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Abstract

Recent advances in deep learning optimization have unveiled two intriguing phenomena
under large learning rates: Edge of Stability (EoS) and Progressive Sharpening (PS), challenging
classical Gradient Descent (GD) analyses. Current research approaches, using either generalist
frameworks or minimalist examples, face significant limitations in explaining these phenom-
ena. This paper advances the minimalist approach by introducing a two-layer network with a
two-dimensional input, where one dimension is relevant to the response and the other is irrel-
evant. Through this model, we rigorously prove the existence of progressive sharpening and
self-stabilization under large learning rates, and establish non-asymptotic analysis of the training
dynamics and sharpness along the entire GD trajectory. Besides, we connect our minimalist
example to existing works by reconciling the existence of a well-behaved “stable set” between
minimalist and generalist analyses, and extending the analysis of Gradient Flow Solution sharp-
ness to our two-dimensional input scenario. These findings provide new insights into the EoS
phenomenon from both parameter and input data distribution perspectives, potentially informing
more effective optimization strategies in deep learning practice.

1 Introduction

Deep learning has revolutionized many fields, from computer vision to natural language processing.
However, this progress has also posed significant challenges to classical optimization theory. Most
classical gradient descent (GD) analysis assumes small learning rates for easing convergence
analysis. Consider minimizing a smooth loss function L(6) with respect to the parameter 0,
classical analyses show that when choosing a learning rate # such that S(6) < 2/5, where S(0)
denotes the largest eigenvalue of the Hessian matrix V?L(6), the optimization is “stable” and the
loss function decreases monotonically to guarantee convergence Nesterov (2013).

Recent works such as Cohen et al. (2021), however, have observed that such a stability assump-
tion does not hold when training modern neural networks with GD. In particular, they summarize
two specific phenomena: The first one is called “Progressive Sharpening”(PS), that is, S(6), which
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is also referred to as the “sharpness” in Cohen et al. (2021), keeps increasing until it reaches the
instability threshold 2/# during training; The second one is called “Edge of Stability”(EoS), that is,
the sharpness hovers at the instability threshold 2/# after progressive sharpening, with the loss
decreases continuously and nonmonotonically. These two phenomena undoubtedly challenge the
classical analyses and have already attracted the attention of many researchers.

Current research on understanding these phenomena has developed along two lines. The
first line purses a so-called “generalist analysis” frameworks that, while being generic, rely on
hard-to verify assumptions. For example, Li et al. (2022b) analyze GD for training two-layer wide
neural networks. By characterizing the norms of the second-layer weights, they prove a four-stage
behavior, covering the PS and EoS phenomena. However, their analysis requires assumptions that
are hard to verify for two-layer neural networks, e.g., the sharpness being upper bounded, and
only works for extremely wide settings, which diverges from practical scenarios. Damian et al.
(2022) prove a similar four-stage behavior based on a general loss function, and their analysis
also relies on hard-to-verify assumptions, such as the existence of progressive sharpening and the
existence of a certain well-behaved “stable set”, which is doubted and showed badly-behaved for
scalar networks in (Kreisler et al., 2023). Overall speaking, such analysis provide results similar to
real experiments, but their hard-to-verify assumptions significantly restrict their applicability to
practice. Relaxing these assumptions is also extremely challenging.

The second line focuses on minimalist examples, offering more concrete and intuitive insights
without requiring specific theoretical assumptions. For instance, Zhu et al. (2022) study 2d slices
of a 4-layer linear scalar network and prove convergence to a minimum with sharpness slightly
below to 2/#, and Wang et al. (2023) consider the behavior of sharpness with GD on a special
class of 2-layer scalar networks (with nonlinear activation) in the form of F(xy). However, these
works suffer from two drawbacks: (1) They can only characterize the asymptotic sharpness of the
converged minimum. Due to the lack of analyzing sharpness for the entire trajectory, they cannot
provide more desirable nonasymptotic guarantees for the PS and EoS stages; (2) The setting of
scalar networks is over-simplified compared with practice, and the obtained results cannot explain
the role of the input data dimension in the EoS stage.

Besides, another notable example of the minimalist analysis is Kreisler et al. (2023), which
analyze a variant of sharpness. Specifically, they introduce a concept of Gradient Flow Solution
(GFS), and prove a monotonic decrease in the sharpness of GFS at the EoS stage for scalar networks.
In addition to the aforementioned drawbacks, Kreisler et al. (2023) also suffer from another
drawback: The sharpness of GFS does not directly transfer to that of GD trajectory, thus providing
no immediate explanation for the EoS phenomenon.

In this paper, we aim to address the limitations of the minimalist analysis by providing a more
sophisticated example: A two-layer neural network of width one with a two-dimensional input —
in particular, one input dimension is relevant to the response, and the other input dimension is
irrelevant. We establish nonasymptotic analysis of the training dynamics along the entire trajectory:
(1) We prove the existence of progressive sharpening and self-stabilization under large learning
rates; (2) We provide sharpness guarantees for the entire trajectory, showing that GD trajectory will
never exceed a sharpness upper bound; (3) We prove that the non-monotonically decreasing loss is



essentially monotonically decreasing when projected to the only relevant dimension. Through such
theory, we provides new insights of why EoS happens from the perspective of both parameters and
input data distribution.

Moreover, we highlight two connections of our theory to existing works: (1) We reduce the gap
on the existence of a well-behaved “stable set” between the minimalist and generalist analyses.
Specifically, Kreisler et al. (2023) prove that the stable set hypothesized in Damian et al. (2022)
can be disjoint in the scalar networks studied by Zhu et al. (2022); Kreisler et al. (2023), which
essentially violates the assumption of Damian et al. (2022). Therefore, the projected GD considered
in Damian et al. (2022) cannot smoothly decrease the loss toward zero. In contrast, we prove that
in our considered two-layer neural network with the two-dimensional input admits a nontrivial
well-behaved set, which is the subset of the stable set defined in Damian et al. (2022). This indicates
a potential separation between the bivariante and scalar inputs for linear networks; (2) We extend
the analysis of Kreisler et al. (2023) and provide the monotonic decrease of GFS sharpness for our
considered two-layer neural network with the two-dimensional input.

2 Related Works

The asymptotic property of GD sharpness was first mentioned in Wu et al. (2018) as an empirical
observation, that is, the minimal sharpness that the GD trajectory with learning rate # ultimately
converges to is always around %.Cohen et al. (2021) made a comprehensive empirical study on
the sharpness of the entire GD trajectory. To be more specific, they summarized two phenomena:
“progressive sharpening” and “edge of stability”, which means the sharpness of gradient descent
with a learning rate # will first increase to % and then stabilize at such a scale during the entire
training process. They also illustrated that the training loss of GD with a learning rate # can
non-monotonically decrease, even when the stable condition, sharpness A < % (where 71 is the
learning rate), is not satisfied. The non-monotonic decay property of the training loss with GD has
also been observed in various other settings (Wu et al., 2018; Arora et al., 2018; Xing et al., 2018;
Jastrzebski et al., 2020; Lewkowycz et al., 2020; Wang et al., 2021; Li et al., 2022a).

Recently, several works have attempted to comprehend the mechanism behind EoS with differ-
ent loss functions under various assumptions (Ahn et al., 2022; Ma et al., 2022; Arora et al., 2022;
Lyu et al., 2022; Li et al., 2022b; Zhu et al., 2022). From a landscape perspective, Ma et al. (2022)
defined a special subquadratic property of the loss function and proved that EoS occurs based
on this assumption. Ahn et al. (2022) followed this landscape property and studied the unstable
convergence behavior of GD. Both Arora et al. (2022) and Lyu et al. (2022) investigated the implicit
bias on the sharpness of GD in some general loss function.

There are also some works trying to investigate EoS phenomenon on highly simplified settings.
Zhu et al. (2022) proved the asymptotic sharpness of the converged minimum will be close to %
Wang et al. (2023) consider the behavior of sharpness with GD on a special class of 2-layer scalar
networks (with nonlinear activation) in the form of F(xp), and also get a asymptotic result and
show some other behavior beyond EoS in their setting. Agarwala et al. (2022) investigate second
order regression models, get a asymptotic result similar to Zhu et al. (2022), and a result loosely



related to “progressive sharpening”. Chen and Bruna (2023) investigate the behavior beyond edge
of stability in various simplified examples. Kreisler et al. (2023) consider the setting of scalar
networks, and show a new concept gradient flow solution (GFS) will decrease during EoS.

Another line of work (Lewkowycz et al., 2020; Wang et al., 2021) focuses on the implicit bias
introduced by large learning rates.Lewkowycz et al. (2020) first proposed the “catapult phase” , a
regime similar to the EoS, where loss does not diverge even if the sharpness is larger than % Wang
et al. (2021) analyze the balance effect of GD with a large learning rate for matrix factorization
problems. More recently, Li et al. (2022b) provided a theoretical analysis of the sharpness along
the gradient descent trajectory in a highly overparameterized two-layer linear network setting
under some hard-to-verify assumptions during the training process. Damian et al. (2022) followed
Li et al. (2022b) to develop a general theory of self-stabilization also under some hard-to-verify
assumptions. Moreover, they proposed a concept called “constrained trajectory” to show that the
trajectory of GD with large learning rate deviates from the gradient flow, which was firstly observed
by Jastrzebski et al. (2020) and confirmed by Cohen et al. (2021).

