/2},

we have

0.75L2(θ) ≤ L̂(θ) ≤ 3.3L2(θ).
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Moreover, for any 0 ≤ t ≤ T4 such that α(t) ≤
√
2/(λ1η), we have

0.75L2(θ) ≤ L̂(θ) ≤ L2(θ).

Lemma 4.5 proves that L2(θ) can be controlled by L̂(θ), especially when GD trajectory is in the

stable region. Next, we present the decay rate for L̂:

Theorem 4.6. Let θ(0) ∈ X (η). For any 0 ≤ t ≤ T4, with T4 defined in Lemma 4.5, we have:

(1− 4λ2

λ1
)2 ≤ L̂(θ(t +1))

L̂(θ(t))
≤ (1− λ2

λ1
)2.

Theorem 4.6 proves L̂ decays in a linear rate upper bounded by (1−λ2/λ1)
2. The rate becomes

faster as λ2/λ1 grows larger. This reflects how the relative scale between features influences the

loss decay. As λ2/λ1 increases, the model becomes more sensitive to the relevant feature x2, leading

to faster loss descent. In addition, Figure 7 shows that the rate (1− 2λ2/λ1)
2, which lies between

the upper and lower bounds in Theorem 4.6, precisely estimates the decreasing speed of L(θ).

Our analysis primarily focuses on the interval [0,T4]. While this formulation might appear

constrained, it captures a substantial period of the optimization process, yielding valuable insights

into the GD dynamics. Notably, Figure 7 demonstrates that the estimated decay rate maintains its

validity well beyond the theoretically analyzed timeframe, suggesting broader applicability of our

findings.

0 2000 4000 6000 8000 10000
epoch

10

8

6

4

2

lo
g(

lo
ss

)

L loss
L2 loss
L loss

0 2000 4000 6000 8000 10000
epoch

0.000

0.001

0.002

0.003

0.004

0.005

0.006

lo
ss

L1 loss
L2 loss

Figure 2: Same setting as Figure 1. In the left figure we plot L(θ), L2(θ) and L̂(θ) in log scale.

We can see that L̂(θ) nicely reflects the decay rate for L2(θ). The slope of the red dashed line is

2log(1− 2λ2
λ1

), which nicely reflect the decrease rate of L̂(θ). In the right figure we plot L1(θ) and

L2(θ). In most time L1(θ) is near zero unless spikes occur.

5 Connection with Existing Results

We present the connections of our theory to the gradient flow solution (GFS) proposed in Kreisler

et al. (2023), and the “constrained trajectory” in Damian et al. (2022).
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5.1 Connection with Gradient Flow Solution

Firstly, we introduce gradient flow (GF), which is the continuous form of GD:

θ̇(t) = −∇L(θ(t)).

For any initialization θ, define the gradient flow solution (GFS) SGF(θ) as the limit of the GF

trajectory, and denote φ(θ) as the GFS sharpness, i.e. the loss sharpness at SGF(θ).

Kreisler et al. (2023) study the GFS sharpness along the GD trajectory on scalar networks,

proving its monotonic decrease. We extend this analysis to our two-layer neural network with

two-dimensional input. Herein, we verify that GD reduces the GFS sharpness in this more general

setting, while further elucidating the distinction between GFS sharpness and GD sharpness.

The following Lemma characterizes the GFS sharpness when the GF starts at θ(0) ∈ X (η).

Lemma 5.1. Let η ∈ [2/λ1,0.1]. For any α(0),β(0) ∈ X (η) satisfying α(0) = β2(0), there exists

β1(0) ∈ R such that θ(0) = (α(0),β1(0),β2(0)) ∈ X (η). Moreover, the GF initialized at θ(0) converges

to a solution with the following sharpness:

φ(θ(0)) ≥ λ1 − 1.

Lemma 5.1 reveals that when initialized from a subset of X (η), GF converges to sharp minima

with sharpness lower bounded by λ1 − 1. This result show that our analysis is beyond that in

Kreisler et al. (2023), as they requires φ(0) ≤ 2
√
2

η . In particular, given λ1 ≥ 100, when η > 4/(λ1−1),
the GFS sharpness φ(0) > 4/η. While GD with large η converges to flat minima whose sharpness is

bounded by 2/η (Theorem 4.1), GF exhibits different trajectories and converges to solutions with

greater sharpness.

We next analyze GF initialized from points θ(t) along the GD trajectory. The following theorem

demonstrates that GD decreases the GFS sharpness, which is consistent with the observations in

Kreisler et al. (2023).

Theorem 5.2. For any t ≥ 0, we have

φ(θ(t)) ≥
1−λ1ηβ

2
2(t)

2η
+
λ1

√
4+ ( 1

ηλ1
− β22(t))2

2
,

φ(θ(t)) ≤
4.2−λ1ηβ

2
2(t)

2η
+
λ1

√
4+ ( 4.2ηλ1

− β22(t))2

2
,

where both bounds monotonically decrease with time t ≥ 0.

Here the monotonic decrease of the upper and lower bound in Theorem 5.2 is because of the

monotonic increase of β2(t), as proved in Lemma 4.2 (iii). In Figure 3, we plot the upper and lower

bound in Theorem 5.2. This demonstrates that both bounds do decrease monotonically with time,

and implies a near-monotonic decrease of the GFS sharpness.
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Figure 3: We choose learning rate η to be 1
12 , and show the evolvement of upper and lower bound

in Theorem 5.2

Remark 5.3. Theorem 5.2 further illuminates the inconsistency of GFS sharpness with GD sharp-

ness. While GFS sharpness starts high and decreases along the GD trajectory, the GD trajectory

itself exhibits a different behavior as detailed in Section 4.1: its sharpness first increases mono-

tonically, and then fluctuates around 2/η during EoS without showing a consistent decreasing

trend.

Figure 4 illustrates GF trajectories initiated from various points along the GD path. Recall

that a greater α indicates higher sharpness, as shown in (i) of Lemma 4.2. The visualization

demonstrates how the GFSs transition from the highly sharp Minimizer 0 to Minimizer 3 with

moderate sharpness 2/η.

5.2 Connection with Constrained Trajectory

In this section, we draw connections to the “constrained trajectory” framework introduced by

Damian et al. (2022), who show that GD at the edge of stability implicitly follows projected gradient

descent (PGD) under the constraint S(θ) ≤ 2/η. Specifically, they consider PGD on a so-called

stable setM, which is defined as

M(η) :=

{
θ : S(θ) ≤ 2

η
and ∇L(θ) ·u(θ) = 0

}
,

where u(θ) is the eigenvector associated with the largest eigenvalue of Hessian H(θ). Then the

PGD onM is formulated as

θ†0 :=ΠM (θ0) and θ†t+1 :=ΠM

(
θ†t − η∇L

(
θ†t

))
,

11
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Figure 4: Same setting as Figure 1. We plot the GFs starting from different points on the GD

trajectory and the minimizers these GFs converge to.

where the projection onM is defined as ΠM(θ) := argminθ′∈M ∥θ −θ′∥ . The trajectory of the PGD

is referred to as “constrained trajectory”.

As mentioned in Damian et al. (2022), the constrained trajectory is mainly determined by the

sharpness condition, S(θ) ≤ 2/η, while the other condition ∇L(θ) · u(θ) = 0 ofM is included to

ensure the constrained trajectory stable, without affecting the stationary points of PGD onM.

Following the same principle, we choose our stable set as:

M†(η) =
θ :

1√
λ1η
≤α≤

√
2

λ1η
;β1 = 0;0 < αβ2 ≤ 9

.

The first condition α corresponds directly to maintaining sharpness near 2/η (Lemma 4.2). The

second condition sets the oscillatory term β1 to zero. Moreover, the third condition ensures

parameter inM†(η) is not too far from solution manifold. The following lemma provesM† ⊂M,

and provides an explicit update rule for the PGD onM†.

Lemma 5.4. Let η ∈ [2/λ1,0.1] and θ(0) ∈ X (η). ThenM†(η) is a subset ofM(η), and the PGD on

M†(η) has the following update: β†1(t) ≡ 0 and

α†(t +1) = Clip

(
α†(t)− η∇αL(θ†(t)),

√
2

ηλ1

)
,

β†2(t +1) = β†2(t)− η∇β2L(θ
†(t)).

Lemma 5.4 implies that the PGD onM† can be regarded as GD with β1 restricted to zero and

12



α clipped. We next characterize the PGD trajectory, derive its convergence rate during EoS, and

demonstrate its value in understanding GD dynamics.

Theorem 5.5. Let t̃ := min{t ≥ 0 : α†(̃t) =
√
2/(ηλ1). For any 0 ≤ t < t̃, the PGD onM† satisfies

α†(t +1) > α†(t) and L(θ†(t +1)) < L(θ†(t)).

