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Abstract

Off-policy evaluation (OPE) is one of the most
fundamental problems in reinforcement learn-
ing (RL) to estimate the expected long-term
payoff of a given target policy with only expe-
riences from another behavior policy that is
potentially unknown. The distribution correc-
tion estimation (DICE) family of estimators
have advanced the state of the art in OPE
by breaking the curse of horizon. However,
the major bottleneck of applying DICE es-
timators lies in the difficulty of solving the
saddle-point optimization involved, especially
with neural network implementations. In this
paper, we tackle this challenge by establishing
a linear representation of value function and
stationary distribution correction ratio, i.e.,
primal and dual variables in the DICE frame-
work, using the spectral decomposition of the
transition operator. Such primal-dual repre-
sentation not only bypasses the non-convex
non-concave optimization in vanilla DICE,
therefore enabling an computational efficient
algorithm, but also paves the way for more
efficient utilization of historical data. We high-
light that our algorithm, SPECTRALDICE; is
the first to leverage the linear representation
of primal-dual variables that is both computa-
tion and sample efficient, the performance of
which is supported by a rigorous theoretical
sample complexity guarantee and a thorough
empirical evaluation on various benchmarks.

1 INTRODUCTION

The past decade has witnessed the ubiquitous success
of reinforcement learning (RL) across various domains.
Despite the original rationale that RL agents should
learn a reward-maximizing policy from continuous in-
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teractions with the environment, there also exist a wide
range of applicational scenarios where online interac-
tion with the environment may be expensive, inefficient,
risky, unethical, and/or even infeasible, examples of
which include robotics (Kalashnikov et al., 2018; Kahn
et al., 2018), autonomous driving (Shi et al., 2021;
Fang et al., 2022), healthcare (Jagannatha et al., 2018;
Gottesman et al., 2018), education (Mandel et al., 2014;
Slim et al., 2021), dialogue systems (Jaques et al., 2019;
Jiang et al., 2021) and recommendation systems (Li
et al., 2011; Chen et al., 2019). These application
scenarios motivate the study of offline RL, where the
learning agent only has access to historical data col-
lected by a separate behavior policy.

Off-policy evaluation (OPE) is one of the most funda-
mental problems in offline RL that aims at estimating
the expected cumulative reward of a given target policy
using only historical data collected by a different, po-
tentially unknown behavior policy. In the past decade,
various off-policy performance estimators have been
proposed (Hanna et al., 2019; Xie et al., 2019; Jiang
and Li, 2016; Foster et al., 2021). However, these esti-
mators generally suffer from the curse of horizon (Liu
et al., 2018)—step-wise variances accumulate in a multi-
plicative way, resulting in prohibitively high trajectory
variances and thus unreliable estimators. The recently
proposed Distribution Correction Estimation (DICE)
family of estimators have advanced the state of the art
in OPE, leveraging the primal-dual formulation of pol-
icy evaluation for a saddle-point optimization approach
that directly estimates the stationary distribution cor-
rection ratio, and hence breaking the curse of horizon
(Nachum et al., 2019a,b).

Nevertheless, as systems scale up in terms of the size
of state-action spaces, the saddle-point optimization
in the formulation of DICE estimators become increas-
ingly challenging to solve. Such curse of dimensionality
is common for RL methods in general, and people have
been working to alleviate the computational burden
by exploiting function approximators. However, many
known function approximators require additional as-
sumptions to ensure computational and statistical prop-
erties (Gordon, 1995; Jiang et al., 2017; Chen and Jiang,
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2019; Zhan et al., 2022; Katdare et al., 2023; Che et al.,
2024), which may not be easily statisfiable in practice.
Moreover, the induced optimization upon function ap-
proximators may be difficult to solve (Boyan and Moore,
1994; Baird, 1995; Tsitsiklis and Van Roy, 1996). In
particular, under a generic neural network parametriza-
tion, computing the DICE estimator (Nachum and Dai,
2020) requires solving non-convex non-concave saddle-
point optimizations, which is known to be NP-hard in
theory and also yields unstable performance in practice,
and is therefore regarded as intractable.

This dilemma brings up a very natural question:

Can we design an OPE algorithm that is
both efficient and practical?

By “efficient” we mean its statistical complexity avoids
an exponential dependence on both the length of his-
tory and the dimension of state-action spaces, i.e.,
eliminating both curse of horizon and curse of dimen-
stonality. By “practical” we mean the algorithm is free
from unstable saddle-point optimizations and can be
easily implemented and applied in practical settings.

In this paper, we provide an affirmative answer to this
question by revealing a novel linear structure encap-
sulating both Q-functions and distribution correction
ratios via a spectral representation of the transition
operator, which has many nice properties to enable effi-
cient representation learning and off-policy evaluation.

Contributions. Specifically, the contributions of this
paper can be summarized as follows:

e We propose a novel primal-dual spectral representa-
tion of the state-action transition operator, which
makes both the @Q-function and the stationary distri-
bution correction ratio (i.e., the primal and dual vari-
ables in DICE) linearly representable in the primal/d-
ual feature spaces, and thus enhances the tractability
of the corresponding DICE estimator.

e We design SPECTRALDICE, an off-policy evalua-
tion algorithm based on our primal-dual spectral
representation, which bypasses the non-convex non-
concave saddle-point optimization in vanilla DICE
with generic neural network parameterization, and
also makes efficient use of historical data. As far as
we are concerned, our algorithm is the first to lever-
age the linear representation of both primal and dual
variables that is computation and sample efficient.

e The performance of the SPECTRALDICE algorithm
is justified both theoretically with a rigorous sample
complexity guarantee and empirically by a thorough
evaluation on various RL benchmarks.

1.1 Related Work

Off-Policy Evaluation (OPE). Off-policy evalua-
tion has long been an active field of RL research. In

the case where the behavior policy is known, various
off-policy performance estimators have been proposed,
including direct method (DM) estimators (Antos et al.,
2008; Le et al., 2019), importance sampling (IS) estima-
tors (Hanna et al., 2019; Xie et al., 2019), doubly-robust
(DR) estimators (Dudik et al., 2011; Jiang and Li, 2016;
Foster et al., 2021) and other mixed-type estimators
(Thomas and Brunskill, 2016; Kallus and Uehara, 2020;
Katdare et al., 2023), which generally suffer from the
curse of dimension. In an effort to settle this issue,
there is also abundant literature on estimating the cor-
rection ratio of the stationary distribution (Liu et al.,
2018; Uehara et al., 2020), among which the distribu-
tion correction estimation (DICE) family of estimators
are the state of the art that leverage a novel primal-dual
formulation of OPE to eliminate the curse of horizon,
and in the meantime, allow unknown behavior policies
(Nachum et al., 2019a,b; Yang et al., 2022; Zhang et al.,
2020; Nachum and Dai, 2020). However, as discussed
above, the induced saddle-point optimization becomes
unstable with neural networks, impeding the practical
application of DICE estimators.