3 Setup

In this paper, we study a regression problem with two-dimensional input x = (x,x;)T € R? and
scalar response y = f*(x) € R. For analytical simplicity, we suppose

X1 /\1 0 " _
(Xz] ~N(0,( 0 /\2]], and f*(x) = x,,

where A; > 100,11, < 1.! Here x; is an irrelevant feature with large scale, while small-scale x,
fully determines the response y.

To learn the target function f~, we use a two-layer width-one linear network with weights
0 = (a,p1,p2) € R*:

f(x:0) = aBix; +aprx;.

Then the population square loss is given by

1 1 1
L(0) = 5By |9 f(x:0)] = S Ai(@pr) + S Aalapa — 1), (3.1)
The Hessian matrix H(6) of L(0) can be written as:

MPBL+ B3 2MaB) 2X0aB— A
HO)=| 2\ap; A a? 0
2A20(ﬁ2—/\2 0 /\20(2

Definition 3.1 (Sharpness of L(6)). We define the largest eigenvalue of H(6) as the sharpness
parameter of L(6). We denote it by S(0).

IThe covariance matrix can be generalized to be non-diagonal due to the rotation invariance of GD.



Our setting is motivated by Rosenfeld and Risteski (2023), where they demonstrate that the
oscillations during the EoS stage in image classification tasks are driven by “large magnitude”
features in the input data. Notably, these features, such as the background color of CIFAR-10
images, show little correlation with the true labels. Inspired by this observation, our setting allows
us to investigate the impact of feature relevance on training dynamics, and provides insights into
the mechanisms behind the EoS phenomena.

To minimize the loss in (3.1), we adopt gradient descent with learning rate r > 0 and gradient
clipping on f;:

a(t+1)=a(t)-nV,L(6(1)),

: V10
Pi(t+1) = Clip| B1(t) =1V, L(6(2)), v )
Ba(t+1) = Ba(t) =1V, L(6(2)),

where Clip(x,c) = sign(x) - max{|x|,c}. The clipping of p; prevents anomalous behavior in the
dynamics. We provide further discussion in Appendix F.
We initialize the weights within the initialization set &X'(#), which is defined as the set of

0 = (a, By, B2) satisfying

— <o, /—)
A A
61”]/\1 3 1
_— < —
max{ 0 20a,a} Br<—,
A2 B2 2 _ Apo
1- < < 1- .
S a1~ ah) <7 < 201 -apy)

Our analyses focus on sufficiently large learning rate 1 € [2/11,0.1], where X'(#) is nonempty.
Moreover, we show that X(77) is a large set. For instance, when A; = 100 and # = 0.1, it suffices to
select @ and B, such that

and then choose f; accordingly. Notably, this initialization allows us to explore the training
dynamics across a wide range of learning rates, all starting from the same initial point. Additional
details are provided in Appendix C.

The GD dynamics of our model exhibits interesting EoS phenomena. As shown in Fig 1, we
observe that while the loss decreases over long timescales, it exhibits non-monotonic behavior with
periodic spikes. Meanwhile, the sharpness grows and oscillates around 2/1, with rapid alternation
between progressive sharpening and self-stabilization phases. These characteristics align with the
EoS phenomena observed in Cohen et al. (2021) and Damian et al. (2022), and extend beyond the
scalar network setting studied in Zhu et al. (2022). We provide further discussion in Section 6.1.
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Figure 1: Set A; =100 and A, = 0.01. We train our model with learning rate n = 1/20 for 10000
iterations.

4 Theoretical Results

In this section, we develop a nonasymptotic analysis of the GD dynamics throughout the entire
trajectory. In section 4.1, we identify three distinct phases in the GD dynamics, proving the
existence of progressive sharpening and self-stabilization. Furthermore, in Section 4.2, we establish
that the loss (non-monotonically) converges to zero, with a rate that depends explicitly on the input
data variance.

Throughout our analysis, we use a learning late # € [2/1,0.1], and initialization within the set
X (1) unless otherwise specified. Our choice of 7 is sufficiently large to guarantee the occurrence of
EoS phenomena.

4.1 Gradient Descent Dynamics

To begin with, we present the three distinct phases identified in the GD dynamics.
Phase 1: Progressive sharpening before EoS. The loss L decreases monotonically, while the loss
sharpness gradually increases, yet remains below the stability threshold 2/#.
Phase 2.1: Progressive sharpening during EoS. As the dynamics enters the EoS (Edge of Stability)
stage, the sharpness continues to increase monotonically and exceeds the stability threshold 2/7.
Phase 2.2: Self-stabilization during EoS. In this phase of the EoS stage, the dynamics self-stabilize
as the sharpness decreases monotonically until it falls below 2/7.

Following Phase I, the dynamics enter a cyclical pattern alternating between Phases II.1 and
I1.2. Through this process, we further demonstrate that GD ultimately converges to global minima
with a limiting sharpness bounded by 2/7.

Theorem 4.1 (Global Convergence). For any 6 >0 and € > 0, there exists a time T(9, €), such that
for any t > T(9,€), we have

LO(t) <e and S(G(t))sz%é. (4.1)

To rigorously characterize the GD dynamics, we first present the following properties of the
parameters 0(t) = (a(t), B1(£), B2(t)):



Lemma 4.2. For all t > 0, use v(t) to denote the eigenvector corresponding to the largest eigenvalue
of H(O(t)), we have:

(i) Aja?(t) <S(O(t) < 1.12A,a°%(t);

(ii) |cos(v(t),(0,1,0)) > 0.9;

(iii) Ba(t+1)> Ba(t).

We make the following remarks for Lemma 4.2.

Sharpness dominated by @ Property (i) demonstrates that A;a? dominates the sharpness S(6)
along the trajectory, suggesting that analyzing a; suffices to reveal the dynamics of sharpness.

Instability of f; The top eigenvector v(t) of H(6(t)) identifies the direction of maximum curvature
in L(O(t)). When the sharpness is as large as 2/77, updates along v(#) can induce oscillatory instability
in the GD dynamics. Property (ii) reveals that the oscillating direction v(t) closely aligns with ;.
Furthermore, we will show that ; induces spikes in the loss L in Section 4.2.

Monotonic Increase of f, In contrast to 1, f, is a stable direction. This stability difference

arises from their respective second-order partial derivatives: %(6) = A,a? is much smaller than
2

%(6) = Ma?. Property (iii) confirms this stability, proving that , increases monotonically

throughout the GD trajectory.

Now we are ready to characterize the sharpness along the GD trajectory, and demonstrate the
existence of progressive sharpening and EoS in the following theorem.

Theorem 4.3 (Progressive Sharpening). Let T} to be the first time such that A;na?(T;) > 1.5 (T
can be co0). Then for any 0 <t < T, a > 0 increases monotonically, and
1.1 1.7
— <5(0(1)) <
For t > T;, we have
1.5 4.71
n

Theorem 4.3 guarantees that the phenomenon of progressive sharpening before entering the
EoS stage (Phase I) and the sharpness bounded near 2/7 during EoS (Phase II). Specifically, when
t < Ty, the sharpness keeps growing, as evidentiated by the monotonic increase of «, yet stays below
2/n. When t > Ty, the sharpness is bounded from below and above, near 2/#, indicating the GD
trajectory stays in the flat region and never escapes to a sharper region during EoS.

Furthermore, we prove the progressive sharpening (Phase II.1) and self-stabilization (Phase

I1.2) during EoS, when 6 = (a, 1, f») is initialized within a more stable set X (#):

—~ A
)= (@, o) € Xl @ < L5/ (Aun), o <02/, B < 222 (1= apo)),

Here X(1) forms a significant subset of X' (#). It represents a relatively flat region in X'(17). Then we
can derive the following theorem:



Theorem 4.4 (Edge of Stability). Let 6(0) € /'?(17) There exist T, and T3 with 0 < T, < T3, such that:
e (Progressive Sharping) For t € [0, T, ], we have

2.37
a(t+1)>a(t), and S(O(T,))> 73;
e (Self-stabilization) For t € (T,, T3], we have

a(t+1)<a(t), and 5(6(T3))<%+17.

Theorem 4.4 give a precise characterization of the progressive sharpening phenomenon and
self-stabilization, which is consistent with the empirical observation in Damian et al. (2022) and Li
et al. (2022b). When t < T, the sharpness keeps increasing, as @ grows monotonically, and exceeds
the stability threshold 2/17. When T, <t < T3, the sharpness drops, as @ decrease monotonically.
Additionally, we empirically demonstrate that the GD dynamics alternates between progressive
sharpening (Phase II.1) and self-stabilization (Phase II1.2) during EoS in Figure 1.

4.2 Loss Decay Rate

In this section, we estimate a monotonic decay rate of the non-monotonic loss. Recall the loss
function defined in (3.1):

LO)= sh@p) + shaapr-1) (42)

L;: oscillatory term  L,: convergence term

The loss L has two components, an oscillatory term L; and a convergence term L;. The first term
L; corresponds to learning the irrelevant feature x1, and contains an oscillatory parameter f;, as
shown in (ii) of Lemma 4.2. Empirically, L; exhibits drastic fluctuations, but rapidly drops to zero
every time the GD trajectory goes back to the stable region where S(0) < 2/#, as demonstrated
in Figure 7. We thereby deduce that L, contributes to the spikes appearing in the loss dynamics,
while L, dominates the loss descent.

Notably, L, barely influences the overall loss descent rate. This motivates us to focus on L, to
estimate the monotonic decay rate. Our numerical experiments in Figure 7 indicate that L, well
approximates the descent trend of L. However, L, is still non-monotonic, due to the fluctuations of
a. Thereby, we consider

2
I(e):l(l—‘/jfi:)),
1

2
by restricting a = m We first show that T is a good estimate for Lj:
Lemma 4.5. Let 6(0) € X(17). For any 0 <t < Ty, where
Ty :=min{t > 0: B,(t) > 0.54/A11/2},
we have

—

0.75L,(0) < T(6) < 3.3L,(6).