For any t ≥ t̃, we have

L(θ†(t +1)) =

(
1− 2λ2

λ1

)2
L(θ†(t)) (5.1)

Theorem 5.5 shows the loss monotonically decreases along the contrained trajectory, and

provides an explicit convergence rate. We can see that this rate lies between the upper bound and

lower bound in theorem 4.6, and in Fig 7 we can see that (5.1) predicts the decay rate of L precisely.

Remark 5.6. The constrained trajectory analysis complements our approach in Section 4.2 in an

interesting way. Both methods aim to understand the core convergence behavior by handling the

oscillatory dynamics, but through different means. The constrained trajectory directly enforces

stability by projecting θ onto a stable set where β1 = 0, while our previous analysis in Section 4.2

studies the convergence through L2 (defined in (4.2)), while allowing the oscillatory parameter β1
to vary naturally. Despite these distinct approaches, both analyses arrive at similar convergence

rates, indicating that β1 barely impacts the loss descent and reinforcing our understanding of the

fundamental dynamics at the EoS.

We also visualize the constrained trajectory in Figure 5. We show that GD first “sharpens”

to the unstable region where α is large, and then “self-stabilize” to the stable region. After that,

another sharpening starts and the trajectory enters the next cyclical behavior. As illustrated in

Figure 5, during EoS stage, GD trajectory will follow the constrained trajectory rather that GF

trajectory.

6 Discussion

6.1 Alignment with the EoS Phenomena in Practice

To our best knowledge, the phenomenon in our setting, including the periodic progressive sharp-

ening and self-stabilization, and the periodic loss spikes, have not been observed in previous

minimalist settings Zhu et al. (2022); Kreisler et al. (2023); Wang et al. (2023); Chen and Bruna

(2023). Our setting is based on the two dimensional input data with two features in different scale.

This is different from most previous minimalist settings such as Zhu et al. (2022); Kreisler et al.

(2023) where they suppose a scalar input. Recall that in our setting, we suppose a large-scale but

irrelevant feature and a small scale and irrelevant feature. Such construction is the key for our

phenomenon, as the model has the trend to progressive sharpening (to increase its norm) for fitting

the small scale feature, but the large-scale irrelevant feature (or noise) will provide a regularization

for the model, which provides a self-stabilization effect.

13
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Figure 5: Same stetting as Figure 1. We visualize the GD trajectory with learning rate η = 1
20 , as

well as the GF and constrained trajectory starting from the same initialization.

We argue that observations in our settings are more similar to practical results Cohen et al.

(2021); Damian et al. (2022) than observation in Zhu et al. (2022); Kreisler et al. (2023). In

experiments from Cohen et al. (2021); Damian et al. (2022), it’s easy to see the periodic progressive

sharpening, self-stabilization and the loss spiles, see Figure 8 and 9. These phenomenon are also

observed in our synthetic setting. In contrast, in the scalar network setting in Zhu et al. (2022);

Kreisler et al. (2023), the sharpness jump up and down around 2
η , and their loss function will

monotonically decrease after first a few steps. See Figure 10 and Figure 11 for the experiments on

scalar networks.

6.2 Trade-off in Large Learning Rates

When training neural networks, using larger learning rates, if not leading to divergence, has been

seen to accelerate the training. However, this is not always the case. For example, we train a

two-layer FFN (feed-forward networks) on Cifar10 dataset using GD with different learning rates.

We report the number of training steps for decreasing the training loss from 0.32 to 0.22 in Figure

6. We choose such a range for the objective function, as we observe that the training loss clearly

shows the EoS phenomenon. As can be seen, increasing the learning rate from 0.1 to 0.3 actually

slows down the training by about 50% (5000 vs. 11000 steps). Therefore, there exists an optimal

learning rate in terms of reducing the training loss function.

The phenomenon above can be partially justified by our theoretical analysis, which corresponds
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Figure 6: Training performance of a two-layer ReLU network on the CIFAR-10 dataset using

Gradient Descent (GD) with various learning rates. The optimal learning rate is approximately

0.12. Further increases in the learning rate result in slower decreases in the training loss.

an extreme example of this phenomenon—under our setting: increasing the learning rate neither

speeds up nor slows down the decrease of the loss. Recall that as suggested by (ii) of Lemma 4.2,

β1 – corresponding to the irrelevant input feature x1 – mainly contributes to the oscillation of

the loss function and drifts around 0. Meanwhile, as suggested by Theorem ?? and (i) of Lemma

4.2, the progressive sharpening and self-stabilization of EoS make α tend to stabilize around√
2

ηλ1
. Therefore, roughly speaking, the decrease of the loss function is mainly driven by β2, which

corresponds to the relevant input feature x2.

Now we look into the landscape of the loss function with respect to β2, the sharpness along the

β2 direction is determined by its second order derivative
∂2L(θ)

∂β2
2

= λ2α
2. As α gradually stabilizes

around
√

2
ηλ1

,
∂2L(θ)

∂β2
2

tends to stabilize around 2λ2
ηλ1

. Recall again that we have λ2≪ ηλ1, implying

that 2λ2
ηλ1

is very small. Therefore, the loss function is very flat along the β2 direction. Accordingly,

the convergence of β2 is likely to slow down, as β2 approaches the minimum.

Our explanation above on the GD trajectory may look a bit complex. To summarize, the

acceleration benefit of using a large learning rate eventually diminishes, as the landscape of the

loss function along the major update direction is flat near the corresponding minimum.

Now let’s dive into Theorem 4.6 again. Recall that L̂ can be viewed as a good approximation of

the loss function L by only considering the relevant dimensions – α and β2. The decay rate of L̂ is

linear and independent on η. Therefore, as illustrated in Figure 7, the decay rate of the original

loss function L also shows a similar convergence behavior – in another word, a large learning rate

does not necessarily yield a faster convergence.

Although this example does not yet fully explain why increasing the learning rate slows down
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Figure 7: We train our model from the same initialization with learning rate η = 1
20 (Left) and

η = 1
12 (Right). The slope of the red dashed lines in both figure is 2log(1− 2λ2
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), which reflects the

decrease rate of the loss with different learning rate properly.

the loss decrease, we believe that the trade-off mechanism in our minimalist example provides a

preliminary theoretical explanation for this phenomenon and can be extended by future effort.
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A Phenomena in other works

We begin by examining an experiment from Cohen et al. (2021), in which they train a two-layer tanh

network to approximate a Chebyshev polynomial. The observed phenomenon closely resembles

our findings. The sharpness initially increases, then rapidly decreases to a low level, before growing

again and entering a cyclic pattern. Large spikes occur and quickly subside during this process.

Figure 8 illustrates their results.

Figure 8: Experiment from Cohen et al. (2021). A two-layer tanh network is trained to approximate

a Chebyshev polynomial using Gradient Descent (GD) with learning rates η = 2
6 ,

2
8 , and

2
10 .

Similar observations are reported in Li et al. (2022b) and Damian et al. (2022). For instance,

Damian et al. (2022) train a transformer with MSE Loss on the SST2 dataset. We present their

results in Figure 9.

Figure 9: Experiment from Damian et al. (2022). A transformer model is trained on the Stanford

Sentiment Treebank 2 (SST-2) dataset using Mean Squared Error (MSE) as the loss function.

These experiments from various studies align closely with our numerical experiments. However,

we note a discrepancy between these practical experiments and those presented in Zhu et al. (2022)

and Kreisler et al. (2023). In their experiments on scalar networks, the loss oscillates during

the initial steps but subsequently decreases monotonically. The sharpness does not exhibit a

progressive sharpening process; instead, it fluctuates around 2/η from the initialization. Figures

10 and 11 provide detailed illustrations of these observations. Based on these findings, we posit
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that the Edge of Stability (EoS) phenomenon differs from that described in Zhu et al. (2022) and

Kreisler et al. (2023).

Figure 10: Experiment from Zhu et al. (2022). Gradient Descent (GD) is applied to the loss function

(1− x2y2)2, which represents a special case of a scalar network setting. The learning rates η are

chosen to be 2
8 ,

2
10 , and

2
12 .

Figure 11: Experiment from Kreisler et al. (2023). A depth-4 scalar network is trained using

Gradient Descent (GD) for 104 steps with a learning rate η = 0.2. The loss function is defined as

(1− xyzw)2.

B More Experiments and Details

B.1 Experimental Details of Section 6.2

In the experiments shown in Figure 6, we train a two-layer multilayer perceptron (MLP) on the

first 10,000 images of the CIFAR-10 dataset without image preprocessing. We use a 10-dimensional

one-hot vector as the target and employ the Mean Squared Error (MSE) as the loss function. We

measure the number of steps Gradient Descent (GD) takes to decrease the loss from 0.32 to 0.22.
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Figure 12: Visualization of GD trajectory for a four layers MLP training on Cifar10

It is important to note that in our experiment, GD with all learning rates has already entered the

Edge of Stability (EoS) regime before the loss reaches 0.32.