Spectral Representation in MDPs. Spectral de-
composition of the transition kernel is known to induce
a linear structure of @-functions, which enables the
design of provably efficient algorithms assuming known
(primal) spectral feature maps (Jin et al., 2020; Yang
and Wang, 2020; Ren et al., 2022b). These algorithms
break the curse of dimensionality in the sense that
their computation or sample complexity is independent
of the size of the state-action space, but rather, only
depends polynomially on the feature space dimension,
the intrinsic dimension of the problem.

With the growing interest in spectral structures of
MDPs, representation learning for RL has recently
attracted much theory-oriented attention in the on-
line setting (Agarwal et al., 2020; Uehara et al., 2021).
Practical representation-based online RL algorithms
have been designed via kernel techniques (Ren et al.,
2022¢, 2023), latent variable models (Ren et al., 2022a;
Zhang et al., 2023), contrastive learning (Qiu et al.,
2022; Zhang et al., 2022a), and diffusion score match-
ing (Shribak et al., 2024). Recently, a unified repre-
sentation learning framework is proposed from a novel
viewpoint that leverages the spectral decomposition of
the transition operator (Ren et al., 2022b).

Spectral representations have also been exploited in the
offline setting (Uehara and Sun, 2021; Ni et al., 2021;
Chang et al., 2022), where the temporal difference al-
gorithm is applied in the linear space induced by the
primal spectral feature for estimating Q-functions. The
linear structure of the occupancy measure induced by
the dual spectral feature is recently utilized in Huang
et al. (2023), which leads to an offline RL algorithm
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for stationary density ratio estimation. Although the
algorithm is theoretically sound, the stationary density
ratio breaks the linearity in occupancy, and hence the
algorithm is not computationally efficient. As far as we
know, there is no such offline RL algorithm that effi-
ciently utilizes both primal and dual representations.

2 PRELIMINARIES

Notations. Denote by |-||, the p-norm of vectors or
the LP-norm of functionals, and by (z,y) = Ty the
Euclidean inner product of vectors & and y. Denote by
Egp -] the empirically approximated expectation using
samples from dataset D ~ dP. Denote by A(S) the set
of distributions over set S, the element of which shall
be regarded as densities whenever feasible. Denote the
indicator function by ¥{-}. Write [n] := {1,...,n} for
n € Zy. Regard f(n) < g(n) as f(n) = O(g(n)).

Markov Decision Processes (MDPs). We con-
sider an infinite-horizon discounted Markov decision
process (MDP) M = (S, A, P, r, uo,7), where S is the
(possibly infinite) state space, A is the (possibly infinite)
action space; P : § x A — A(S) is the transition kernel,
r:S x A—10,1] is the reward function; g € A(S) is
the initial state distribution, and v € (0, 1) is the re-
ward discount factor, so that the discounted cumulative
reward can be defined as »_,° +'r,. We consider sta-
tionary Markovian policies IT := {m : S — A(A)} that
admit an action distribution depending on the current
state only. Given any policy w € II, let E, p[-] denote
the expectation over the trajectory governed by 7 and
P (possibly under prescribed initial conditions). Let
df(-,-) € A(S x A) denote the (stationary) state-action
occupancy measure under policy 7, i.e., the normalized
discounted probability of visiting (s,a) in a trajectory
induced by policy 7, defined by

dp(s,a) = (1 —7)E,p Z’ytH‘{st =s,ar =a}|.
t=0
Similarly, let df(-) € A(S) denote the state occupancy
measure subject to the relation df(s,a) = dj(s)m(als).
Further, define the state/state-action value functions
(a.k.a. V- and Q-functions) as follows:
VE (s) =B p[3 o0 v'r (st a4) | 50 = s,

QF(s,a) :==Erp[> o oV'7(se,a¢) | so =, ag = al.

In this way, the value of policy 7 in M is defined by
pp(m) = (1 = 1) Esmpio [V¥' (5)]

= (L= )Beno,  [QF(s, )], (1)
where the factor (1 —+) is introduced for normalization.

We omit the subscript P when the context is clear.

Remark 1. In order to better illustrate how the pro-
posed method works in MDPs with continuous state-
action spaces, we abuse the notation a bit to regard P,
m and d™ as densities. Parallel results for the discrete
case can be analogously derived without difficulties.

The Primal-Dual Characterization of p(w). Dis-
tribution Correction Estimation (DICE) (Nachum and
Dai, 2020) is a primal-dual-based method that evalu-
ates the value of a given target policy 7 in the offline
setting, using the linear programming (LP) formula-
tion of policy values (Puterman, 2014). Specifically,
it is known that we can equivalently characterize p(m)
defined in (1) by the following primal LP:

[Q.a), @)
St Q(s,) > (5,0) £ 1By p 5,0 [Q5' @),

a’~m(-]s")
V(s,a) € S x A.
Further, it can be shown that strong duality holds
in (2), with Lagrangian multipliers exactly the state-
action occupancy measures d” (-, -). We can therefore
characterize p(m) by the following primal-dual LP:

min (1 — v)Es~po,
sin L=

min max (1 —~)Es~guo, s,a)| + 3

in max (1=) a#?.p)[Q( )] ®3)

Ht?"(s.,a)rvd"(g-) [r(s,a) + ’V]ES’NIP(<|5,a),[Q(S/7a/)] - Q(57 a) .
a’~m(|s")

We highlight that this primal-dual LP formulation is
favored in the offline RL setting in that historical ex-
periences can be utilized to empirically approximate
the expectations in (3) after some simple change-of-
variables. In particular, for any measurable function
f(s,a), the importance sampling (IS) estimator for the
expected value of f(s,a) is given by

IE(s,a)wd7r [f(sv CL)} = E(s,a)~d"b [%le)) ’ f(Sa a)}v (4)

where ((s,a) := 5;((35?) is known as the stationary

distribution correction ratio for dataset D ~ dP.

The DICE family estimators (Nachum et al., 2019a;
Zhang et al., 2022b; Dai et al., 2020) is designed by
plugging the IS expectation estimator (4) into (3), such
that the stationary distribution correction ratio ¢(-,-)
is parameterized along with the Q-function to formu-
late an optimization, with various regularization avail-
able (Yang et al., 2020). It is evident that the DICE
family estimators are applicable to the offline RL set-
ting with unknown behavior policy.

Spectral Representation. We can always perform
spectral decomposition of the dynamic operator to
obtain a spectral representation of any MDP (Ren et al.,
2022b). In particular, low-rank MDPs refer to such
MDPs with intrinsic finite-rank spectral representation
structures that enable scalable RL algorithms, and are
thus of theoretical interest (Yao et al., 2014; Jin et al.,
2020). Formally, M is said to be a low-rank MDP if
there exists a primal feature map ¢ : S x A — R?
and dual features i : S — R% 6, € R? such that
P(s'|s,a) = (P(s,a), i(s")), r(s,a) = {(¢(s,a),8,), for
any s,s' € S, a € A. Here both the primal feature ¢
and the dual features f1, 6, are assumed to be unknown,
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and thus must be learned from data (Agarwal et al.,
2020; Uehara et al., 2021).