Moreover, for any 0 <t < T, such that a(t) <+/2/(A;7), we have
0.75L,(6) <L(0) < L,(6).

Lemma 4.5 proves that L,(6) can be controlled by L(6), especially when GD trajectory is in the
stable region. Next, we present the decay rate for L:

Theorem 4.6. Let 6(0) € X'(#). For any 0 <t < T, with T, defined in Lemma 4.5, we have:

—

_Aho _LOE+1) b
AT Tew) T M

(1 >

Theorem 4.6 proves L decays in a linear rate upper bounded by (1 — A,/1;)2. The rate becomes
faster as A,/A; grows larger. This reflects how the relative scale between features influences the
loss decay. As A,/A; increases, the model becomes more sensitive to the relevant feature x,, leading
to faster loss descent. In addition, Figure 7 shows that the rate (1 —21,/A;)?, which lies between
the upper and lower bounds in Theorem 4.6, precisely estimates the decreasing speed of L(0).

Our analysis primarily focuses on the interval [0, T;]. While this formulation might appear
constrained, it captures a substantial period of the optimization process, yielding valuable insights
into the GD dynamics. Notably, Figure 7 demonstrates that the estimated decay rate maintains its
validity well beyond the theoretically analyzed timeframe, suggesting broader applicability of our

findings.
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Figure 2: Same setting as Figure 1. In the left figure we plot L(0), L,(6) and L(6) in log scale.
We can see that L(0) nicely reflects the decay rate for L,(60). The slope of the red dashed line is
2log(1 - 2/\—’\12), which nicely reflect the decrease rate of L(6). In the right figure we plot L(6) and

L,(0). In most time L;(0) is near zero unless spikes occur.

5 Connection with Existing Results

We present the connections of our theory to the gradient flow solution (GFS) proposed in Kreisler
et al. (2023), and the “constrained trajectory” in Damian et al. (2022).



5.1 Connection with Gradient Flow Solution

Firstly, we introduce gradient flow (GF), which is the continuous form of GD:

O(t) = ~VL(O(t)).

For any initialization 6, define the gradient flow solution (GFS) Sgr(0) as the limit of the GF
trajectory, and denote ¢(6) as the GFS sharpness, i.e. the loss sharpness at Sgr(0).

Kreisler et al. (2023) study the GFS sharpness along the GD trajectory on scalar networks,
proving its monotonic decrease. We extend this analysis to our two-layer neural network with
two-dimensional input. Herein, we verify that GD reduces the GFS sharpness in this more general
setting, while further elucidating the distinction between GFS sharpness and GD sharpness.

The following Lemma characterizes the GFS sharpness when the GF starts at 6(0) € X ().

Lemma 5.1. Let 17 € [2/A,0.1]. For any a(0),5(0) € X(r) satisfying a(0) = p,(0), there exists
$1(0) € R such that 6(0) = (a(0), f1(0), f2(0)) € X(17). Moreover, the GF initialized at 6(0) converges
to a solution with the following sharpness:

$(6(0)) = A; - 1.

Lemma 5.1 reveals that when initialized from a subset of X'(17), GF converges to sharp minima
with sharpness lower bounded by A; — 1. This result show that our analysis is beyond that in
Kreisler et al. (2023), as they requires ¢(0) < %ﬁ In particular, given A; > 100, when 1 > 4/(A; - 1),
the GFS sharpness ¢(0) > 4/1. While GD with large 7 converges to flat minima whose sharpness is
bounded by 2/7 (Theorem 4.1), GF exhibits different trajectories and converges to solutions with
greater sharpness.

We next analyze GF initialized from points 6(t) along the GD trajectory. The following theorem
demonstrates that GD decreases the GFS sharpness, which is consistent with the observations in
Kreisler et al. (2023).

Theorem 5.2. For any t > 0, we have

N P A s
21 2

L2 A A G- AP

N 21 2

P(6(t))

4

P(6(1))

s

where both bounds monotonically decrease with time ¢t > 0.

Here the monotonic decrease of the upper and lower bound in Theorem 5.2 is because of the
monotonic increase of f,(t), as proved in Lemma 4.2 (iii). In Figure 3, we plot the upper and lower
bound in Theorem 5.2. This demonstrates that both bounds do decrease monotonically with time,
and implies a near-monotonic decrease of the GFS sharpness.
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Figure 3: We choose learning rate # to be 11—2, and show the evolvement of upper and lower bound
in Theorem 5.2

Remark 5.3. Theorem 5.2 further illuminates the inconsistency of GFS sharpness with GD sharp-
ness. While GFS sharpness starts high and decreases along the GD trajectory, the GD trajectory
itself exhibits a different behavior as detailed in Section 4.1: its sharpness first increases mono-
tonically, and then fluctuates around 2/# during EoS without showing a consistent decreasing
trend.

Figure 4 illustrates GF trajectories initiated from various points along the GD path. Recall
that a greater « indicates higher sharpness, as shown in (i) of Lemma 4.2. The visualization
demonstrates how the GFSs transition from the highly sharp Minimizer 0 to Minimizer 3 with
moderate sharpness 2/1.

5.2 Connection with Constrained Trajectory

In this section, we draw connections to the “constrained trajectory” framework introduced by
Damian et al. (2022), who show that GD at the edge of stability implicitly follows projected gradient
descent (PGD) under the constraint S(6) < 2/5. Specifically, they consider PGD on a so-called
stable set M, which is defined as

= |ro

M(n) = {6: 5(0) < and VL(9)~u(6):O},

where u(0) is the eigenvector associated with the largest eigenvalue of Hessian H(6). Then the
PGD on M is formulated as

O} :=T1,((0,) and 67, := HM(ej - qVL(aj)),

11
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Figure 4: Same setting as Figure 1. We plot the GFs starting from different points on the GD
trajectory and the minimizers these GFs converge to.

where the projection on M is defined as IT(0) := argming, 4]0 — 0||. The trajectory of the PGD
is referred to as “constrained trajectory”.

As mentioned in Damian et al. (2022), the constrained trajectory is mainly determined by the
sharpness condition, S(0) < 2/, while the other condition VL(0)- u(6) = 0 of M is included to
ensure the constrained trajectory stable, without affecting the stationary points of PGD on M.
Following the same principle, we choose our stable set as:

1 | 2
<a<,[—;B1=0;0<ap, <9;.
\//\11/] /\177 }

The first condition @ corresponds directly to maintaining sharpness near 2/# (Lemma 4.2). The
second condition sets the oscillatory term ; to zero. Moreover, the third condition ensures
parameter in M*(1) is not too far from solution manifold. The following lemma proves M' c M,
and provides an explicit update rule for the PGD on M.

M (n) :{9:

Lemma 5.4. Let 7 €[2/11,0.1] and 6(0) € X(1). Then M’ (1) is a subset of M(1), and the PGD on
M (1) has the following update: I (t) = 0 and

a’(t+1) = Clip|a®(t) -V, L(8"(%)), \/%)

it +1) = pi(t) -V, L(OT (1),

Lemma 5.4 implies that the PGD on M" can be regarded as GD with f; restricted to zero and

12



a clipped. We next characterize the PGD trajectory, derive its convergence rate during EoS, and

demonstrate its value in understanding GD dynamics.

Theorem 5.5. Let 7 :=min{t > 0: at(f) = \/W For any 0 < t <7, the PGD on M satisfies
af(t+1)>at(t) and L(OT(t+1)) <L(6T(1)).

For any t > t, we have

21, )\’
LOT(t+1)) = (1 —A—Q) L6 (1)) (5.1)
1
Theorem 5.5 shows the loss monotonically decreases along the contrained trajectory, and
provides an explicit convergence rate. We can see that this rate lies between the upper bound and

lower bound in theorem 4.6, and in Fig 7 we can see that (5.1) predicts the decay rate of L precisely.

Remark 5.6. The constrained trajectory analysis complements our approach in Section 4.2 in an
interesting way. Both methods aim to understand the core convergence behavior by handling the
oscillatory dynamics, but through different means. The constrained trajectory directly enforces
stability by projecting 6 onto a stable set where $; = 0, while our previous analysis in Section 4.2
studies the convergence through L, (defined in (4.2)), while allowing the oscillatory parameter f;
to vary naturally. Despite these distinct approaches, both analyses arrive at similar convergence
rates, indicating that g; barely impacts the loss descent and reinforcing our understanding of the

fundamental dynamics at the EoS.

We also visualize the constrained trajectory in Figure 5. We show that GD first “sharpens”
to the unstable region where a is large, and then “self-stabilize” to the stable region. After that,
another sharpening starts and the trajectory enters the next cyclical behavior. As illustrated in
Figure 5, during EoS stage, GD trajectory will follow the constrained trajectory rather that GF

trajectory.

6 Discussion

6.1 Alignment with the EoS Phenomena in Practice

To our best knowledge, the phenomenon in our setting, including the periodic progressive sharp-
ening and self-stabilization, and the periodic loss spikes, have not been observed in previous
minimalist settings Zhu et al. (2022); Kreisler et al. (2023); Wang et al. (2023); Chen and Bruna
(2023). Our setting is based on the two dimensional input data with two features in different scale.
This is different from most previous minimalist settings such as Zhu et al. (2022); Kreisler et al.
(2023) where they suppose a scalar input. Recall that in our setting, we suppose a large-scale but
irrelevant feature and a small scale and irrelevant feature. Such construction is the key for our
phenomenon, as the model has the trend to progressive sharpening (to increase its norm) for fitting
the small scale feature, but the large-scale irrelevant feature (or noise) will provide a regularization
for the model, which provides a self-stabilization effect.