B.2 Visualization of Practical Model Parameters in 3D Space

We visualize part of the GD trajectory with different learning rates, as well as the Gradient Flow

(GF) trajectory, while training a four-layer MLP on a binary classification problem using the CIFAR-

10 dataset. The GD trajectory closely follows the GF trajectory before entering the EoS regime.

Subsequently, the GD trajectory enters an unstable region, beginning to oscillate, and its long-term

movement shifts to a new direction that differs from the GF direction. This behavior is similar to

GD’s behavior observed in our results presented in Figure 5. Additionally, we observe that GD with

smaller learning rates follows the GF for a longer distance before beginning to change direction

and oscillate in a new region.
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C Theoretical Properties of Initialization

Our initialization allows us to explore the GD dynamics across a wide range of learning rates, all

starting from the same initial point. This stands in stark contrast to previous minimalist analyses

such as Zhu et al. (2022) and Chen and Bruna (2023), where their initializations permit only a

narrow selection of learning rates.

To see this, we define a special set Y ⊂ R
3 that is independent of the learning rate:

2
√
5√

λ1

≤ α < 1, max

{
α,

√
3

10α

}
≤ β2 <

1

α
,

λ2β2
500λ1α

≤
β21

1−αβ2
≤ λ2β2

λ1α
.

We then have the following proposition:

Proposition C.1. For any θ ∈ Y, there exists a learning rate η ≤ 0.1 such that for any decay rate

r ∈ [0.55,1], θ ∈ X (rη).

Proof. Since λ1α
2 ≥ 20, we know that there exists a learning rate η such that λ1αη = 2. First, we

show that θ ∈ X (η):
(i) λ1α

2η = 2 and α > 0, so the condition
√

1.1
λ1η
≤ α ≤

√
2

λ1η
is satisfied.

(ii) α ≤ β2 < 1
α is satisfied by the definition of Y. Since β2 ≥

√
3

10α , we know β2 ≥
√
3

20α . Since

η = 2
λ1α2 , we have

√
6ηλ1

20 =
√
3

10α ≤ β2. So the condition max

{√
6ηλ1

20 , 3
20α ,α

}
≤ β2 <

1
α is satisfied.

(iii) The condition for β1 is naturally satisfied by the definition of Y.

Next, note the following property that for r ∈ [0.55,1], we have:

1.1 ≤ λ1α
2rη ≤ 2,

√
6rηλ1

20
≤

√
6ηλ1

20
.

Therefore, it is apparent that if θ ∈ X (η), then for r ∈ [0.55,1], θ ∈ X (rη).

D Proofs for Section 4

D.1 Proof of Lemma 4.2 and Theorem 4.3

First we prove the following Proposition:

Proposition D.1. For any t ≥ 0, and let t̂ to be the first time such that λ1ηα
2(̂t) ≥ 1.5, then we will

have:

1.5 ≤ λ1ηα
2(t) ≤ 4.2 for t ≥ t̂. (D.1)

and λ1α
2(t) keeps to increase before t̂ (̂t can be∞).

Proof. Note that we use learning rate η ≤ 0.1. The update equation can be written as:

α(t +1) = α(t)− η(λ1β
2
1(t)α(t)−λ2β2(t)(1−α(t)β2(t))), (D.2)

β1(t +1) = Clip(β1(t)− ηλ1α
2(t)β1(t),

√
10

6
√
λ1

), (D.3)

β2(t +1) = β2(t) + ηλ2α(t)(1−α(t)β2(t)). (D.4)
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We can get that:

(1−α(t +1)β2(t +1)) = (1−α(t)β2(t))
[
1− ηλ2α

2(t)− ηλ2β
2
2(t)− η2λ2

2α(t)β2(t) (1−α(t)β2(t))
]
.

(D.5)

Note that the following are the initialization conditions:

1.1 ≤ ηλ1α
2(0) < 2, max{

√
6ηλ1

20
,

3

20α(0)
,α(0)} ≤ β2(0) <

1

α(0)
, (D.6)

λ2β2(0)

500λ1α(0)
(1−α(0)β2(0)) ≤ β21(0) ≤

λ2β2(0)

λ1α(0)
(1−α(0)β2(0)) . (D.7)

We set t† to be the largest time such that for any t ≤ t† we have α > 0 and:

ηλ2α
2(t) + ηλ2β

2
2(t) ≤ 0.01.

We will first prove Proposition D.1 for t ≤ t† +1. For t ≤ t† +1 we know that in (D.5) we have:

1− ηλ2α
2(t)− ηλ2β

2
2(t)− η2λ2

2α(t)β2(t) (1−α(t)β2(t)) ≥ 1− 0.01−
η2λ2

2

4
> 0.

Since α(0)β2(0) < 1, based on (D.5) we can see that α(t)β2(t) < 1 for t ≤ t† + 1. Therefore, if

Proposition D.1 holds for t ≤ t† +1, we will get α(t) > 0 for t ≤ t† +1, and we have:

ηλ2α
2(t) + ηλ2β

2
2(t) ≤

λ2λ1ηα
2(t)

λ1
+

η2λ1λ2

λ1ηα2(t)
≤ 5λ2

λ1
+

η2

1.1
≤ 0.01,

which means t† = t† +1, thus t† =∞. Therefore, it suffices to prove Proposition D.1 for t ≤ t† +1,

which yields t† =∞ and α(t)β2(t) < 1 for all t.

Let t0 be the last time that 100ηα2(t0) < 2, with t0 ≤∞. If α2 does not increase monotonically

before t0, let t1 be the first time such that α2(t1 +1) < α2(t1), where t1 ≥ 1. We have that for any t,

α(t)β2(t) < 1 and:

(
1− 0.01− η2λ2

2

)
(1−α(t)β2(t)) ≤ 1−α(t +1)β2(t +1) ≤ 0.85,

α(t +1) ≤
(
1+

ηλ2

4α2(t)

)
α(t) ≤

(
1+

η

4λ1α2(t)

)
α(t).

When t = t1 − 1, we have:

(1− ηλ1α
2(t))2 > 0.98 ·

(
1+

η

4λ1α2(t)

)
.

Thus, for t = t1 − 1:

λ1α
2(t) ≥ 1.95.

Moreover, for t = t1 − 1, we have:

β21(t) ≤
1

4λ1α2(t)
≤ η

7.8
.
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Before t0, β
2
1 decreases monotonically, and when ηλ1α

2 ≤ 1.9, β21 decreases with an exponential

rate of at least 0.81. Using Bernoulli’s inequality, we have:

inf
t1≤t≤t0

{ηλ1α
2} ≥ 1.9 ·

(
1− 5η

7.8

)2
> 1.5.

Let t̂ be the first time ηλ1α
2(t) ≥ 1.5. Then α2(t) monotonically increases before t̂ and inf̂t≤t≤t0{ηλ1α

2(t)} ≥
1.5. This also holds if α2(t) increases monotonically before t0. Next, we suppose t0 <∞ to analyze

what will happen if GD enters the unstable regime.

Let t2 be the first time after t0 such that ηλ1α
2(t2) < 2, where t2 ≤∞. If t2 =∞, it is apparent

that limt→∞λ1α
2(t) = 2. Therefore, there will exist t1 <∞, such that

λ1α
2(t1 +1) = sup

t0<t≤t2
{ηλ1α

2(t)}.

For t0 < t ≤ t2, we have:

λ1c
2α2(t) ≥ 5

18ηλ1
≥ λ2

4
> λ2α(t)β2(t) (1−α(t)β2(t)) .

We can deduce that for t0 < t ≤ t1, |β1(t)| <
√
10

6
√
λ1
. Thus, we know that before t1, the update equation

is the same as GD without coordinate clipping.

We set undefined coefficients n1, n2 and an undetermined time t⋆ such that:

λ1η
(
α2(t +1)−α2(t)

)
≥ 1

n1
for t⋆ ≤ t ≤ t0,

λ1η
(
α2(t +1)−α2(t)

)
≤ 1

n2
for t0 < t ≤ t2,

where n1 > n2. We will estimate n1, n2, and
n1
n2

later. Then we will have: λ1ηα
2(t⋆ + t) ≥ 1.1 + t

n1

and λ1ηα
2(t⋆ + 9n1

10 ) ≥ 2. Then we have:

∣∣∣∣∣∣∣

t0∏

i=t⋆

(λ1ηα
2(i)− 1)

∣∣∣∣∣∣∣
≥

9n1
10∏

i=0

( n1
10 + i

n1

)
=

n1!