We would like to highlight that the assumption of fac-
torizability should not be deemed as restrictive here.
In fact, every transition kernel is technically “factoriz-
able” in a sufficiently large infinite-dimensional space,
though the factorization is not useful without a suf-
ficiently low intrinsic dimension d. It is known in
literature that, under very mild assumptions, approxi-
mate representations can be obtained by truncation of
infinite-dimensional representations (Ren et al., 2023)
or by latent variable models (Ren et al., 2022a) with
bounded approximation error. For technical simplicity,
we directly assume existence of such low-rank struc-
tures here, which is also standard in linear/low-rank
MDP literature (Jin et al., 2020; Yang and Wang, 2020;
Agarwal et al., 2020; Uehara et al., 2021).

Unfortunately, it is revealed in Zhang et al. (2022a);
Ren et al. (2022b) that learning the features of a low-
rank MDP is difficult from the unnormalized density
fitting point of view. To settle this tractability issue,
the above papers propose a reparameterization of the
dual feature as fi(-) = g(-)pu(-), where we introduce an
auxiliary distribution ¢(-) € A(S) that will be specified
later. Therefore, we will stick to the following spectral
decomposition of the transition kernel in this paper:
P(s'ls,a) = (@(s,a),q(s")u(s)), Vs,a,8".  (5)
Under such reparameterization, it has been shown that
the spectral representaton can be learned efficiently.

Additionally, we also assume the initial distribution pg
to be linearly representable in the dual feature space.

Assumption 1 (initial representation). There exists
wo € RY, such that po(s) = q(s)(u(s),wo), Vs € S.

Off-Policy Evaluation (OPE). We consider a set-
ting where we are given D = {(s;,a;,5;) | i € [N]},
an offline dataset of N historical transitions, sampled
by certain behavior policy mp that could be unknown.
The objective is to estimate the expected cumulative
rewards p(m) of a different target policy =.

For satisfactory performance, it is important that the
behavior policy provides sufficient data coverage for the
frequent transitions experienced by policy 7. Specifi-
cally, we assume the occupancy ratio between 7 and
mp satisfies the following regularity assumption.
d"(s,a)) < Cgo

Assumption 2 (concentratability). T (o0

We point out that the concentratability assumption is
standard in offline RL literature (Munos and Szepesvéri,
2008; Chen and Jiang, 2019), and is also implicitly
enforced in recent work like Huang et al. (2023) (see
Definition 1 therein). We are aware that the coefficient
CZ, can potentially be translated into different feature-

related constants (Uehara et al., 2021), which does not
change the asymptotics of sample complexity, yet only
adds to the technical complexity. For clarity, we will
stick to the simple Assumption 2 in this paper.

3 SPECTRALDICE: OPE USING
PRIMAL-DUAL SPECTRAL
REPRESENTATION

In this section, we first introduce a novel linear rep-
resentation for the stationary distribution correction
ratio using the dual spectral feature of transition ker-
nel. We highlight that this linear structure, together
with the known linear representation of @)-functions,
helps to bypass the non-convex non-concave optimiza-
tion required in the computation of DICE estimators,
and also enables efficient utilization of historical data
sampled by unknown behavior policies. Based on the
above ideas, we present SPECTRALDICE, the proposed
off-policy evaluation (OPE) algorithm using our primal-
dual spectral representation.

3.1 Primal-Dual Spectral Representation

We start by specifying the primal-dual spectral repre-
sentation used in SPECTRALDICE. At first glance, it
may seem natural to directly learn the spectral repre-
sentation of P as defined in (5). However, it turns out
that this naive approach includes the target policy m
in the linear representation of d”(-,-), which in turn
induces a complicated representation for the stationary
distribution correction ratio ¢(-,-) (Huang et al., 2023),
and thus, leads to an intractable optimization (3) for
the computation of the DICE estimator.

The above challenge inspires us to properly reparam-
eterize the spectral decomposition (5). Specifically,
since we only work with a fixed target policy m for
off-policy evaluation, we shall consider the following
alternative representation of the state-action transition
kernel P™(s',d’|s, a) := P(s'|s,a)mw(a’|s'):

P7(s',d|s,a)

= (#(s.0).a(s)my(@]s') ZER (). (6)

nr(s’,a’)

Note that Assumption 2 guarantees a non-zero denom-
inator when the numerator is non-zero. We refer to (6)
as the primal-dual spectral representation of the state-
action) transition kernel P™, where ¢(-,-) and p™(-,-)
are still called primal and dual spectral features, respec-
tively. The superscript 7 of the dual spectral feature
emphasizes its dependence on the target policy.

The primal-dual spectral representation has several
nice properties. In particular, we can show that the Q-
function Q™ (s, a), the state-action occupancy measure
d™ (s, a), and the stationary distribution correction ratio
¢(s,a) can all be represented in linear forms using the
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primal/dual features, as summarized below.

Lemma 1. With primal-dual spectral representation
(6), the Q-function Q™(-,-) is linearly representable in
the primal feature space with cofactor 8¢, € R%:

Q" (s,a) = (¢(s,0a),0q), Vs € S,a € A. (7)
Further, under Assumption 1, the state-action occu-
pancy measure d™(-,-) is also linearly representable in
the dual feature space with cofactor w} € R%:

d"(s,a) = q(s)mp(als)(p” (s,a),w]), Vs € S,a € A.
Specifically, when the auziliary distribution q(-) is se-
lected as the state-occupancy measure d™ (-) of the be-
havior policy my, the stationary distribution correction
ratio can also be linearly represented as:

o d(sa)
<(57a)* q(S)be(a|S) <H ( ) )7 d>' (8)

Proof. Note that the original dual feature in (5) can be
Trb(a'\s/)

restored by p(s’) = = arD) p(s',a’) for any o' € A.
Then by Bellman recursive equation we have:

Q"(s,a) = (¢(s,a),0,) + V/V”(S')@(S,a),q(S’)u(S'»dS'

= <¢(87a)707“ +7/V”(8')Q(S')M(S')d8'>-

%

Similarly, by the recursive property of d™ we have:
d™(s,a) = (1 — y)po(s)w(als) + 7/d"(§, a)P™ (s, a|3,a)d3da
= (1 =7)a(s)(m(als)u™(s,a),wo) +
{atermalow 5.0, [ (6.a)p(.aasaa )

- <q<sm<a\s>m<s,a>,
(1= 2w+ [ 7601905 a>d§da>,

wi
where we use the initial representation (Assumption 1)
and the fact that w(a|s)u(s) = m,(al|s)u™(s,a). The

representation of (-, -) is hence a direct corollary since
q(s)m,(als) = d™(s,a) when q(-) = d™(-). O

Then, using the linear spectral representations of @
and ¢ in (7) and (8), we shall equivalently formulate
the DICE estimator as follows.