13
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Figure 5: Same stetting as Figure 1. We visualize the GD trajectory with learning rate = 2%, as
well as the GF and constrained trajectory starting from the same initialization.

We argue that observations in our settings are more similar to practical results Cohen et al.
(2021); Damian et al. (2022) than observation in Zhu et al. (2022); Kreisler et al. (2023). In
experiments from Cohen et al. (2021); Damian et al. (2022), it’s easy to see the periodic progressive
sharpening, self-stabilization and the loss spiles, see Figure 8 and 9. These phenomenon are also
observed in our synthetic setting. In contrast, in the scalar network setting in Zhu et al. (2022);
Kreisler et al. (2023), the sharpness jump up and down around %, and their loss function will
monotonically decrease after first a few steps. See Figure 10 and Figure 11 for the experiments on
scalar networks.

6.2 Trade-off in Large Learning Rates

When training neural networks, using larger learning rates, if not leading to divergence, has been
seen to accelerate the training. However, this is not always the case. For example, we train a
two-layer FFN (feed-forward networks) on Cifar10 dataset using GD with different learning rates.
We report the number of training steps for decreasing the training loss from 0.32 to 0.22 in Figure
6. We choose such a range for the objective function, as we observe that the training loss clearly
shows the EoS phenomenon. As can be seen, increasing the learning rate from 0.1 to 0.3 actually
slows down the training by about 50% (5000 vs. 11000 steps). Therefore, there exists an optimal
learning rate in terms of reducing the training loss function.

The phenomenon above can be partially justified by our theoretical analysis, which corresponds

14
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Figure 6: Training performance of a two-layer ReLU network on the CIFAR-10 dataset using
Gradient Descent (GD) with various learning rates. The optimal learning rate is approximately
0.12. Further increases in the learning rate result in slower decreases in the training loss.

an extreme example of this phenomenon—under our setting: increasing the learning rate neither
speeds up nor slows down the decrease of the loss. Recall that as suggested by (ii) of Lemma 4.2,
p1 — corresponding to the irrelevant input feature x; — mainly contributes to the oscillation of
the loss function and drifts around 0. Meanwhile, as suggested by Theorem ?? and (i) of Lemma
4.2, the progressive sharpening and self-stabilization of EoS make a tend to stabilize around

%. Therefore, roughly speaking, the decrease of the loss function is mainly driven by f,, which

corresponds to the relevant input feature x,.

Now we look into the landscape of the loss function with respect to f,, the sharpness along the
9°L(6)
9p3

2
around }7—%\1, 8;/3(%9) tends to stabilize around ;—:\\f Recall again that we have 1, < 1A, implying

that . is very small. Therefore, the loss function is very flat along the f, direction. Accordingly,

B, direction is determined by its second order derivative = A,a?. As a gradually stabilizes

the convergence of §; is likely to slow down, as 8, approaches the minimum.

Our explanation above on the GD trajectory may look a bit complex. To summarize, the
acceleration benefit of using a large learning rate eventually diminishes, as the landscape of the
loss function along the major update direction is flat near the corresponding minimum.

Now let’s dive into Theorem 4.6 again. Recall that L can be viewed as a good approximation of
the loss function L by only considering the relevant dimensions — « and f3,. The decay rate of Lis
linear and independent on 7. Therefore, as illustrated in Figure 7, the decay rate of the original
loss function L also shows a similar convergence behavior — in another word, a large learning rate
does not necessarily yield a faster convergence.

Although this example does not yet fully explain why increasing the learning rate slows down
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Figure 7: We train our model from the same initialization with learning rate # = 2% (Left) and

n= 11—2 (Right). The slope of the red dashed lines in both figure is 2log(1 — 2/\—/\12), which reflects the

decrease rate of the loss with different learning rate properly.

the loss decrease, we believe that the trade-off mechanism in our minimalist example provides a
preliminary theoretical explanation for this phenomenon and can be extended by future effort.
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A Phenomena in other works

We begin by examining an experiment from Cohen et al. (2021), in which they train a two-layer tanh
network to approximate a Chebyshev polynomial. The observed phenomenon closely resembles
our findings. The sharpness initially increases, then rapidly decreases to a low level, before growing
again and entering a cyclic pattern. Large spikes occur and quickly subside during this process.
Figure 8 illustrates their results.

train loss (iteration) sharpness (iteration)

0.3 1 "
E é e N=2/6
E 0.2 1 = e N=2/8
I 1] —
5 ot < e nN=2/10

0.0 4= . T . — 04— . T . T

0 500 1000 1500 2000 0 500 1000 1500 2000
iteration iteration

Figure 8: Experiment from Cohen et al. (2021). A two-layer tanh network is trained to approximate

2 2

a Chebyshev polynomial using Gradient Descent (GD) with learning rates = ¢, g, and %.

Similar observations are reported in Li et al. (2022b) and Damian et al. (2022). For instance,
Damian et al. (2022) train a transformer with MSE Loss on the SST2 dataset. We present their
results in Figure 9.

7 o
5} ’
2 2050 P
g ey
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"N age N
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Figure 9: Experiment from Damian et al. (2022). A transformer model is trained on the Stanford
Sentiment Treebank 2 (SST-2) dataset using Mean Squared Error (MSE) as the loss function.

These experiments from various studies align closely with our numerical experiments. However,
we note a discrepancy between these practical experiments and those presented in Zhu et al. (2022)
and Kreisler et al. (2023). In their experiments on scalar networks, the loss oscillates during
the initial steps but subsequently decreases monotonically. The sharpness does not exhibit a
progressive sharpening process; instead, it fluctuates around 2/# from the initialization. Figures
10 and 11 provide detailed illustrations of these observations. Based on these findings, we posit
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that the Edge of Stability (EoS) phenomenon differs from that described in Zhu et al. (2022) and
Kreisler et al. (2023).

:’::. A=12 8
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Figure 10: Experiment from Zhu et al. (2022). Gradient Descent (GD) is applied to the loss function

(1 -x%y?)?, which represents a special case of a scalar network setting. The learning rates 1 are
chosen to be %, %, and %
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Figure 11: Experiment from Kreisler et al. (2023). A depth-4 scalar network is trained using
Gradient Descent (GD) for 10* steps with a learning rate 17 = 0.2. The loss function is defined as
(1-xyzw)>.

B More Experiments and Details

B.1 Experimental Details of Section 6.2

In the experiments shown in Figure 6, we train a two-layer multilayer perceptron (MLP) on the
first 10,000 images of the CIFAR-10 dataset without image preprocessing. We use a 10-dimensional
one-hot vector as the target and employ the Mean Squared Error (MSE) as the loss function. We
measure the number of steps Gradient Descent (GD) takes to decrease the loss from 0.32 to 0.22.
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Figure 12: Visualization of GD trajectory for a four layers MLP training on Cifar10

It is important to note that in our experiment, GD with all learning rates has already entered the
Edge of Stability (EoS) regime before the loss reaches 0.32.

B.2 Visualization of Practical Model Parameters in 3D Space

We visualize part of the GD trajectory with different learning rates, as well as the Gradient Flow
(GF) trajectory, while training a four-layer MLP on a binary classification problem using the CIFAR-
10 dataset. The GD trajectory closely follows the GF trajectory before entering the EoS regime.
Subsequently, the GD trajectory enters an unstable region, beginning to oscillate, and its long-term
movement shifts to a new direction that differs from the GF direction. This behavior is similar to
GD’s behavior observed in our results presented in Figure 5. Additionally, we observe that GD with
smaller learning rates follows the GF for a longer distance before beginning to change direction
and oscillate in a new region.
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C Theoretical Properties of Initialization

Our initialization allows us to explore the GD dynamics across a wide range of learning rates, all
starting from the same initial point. This stands in stark contrast to previous minimalist analyses
such as Zhu et al. (2022) and Chen and Bruna (2023), where their initializations permit only a
narrow selection of learning rates.

To see this, we define a special set ¥ C IR® that is independent of the learning rate:

25 APy Bl _Maps

V3 1
— <a<l, ,— ¢ < < -, < < .
ST max{“ 10a [ <P 2 5000a = T=af; = Aia

We then have the following proposition:

Proposition C.1. For any 6 €Y, there exists a learning rate # < 0.1 such that for any decay rate
re[0.55,1], 0 € X(ry).

Proof. Since Aja? > 20, we know that there exists a learning rate 7 such that A;an = 2. First, we
show that 6 € X(#):

. 2 _ o . 11 2 . . .
(i) Aya®n =2 and a > 0, so the condition |, lm <a<, lm is satisfied.

(ii) @ < By < é is satisfied by the definition of ¥. Since 8, > V3 ve know B2 > %. Since

T0a’
NG . NG e
n= ﬁ, we have Yo = % < B». So the condition max{%, %,a} < By < L is satisfied.

(iii) The condition for f; is naturally satisfied by the definition of ¥.
Next, note the following property that for r € [0.55,1], we have:
\/67’17/\1 < \/61”]/\1 .
20 20
Therefore, it is apparent that if 6 € X'(#), then for r € [0.55,1], 8 € X (rn). O

1.1< Alazrq <2,

D Proofs for Section 4

D.1 Proof of Lemma 4.2 and Theorem 4.3

First we prove the following Proposition:

Proposition D.1. For any ¢ > 0, and let 7 to be the first time such that A;na?(f) > 1.5, then we will
have:

1.5< A na®(t)<4.2 fort>% (D.1)
and A, a?(t) keeps to increase before t ( can be co).