( n110 )!n
9n1
10

1

≥
√
2πn1(

n1
e )

n1

e
5

6n1
√
πn1(

n1
10
e )

n1
10 n

9n1
10

1

=



10

1
9

e




9n1
10

·
√
2

e
5

6n1

.

We suppose that λ1ηα
2(t1) = λ+ 1 where λ > 1. Then we will have λ1ηα

2(t)− 1 ≥ λ − t
n2

and

λ1ηα
2((λ− 1)n2)− 1 ≥ 1.So we have:

∣∣∣∣∣∣∣∣

t1∏

i=t0+1

(λ1ηα
2(i)− 1)

∣∣∣∣∣∣∣∣
≥ (λn2)!

n2!n
(λ−1)n2
2

≥
(
λλ

eλ−1

)n2
·
√
λ

e
1

12n2

.

Therefore, we can obtain:

∣∣∣∣∣∣∣

t1∏

i=t⋆

(λ1ηα
2(i)− 1)

∣∣∣∣∣∣∣
≥



10

1
9

e




9n1
10

·
(
λλ

eλ−1

)n2
·
√
2λ

e
10n2+n1
12n1n2

.
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Since α(t +1) ≤ α(t) +λ2ηβ2(t)(1−α(t)β2(t)), we have:

λ1ηα
2(t +1) ≤ λ1η(α(t) + ηλ2β2(t)(1−α(t)β2(t)))2

= λ1ηα
2(t) + 2η2λ1λ2α(t)β2(t)(1−α(t)β2(t)) + η3λ1λ

2
2β

2
2(t)(1−α(t)β2(t))2

≤ λ1ηα
2(t) +

η2

2
+

η3

16λ1α2(t)
≤ λ1ηα

2(t) +
η2

2
+
η4

16
.

Given that η ≤ 0.1, we can set n1 and n2 such that min{n1,n2} ≥ 100. Since we know:

min
t0≤t≤t2

{α(t)β2(t)} ≥ max
t⋆≤t≤t0

{α(t)β2(t)} ≥ 0.15,

we can derive:

mint⋆≤t≤t0 α(t)β2(t)(1−α(t)β2(t))
maxt0≤t≤T α(t)β2(t)(1−α(t)β2(t))

≥ 1

2
.

If λ1α(t0)β
2
1(t0) ≤ 1

50λ2β2(t0)(1−α(t0)β2(t0)), suppose t⋆ is the largest time before t0 such that:

λ1α(t)β
2
1(t) >

1

50
·λ2β2(t)(1−α(t)β2(t)) for t = t⋆ − 1.

Since before t0, we have β21(t +1) ≥ (1.1− 1)2β21(t), we will have:

1

5000
λ2β2(t

⋆)(1−α(t⋆)β2(t⋆)) ≤ λ1α(t
⋆)β21(t

⋆) ≤ 1

50
λ2β2(t

⋆)(1−α(t⋆)β2(t⋆)).

Based on the definition of t⋆ , we obtain:

mint⋆≤t≤t0(α
2(t +1)−α2(t))

maxt0<t≤T (α
2(t +1)−α2(t))

≥ 1

2.04
.

In conclusion, we can set n1 and n2 such that n1
n2
≤ 2.04.

Combining all the above equations, we have:

(
101/9

e

)9n1/10
·
(
λλ

eλ−1

)n2
·

√
2λ

e(10n2+n1)/(12n1n2)
> 100 when λ = 3.19.

Since α(t1) ≥ α(t⋆) and α(t⋆)β2(t
⋆)(1−α(t⋆)β2(t⋆)) ≥ 1

2α(t1)β2(t1)(1−α(t1)β2(t1)), we have:

λ1ηβ
2
1(t1)α

2(t1) > 104 ·λ1ηβ
2
1(t

⋆)α2(t⋆)

>
104η

5 · 103 ·λ2α(t
⋆)β2(t

⋆)(1−α(t⋆)β2(t⋆))

≥ λ2ηα(t1)β2(t1)(1−α(t1)β2(t1)).

If λ1α(t0)β
2
1(t0) >

1
50 ·λ2β2(t0)(1−α(t0)β2(t0)), then we can see:

λ1ηβ
2
1(t1)α

2(t1) > 104 ·λ1ηβ
2
1(t0)α

2(t0)

>
104η

5 · 103 ·λ2α(t0)β2(t0)(1−α(t0)β2(t0))

> λ2ηα(t1)β2(t1)(1−α(t1)β2(t1)).
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Therefore, we have α(t1+1) < α(t1), which contradicts the definition of t1. So we can obtain λ < 4.19.

Consequently, we have proved that:

sup
t0<t≤t2

{ηλ1α
2(t)} = λ1ηα

2(t1 +1) ≤ λ1ηα
2(t1) + 0.01 ≤ 4.2.

Next, we suppose t2 <∞ to examine the consequences. Using the property of coordinate clipping

on β1, we can obtain a lower bound for α2(t) as:

λ1ηα
2(t +1) ≥ (1−λ1ηc

2)2 ·λ1ηα
2(t).

Let t3 be the first time such that λ1ηα
2(t) < 1.7. It is easy to see that:

λ1ηα
2(t3) ≥ 1.7 · (1−λ1ηc

2)2.

Evidently, for t ≥ t3, we have:

β21(t +1) ≤ 1

2
β21(t +1).

Therefore, by using Bernoulli’s inequality, we obtain that for t ≥ t5:

λ1ηα
2(t) ≥ 1.7 · (1− 2λ1ηc

2)2.

Using the condition that 2λ1ηc
2 ≤ 1

18 , we get 100ηα2(t) ≥ 1.5 for t ≥ t5. Then we know β21(t +1) ≥
1
4β

2
1(t) for t ≥ t3.

Let t4 be the first time after t3 such that α2(t) starts to increase again. We will discuss whether

β21(t4) will satisfy the initialization condition. The left side is immediately due to the definition of

t4. Let t̂4 = t4 − 1. Since we have:

β2(̂t4)(1−α(̂t4)β2(̂t4)) ≥ (0.09−
η2λ2

2

4
)β2(t4)(1−α(t4)β2(t4))

≥ 5−3 · β2(t4)(1−α(t4)β2(t4)),

the right side of the initial condition is simply due to:

β21(t4) ≥
1

4
β21 (̂t4)

≥ λ2β2(̂t4)(1−α(̂t4)β2(̂t4))
4λ1

≥ λ2β2(t4)(1−α(t4)β2(t4))
500λ1

.

Since β2(0) ≥ α(0), we can induce that β2(t) ≥ α(t) for all t. Since β2 will increase for all time, we

know β2(t4) ≥
√
6ηλ1

20 .

So we get α(t4)β2(t4) ≥ 3
20 . Then t4 will satisfy initialization condition. Therefore, we can repeat

the above proof from t4. So we know that Proposition D.1 is true for t ≤ t† +1. Then we obtain that

t† =∞ and α(t)β2(t) < 1 for all t.
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D.1.1 Proof of Lemma 4.2

Since we have proved that α(t)β2(t) < 1 for all t, according to the update rule of β2 in (D.4), we can

conclude that β2(t +1) > β2(t) for all t. This completes the proof of Lemma 4.2 (iii).

Next based on Lemma 4.2 (iii), we will prove Lemma 4.2 (i). Recall that the Hessian matrix for

θ = (α,β1,β2)
T is given by:

H(θ) =




λ1β
2
1 +λ2β

2
2 2λ1αβ1 2λ2αβ2 −λ2

2λ1αβ1 λ1α
2 0

2λ2αβ2 −λ2 0 λ2α
2



.

Since H(θ)2,2 = λ1α
2, it is apparent that S(θ) ≥ λ1α

2. Let us define matrices A and B as follows:

A =




λ1β
2
1 2λ1αβ1

2λ1αβ1 λ1α
2


 , B =




λ2β
2
2 2λ2αβ2 −λ2

2λ2αβ2 −λ2 λ2α
2


 .

We use ∥M∥2 to denote the maximum singular value of any matrix M . It is apparent that:

S(θ) ≤ ∥A∥2 + ∥B∥2.

Since we have proved that 0 < αβ2 < 1, for B we have:

∥B∥2 = max
−1≤t≤1

{∣∣∣∣λ2β
2
2t

2 +λ2α
2
2(1− t2) + 2λ2(2αβ2 − 1)t

√
1− t2

∣∣∣∣
}

≤ λ2β
2
2 +λ2α

2 +λ2.

Thus we have:

∥B∥2
λ1α2

≤ λ2

λ1
(1 +

1

α4
) +

λ2

λ1α2
≤ λ2

λ1
(1 +λ2

1η
2) +λ2η

≤ 1

10000
+

1

1000
+λ1λ2η

2 ≤ 0.0111.