Corollary 2. With primal-dual spectral representation
(6) where q(-) = d™(-), under Assumption 1, we have

pp(T) = Iglin max{(l — NEs~uo. [p(s,a)"0g] (10)
Q wd arvm(-|s)

+ Esdm (), a~my(als), [(MW(Sva)de) :

s'~P(+|s,a), a’~m(-|s’

(T(s, a) + ﬁy(»b(s/v a‘/)TBQ - d)(sa a)TBQ)} }

The proof of Corollary 2 is deferred to Appendix B.1
due to limited space. We highlight that our new DICE

formulation (10) bears several benefits:

e Offline data compatible. The estimator is favor-
able for OPE since the expectation over the (s, a,s’)
transition pair can be effectively approximated by
samples from the offline dataset D, as long as the
auxiliary distribution ¢(-) is selected as the state oc-
cupancy measure d™ of the behavior policy 7, such
that Pr[(s,a,s’) € D] = q(s)mp(als)P(s'|s, a).

e Optimization tractable. Given (learned) ¢(s,a)
and p™(s,a), the saddle-point optimization in (10)
is convex-concave with respect to both fg and wq,
which perfectly bypasses the optimization difficulty
in vanilla DICE estimators with neural-network-
parameterized Q7 (-,-) and ((-,-). Meanwhile, com-
pared to the counterpart obtained by directly apply-
ing the naive spectral representation (5) (details of
which can be found in Appendix B.2), the proposed

estimator (10) is tractable in that it is free of the
7(als)

that is unknown.
7 (als)

policy ratio

From now on, we will always regard ¢(-) = d™(-) for
the aforementioned nice properties to hold.

3.2 Spectral Representation Learning

In the last section, we have elaborated on how to per-
form OPE using off-policy data given a primal-dual
spectral representation. Now it only suffices to specify
how to learn such a representation, which we regard as
an abstract subroutine (¢, i) < REPLEARN(F, D, ).
Here F denotes the collection of candidate representa-
tions. We highlight that our algorithm works with any
representation learning method that has a bounded
learning error, without any further requirements on the
learning mechanism. Given a range of spectral represen-
tation learning methods available in literature (Zhang
et al., 2022a; Ren et al., 2022b,a; Shribak et al., 2024),
for the sake of clarity we only consider a few candidates
here, while other methods may also be applicable:

1. Ordinary Least Squares (OLS). Inspired by
Ren et al. (2022b), an OLS objective can be con-
structed as follows. Denote by Q7(s',a’,s,a) :=
d™ (s,a)P™(s',d’|s,a) the joint distribution of state-
action transitions under behavior policy 7, based on
0 (s'asa)

\/d“b(s,a)d“b(s’,a’) -

Vdm (s,a)d™ (s',a' )¢ (s,a) "p™(s',a’), which fur-

ther induces the following OLS objective:

. / @ﬂ-(s,7a,7s’a)
min —
(am)eF d™ (s, a)d™ (s, a)

2
d”b(s,a)d”b(s’,a’)({)(s,a)-rﬂ”(s’,a’)) dsdads’da’

which we plug in (6) to obtain

Therefore, (¢, 17) can be learned by solving (Ren
et al., 2022b; HaoChen et al., 2021):
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Algorithm 1 SPECTRALDICE: DIstribution Correction Estimation with Spectral Representation

Require: Target policy , off-policy dataset D, function family F.
1: Learn a spectral representation (¢, ™) <+ REPLEARN(F, D, ).
2: Plug in the spectral representation (¢, ™) to compute the following DICE estimator:

p(m) = ming,, maxwd{(l - 'y)IEmmE,l : [q?)(s, a)TGQ}

an~T(-|s

+ ]/]i(s,a,s’)w’D7 {(ﬂﬂ(sv CL)de> (T(S’ a) + 7&(8/’ al)TeQ - J)<57 a)TeQ)} } (9)

a’~m(-]s")
3: return p(m)

_min {E(s,u)f\«d"b,(é’,&’)wd"b [((Z)(s, a) (3, a/))z}

(¢.a™)EF

= 2E (s ,a)~dm (57,0 )BT (- ]5,0) {ﬁb(& a) " (s, a/)} },
where the last term becomes a constant after expan-
sion and is thus omitted. For practical implementa-
tion, we can use stochastic gradient descent to solve
the above stochastic optimization problem.

2. Noise-Contrastive Estimation (NCE). NCE is
a widely used method for contrastive representation
learning in RL (Zhang et al., 2022a; Qiu et al., 2022).
To learn (¢A>, ™), we consider a binary contrastive
learning objective (Qiu et al., 2022):

i E ~d™ I/F:.r NPT (- |8 [1 <1 %)]
(Gupmer { (o a)~Pr s | OB\ oo

+ I@(,Sr,a/)wpum {10g<1 + @(s,a) T4 (s, a'))]

where P, is a negative sampling distribution.

Details of these representation learning methods along
with their learning errors can be found in Appendix C.

3.3 SPECTRALDICE

With the two key components specified above, now
we are ready to state SPECTRALDICE, the proposed
offline policy evaluation (OPE) algorithm using spectral
representations, as displayed in Algorithm 1.

Specifically, given a policy 7, assuming access to an
offline dataset (s, a,s’) ~ D sampled by the behavior
policy m,, we follow a two-step algorithm to evaluate
the target policy 7 in an off-policy manner:

1. Representation learning. We may choose any
representation learning method that comes with a
bounded learning error as the REPLEARN subrou-
tine, and the overall sample complexity will depend
on this choice (see Section 4).

2. DICE-based policy evaluation. With the
learned representation ((]3, ™), we use the primal-
dual DICE estimator (9) to estimate the value of
the target policy m. Note that the data distribu-
tion dP (s, a,s') = d™(s)m,(a|s)P(s']s, a) is exactly
compatible with the formulation in (10).

Remark 2 (Numerical considerations). It is known that

directly solving (9) leads to potential numerical insta-
bility issues due to the objective’s linearity in 8¢ and
wq (Nachum et al., 2019b). Fortunately, it is shown in
Yang et al. (2020) that certain regularization leads to
strictly concave inner maximization while keeping the
optimal solution unbiased (see Appendix B.3 for de-
tails). In our implementation, we append the following
regularizer to the objective in (9):

_AE(s,a)ND [f(/lﬂ- (87 a)T“"d)] )
where f is a differentiable function with closed and con-
vex Fenchel conjugate f, (see Appendix E.1), and A is a
tunable constant. Furthermore, we also restrict 8o and
wq in regions O(¢) = {0 | 0 < @(s,a)T0g < ﬁ
and (") = {wa | 47(s,0) " w

< C7}, respectively.
4 THEORETICAL GUARANTEE

In this section, we provide a rigorously theoretical anal-
ysis regarding the sample complexity of the proposed
SPECTRALDICE algorithm. For the sake of technical
conciseness, we make the following assumption on the
candidate family F. We argue that this is not a restric-
tive assumption, but rather, only helps to highlight the
key contributions with simplified analysis.