Proof. Note that we use learning rate # < 0.1. The update equation can be written as:

a(t+1) = a(t) = (A pF(Ha(t) = AaB(1)(1 - a(t)Ba(1)), (D.2)

Bu(t+1) = Clip(By (1)~ A a* (1B (1) :vl_%

Ba(t+1) = Ba(t) + nAra(t)(1 — alt)Ba(t)). (D.4)

), (D.3)
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We can get that:

(1—a(t+1)Ba(t+1) = (1 -a()fa(H)[1 - A2 (1) = Aap3(H) — > Aa(t)a(t) (1 —a(t)Ba(1))].
(D.5)

Note that the following are the initialization conditions:

Vot 3 ! (D.6)

ooy @(0)} < B2(0) < ——

1.1 <nA;a%(0)<2, max|

20 " 20a(0) a(0)’
A2$(0 A26(0
5051?2()0) (1-a(0)82(0) < p{(0) < ;1572((0)) (1-a(0)82(0)). (D.7)

We set t to be the largest time such that for any t < t' we have & > 0 and:
nAya®(t)+nAyBa(t) < 0.01.

We will first prove Proposition D.1 for t <t + 1. For t < t' + 1 we know that in (D.5) we have:

2/\2
1= nA2a®(t) = nAaB3() — P A3a()at) (1 - a()Ba(t) 2 1-0.01 - L2 > 0.

Since a(0)B,(0) < 1, based on (D.5) we can see that a(t)B,(t) < 1 for t < t' + 1. Therefore, if

Proposition D.1 holds for t < 1+ 1, we will get a(t)>0fort < t¥ +1, and we have:

Adna®(t)  n*Ady 54,
+ <
A Ainad(t) = A

2
A0’ (1) + 1Ay B3(t) < +17—1 <0.01,
which means ' = t7 + 1, thus ' = co. Therefore, it suffices to prove Proposition D.1 for t < t" +1,
which yields t = 0o and a(t)B,(t) < 1 for all t.
Let ty be the last time that 100na?(t) < 2, with ty < co. If @? does not increase monotonically
before t(, let t; be the first time such that a?(t; + 1) < a?(t;), where t; > 1. We have that for any ¢,
a(t)Ba(t) <1 and:

(1-0.01-72A2) (1 - a(t)Ba(t) <1 -a(t+1)B(t +1) < 0.85,

Ny 1
Oé(t-l- 1) < (1 + 4a2(t))0((t) < (1 + m)a(t)

When t = t; — 1, we have:

2041)2 Ui
(1-nAia(t)) >0.98-(1+m).

Thus, for t = ¢; — 1:
Aya?(t) > 1.95.
Moreover, for t = t; — 1, we have:

1
2y c—— <
i) = 40 a2(t) ~ 7.8



Before t, [312 decreases monotonically, and when 17/\1a2 <1.9, /312 decreases with an exponential
rate of at least 0.81. Using Bernoulli’s inequality, we have:

inf {nA,a?)> 1.9~( —5—'7)2> 1.5.
t <t<t, 7.8
Let ? be the first time 771, @?(t) > 1.5. Then a?(t) monotonically increases before  and inf, o, {nA a’(t)) >
1.5. This also holds if a?(t) increases monotonically before t;. Next, we suppose t; < co to analyze
what will happen if GD enters the unstable regime.

Let t, be the first time after ¢, such that 17/\1a2(t2) < 2, where t; < oo. If t; = o0, it is apparent
that lim;_,., A;a?(t) = 2. Therefore, there will exist #; < oo, such that

/\10(2(1‘1 +1)= sup {17/\1a2(t)}.

to<t<t,

For ty <t <t,, we have:

Nz 2 225 Laa0)Ba(t) (1 - a(t)Bal0).

We can deduce that for ty <t <ty, |B1(t) < 6\?

is the same as GD without coordinate clipping.

Thus, we know that before t;, the update equation

We set undefined coefficients 1, 7, and an undetermined time t* such that:

1
Mn(a®(t+1)-a’(t))> — for *<t<t,
m
1
U]

Alq(az(t+1)—a2(t))ﬁ for to<t<t,,

where n; > n,. We will estimate n;, n,, and later Then we will have: /\117a (F+t)>1.1+ n—tl

and A na?(# + 9{8) > 2. Then we have:

9nq Iny

t LT L2
Towna2iy - s [ (1) = ! vz ()" (109) " V2
e - n | = s moa |, =
i=t* i=0 1 (%)'”110 oo \/ﬂ_m(%)fnll oo

We suppose that 1;na?(t;) = A + 1 where A > 1. Then we will have A;na?(t)-1> A - niz and
Ana®((A—1)ny) -1 > 1.So we have:

51

An,)! A2 A
]_[ (Ainal(i)-1)| > f 82_)1‘>n2 Z(e/\—l) : ‘/;

i=ty+1 np:n,

Therefore, we can obtain:

10np+ny *
e 12nyny
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Since a(t+1) < a(t)+ A Ba(t)(1 — a(t)Ba(t)), we have:

Ana®(t+1) < Apng(a(t) + nAafo(t)(1 - a(t)Ba(t)))?
= Aina® (1) + 22 Ay Apa () Ba()(1 — a(t)Ba(t)) + 11> Ay AS B3 (£)(1 — ar(t) Ba(t))?

2 3 2 4

xpy e 2 T
<AMna (t)+2+16A1a2(t)S/\117a (t)+—=—+—.

Given that 77 < 0.1, we can set n; and n, such that min{n,7,} > 100. Since we know:

min {a(t)B,(t)} = max {a(t)B,(t)} = 0.15,

1o <t<t, F<t<t

we can derive:

mings<i<p, a(t)B2(t)(1 — a(t)Ba(t)) 1
max; << a(t)Ba(t)(1 —a(t)Bo(t) — 2

If /\la(to)ﬁf(to) < 51—0/\2/52(1‘0)(1 —a(ty)B2(ty)), suppose t* is the largest time before ¢y such that:

Ma(i ) > o5 Aabalt)(1 - alfa(t) for t=r-1.

Since before t,, we have /j’lz(t +1)>(1.1- 1)2ﬁ12(t), we will have:

1
5000

AaBalt*)(1 - alt)Balt*) < MBI < 25 Aaali*)(1 - a()Bale*))

Based on the definition of #*, we obtain:

max o <r(a?(t+1)—a?(t)) ~ 2.04’

In conclusion, we can set n; and n, such that % <2.04.
Combining all the above equations, we have:

(
e

e er1 10m,+n1)/(12n1n,) >100 when A=3.19.

Since a(f) > a(t*) and a(t)B(F*)(1 - a(t*)Bo(1*) = Sa(t)Ba(11)(1 - a(t1)B(t)), we have:
AnBi(t)a’(ty) > 10% - Ay (%) a®(t*)
104’7 1 * (1 * *
>m‘ 2a(t7) B2 (7)1 — a(t) B2 (7))
> Apna(ty)Ba(t)(1 —a(ty)Ba(tr)).
If Ala(to)ﬁf(to) > % - A Ba(to)(1 — a(ty)Ba(tp)), then we can see:
AnBE(t)a’(t) > 10*- Ay pi(to)a’(to)
4
S daa(to)falio)(1 ~ alo)a(to)
> Aona(ty)Ba(ty)(1 —a(ty)Ba(tr)).

>
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Therefore, we have a(t; +1) < a(t;), which contradicts the definition of ;. So we can obtain A < 4.19.
Consequently, we have proved that:

sup {1”]/\10(2(1')} = /\11’]0(2(t1 + 1) < /\11’]0(2(f1) +0.01 <4.2.

tg<t<t,

Next, we suppose t, < oo to examine the consequences. Using the property of coordinate clipping
on B, we can obtain a lower bound for a?(t) as:

Aina®(t+1) 2 (1= Anc?)? - Ana’(t).
Let t3 be the first time such that A;na?(t) < 1.7. It is easy to see that:
Aina(t3) = 1.7 - (1 - Anc?).
Evidently, for t > t3, we have:
ﬁfu+1)s%ﬂﬂt+1y
Therefore, by using Bernoulli’s inequality, we obtain that for ¢ > t5:
Ana®(t) = 1.7-(1-2Anc?)%

Using the condition that 21;7c? < %8, we get 100a2(t) > 1.5 for t > t5. Then we know B (t+1) >
1B (t) for t > t3.

Let t, be the first time after t3 such that a?(t) starts to increase again. We will discuss whether
ﬁf(t4) will satisfy the initialization condition. The left side is immediately due to the definition of
ty. Let t; = t4 — 1. Since we have:

A
Ba(ta)(1 - a(ty)Ba(ts)) > (0.09 - 1 B2(ta)(1 - alts)pa(ty))

> 57 By(ta)(1 - a(ts)Ba(ta)),

the right side of the initial condition is simply due to:

1
Bi(ts) 2 7 B7 (1)

o A2pa(ta)(1 - a(ts)pa(ts))

- 41

_ AaPa(ta)(1 — alts)Ba(ts))

- 50014 '
Since $,(0) > a(0), we can induce that ,(t) > a(t) for all ¢. Since g, will increase for all time, we
know B;(t4) > '623/\1.