It is also easy to see from the above equation that:

Tr(B) = λ2β
2
2 +λ2α

2 ≤ 0.012 ·λ1α
2.

For ∥A∥2, without loss of generality, suppose β1 ≥ 0. Since we already know that:

α ≥ 1√
λ1η

≥
√
10√
λ1

≥ 6β1,

let u = (t,
√
1− t2) with t ∈ [−1,1]. We then have:

|uTAu| ≤ λ1α
2

[
t2 +

β21
α2

(1− t2) + 4
β1
α
t
√
1− t2

]
.

Thus we have:

|uTAu|
λ1α2

≤ t2 +
1

36
(1− t2) + 2

3
t
√
1− t2 ≤ 1.105.
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Therefore, we get ∥A∥2 ≤ 1.105 ·λ1α
2. Consequently, we obtain:

S(θ) ≤ ∥A∥2 + ∥B∥2 ≤ (0.0111+1.105) ·λ1α
2 ≤ 1.12 ·λ1α

2.

Thus we have proved Lemma 4.2 (i).

Next we will prove Lemma 4.2 (ii) based on Lemma 4.2 (i)(iii). Following the notation in the

previous section, we aim to estimate the second eigenvalue of A, denoted as k1. We have:

k1 = tr(A)−λmax(A).

It is straightforward to prove that λmax(A) ≥ λ1α
2 +λ1β

2
1 = tr(A); thus, k1 ≤ 0. Let k2 denote the

second eigenvalue of B. We have:

k2 ≥ −
∥∥∥∥∥∥




0 λ2αβ2 −λ2

λ2αβ2 −λ2 0




∥∥∥∥∥∥
2

≥ −λ2.

Therefore, if H(θ) has any negative eigenvalue k, then k ≥ k1 −λ2. Let v1, v2, and v3 denote the

three eigenvectors of H(θ) and u = (0,1,0)T . We express u as:

u = φ1v1 +φ2v2 +φ3v3,

where φ2
1 +φ2

2 +φ2
3 = 1. We then have:

λ1α
2 = uTH(θ)u ≤ φ2

1λmax(H(θ)) + (tr(H(θ))−λmax(H(θ))− k) (φ2
2 +φ2

3)

≤ φ2
1(λmax(A) +λmax(B)) + (tr(H(θ))−λmax(A)− k1 +λ2)(1−φ2

1)

≤ φ2
1(1.105λ1α

2 +0.01201λ1α
2) + (tr(B) +λ2)(1−φ2

1)

≤ φ2
1 · 1.12λ1α

2 + (0.012λ1α
2 +0.001λ1α

2)(1−φ2
1)

= λ1α
2
(
1.12φ2

1 +0.013(1−φ2
1)
)
.

Thus 1.12φ2
1 +0.013(1−φ2

1) ≥ 1. This implies φ1 ≥ 0.9, which means |cos(v1,u)| ≥ 0.9. Therefore,

we have completed the proof of Lemma 4.2 (ii).

D.1.2 Proof of Theorem 4.3

Theorem 4.3 is a direct corollary of Proposition D.1 and Lemma 4.2 (ii).

D.2 Proof of Theorem 4.1

Based on Lemma 4.2, we have β2 > 0. Using the condition that α(t)β2(t) < 1 and the lower bound of

α in Theorem 4.3, we can conclude that for any ϵ > 0, there exists tϵ such that:

α(t)β2(t) ≥ 1− ϵ for t ≥ tϵ. (D.8)

Otherwise, α(t)β2(t) would approach infinity.

If there exists T ⋆ such that:

λ1ηα
2 ≥ 2 for t ≥ T ⋆ , (D.9)
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then we have:

β21(t) ≥ β21(T
⋆) > 0 for t ≥ T ⋆ .

Based on α ≥
√

2
λ1η

and α(t)β2(t) < 1, we can derive β2(t) <

√
λ1η
2 . Using equation (D.8), it is

straightforward to prove that there exists T1 > T ⋆ such that:

λ2β2(t)(1−α(t)β2(t)) ≤
λ1β

2
1(T

⋆)α(t)

2
for t ≥ T1.

Thus, we have:

α(t +1) ≤ α(t)−
λ1β

2
1(T

⋆)α(t)

2
,

which contradicts equation (D.9). Therefore, we have proven that there exist infinitely many t such

that λ1ηα
2 < 2.

If there exists a δ > 0 which does not satisfy the above proposition, then for any t > t0, we have

β2(t) <

√
λ1η
2+δ . Combining this with our previous conclusion, we find that there exist infinitely many

t such that:

α(t)β2(t) <

√
2

λ1η
·
√

λ1η

2+ δ
=

√
2

2+ δ
.

This immediately contradicts Equation (D.8) when we set ϵ = 1−
√

2
2+δ . So we have now proved

that for any δ > 0 and ϵ > 0, there exists a time T̂ (δ,ϵ) such that for any t ≥ T̂ (δ,ϵ):

λ1α
2(t) ≤ 2+ δ, 1−α(t)β2(t) ≤ ϵ. (D.10)

Finally, we will prove that for any d > 0, there exists a time Td such that β21(t) < d for t > Td . If this

were not the case, there would be infinitely many t such that λ1ηα
2(t) ≥ 1.9. This implies that

β2(t) <

√
λ1η
1.9 for any t. We set ϵ1,δ > 0 such that:

(
1+

λ2ϵ1(2 + δ)

λ1(1− ϵ1)

)(
1−λ1ηd +

λ1η
2ϵ1√
1.9

)
= y < 1.

When t > T̂ (δ,ϵ) and β22(t) ≥ d, we have:

α(t +1)β2(t +1) ≤
(
1+

λ2ϵ1(2 + δ)

λ1(1− ϵ1)

)(
1−λ1ηd +

λ1η
2ϵ1√
1.9

)
= y.

This immediately contradicts our previous conclusion when we set ϵ = 1− y > 0. Therefore, for

any d > 0, there exists a time Td such that β22(t) < d for t > Td . Combining this with Equation (D.10),

we can conclude that for any ϵ ≥ 0, there exists a time Tϵ such that for t ≥ Tϵ, L(θ(t)) ≤ ϵ.

We now know that for any ϵ and δ, there exists T̃ (δ,ϵ) such that for t ≥ T̃ (δ,ϵ), we have:

λ1ηα
2(t) ≤ 2+ δ, |β1(t)| ≤ ϵ.
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Recall that for θ = (α,β1,β2)
T , we have:

S(θ) = max λ1 (t2α + t1β1)
2 +λ2 (t3α + t1β2)

2 subject to t21 + t22 + t23 ≤ 1.

When β1 = 0, α > 0, 1 ≤ λ1ηα
2 ≤ 2+ δ, and 0 ≤ β2 ≤ 1

α , we have:

S(θ) = max λ1α
2t22 +λ2 (t3α + t1β2)

2 subject to t21 + t22 + t23 ≤ 1

≤max λ1α
2t22 +λ2(α

2 + β22)(t
2
1 + t23) subject to t21 + t22 + t23 ≤ 1.

Since λ2β
2
2 ≤

λ2

α2 ≤ λ1λ2η ≤ η ≤ 1
100η ≤

λ1α
2

100 , we get that λ2α
2 + λ2β

2
2 < λ1α

2. Thus, when β1 = 0,

α > 0, 1 ≤ λ1ηα
2 ≤ 2+ δ, and 0 ≤ β2 ≤ 1

α , we have ∥H(θ)∥2 = λ1α
2 ≤ 2+δ

η .

We can see that set A = {(α,β2, t1, t2, t3) |α > 0,1 ≤ λ1ηα
2 ≤ 2 + δ,0 ≤ β2 ≤ 1

α , t
2
1 + t22 + t23 ≤ 1} is

compact in R
5. Now we define:

F(α,β1,β2, t1, t2, t3) = λ1 (t2α + t1β1)
2 +λ2 (t3α + t1β2)

2,

g(β1) = max
(α,β2,t1,t2,t3)∈A

F(α,β1,β2, t1, t2, t3).

It is apparent that F is a continuous function. Thus, based on Berge’s Maximum Theorem, g is

also a continuous function. Since g(0) ≤ 2+ δ, we know there exists ϵδ such that when |β1(t)| ≤ ϵδ,

we have g(β1) ≤ (2 + 2δ)/η. Therefore, we know that for t ≥ T̃ (δ,ϵδ), ∥H(θ(t))∥2 ≤ (2 + 2δ)/η, thus

completing the proof.