Assumption 3 (realizability). Assume a finite family
F, such that (¢(s,a),d™(s',a’ )" (s',a’)) is a valid
state-action transition kernel for any ((ﬁ, o™) e F, and
the ground-truth representation (¢*, u™*) € F.

Remark 3 (Hypothesis class.). Here we assume F to be
finite for technical conciseness, which is consistent with
literature (Agarwal et al., 2020; Uehara et al., 2021) to
avoid analyzing the intrinsic complexity of hypothesis
classes. It is expected that standard machine learn-
ing theory techniques can be used to adapt to infinite
hypothesis classes with low intrinsic complexity. In
addition, the realizability assumption (¢*, u™*) € F
can be replaced by a (less restrictive) upper bound on
realization error, such that the representation learn-
ing error £(]F|, N, d) below will also include this error
linearly. Since the overall evaluation error bound de-
pends linearly on £(|F|, N, §/2) (see Theorem 4), the
additional realization error does not propagate over the
steps, and thus will not deteriorate the bound.
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Representation Learning Error. The key to sub-
sequent analyses is to first bound the error of represen-
tation learning, which is of some theoretical interest
by itself. Generally speaking, we expect probably ap-
prozimately correct (PAC) bounds for representation
learning in the following format.

Claim 3. With probability at least 1 — &, we have
]E(.s7(7,)~d]:b |:H]ﬁ>7r(’ '|Sv CL) - Pﬂ—(" "s7a)||1:| < g(‘]:|a N7 5)3

where P7(s', d'|s,a) == dz*(s',a)p(s,a) T 4" (s'), N is
the number of samples in D, and the upper bound &
only depends on |F|, N and §.

We point out that, under certain regularity assump-
tions, the above claim can be proven for many spectral
representation learning algorithms. Specifically, when
REPLEARN is implemented by OLS or NCE, we can

show that £(|F|, N,d) = @< v log @)

Policy Evaluation Error. The performance of the
proposed SPECTRALDICE algorithm is evaluated by
the policy evaluation error £ := p(m) — pp(m), which
can be further bounded by the following theorem.

Theorem 4 (Main Theorem). Suppose Claim 3 holds
for the REPLEARN subroutine. Then under Assump-
tions 1 to 3, with probability at least 1 — §, we have

1 log(1/9) n 1
1—vy N (1=7)

€3 5 SUFL N, 6/2).

Proof sketch. We first split £ into the following terms:
& = p(m) = p(m) + p(r) — pp(m) + p(m) — pp(m),

statistical

dataset
where we introduce an auxiliary problem:

: [45(8, a)TOQ}

+ Eswd’”}()7 ar~y, (als), [(ﬂﬂ(sv a)de) :
(Slva/)NPW(""&a)

representation

p(m) = min max{(l — ) Es~po,
0o wa

ar~(+|s

(T(S, a) + 'yqﬁ(s’, a’)TGQ — ¢3(5, a)TGQ)} }
Note that (9) is the empirical estimation of p(), and
that p(m) is (subtly) inequivalent to ps(m)—the expec-
tation is still taken over (s';a’) ~ P7(-,-|s,a) rather
than Pﬂ-('a '|Sa Cl) = <¢(57 Cl), ,ﬁ’ﬂ-('a )>

Intuitively, the latter two terms are directly related to
the representation learning error established in Claim 3,
which can actually be bounded as follows:

pp(m) — pp(m) S ﬁ - €(1F], N, 6/2),

pm) = po(r) S T €T N.5/2).

On the other hand, the first term is only caused by re-
placing the expectations with their empirical estimators,

which can be bounded by concentration inequalities as:
< 1 log(1/4)

p(m) —p(m) < T ~
Plugging these terms back completes the proof. O

Finally, we conclude that the sample complexity of
SPECTRALDICE equipped with either OLS or NCE RE-
PLEARN subroutine is O(N~'/?) (under mild regularity
assumptions). Details are deferred to Appendix D.

5 EXPERIMENTS

In this section, we present experimental results in both
continuous and discrete environments to demonstrate
the strength of the proposed SPECTRALDICE algo-
rithm. We also study the impact of hyperparameters,
data coverage and the choice of behavior policy on the
OPE performance, and illustrate the efficacy of the
proposed representation learning method.

The empirical results show that our method outper-
forms BESTDICE, the state-of-the-art DICE imple-
mentation without representation learning, in terms of
both the convergence rate and the final prediction er-
ror. In comparison to other baselines, SPECTRALDICE
achieves comparable performance with higher efficiency
in simple environments, and performs significantly bet-
ter than others in the most challenging environment.

5.1 Continuous Environments

Setting. We start by comparing SPECTRALDICE
with various baseline OPE methods in literature, in-
cluding BESTDICE (Yang et al., 2020), Fitted Q Eval-
uation (FQE) (Kostrikov and Nachum, 2020), Model-
Based (MB) method (Zhang et al., 2021), Importance
Sampling (IS) method (Hanna et al., 2019) and Doubly-
Robust (DR) method (Dudik et al., 2011). We fol-
low the experiment protocol in Yang et al. (2020)
to evaluate and compare the OPE performances of
these algorithms in three continuous MuJoCo environ-
ments, namely Cartpole, Reacher and Half-Cheetah,
in an increasing order of difficulty. In our implemen-
tation, for representation learning, we parameterize
each of q@ and ™ with a 2-layer feed-forward neural
network. For the OPE step, regularizer is appended
to (9), and the estimated policy value is retrieved by
p(m) = E(s.aymar [87(s,a) Twq - (s, a)] (see Remark 2).
Both steps are regarded as stochastic optimization prob-
lems, and are solved by stochastic gradient descent and
stochastic gradient descent-ascent, respectively. Opti-
mization hyperparameters are selected via grid search.
Performance is quantified by OPE error |p(m) — p(m)].

Results. The OPE performances of different meth-
ods in three environments are shown in Figure 1. It
is observed that SPECTRALDICE achieves comparable
performance in fewer optimization steps as compared
to all the other baselines, and further, outperforms



Primal-Dual Spectral Representation for Off-policy Evaluation

- Behavior Policy - Spectral-Dice BestDice

OPE Error
OPE Error

Model-Based

Importance Sampling —— Fitted Q

Doubly Robust

OPE Error

20k
Steps

30k 40k 50k

10k

20k

Steps

30k 40k 50k 10k 20k 30k 40k 50k

Steps

Figure 1: OPE error over the number of training steps in Cartpole, Reacher and Half-Cheetah environments
(from left to right). Due to the use of convex-concave formulation, we can see that SPECTRALDICE converges
faster and more stably to the target policy with a smaller OPE error in all three environments.
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Figure 2: Averaged relative OPE
errors over three environments.

them in terms of both convergence rate and final es-
timation error in the most challenging Half-Cheetah
environment. Further, although FQE achieves an error
close to SPECTRALDICE in simpler environments, its
performance significantly degrades when the transition
dynamics becomes more complex, demonstrating the
importance and power of spectral representation.