So we get a(ty)B(tg) > 2%. Then t4 will satisfy initialization condition. Therefore, we can repeat
the above proof from t,. So we know that Proposition D.1 is true for t < t' + 1. Then we obtain that
tT = co and a(t)py(t) <1 for all t. O
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D.1.1 Proof of Lemma 4.2

Since we have proved that a(t)B,(t) < 1 for all ¢, according to the update rule of 8, in (D.4), we can
conclude that B,(t + 1) > B,(t) for all t. This completes the proof of Lemma 4.2 (iii).
Next based on Lemma 4.2 (iii), we will prove Lemma 4.2 (i). Recall that the Hessian matrix for

0= (0(,/))1,/))2)T is given by:
MBT+A2B5 201aB; 2har— Ay

H@©)=| 2Map; A a? 0
2A2a[)’2—/\2 0 /\20(2

Since H(0),, = Aja?, it is apparent that S(0) > A;a?. Let us define matrices A and B as follows:

A= /\1/312 2/\10(/51 B= /\2ﬁ§ 2/\20(‘82—/\2
2/\10(ﬁ1 /\16[2 ’ 2/\20(!32 —/\2 /\20(2

We use ||[M||, to denote the maximum singular value of any matrix M. It is apparent that:
5(0) <llAll2 + 1Bl
Since we have proved that 0 < a8, <1, for B we have:
1Bl = max {[12836% + Aa2(1 - ) + 205208, - VI = 12|
<A B3+ Aa’ + Ay
Thus we have:
1Bl _ A2 1 Aa

/\2 2.2
—(1+—)+ <—1+/\17 +/\T]
A1a2 /\1( (¥4) /\10(2 /\1( 1 ) 2

1 2
<0.0111.
10000 | Toop T A2 <00

It is also easy to see from the above equation that:

<

Tr(B) = A2B3 + A,a% <0.012- A, a”.

For ||All;, without loss of generality, suppose f; > 0. Since we already know that:

1 V1
A7 A

let u = (t, V1 — t2) with t € [-1,1]. We then have:

2
luT Aul < A, a? t2+ﬁ—12(1—t2)+4/31 tV1 —t2].
a

o

Thus we have:

uTAul  , 1 a2
<t +—(1-t*)+=tV1-1t2<1.105.
AMa? ~ 36( ) 3 -
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Therefore, we get ||Al|, < 1.105- A;a?. Consequently, we obtain:
S(6) <|lAll, +1IBll, < (0.0111 +1.105) - A ;@ < 1.12- A a>.

Thus we have proved Lemma 4.2 (i).
Next we will prove Lemma 4.2 (ii) based on Lemma 4.2 (i)(iii). Following the notation in the
previous section, we aim to estimate the second eigenvalue of A, denoted as k;. We have:

ki = tr(A) = Amax(A).

It is straightforward to prove that A, (A) > 1;a? + Alﬁlz =tr(A); thus, k; < 0. Let k, denote the
second eigenvalue of B. We have:

\

o> | S

0 Aapy,— A,
/\20(/32—/\2 0

Therefore, if H(0) has any negative eigenvalue k, then k > k; — A,. Let v1, v, and v3 denote the

2

three eigenvectors of H(0) and u = (0,1,0)T. We express u as:
u=drvy+ vy + P3vs,
where ¢F + ¢3 + p3 = 1. We then have:

Ma? = u"H(O)u < ¢f Amax(H(6)) + (tr(H(0) = Amax (H(0)) — k) (43 + ¢3)
< 7 (Amax(A) + Amax(B)) + (tr(H(0)) = Amax(A) —ky + A5)(1 - 7)
< P3(1.1054;a% +0.01201 4, a?) + (tr(B) + A5)(1 — $?)
< ¢?-1.122;a% +(0.0124,a” + 0.001 1, a%)(1 — ¢?)
= Ao (1.12¢7 +0.013(1 - ¢7)).

Thus 1.12¢% +0.013(1 — ¢2) > 1. This implies ¢; > 0.9, which means |cos(vy, u)| > 0.9. Therefore,
we have completed the proof of Lemma 4.2 (ii).

D.1.2 Proof of Theorem 4.3

Theorem 4.3 is a direct corollary of Proposition D.1 and Lemma 4.2 (ii).

D.2 Proof of Theorem 4.1

Based on Lemma 4.2, we have 8, > 0. Using the condition that a(t)B,(t) <1 and the lower bound of
a in Theorem 4.3, we can conclude that for any € > 0, there exists t. such that:

alt)pr(t)>1—€ for t>t,. (D.8)

Otherwise, a(t)B,(t) would approach infinity.
If there exists T* such that:

/\1110(2 >2 for t>T%, (D.9)
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then we have:

BA(t)> BA(T*)>0 for t>T*.

Based on a > J%ﬂ and a(t)B,(t) < 1, we can derive f;(t) < 1//\17}7 Using equation (D.8), it is
straightforward to prove that there exists T; > T* such that:

2k
Nafalt)1 -afepo(n) < PN ooy
Thus, we have:
_ ABH(T)a(t)

a(t+1)<a(t) 5 ,

which contradicts equation (D.9). Therefore, we have proven that there exist infinitely many ¢ such

that A;na’ < 2.
If there exists a 6 > 0 which does not satisfy the above proposition, then for any t > tj, we have

Ba(t) < %. Combining this with our previous conclusion, we find that there exist infinitely many

t such that:
2 A7 \/ 2
t t) < . - = -.
a(t)palt) 'S \/2+a 240
This immediately contradicts Equation (D.8) when we set e =1 — %. So we have now proved

— —

that for any 0 > 0 and € > 0, there exists a time T(9, €) such that for any t > T(9, €):
Ma®(t) <246, 1-a(t)p(t) <e. (D.10)

Finally, we will prove that for any d > 0, there exists a time T, such that ff(t) <d for t > T,. If this
were not the case, there would be infinitely many ¢ such that A;na?(t) > 1.9. This implies that

Ba(t) < % for any t. We set €1,6 > 0 such that:

/\2€1(2+5))( /\11”]261)
1+ ——|1-Aynd+ =p<l1.
( L(T=ep) T e )7

When ¢ > T(6,€) and ﬁ%(t) > d, we have:

doe (246 A2
a(t+1)ﬁ2(t+1)§(l+ﬁ)(l—/\md+ 1 61):;;.

This immediately contradicts our previous conclusion when we set € =1 —y > 0. Therefore, for
any d > 0, there exists a time T, such that ﬁ%(t) <d for t > T;. Combining this with Equation (D.10),
we can conclude that for any € > 0, there exists a time T, such that for t > T, L(6(t)) <e.

We now know that for any € and 9, there exists T(5,€) such that for t > T(5,€), we have:

Mnal(t) <2+, |pi(t)<e.
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Recall that for 6 = (a,ﬁl,ﬁz)T, we have:
S(Q)zmax /\1 (t20(+t1‘31)2+/\2(t30(+tlﬁz)z subject to t%-i—t%‘i't% <1.
When 8, =0,a>0, 1 S)\maz <2+9,and 0<B; < é,wehave:

S(0) = max Alaztg + Ay (3 + t1ﬁ2)2 subject to t12 + t% + t§ <1

gmax/\lazt§+)\2(a2+ﬂ§)(tf+t§) subject to tf+t§+t§§1.

Since /\zﬁg < % <AhAhn<n< ﬁ < ’\fTOBZ, we get that 1,a? + /\2,65 < Aya?. Thus, when p1=0,
a>0,1<Ana’<2+6,and 0< B, <1, wehave|H(O)|l, = A;a” < %5.

We can see that set A = {(a, By, t1,t2,t3)|a > 0,1 < /\1170c2 <2+0,0<p,< %,t12+ t% + tg' <1}is
compact in R°. Now we define:

F(a,B1, P ti ta t3) = Ay (ha + 1 B1)” + A (tsa + 1 B2)?,
g(p1) = max  F(a, By, 2, t1, 2, 13).

a,Po bty t3)EA

It is apparent that F is a continuous function. Thus, based on Berge’s Maximum Theorem, g is
also a continuous function. Since g(0) < 2 + 9, we know there exists €5 such that when |8, ()| < €5,
we have g(B1) < (2+ 26)/n. Therefore, we know that for ¢ > T(5,¢€5), IH(O(1))], < (2 + 26)/n, thus
completing the proof.

D.3 Proof of Theorem 4.4

We consider the following initialization:

1.1<nA;a%(0)< 1.5, B,(0)> max{i/\l, %,0‘(0)}:

B 20 20«
A2p2(0) A5 B,(0)
5001 (o)~ H(OF2(0)) < Fi(0) < ST (1= a(0)f2(0)

Based on the result and proof in Theorem 4.3, we know that for any t > 0, a(¢)B,(t) > 0.15.

Let T be the largest time such that a consistently increases before T, T; be the largest time such
that a(t)p,(t) < 0.85 for t < T, T, be the first time such that A;7a? > 2, and T be the first time
such that

A
B> S22 (1= a0 ()

Since /3’12(1) < }Lﬁlz(O), we know T3 > min{T, T,}. For t < T3, we have the following equation:

Ba(t) B2(0) 50
m Smax{ a(O) ,E}
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Thus we have:
50 a?(t)

@020 < 45 500

-a(0)p2(0).