D.3 Proof of Theorem 4.4

We consider the following initialization:

1.1 ≤ ηλ1α
2(0) ≤ 1.5, β2(0) ≥max



√
6ηλ1

20
,

3

20α(0)
,α(0)

 ,

λ2β2(0)

500λ1α(0)
(1−α(0)β2(0)) ≤ β21(0) ≤

λ2β2(0)

50λ1α(0)
(1−α(0)β2(0)) .

Based on the result and proof in Theorem 4.3, we know that for any t ≥ 0, α(t)β2(t) ≥ 0.15.

Let T be the largest time such that α consistently increases before T , T1 be the largest time such

that α(t)β2(t) ≤ 0.85 for t ≤ T1, T2 be the first time such that λ1ηα
2 ≥ 2, and T3 be the first time

such that

β21(t) >
λ2β2(t)

50λ1α(t)
(1−α(t)β2(t)).

Since β21(1) ≤ 1
4β

2
1(0), we know T3 >min{T1,T2}. For t ≤ T3, we have the following equation:

β2(t)

α(t)
≤max

{
β2(0)

α(0)
,
50

49

}
.
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Thus we have:

α(t)β2(t) ≤
50

49
· α

2(t)

α2(0)
·α(0)β2(0).

Then, based on the range of α(0) and the range of α2(t) in the previous theorem, we have

α(T3)β2(T3) ≤ 0.78, which yields T1 > T3. Thereby, we get T2 < T3 < T1. We also know T > T3. Based

on the definition of T1, we know:

max0≤t≤T2 α(t)β2(t) (1−α(t)β2(t))
minT2≤t≤T3 α(t)β2(t)(1−α(t)β2(t))

≤ 2.

Then we can easily obtain:

max0≤t≤T2(α
2(t +1)−α2(t))

minT2<t≤T3(α
2(t +1)−α2(t))

≤ 2.1.

Similar to the previous proof, we set n3 and n4 such that:

100η(α2(t +1)−α2(t)) ≤ 1

n3
for 0 ≤ t ≤ T2,

100η(α2(t +1)−α2(t)) ≥ 1

n4
for T2 < t ≤ T3.

Then we have min{n3,n4} ≥ 100 and n3
n4
≥ 1

2.1 .

Similar to the previous proof, we obtain:

∣∣∣∣∣∣∣

T3∏

i=0

(100ηα2(i)− 1)

∣∣∣∣∣∣∣
≤



2

1
2

e
1
2



n3

·
(
λλ

eλ−1

)n4
·
√
2λ · e

10n4+n3
12n3n4 ≤ 0.1 when λ = 1.37.

If λ1ηα
2(T3) ≤ 2.37, based on the fact that T3 ≤ T1, we have:

β21(T3) ≤
1

100
· λ2β2(0)

50λ1α(0)
(1−α(0)β2(0)) =

1

100
· λ2α(0)β2(0)(1−α(0)β2(0))

50λ1α2(0)

≤ 1

40
· λ2α(0)β2(0)(1−α(0)β2(0))

50λ1α2(T3)
≤ 1

20
· λ2α(T3)β2(T3)(1−α(T3)β2(T3))

50λ1α2(T3)

=
1

20
· λ2β2(T3)(1−α(T3)β2(T3))

50λ1α(T3)
.

This contradicts the definition of T3. Thus, we conclude that λ1ηα
2(T3) > 2.37, which implies

λ1ηα
2(T ) > 2.37 and S(θ(T )) > 2.37

η .

Since λ1ηα
2(t) > 2.37 for T3 ≤ t ≤ T , if T ≥ T3 +9, we have either β21(T3 +8) ≥ (

√
10

6
√
λ1
)2 = 5

18λ1
or:

β21(T3 +8) ≥ 1.3716 · λ2β2(T3)(1−α(T3)β2(T3))
50λ1α(T3)

≥ 3λ2β2(T3)(1−α(T3)β2(T3))
λ1α(T3)

=
3λ2α(T3)β2(T3)(1−α(T3)β2(T3))

λ1α2(T3)
≥ 3λ2α(T3)β2(T3)(1−α(T3)β2(T3))

λ1α2(T3 +8)

≥ 3

2
· λ2α(T3 +8)β2(T3 +8)(1−α(T3 +8)β2(T3 +8))

λ1α(T3 +8)
.
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In the first case, it is also easy to prove that:

λ1α
2(T3 +8)β21(T3 +8) ≥ 5α2

18
≥ 5

18λ1η
≥ 5λ2

18η
≥ λ2

4

≥ λ2α(T3 +8)β2(T3 +8)(1−α(T3 +8)β2(T3 +8)).

This shows that T ≤ T3 +8, which contradicts our assumption. Therefore, T ≤ T3 +8. Based on the

limited movement speed of αβ2, we can easily prove that α(T )β2(T ) ≤ α(T3)β2(T3) + 4η2 ≤ 0.82. So

we know that T1 ≥ T .

Let T4 ≥ T be the first time such that

β21(T4) > ηλ2α(T )β2(T )(1−α(T )β2(T )).

Note that for the clipping constant, we have:

5

18λ1
≥ 5λ2

18
> ηλ2α(T )β2(T )(1−α(T )β2(T )).

Let T5 be the first time after T such that λ1ηα
2 < 2. Note that T5 < ∞; otherwise, L(θ) cannot

converge, which contradicts Theorem 4.1. For T ≤ t < T4, we have:

α(t +1) ≤ α(t) + ηλ2β2(t)(1−α(t)β2(t)),

α(t +1) ≥ α(t)− 1

4
η2λ1λ2α(t) ≥ α(t)− η2

4
α(t).

Thus, for T ≤ t < T4, we have:

λ1ηα
2(t +1) ≥ (1− η2

4
)2λ1ηα

2(t). (D.11)

We already know that

β21(T ) >
λ2β2(T )

λ1α(T )
(1−α(T )β2(T )).

If T4 ≥ T +3, let z = λ1ηα
2(T ) ≥ 2.37. Then we have the following property:

(z − 1)2((1− η2

4
)2z − 1)2 ≥ z.

Using this property, we will have either β21(T +2) ≥ 5
18λ1

or:

β21(T +2) ≥ (z − 1)2(z − 1− 1.6η2)2β21(T ) ≥ λ1ηα
2(T )β21(T )

> λ2ηα(T )β2(T )(1−α(T )β2(T )).

Thus, we get T4 ≥ T +2, which leads to a contradiction. Therefore, T4 ≤ T +2. Then, using (D.11),

we know T5 > T4.

For t ≤ T4 < T5, we have

1− η2

4
≤ α(t +1)

α(t)
= 1+

ηλ2β2(t)(1−α(t)β2(t))
α(t)

≤ 1+
η2α(t)β2(t)(1−α(t)β2(t))

λ1ηα2(t)
≤ 1+

η2

8
.

1 ≤ β2(t +1)

β2(t)
≤ 1+ ηλ2.
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Based on the fact that 0.15 ≤ α(T )β2(T ) ≤ 0.82 and β21(T +1) ≥ 1.372β21(T ), it is easy to prove that

for T ≤ t < T4, we have α(t +1) < α(t).

For T4 ≤ t < T5, we have:

β21(t) ≥ β21(T4) > λ2ηα(T )β2(T )(1−α(T )β2(T )).

Since 0.15 ≤ α(T )β2(T ) ≤ 0.85, we know:

λ2β2(t)

λ1α(t)
(1−α(t)β2(t)) =

ηλ2α(t)β2(t)(1−α(t)β2(t))
λ1ηα2(t)

≤ α(t)β2(t)(1−α(t)β2(t))
α(T )β2(T )(1−α(T )β2(T ))

· λ1ηα
2(T )

λ1ηα2(t)
· ηλ2α(T )β2(T )(1−α(T )β2(T ))

λ1ηα2(T )

≤ 2 · λ1ηα
2(T )

2
· ηλ2α(T )β2(T )(1−α(T )β2(T ))

λ1ηα2(T )

= λ2ηα(T )β2(T )(1−α(T )β2(T )) < β21(t).

Thus, for T4 ≤ t < T5, we have α(t +1) < α(t). Therefore, we conclude that for T ≤ t < T5, we have

α(t +1) < α(t).

Let T5 < T6 ≤∞ be the first time after T5 such that α(t +1) ≥ α(t). We know that λ1α
2(T6) <

2
η .

Recall that:

H(θ) =




λ1β
2
1 +λ2β

2
2 2λ1αβ1 2λ2αβ2 −λ2

2λ1αβ1 λ1α
2 0

2λ2αβ2 −λ2 0 λ2α
2



.

If T6 =∞, then we know that ∥H(θ(T6))∥2 = λ1α
2(T6) <

2
η .

For the following part, we suppose T6 <∞. At T6, we have:

λ1α(T6)β
2
1(T6) ≤ λ2β(T6)(1−α(T6)β2(T6)).