Here we also highlight the comparison between two
DICE-based methods—SPECTRALDICE (ours) and
BEsSTDICE. All settings showcase the advantage of our
primal-dual spectral representation over the generic
neural network representation, which justify the argu-
ment that, compared to the non-convex non-concave
optimization in vanilla DICE, our convex-concave op-
timization leads to faster convergence and enhanced
stability within a wider range of environments.

For a clearer comparison, we further present the av-
eraged relative OPE error across these three environ-
ments in Figure 2. Here the relative OPE error is
defined by %, i.e., OPE error normalized by
the value difference between the target and behavior
policies. Under this metric, it becomes more evident
that our method outperforms all the baselines in terms
of estimation accuracy by a large margin.

5.2 Discrete Environment

Setting. We proceed to test our method in Four
Rooms (Sutton et al., 1999), a classical discrete envi-
ronment featuring convenient visualization, to study

100 120 140 160 180 20 40 60 80
Feature Dimension

100 120 140 160 180
Feature Dimension

Figure 3: OPE error of SPECTRALDICE in Four Rooms with varying
behavior policies (“far-away” policy 71 vs. “similar” policy m2), dataset sizes
and feature dimensions.

the algorithm’s sensitivity for hyperparameters and
illustrate the efficacy of representation learning. For
representation learning in this tabular MDP, we per-
form singular value decomposition (SVD) of the matrix

[W] (indexed by (s,a) and (s',a’)) and select

the top d singular vectors as ¢(s,a) and ™ (s, a’).

Sensitivity Study. We study the algorithm’s sensi-
tivity with respect to behavior policy m,, dataset size
N and spectral feature dimension d by examining their
impact on the OPE performance. For m,, we vary be-
tween two behavior policies 7, and 7o, where 7 has a
larger ¢;-distance from the target policy than mo. The
results are shown in Figure 3. It can be observed that
the proposed algorithm is always able to achieve low
OPE errors with sufficiently large feature dimensions,
showcasing its wide applicability under different behav-
ior policies, data availability and hyperparameters.

Efficacy of Representation Learning. To give
a hint of the efficacy of our representation learning
scheme REPLEARN, we visualize in Figure 4 the learned
transition kernel P for a fixed state and all the four
actions, where P is restored from the spectral represen-
tation by (5). As shown in the heat map (where darker
color indicates higher probability), the REPLEARN al-
gorithm successfully learns a set of primal-dual features
that accurately encode the correct transition dynamics.

More experimental details are deferred to Appendix A.
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Figure 4: Visualization of the learned transition kernel
for a fixed state and all the four actions.

6 CONCLUSION

In this paper, to relieve the intrinsic tension between
breaking the curse of horizon and overcoming the curse
of dimensionality via DICE estimators, we propose
a novel primal-dual spectral representation method
that establishes linear spectral representations for both
the primal variable (i.e., Q-function) and the dual
variable (i.e., stationary distribution correction ratio),
which leads to SPECTRALDICE, an efficient and prac-
tical OPE algorithm that eliminates the non-convex
non-concave saddle-point optimization in DICE and
makes efficient use of historical data. The performance
of SPECTRALDICE is justified by a theoretical sam-
ple complexity guarantee and the empirical outper-
formance. Future directions include taking one step
further to design offline policy optimization methods us-
ing primal-dual spectral representations, and applying
the algorithm for efficient imitation learning.
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[Yes| See Section 4.
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(a) Statements of the full set of assumptions of all
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parameters, how they were chosen). [Yes| See
Section 5 and the Appendix for details.
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statistics and error bars (e.g., with respect to
the random seed after running experiments mul-
tiple times). [Yes] See Section 5.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] See the Appendix for
details.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(¢) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data provider-
s/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(¢) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Not Applicable]
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Figure 5: OPE error over the number of training steps in Walker2d, Hopper and Ant (from left to right).
A More Experimental Results

Additional Experiments. We evaluate the OPE performance of the proposed SPECTRALDICE algorithm and
the aforementioned baselines (see Section 5.1) in three additional environments, namely Walker2d, Hopper and
Ant, the results of which are shown in Figure 5. These additional experiments further justify that our algorithm
outperforms all the other baselines in a consistent and robust way, enjoying both a faster convergence rate and a
smaller OPE error. These additional experimental results further confirm the superiority of SPECTRALDICE.

Average Error. The average loss of all the methods across three environments (Cartpole, Reacher and
Half-Cheetah) can be found below in Table 1. Experiments are repeated using three random seeds.

Methods SPECTRALDICE BesTDICE MB IS DR FQE
Average Loss 0.0781 + 0.0070 0.2147 4+ 0.0077  0.5280 4+ 0.0442  0.9734 4+ 0.0538  0.2559 4+ 0.0088  0.3474 4+ 0.0084

Table 1: Overall results across different methods.

Learning Efficiency. We further evaluate the efficiency of the proposed SPECTRALDICE algorithm by
comparing its running time against the BESTDICE baseline in multiple environments, the results of which are
shown in Table Appendix A. Here the training process is stopped after the evaluation loss drops below a preset
threshold for 5 straight test epochs. It can be observed that Stage 2 (line 2 in Algorithm 1) indeed features
accelerated updates, and even with the additional overhead induced by Stage 1 (line 1 in Algorithm 1), our
SPECTRALDICE algorithm becomes advantageous over the baseline for more challenging tasks.

Intuitively, despite the additional overhead induced by representation learning in Stage 1, the optimization in
Stage 2 is more efficient than its vanilla counterpart, since the updates are only performed with respect to
cofactors 6o and wq that lie in a low-dimensional space. Consequently, Stage 2 by itself is expected to outperform
vanilla DICE in terms of both memory use and running time.

Method Cartpole Reacher Half-Cheetah
SPECTRALDICE, Stage 1 (s) 715.9 876.0 913.0
SPECTRALDICE, Stage 2 (s) 167.5 140.8 357.1
BEsTDICE (s) 482.0 1676.5 1989.0

Table 2: Training time comparison between SpectralDice and BestDice

Implementation Details. For the baseline algorithms, we follow the implementation of BESTDICE in Yang
et al. (2020) and the implementations of FQE, MB, IS, DR in Fu et al. (2021). The optimization hyperparameters
including learning rate, optimizer parameter, network architecture, batch size, etc., are selected via grid search.
All the experiments were conducted using V100 GPUs on a multi-node cluster.

For the continuous environments, the target policy is obtained using deep reinforcement learning agents (Deep
Q-Network (DQN) agent for Cartpole, and Soft Actor-Critic (SAC) agents for all the other environments). The
behavior policy is then obtained by sampling from a Gaussian distribution centered at the mean action of the
target policy, where the variance of the Gaussian distribution can be adjusted to get behavior policies at different
distances from the target policy. To build the offline dataset, we collect 400 trajectories using the behavior policy,
where each trajectory is truncated to 250 steps.