Then, based on the range of a(0) and the range of a?(t) in the previous theorem, we have
a(T3)B2(T5) < 0.78, which yields T > T3. Thereby, we get T, < T3 < T;. We also know T > T;. Based
on the definition of T}, we know:

maxo<s<T, @(t)B2(t) (1 — a(t)Ba(t)
ming,<;<7, @(t)B2(t)(1 — a(t)p2(t))

~

<2

Then we can easily obtain:

maxg<<r,(a?(t+1) - a
ming, <, (a?(t+1) - a?(t)) ~

Similar to the previous proof, we set 13 and n4 such that:

IA

1
10011(a2(t+1)—a2(t)) - for 0<t<T,,

[e8)

1
1007 (a®(t+1)—a?(t)) > — for T,<t<T;.
4
Then we have min{ns,n4} > 100 and Z—Z > %
Similar to the previous proof, we obtain:
T3 1\"3 1\ M4
2 /\ 10n4+n
| Jaoona?i)-1)f< (—f] (ﬁ) V2X-eTmi <01 when A=1.37.
i=0 e2 ¢

If A;na’(T3) < 2.37, based on the fact that T3 < T}, we have:

1 Apa(0) 1 2a(0)B2(0)(1 —a(0)B,(0))
100 501, a(0) 100 501, a2(0)

Bi(T3) < (1-a(0)2(0)) =

< L Aa(0)Ba(0)(1 ~a(0)B2(0) _ 1 Asa(T3)Ba(T5)(1 — a(T3)B5(T3))
~ 40 50/\10[2(T3) — 20 50/\1&2(T3)

_ 1 B (T3)(1 —a(T5)Ba(T5))

20 501, a(T5) '

This contradicts the definition of T;. Thus, we conclude that A;na?(T;) > 2.37, which implies

Ana®(T)>2.37 and S(O(T)) > %

Since A;qa’(t)>2.37 for T3 <t < T,if T > T3+ 9, we have either (T3 + 8) > (6\5\%)2 = ﬁ or:
6. 22Pa(T3)(1 ~ a(T3)B5(T3)) | 3A2B2(T3)(1 — a(T3)p2(T3))
5041 a(T3) - Aa(T3)
_ 30a(T3)Bo(T3)(1 — a(T3)a(T3)) | 3A2a(T3)Bo(T3)(1 ~ a(T3)px(T3))
- A1a?(Ts) - A1a?(Ts +8)
Ara(Ts +8)Ba(T5 + 8)(1 — a(Ts + 8)Br(T5 + 8))

>3, .
=2 Ara(Ts +8)

B3(Ts +8) > 1.37!
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In the first case, it is also easy to prove that:

5a2 5 51 A
Aia?(Ts +8)B3(Ts + 8) > > > 2702 5 22
1’ (T3 + )/31(3+ )z 18 ~ 18A1n 187~ 4

> ra(T3 + 8)Bo (T3 +8)(1 —a(Ts + 8)Ba(T3 + 8)).

This shows that T < T5 + 8, which contradicts our assumption. Therefore, T < T; + 8. Based on the
limited movement speed of a,, we can easily prove that a(T)g,(T) < a(T3)B2(T3) + 41% < 0.82. So
we know that T} > T.

Let Ty > T be the first time such that

BE(T4) > 1 A2a(T)Ba(T)(1 — a(T)Ba(T)).

Note that for the clipping constant, we have:

> 242 o a(T)B(T)(1 — a(T)BA(T))

Let Ts be the first time after T such that A;na? < 2. Note that T5 < co; otherwise, L(6) cannot
converge, which contradicts Theorem 4.1. For T <t < Ty, we have:

a(t+1) <a(t)+nABa(t)(1 - alt)Ba(t)),
2
a(t+1)> alt)- inz/\l/\za(t) > a(t) - L)
Thus, for T <t < T4, we have:
n?
Aina®(t+1)> (1 —Z)z/\lqaz(t). (D.11)
We already know that

A2B2(T)

P> 3 alT)

(1 =a(T)p2(T)).

If Ty > T +3,let z= A;na?(T) > 2.37. Then we have the following property:
n?
(z—1)%((1 - Z)Zz— 1)? >z

Using this property, we will have either (T +2) > 185/\ or:

1
BH(T+2) > (z=1)*(z=1-1.6n*)*BF(T) = Aya(T)BY(T)
> Aona(T)Bo(T)(1 = a(T)B(T)).
Thus, we get Ty > T + 2, which leads to a contradiction. Therefore, Ty < T + 2. Then, using (D.11),

we know Ts > Ty.
For t < T4 < T5, we have

n? _a(t+1)  nABa(t)(1—a(t)B(t)) n2a(t)Ba(t)(1 - a(t)Ba(t)) "
I_ZS a(0) =1+ at) <1+ /\waz(t) $1+§.
1< Polt + 1) <1+nA,.

P2
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Based on the fact that 0.15 < a(T)f,(T) < 0.82 and /a’lz(T +1)> 1.372[312(T), it is easy to prove that
for T <t < Ty we have a(t+1) < a(t).
For Ty <t < T5, we have:

B2(t) = BA(Ty) > Ayna(T)Bo(T)(1 = a(T)B,(T)).

Since 0.15 < a(T)B,(T) < 0.85, we know:

A2pBa(t) _ nAa(t)Ba(t)(1 —a(t)Ba(t))
i) (1-a(t)Ba(t) = (D
a(t)Bo(t)(1 —a(t)B(t) Ayna®(T) NA2a(T)Bo(T)(1 - a(T)B(T))
T a(T)BoAT)(1 —a(T)B2(T))  Ayna’(t) Aina®(T)
<5 Mna(T) nAaa(T)Bo(T)(1 —a(T)Ba(T))
B 2 Ana®(T)

= Aona(T)Ba(T)(1 - a(T)Bo(T)) < BE(1).

Thus, for Ty <t < T5, we have a(t + 1) < a(t). Therefore, we conclude that for T <t < T5, we have
a(t+1) < a(t).

Let T5 < Ty < oo be the first time after Ts such that a(t + 1) > a(t). We know that A, a?(Ty) <
Recall that:

=N

MBT+A2B5 2M1aB; 2MaB, - A
H(9) = 2/\10([31 /\16[2 0
2/\20(/32—/\2 0 /\2&2

If Tg = oo, then we know that ||H(0(T))|l, = A a*(Tg) < %
For the following part, we suppose Ty < co. At Tg, we have:

A a(Tg)BE(Te) < A2B(To)(1 — a(Ts)Ba(Te))-

If \;a?(Tg) < 1%, then we directly have ||H(0(Tg))|| < 1.12- lqﬂ < % Next we suppose A a?(Ty) >
1‘775. We then have:

Ara(T5)B2(Te)(1 — a(Ts)B2(Ts)) < /\277.

2
FiTs) < Aa(Ts) 7

In the following proof, for conciseness, we use 0 to denote 6(Tg). Let u = (t;,t,,t3)7. We have:

uTH(O)u < (A BT+ Aot + Ara?ts + A a?t + 4dafyt ity + 205 (2a s — D)ty ts
S(MBE+A2B5 + At + A1t + (Apa? + A))t3 +4A et ty
40 a2t
5
=(MBF+ABa+ Ao+ g @)t + (A a? + 54,813 + (Aaa? + Ao)ts.

< (ABT+A2B5 + A)tE + A a’ts + (Aya? + Ay)t3 + 54 Bits +
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We note that:

2
/\20(2 + /\2 <-,
Ui

B Aapi e da 3o hiat S g TR dar g <
2 5xAA 2
A1a2+5)\1/312§_+u<_+,7.
n 7 i

Thus, we know that for any u € R3, uT H(6)u < % + 1. Therefore, S(6(Ty)) < % +1.

D.4 Proof for Lemma 4.5

We have the following inequalities:

R P T R BT S U R P Tl

1= JZha(t) 1= Epat) 1= JZpalt)

Using the condition /%’1/32(1‘) < %, we obtain:

4.2
1- mﬁz(f)>2 1_1 2
- 2 2
L ha(t)
1.1
1- mﬁZ(t)<2 1_1 u
- 2 2
- [ Ba(1)
Therefore, we can conclude:
1 (e 1
0.75 < 2S ()S 2S3.3.
4(1_1 u) L(9) 4(1_1 2)
2V 2 2V 2

Moreover, when a(t) < | /ﬁ, we have L(0) < L,(0).

D.5 Proof of Theorem 4.6
V2B, (1)

Based on the initialization and Theorem 4.3, we know that TQ > 0.15 for t > 0. According to
11
the condition given by Theorem 4.3, we only need to consider ¢ such that @ < 0.5. Using this
11

condition, we can derive:

R (R B V2 (V1)
E-W[l— W]Sa(t)(l—a(t)ﬁZ(t))gz. (1_ ]
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Thus we have:

Vi [, V2Balt) 2421 (. V2Bs(1)
ﬁz(t)-l—/\zm(l— \/m ]Sﬁz(t+1)§ﬁ2(t>+/\2 \//\_1 (1— /\117 .

Then we obtain:

(1 —&){1 __\/5/32(1‘)] <1 _V2pa(t+1) < (1 _ﬁ)(l ~ ‘/Eﬁz(t)].
A \/m \/m Ay A

Finally, we have:

L |
I v B S, ) B IV QN vy

Therefore, we can observe that the decrease speed is exp{—%} for 1 <k <4, and it is indepen-

dent of the learning rate 7. This indicates that the condition number of the input covariance matrix
significantly affects the training speed in EoS regime.

E Proof of Section 5

E.1 Proof of Lemma 5.1

First, we consider a minimal 0* = (a, B, 82). We have f; = 0 and af, = 1. Let u = (t1,t,,t3) € R®
such that ||u||; = 1. Then we have:

uTH(0*)u = A1 (t2a)* + Ay(tsa + 11 Ba)* < Aja®t3 + Ay(a® + B3)(13 + 12).
Since tf + t% + t§ =1, we can see:
uTH(0%)u < A1a”t3 + Ay(a® + B3)(1 - 13) < max{A a?, A,a? + A, 83 ).