If λ1α
2(T6) ≤ 1.75

η , then we directly have ∥H(θ(T6))∥ ≤ 1.12 · 1.75η < 2
η . Next we suppose λ1α

2(T6) ≥
1.75
η . We then have:

β21(T6) ≤
λ2α(T6)β2(T6)(1−α(T6)β2(T6))

λ1α2(T6)
≤ λ2η

7
.

In the following proof, for conciseness, we use θ to denote θ(T6). Let u = (t1, t2, t3)
T . We have:

uTH(θ)u ≤ (λ1β
2
1 +λ2β

2
2)t

2
1 +λ1α

2t22 +λ1α
2t23 +4λ1αβ1t1t2 +2λ2(2αβ2 − 1)t1t3

≤ (λ1β
2
1 +λ2β

2
2 +λ2)t

2
1 +λ1α

2t22 + (λ2α
2 +λ2)t

2
3 +4λ1αβ1t1t2

≤ (λ1β
2
1 +λ2β

2
2 +λ2)t

2
1 +λ1α

2t22 + (λ2α
2 +λ2)t

2
3 +5λ1β

2
1t

2
2 +

4λ1α
2t21

5

= (λ1β
2
1 +λ2β

2
2 +λ2 +

4

5
·λ1α

2)t21 + (λ1α
2 +5λ1β

2
1)t

2
2 + (λ2α

2 +λ2)t
2
3 .
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We note that:

λ2α
2 +λ2 <

2

η
,

λ1β
2
1 +λ2β

2
2 +λ2 +

4

5
·λ1α

2 ≤ η

7
+
λ2

α2
+λ2 +

4

5
·λ1α

2 <
2

η
,

λ1α
2 +5λ1β

2
1 ≤

2

η
+
5ηλ1λ2

7
<
2

η
+ η.

Thus, we know that for any u ∈ R3, uTH(θ)u ≤ 2
η + η. Therefore, S(θ(T6)) ≤ 2

η + η.

D.4 Proof for Lemma 4.5

We have the following inequalities:

1−
√

4.2
λ1η

β2(t)

1−
√

2
λ1η

β2(t)
≤ 1−α(t)β2(t)

1−
√

2
λ1η

β2(t)
≤

1−
√

1.1
λ1η

β2(t)

1−
√

2
λ1η

β2(t)
.

Using the condition
√

2
λ1η

β2(t) ≤ 1
2 , we obtain:

1−
√

4.2
λ1η

β2(t)

1−
√

2
λ1η

β2(t)
≥ 2


1−

1

2

√
4.2

2


 ,

1−
√

1.1
λ1η

β2(t)

1−
√

2
λ1η

β2(t)
≤ 2


1−

1

2

√
1.1

2


 .

Therefore, we can conclude:

0.75 ≤ 1

4
(
1− 1

2

√
1.1
2

)2 ≤
L̂(θ)

L2(θ)
≤ 1

4
(
1− 1

2

√
4.2
2

)2 ≤ 3.3.

Moreover, when α(t) ≤
√

2
λ1η

, we have L̂(θ) ≤ L2(θ).

D.5 Proof of Theorem 4.6

Based on the initialization and Theorem 4.3, we know that
√
2β2(t)√
λ1η
≥ 0.15 for t ≥ 0. According to

the condition given by Theorem 4.3, we only need to consider t such that
√
2β2(t)√
λ1η
≤ 0.5. Using this

condition, we can derive:

1

2
·
√
2√

λ1η


1−

√
2β2(t)√
λ1η


 ≤ α(t)(1−α(t)β2(t)) ≤ 2 ·

√
2√

λ1η


1−

√
2β2(t)√
λ1η


 .
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Thus we have:

β2(t) +λ2

√
η

√
2λ1


1−

√
2β2(t)√
λ1η


 ≤ β2(t +1) ≤ β2(t) +λ2

2
√
2η
√
λ1


1−

√
2β2(t)√
λ1η


 .

Then we obtain:
(
1− 4λ2

λ1

)1−
√
2β2(t)√
λ1η


 ≤ 1−

√
2β2(t +1)
√
λ1η

≤
(
1− λ2

λ1

)1−
√
2β2(t)√
λ1η


 .

Finally, we have:

(
1− 4λ2

λ1

)2 1−
√
2β2(t)√
λ1η



2

≤

1−

√
2β2(t +1)
√
λ1η



2

≤
(
1− λ2

λ1

)2 1−
√
2β2(t)√
λ1η



2

.

Therefore, we can observe that the decrease speed is exp{− kλ2
λ1
} for 1 ≤ k ≤ 4, and it is indepen-

dent of the learning rate η. This indicates that the condition number of the input covariance matrix

significantly affects the training speed in EoS regime.

E Proof of Section 5

E.1 Proof of Lemma 5.1

First, we consider a minimal θ⋆ = (α,β1,β2). We have β1 = 0 and αβ2 = 1. Let u = (t1, t2, t3) ∈ R3

such that ∥u∥2 = 1. Then we have:

uTH(θ⋆)u = λ1(t2α)
2 +λ2(t3α + t1β2)

2 ≤ λ1α
2t22 +λ2(α

2 + β22)(t
2
1 + t23).

Since t21 + t22 + t23 = 1, we can see:

uTH(θ⋆)u ≤ λ1α
2t22 +λ2(α

2 + β22)(1− t22) ≤max{λ1α
2,λ2α

2 +λ2β
2
2}.

Other other hand, when u = (0,1,0) we have S(θ) = λ1α
2. When t1 =

β2√
α2+β2

2

, t3 =
α√

α2+β2
2

, we have

S(θ) = λ2α
2 +λ2β

2
2 . Therefore, we know that

S(θ) = max{λ1α
2,λ2α

2 +λ2β
2
2}.

Thus, we have

S(θ) = λ1α
2⇔ λ1α

2 ≥ λ2α
2 +λ2β

2
2 ⇔ α4 ≥ λ2

λ1 −λ2

⇔ α2 − β22 ≥
√

λ2

λ1 −λ2
−
√

λ1 −λ2

λ2
.

Now we consider gradient flow (GF) and let φ(θ(0)) = (α(∞),β1(∞),β2(∞))T . Since we know that

GF preserves layer norm difference as shown in Theorem 2.1 in Du et al. (2018), we can get:

α2(∞)− β22(∞) = α2(0)− β22(0)− β21(0) ≤ 0, (E.1)

α(∞)β2(∞) = 1. (E.2)

34



Note that β21(0) ≤
λ2η
4 and η ≤ 0.1. We can then obtain:

α2(0)− β22(0)−
λ2

40
≤ α2(∞)− β22(∞) ≤ α2(0)− β22(0). (E.3)

Based on the fact that α2(0) ≥ 1
λ1η

and α(0)β2(0) ≤ 1, we have:

α2(0)− β22(0)−
λ2

40
≥ 1

λ1η
−λ1η −

λ2

40
>

√
λ2

λ1 −λ2
−
√

λ1 −λ2

λ2
.

Thus we get that φ(θ(0)) = λ1α
2(∞). Now we need to estimate the scale of α2(∞).

Recall that γ = α2(0)− β22(0) ≤ 0. Using (E.2) and α2(∞)− β22(∞) ≤ γ , we can get α2 ≤ γ+
√
4+γ2

2 .

Using (E.2) and α2(∞)− β22(∞) ≥ γ −λ2, we can get

α2 ≥ γ −λ2 +
√
4+ (γ −λ2)2

2
≥ γ −λ2 +

√
4+γ2

2
.

Thus we can obtain:

λ1(γ +
√
4+γ2 −λ2)

2
≤ φ(θ(0)) = λ1α

2(∞) ≤ λ1(γ +
√
4+γ2)

2
.

E.2 Proof of Lemma 5.2

Let φ(θ(t)) = (α(∞),β1(∞),β2(∞))T . Using the clipping constant
√
10

36
√
λ1
, we obtain:

α2(t)− β22(t)−
5

18λ1
≤ α2(∞)− β22(∞) ≤ α2(0)− β21(0).

Similar to the proof of Lemma 5.1, we can derive φ(θ(t)) = λ1α
2(∞). Using Theorem 4.3, we obtain:

1

ηλ1
− β22(t) ≤ α2(∞)− β22(∞) ≤ 4.2

ηλ1
− β21(t).

Following the proof in Lemma 5.1, we can derive:

α2(∞) ≥ 1

2




1

ηλ1
− β22(t) +

√

4+

(
1

ηλ1
− β22(t)

)2

 ,

α2(∞) ≤ 1

2



4.2

ηλ1
− β22(t) +

√

4+

(
4.2

ηλ1
− β22(t)

)2

 .