The source code is available at https://anonymous.4open.science/r/spectral_dice-720A.
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B Primal-Dual Spectral Representation

In this appendix, we present the key properties of the proposed primal-dual spectral representation with proofs,
as well as a brief discussion on why the spectral representation of that specific form is preferable.

B.1 DICE Estimator with Primal-Dual Spectral Representation

We first present the proof of Corollary 2 that is already stated in the main text.

Corollary 2. With primal-dual spectral representation (6) where q(-) = d™(-), under Assumption 1, we have

p(7) = min max{(l — NEs~uo. [p(s,a)" 0]
0g wa ar(-]s)

+ IEs~d"b(-), ar~p(als), [(Nﬂ-(sv G)de) (T(S’ Cl) + ’Y(ﬁ(S/, a/)TeQ - ¢(57 a)TOQ)} }

s/ ~B(|s,a), o'~ (-]s)

Proof of Corollary 2. Recall the primal-dual LP formulation of policy evaluation stated in (3), which can be
equivalently rewritten using the primal-dual spectral representation (6) as follows:

arvm(-|s a’~7r(-|s’)

p(m) = min max {(1 ~ By, [Q(s @)+ [a s {r(s,a) VB (e, (@' 0))] = Q(sm} dsda} (11a)

= min max — s~ S, a S)T G,S*MT‘S(Z ’ S,H./ - S, a saa
—Q(_“)d,,(_’_){(l Ny (@] + [ al)m(als) - <SS { (5:0) + 7By r( 1o, [QE7 )] = Qs )}dd } (11b)

al~w (s’

d™(s,a)
= min max 11— Es~¢ Q(s,a x ,
Q(.l,.)dﬂ'(.’.){( ) '0 [ (s,a)] + bNfz(')y a~mp (als), |:

m(r(s,a)-&-'yQ(s ,a )—Q(s,a))]} (11c)

s ~P(-|s,a), a’ ~m(-]s’)

—Ig{QnmaX{(lw)Eswo o6 @7T00] +Eoim (), ammycio, [u"(s,afwd(r(s,a)+w¢<s’7a’>TeQ¢(s7a>TeQ)]}, (11d)

arvm(ls s/ ~P(-]5,a), almn(-]s)

where in (11b) we perform the IS-style change-of-variable used in DICE estimators (see (4)); in (11d) we plug in
the primal-dual spectral representation of Q™ and d™ stated in (6), as well as the fact that ¢(-) = d™ (). O

B.2 Failure of the Naive Spectral Representation

In Section 3.1, it is mentioned that directly applying the naive spectral representation (5) proposed in Ren et al.
(2022b) induces a complicated representation for (-,-), which in turn leads to an intractable optimization (3) for
the computation of the DICE estimator. The above point is further elaborated here in a formal way.

Note that, in Lemma 1, the linear representation of @™ only builds upon the low-rank MDP assumption, and
therefore it still holds Wlth the naive spectral representation (5). On the other hand, it can be checked that

0 (s,0) = <q<s>7r<a|s>u<s>, (1= o+ [ @G a>d§da>, (12)

wg
which can be obtained by plugging the relation m(a|s)u(s) = m,(als)u”™ (s, a) into the linear representation of

d™(-,-) to eliminate p™ from the representation. Consequently, the LP formulation (11) becomes

p(r) = min max{a — B, [Q(s,0)] + / d (s, a) {( @) + 1By p( 0 [Q(5' @) — Qs a)} dsda}

QC,) d= () arr(-]s) a’~m(-]s")
Hals) )
m(als) q(s)m(als)
7(als) d"(s,a)
) ()7r(a|5
m(als)
m(als)

= min max{(l — ¥)Es~po, [Q(s,a)] + / q(s)m(als) -

Q) d () arm(Cs) (s, @) + By p s, ), [Q(s",a)] - Qs a)} dea}

a’~m(-]s")

= min maxy{ (1 — v)Es~puo. s,a)] + Ego arom (-] s {
Q(~w)d”('>{( A TSR DK RS L

™ (als

= Iginmax (1-%E ] [¢(3 )" 0q] +Eqng(), anmy(ls), {
Q@ wa ary s'~P(-|s,a), a’~m(-|s")

S (r(s.0) +9Q(6" ) - Q(s,a»} }

(k(s) wa) (r(s,a) +79(s',a) "0 — ¢(s, a)TGQ)} }

which involves an unknown policy ratio ;)((a;lss)) when the behavior policy m, is unknown, and is thus intractable.

The above failed attempt implies that the policy ratio should be “absorbed” into the representation to be implicitly
learned during representation learning, which exactly inspires the primal-dual spectral representation (6).
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B.3 Solving the Minimax Problem via Regularization

It is known that directly solving (9) leads to potential numerical instability issues due to the objective’s linearity
in O¢g and wy (Nachum et al., 2019b). Fortunately, it is shown in Yang et al. (2020) that certain regularization
leads to strictly concave inner maximization while keeping the optimal solution w} unbiased. Specifically, in
practical implementation we may append the following regularizer to the objective in (10):

preg(ﬂ-) = I{gl};)n n&fzx{(l - ’Y)EZ:I:T(E’M) [¢(S7a)T0Q} + Eswd“b(»)7 ar~T,(als), [(HW(‘S)a)de) .

s'~P(|s,a), @/~ (]s)

(r(sﬂ a) + 7(75(5/3 a/)TOQ - ¢(57 a)TOQ)} - )‘E(SJL)ND U(ﬂﬂ-(‘sv a)de)] } (13)

Here f is a differentiable convex function with closed and convex Fenchel conjugate f. (see Appendix E.1), and
A > 0 is a tunable constant that controls the magnitude of regularization. It is evident that the regularized
objective is concave in wy, which facilitates the inner maximization. What’s more, it has also be shown that such
regularization does not alter the optimal solution w}, as summarized in the following lemma.

Lemma 5 (Nachum et al. (2019b); Yang et al. (2020)). The solution (85%",wi™®™) to (13) is characterized by:
reg,* T\ — d™ (s,a
B(5,0) 055" = B(s,0) 05 — T — P) L' (),

,LLW(S,CL)TLU; _ ,U/ﬂ(S,a,)ngeg’*,

preg(m) = p(m) = ADs(d"[[d™),
where (0, w;) is the solution to (10).

We emphasize that the regularized problem is unbiased only in the sense that w;®* = w}. Therefore, in general

we need to plug w™®* back into (10) and solve the outer minimization again to recover 67,. Nevertheless, when
is sufficiently small, we shall regard OSg’* ~ 07 to relieve the additional computational burden.