Other other hand, when u = (0,1,0) we have S(0) = A\;a?. When t; = by a we have

S(0) = Aa® + /\2,35. Therefore, we know that
S(0) = max{A a?, Aya? + 1,43}
Thus, we have

A
S(O)=Aa’ e Va’ > a’+ AP o at> 2
-1,

A A=A
2_p25 2 _\/ 1— A
= ﬁz_\//\l—/\z Ay

Now we consider gradient flow (GF) and let ¢(0(0)) = (a(co), B1(0), B2(c0))T. Since we know that
GF preserves layer norm difference as shown in Theorem 2.1 in Du et al. (2018), we can get:
a*(00) = B3(co)

a(eo)fa(c0) =

a?(0)- B3(0) - B1(0) <0, (E.1)
1.

o
A/
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Note that f7(0) < %ﬂ and 1 <0.1. We can then obtain:

a2(0) - B3(0) - {2 < a%(0) - B3 (c0) < a%(0) - F3(0). (£3)

Based on the fact that a?(0) > /\1_'7 and a(0)B,(0) < 1, we have:

1 1 1 A A=A
5 5 Ay Ay 2 1 2
0)- 2 B '
@0 =F(0) =35 = 7~ M~ 5 \/Al—»\z \/ Ay

Thus we get that ¢(6(0)) = A;a?(c0). Now we need to estimate the scale of a?(co).

Recall that y = a?(0) - /52( ) < 0. Using (E.2) and a?(c0) — B3(c0) < , we can get a? < L2V ‘24+y2.
Using (E.2) and a?(c0) —

B3(c0) >y — A,, we can get

2o VoMt VAF (Y- ) |y Ao+ y?
- 2 - 2 '
Thus we can obtain:

My +4+y2-1) < HO(0) = A a(e0) < My +VE+y?)
: < <

2

E.2 Proof of Lemma 5.2

Let ¢(0(t)) = (a(o0), B1(o0), B2(c0))T. Using the clipping constant 32?, we obtain:

@%(0) = B0~ T < @)~ B < a2(0) = B0

Similar to the proof of Lemma 5.1, we can derive ¢(6(t)) = A;a?(co). Using Theorem 4.3, we obtain:

N
P
&
\%
N =

B
N
I
NN
=
+
%
+
—

>
I
N
\\:/
[\

Consequently we obtain:

A
po(0) 2 3! : ,
N4+ (22 - g2
4.2 - 1 npA(H) 1\/ (3 -2
plot) s =3, ’
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Since f,(t) is monotonically increasing, both ﬁ - B3(t) and % — B3(t) decrease monotonically.

Given that y + /4 + 2 is a monotonically increasing function, we conclude that the two-sided
bound of ¢(O(t)) is a monotonically decreasing function of ¢.

E.3 Proof of Lemma 5.4

Recall that the definition of D is:
D={0:1<A\na’<2;p=0;0<ap, <1).

Using the expression of H(6), for 6 € ID, we know f8; = 0, and we can obtain:

A2p3 0 2Xhap-A;
H(O) = 0 A a? 0
2/\2&/3)2—/\2 0 /\26!2

Let u = (0, 1,O)T € R3. We then have:
H(O)u = A\a’u.
The other two eigenvalues are those of the matrix:

_ A2B3 2X0aB; - Ay
2/\20(/))2 - /\2 /\20(2 .

Recall that we have proved in Appendix D.1.1 that when af, < 1:
Amax(B) < [|BI| < A23 + Az + A
Based on the condition in ID that /\1170(2 >1and 0 <ap; <1, we have:

2
% < % < /\%172.
Thus, we obtain:
Amax(B) € L A%0%a% + Aa” + Ay
< (M A2+ ;—f + A1) A a?
<0.0111- )’

Therefore, A;a? is the largest eigenvalue of H(0) and u is its corresponding eigenvector. Thus,
IHO)|, = A a? < % Recall that the gradient of §; is 21;a?p;, which will be 0 when g; = 0.
Therefore, when g = 0, we have VL(0) - u = 0. This proves that 6 is in the “stable set”.

Now we will prove that the update equation for the constrained trajectory is:

a'(t+1) = Clip(a’(t) + nA23(1)(1 - a’()BY(1)), | ,7%) (E.4)
1

Bt +1) = B3 (1) + nArat(t)(1 - at(1)pl(t). (E.5)
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It is important to note that ;(f) = 0 by the definition of ID. Based on the definition of ID and the
initialization condition, we know a+(0)[3;r(0) < 1. First, we want to prove that if a+(t)ﬁ;r(t) <1, then
we will have (E.4) and (E.5), as well as ¥ (¢ + l)ﬁ;r(t +1)< 1. Suppose a*(t)[)’;r(t) < 1, then we have:

1= (a®(0)+nA2B5(8) (1= at(1)p3(1))) - (BE(8) + nAzat (1) (1 - a¥(2)B3(1) )
= (1= Aoy (a2 + B5(12) - Bn2at()pl6) (1-at(1)p3(1)) (1 - 2T (1)BL(1) ).

When a*(t)ﬁ;(t) <1, based on the definition of ID, we have:

P! 21,

Aon (aF()% + B3(1)7) < A (1) + a+f;7)2 < _Al + A, A2 <0.011,
A2

et (i (1-at(1)pln) < %f <0.001.

Thus, we know that if a+(t)[j’;r(t) <1, then

(a¥(t)+nAB5 (1) (1 - o (DBI(1))) - (B3(E) + mAsa (1) (1 - at(1)p(1))) < 1

It is then apparent that:
. 2
c11p(a+<t)+ nAB3() (1-at(1)pi(t)), | /;771)

(B30 +nd2a"(0)(1 - (0BY(1))) <1

Therefore, we know that:

(Clip(a+(t) + A3 (1 - (1)p(t)), /17_3\1)’0’
Bt +nhaat(t)(1-af(t)ph(r)) e D

It is then apparent that:

(Clip(oc+(t) +A283(1) (1= af(nl(t)), \/%),0,

By () +nAral (1) (1-a*(1)Bh(1)))
=TIp (' (1) + nA2p3(1) (1 - a*(1)B5 (1), 0,
B3(t)+ndaat (1) (1-at(t)pi(2))).

Thus, we have shown that if a*(t)ﬁ;(t) <1, we have (E.4) and (E.5), as well as af(t + 1)/j’§(t +1)<1.
Therefore, we can prove that for all ¢, (E.4) and (E.5) will hold by induction.

E.4 Proof of Theorem 5.5

Based on Equation (E.4), Equation (E.5) and a*(t)ﬁ;r(t) < 1, we know that for all t we have:

af(t+1)=a'(t), plt+1)> g
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Since we know that
1 2
T — tppt
L(6 (t))_E/\z(l—a (1)B1(1) >0,
then for all ¢ we have
L(o*(t+1))<L(0%()).
Next, based on the definition of ¥ and a'(t + 1) > a'(t), we know that for all t > f, we have
at(t) =, /TZW Therefore, for t >t we have:

2
) = L [ 2 o+
L(6 (t))_z/\z(l— mﬁz(t)) ,
2 2
ﬁ;(t+1)=ﬁ§(t)+ﬁkzw/m(l— mﬁi(t)).

Based on these two equations, it is easy to prove that

1 2 2
L(6+(t+1)):§/\2(1— mﬁg(tﬂ))

o2, 1 2 .\

—(1—/\—1) 'E/\z(l— mﬁz(t))
2

:(1—@) -L(6%(t)).

F Unclipped Gradient Descent Dynamics

In this section, we demonstrate why clipping on f8; is necessary. The update equation for «a is:

a(t+1) = a(t)— A BH(E)a(t) + 1A, B2(H)(1 - a(t)Ba(t).

When B7 becomes too large, a decreases rapidly and may even change its sign, leading to poorly
behaved dynamics. Figure 14 illustrates the behavior of @ during training without clipping. As
our previous analysis in Theorem 4.4 suggests, « initially increases and then decreases. How-
ever, without clipping, the rate of decrease is excessively rapid, causing a to become very small.
Consequently, the gradients for f; and f, become negligible, and the training dynamics recover
extremely slowly.

This behavior bears similarity to an experiment reported by Chen and Bruna (2023), as shown
in Figure 15. In their experiment, the sharpness initially increases progressively, then drops quickly
to a value near 0, before recovering slowly.

It is important to note that, given our initialization set and learning rate, not all gradient
descent dynamics become poorly behaved without clipping. In many cases, their behavior remains
consistent with our results obtained with clipping. For instance, we chose a learning rate 17 = 31—0
and an initialization from &’ (3%), then trained using gradient descent without clipping for 15,000
steps. The results, shown in Figure 13, are similar to our findings presented in the main text.
Nevertheless, there exist cases where the dynamics deviate from the Edge of Stability (EoS) and
exhibit abnormal behavior.
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Figure 13: On our setting, we choose learning rate 7 = 31—0 and choose a initialization from X (%),
then train using GD without clipping for 15k steps. Recall that A2 is close to sharpness, thus the
change of & can represent the change of sharpness.
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Figure 14: An example for the abnormal behavior of GD without clipping on our setting.
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Figure 15: A experiment in Cohen et al. (2021), we find that when the learning rate is 0.00266, the
training dynamic is somehow like the abnormal behavior in Fig 14, which means the sharpness

first increase and then decrease extremely fast, making the loss recover slowly.
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