Consequently we obtain:

φ(θ(t)) ≥
1−λ1ηβ

2
2(t)

2η
+

λ1

√
4+

(
1

ηλ1
− β22(t)

)2

2
,

φ(θ(t)) ≤
4.2−λ1ηβ

2
2(t)

2η
+

λ1

√
4+

(
4.2
ηλ1
− β22(t)

)2

2
.
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Since β2(t) is monotonically increasing, both 1
ηλ1
− β22(t) and 4.2

ηλ1
− β22(t) decrease monotonically.

Given that γ +
√
4+γ2 is a monotonically increasing function, we conclude that the two-sided

bound of φ(θ(t)) is a monotonically decreasing function of t.

E.3 Proof of Lemma 5.4

Recall that the definition of D is:

D = {θ : 1 ≤ λ1ηα
2 ≤ 2;β1 = 0;0 < αβ2 ≤ 1}.

Using the expression of H(θ), for θ ∈D, we know β1 = 0, and we can obtain:

H(θ) =




λ2β
2
2 0 2λ2αβ2 −λ2

0 λ1α
2 0

2λ2αβ2 −λ2 0 λ2α
2



.

Let u = (0,1,0)T ∈ R3. We then have:

H(θ)u = λ1α
2u.

The other two eigenvalues are those of the matrix:

B =




λ2β
2
2 2λ2αβ2 −λ2

2λ2αβ2 −λ2 λ2α
2


 .

Recall that we have proved in Appendix D.1.1 that when αβ2 < 1:

λmax(B) ≤ ∥B∥ ≤ λ2β
2
2 +λ2α

2 +λ2.

Based on the condition in D that λ1ηα
2 ≥ 1 and 0 < αβ2 < 1, we have:

β22
α2
≤ 1

α4
≤ λ2

1η
2.

Thus, we obtain:

λmax(B) ≤ λ2λ
2
1η

2α2 +λ2α
2 +λ2

≤ (λ1λ2η
2 +

λ2

λ1
+λ2η) ·λ1α

2

≤ 0.0111 ·λ1α
2.

Therefore, λ1α
2 is the largest eigenvalue of H(θ) and u is its corresponding eigenvector. Thus,

∥H(θ)∥2 = λ1α
2 ≤ 2

η . Recall that the gradient of β1 is 2λ1α
2β1, which will be 0 when β1 = 0.

Therefore, when β1 = 0, we have ∇L(θ) ·u = 0. This proves that θ is in the “stable set”.

Now we will prove that the update equation for the constrained trajectory is:

α†(t +1) = Clip

(
α†(t) + ηλ2β

†
2(t)(1−α†(t)β†2(t)),

√
2

ηλ1

)
, (E.4)

β†2(t +1) = β†2(t) + ηλ2α
†(t)(1−α†(t)β†2(t)). (E.5)
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It is important to note that β1(t) ≡ 0 by the definition of D. Based on the definition of D and the

initialization condition, we know α†(0)β†2(0) < 1. First, we want to prove that if α†(t)β†2(t) < 1, then

we will have (E.4) and (E.5), as well as α†(t +1)β†2(t +1) < 1. Suppose α†(t)β†2(t) < 1, then we have:

1−
(
α†(t) + ηλ2β

†
2(t)

(
1−α†(t)β†2(t)

))
·
(
β†2(t) + ηλ2α

†(t)
(
1−α†(t)β†2(t)

))

=
(
1−λ2η

(
α†(t)2 + β†2(t)

2
)
−λ2

2η
2α†(t)β†2(t)

(
1−α†(t)β†2(t)

))(
1−α†(t)β†2(t)

)
.

When α†(t)β†2(t) < 1, based on the definition of D, we have:

λ2η
(
α†(t)2 + β†2(t)

2
)
< λ2ηα

†(t)2 +
λ2η

α†(t)2
≤ 2λ2

λ1
+λ1λ2η

2 ≤ 0.011,

λ2
2η

2α†(t)β†2(t)
(
1−α†(t)β†2(t)

)
≤

λ2
2η

2

4
≤ 0.001.

Thus, we know that if α†(t)β†2(t) < 1, then

(
α†(t) + ηλ2β

†
2(t)

(
1−α†(t)β†2(t)

))
·
(
β†2(t) + ηλ2α

†(t)
(
1−α†(t)β†2(t)

))
< 1.

It is then apparent that:

Clip

(
α†(t) + ηλ2β

†
2(t)

(
1−α†(t)β†2(t)

)
,

√
2

ηλ1

)

·
(
β†2(t) + ηλ2α

†(t)
(
1−α†(t)β†2(t)

))
< 1.

Therefore, we know that:

(
Clip

(
α†(t) + ηλ2β

†
2(t)

(
1−α†(t)β†2(t)

)
,

√
2

ηλ1

)
,0,

β†2(t) + ηλ2α
†(t)

(
1−α†(t)β†2(t)

))
∈D.

It is then apparent that:

(
Clip

(
α†(t) + ηλ2β

†
2(t)

(
1−α†(t)β†2(t)

)
,

√
2

ηλ1

)
,0,

β†2(t) + ηλ2α
†(t)

(
1−α†(t)β†2(t)

))

=ΠD

(
α†(t) + ηλ2β

†
2(t)

(
1−α†(t)β†2(t)

)
,0,

β†2(t) + ηλ2α
†(t)

(
1−α†(t)β†2(t)

))
.

Thus, we have shown that if α†(t)β†2(t) < 1, we have (E.4) and (E.5), as well as α†(t +1)β†2(t +1) < 1.

Therefore, we can prove that for all t, (E.4) and (E.5) will hold by induction.

E.4 Proof of Theorem 5.5

Based on Equation (E.4), Equation (E.5) and α†(t)β†2(t) < 1, we know that for all t we have:

α†(t +1) ≥ α†(t), β†2(t +1) > β†2(t).
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Since we know that

L
(
θ†(t)

)
=
1

2
λ2

(
1−α†(t)β†2(t)

)2
> 0,

then for all t we have

L
(
θ†(t +1)

)
< L

(
θ†(t)

)
.

Next, based on the definition of t̃ and α†(t + 1) ≥ α†(t), we know that for all t ≥ t̃, we have

α†(t) =
√

2
λ1η

. Therefore, for t ≥ t̃ we have:

L
(
θ†(t)

)
=
1

2
λ2

(
1−

√
2

λ1η
β†2(t)

)2
,

β†2(t +1) = β†2(t) + ηλ2

√
2

λ1η

(
1−

√
2

λ1η
β†2(t)

)
.

Based on these two equations, it is easy to prove that

L
(
θ†(t +1)

)
=
1

2
λ2

(
1−

√
2

λ1η
β†2(t +1)

)2

=

(
1− 2λ2

λ1

)2
· 1
2
λ2

(
1−

√
2

λ1η
β†2(t)

)2

=

(
1− 2λ2

λ1

)2
·L

(
θ†(t)

)
.

F Unclipped Gradient Descent Dynamics

In this section, we demonstrate why clipping on β1 is necessary. The update equation for α is:

α(t +1) = α(t)− ηλ1β
2
1(t)α(t) + ηλ2β2(t)(1−α(t)β2(t)).

When β21 becomes too large, α decreases rapidly and may even change its sign, leading to poorly

behaved dynamics. Figure 14 illustrates the behavior of α during training without clipping. As

our previous analysis in Theorem 4.4 suggests, α initially increases and then decreases. How-

ever, without clipping, the rate of decrease is excessively rapid, causing α to become very small.

Consequently, the gradients for β1 and β2 become negligible, and the training dynamics recover

extremely slowly.

This behavior bears similarity to an experiment reported by Chen and Bruna (2023), as shown

in Figure 15. In their experiment, the sharpness initially increases progressively, then drops quickly

to a value near 0, before recovering slowly.

It is important to note that, given our initialization set and learning rate, not all gradient

descent dynamics become poorly behaved without clipping. In many cases, their behavior remains

consistent with our results obtained with clipping. For instance, we chose a learning rate η = 1
30

and an initialization from X ( 1
30 ), then trained using gradient descent without clipping for 15,000

steps. The results, shown in Figure 13, are similar to our findings presented in the main text.

Nevertheless, there exist cases where the dynamics deviate from the Edge of Stability (EoS) and

exhibit abnormal behavior.
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Figure 13: On our setting, we choose learning rate η = 1
30 and choose a initialization from X ( 1

30 ),

then train using GD without clipping for 15k steps. Recall that λ2
α is close to sharpness, thus the

change of α can represent the change of sharpness.
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Figure 14: An example for the abnormal behavior of GD without clipping on our setting.

Figure 15: A experiment in Cohen et al. (2021), we find that when the learning rate is 0.00266, the

training dynamic is somehow like the abnormal behavior in Fig 14, which means the sharpness

first increase and then decrease extremely fast, making the loss recover slowly.
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