In practice, we can only solve the empirical version of (13), i.e.,

Preg(T) = minmax{(l — ) Esnpo, [¢(s,a) " 0q] + Es~opo, [(u”(s,a)—rwd) .
0 wd ar~(-|s)

a~(’]s)

(T(Sa a’) + 7¢<5/a a/)TOQ - d)(sa a)ToQ):| - )\E(s.a)wD [f(/lﬂ(5~ a)de)] }

C Representation Learning Methods and Their Error Bounds

In this appendix, we introduce two candidate methods—ordinary least squares (OLS) and noise-contrastive
estimation (NCE)—that can be used as the REPLEARN subroutine. Further, we also provide their representation
learning error bounds in the form of Claim 3, which is restated here for readers’ convenience:

Claim 3. With probability at least 1 — &, the representation learning error of REPLEARN(F, D, m) is bounded by
E(s,a)wd;rb |:HHAD7T(7 '|57 CL) - PW('? '|Sa Cl)||1:| < §(|"T:‘7 N7 6)3

where P™(s',d|s, a) = dg® (¢, a)p(s,a)T ™ (s"), and N is the number of samples in D.

It should be emphasized that the two methods discussed here are not the only candidates for REPLEARN. Rather,
any representation learning method that comes with a learning error bound in the required form is applicable,
without any further requirements on the learning mechanism.

C.1 Ordinary Least Sqaures (OLS)

Method. Inspired by Ren et al. (2022b), the objective of OLS can be constructed as follows. Denote by
Q™ (s',d’,s,a) :=d™(s,a)P™(s',d|s,a) the joint distribution of state-action transitions under behavior policy 7.
Then we plug Q7 into (6) and rearrange the terms to obtain
Qﬂ-(slaalas7a) T 1!
=+/d™(s,a)d™(s',a’)d(s,a) pu"(s',a’).
e = VI G a0 T )
Therefore, we propose to optimize over the following OLS objective:

2
. @ﬂ—(s/,alvs;a) In T A /i / /
min —\/d™(s,a)d™(s',a’)p(s,a (s, a dsdads’da
(&,ﬂ*)e}'/(\/d”b(s,a)d”b(s’,a’) \/ ( ) ( )¢( ) 12 ( )
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. Qﬂ—(slaalwsaa) n i
= dsdad d 72E5a b, (s’,a")~PT( sa|: ) :|
o 4 | et o000 = By oo [0, 0) )

+ E(s)a)wdﬂb’(slva/)wdﬂb [(J)(s, a)Tﬂw(3/7 al))Q} }’

Note that the first term [ %dsdads da’ is a constant that can be omitted in optimization, while the

second and third terms can be effectively approximated by sampling from the dataset D and the target policy 7.
Therefore, in practice we learn (¢, i) by solving the following optimization:

: w n AT 2 ™ in ~TT

(&ml? }_{E(S’G)Nd«b’(gl’&/%d«b [(qb(s,a)Tu (5',a")) } — 2K (5, a)mdm (570" )P (-] 5,0) o(s,a)" (s’,a')]}, (14)
)€

where the expectations are replaced by their empirical estimations using data sampled from D.

Error Bound. We proceed to show the representation learning error bound for the OLS method, which requires
the following regularity assumption on the transition kernel P™ and the occupancy measure d™.

Assumption 4 (regularity for OLS). (1) lower-bounded transition kernel: P™(s’,d/|s,a) > C%» >0, Vs,a,s,a;

(2) effective behavior policy coverage: ﬁ < Coov, Vs,a,8,a’.

We point out that the major rationale behind these mild assumptions is to rule out the cases where certain
transitions are scarcely sampled due to the singularity in transition kernel or behavior policy.

Theorem 6 (OLS learning error). Under Assumptions 1 to 3 and the additional Assumption J for regularity, let
(¢, ™) be the solution to (14), and set P™(s',d'|s,a) := d™(s',a’)p(s,a) " 4™ (s'"). Then, for any 6 € (0,1), with
probability at least 1 — §, we have

T s 10g(|]:|/5>
E(S,G)Nd;b [HP (y-|s,a) = P7(, -|s,a)H1} < \/CpCreg - —N
where Creg = %\/ Ceov + 8Ccov s a universal constant determined by the PAC bound for OLS..

Proof. We would like to apply the fast-rate PAC bound for OLS regression (Lemma 18). For the sake of clarity,
we explicitly define the family of candidate regression functions as

Fem{f 1 (s.0.8.0)) o Vdm s @) (9 a) (s, ) (') | (6 07) € F).
It is evident that any f € F is bounded as follows:
dr ~
0 fs.0,8'0") = | o B3 a15,0) < v Coan
where we use the fact that (¢(s,a),d™ (s',a’)a™(s',a’)) is always some valid transition kernel P™ (by Assump-
tion 3), and the additional regularity assumption (Assumption 4). Further, since the family F is realizable (by
Assumption 3), there exists an optimal f* € F such that
f*(s,a,s’,a’) _ Q" (s',d',s,0) .
V™ (s,a)dm™ (s, a’)
As f(s,a,8",d), f*(s,a,5",a") € [0,v/Ceoy], we deduce from Lemma 18 that, with probability at least 1 — 6,
A 2 1 )

/(f*(s, a,s',a") — f(s,a, sﬂa')) dsdads'da’ < Cheg - %7 (15)

where Cleg 1= %\/CCOV + 8Cov, and f(s,a, §a') = \/d”b(s,a)d”b(s’,a’)gf)(s,a)—rﬂ”(s’,a’). Consequently,
E(S,G)Nd;b |:||]P)7T(.’ ~‘S’ a) — ]P)ﬂ'(.’ ~|S7 a/)||1:|

- [ @)

/‘Q”(S’, d,s,a) — Q7 (s, d,s, a)‘dsdads’da' (16Db)

P (s, d'|s,a) — P7(s',d'|s,a) ‘dsdads’da' (16a)

N

Q7 (s',a,s,a)
= \// d”b 3 (l (f*(s,a7s/7a/) _ f(s7a’sl7a/))2dsdad8/da/ (16d)

2
/(\/Q” §,al, s, a) QSGSG)) dsdads’da’-/Q”(s’,a’,s’,a’)dsdads’da’ (16¢)

P (s, a'|s,a)
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dm(s', a’) \/ log(|.F1/6)
< ST N reg T T AT 1
\/s,g}j),{a’{]}””(s’7a’|s7a)} Cres N (16¢)

< \/CrCrog - w, (16f)

where in (16b) we use the definition of Q7, and define Q™ := d2*(s,a)P™ (s, d'|s, a); in (16¢) we use Cauchy-
Schwartz inequality; in (16d) we use the definition of fand f*; in (16e) we plug in the PAC bound (15); in (16f)
we use Assumption 4 to bound the coefficient. This completes the proof. O

C.2 Noise-Constrastive Learning (NCE)

Method. NCE is a widely used method for contrastive representation learning in RL (Zhang et al., 2022a; Qiu
et al., 2022). To learn (¢, 4™), we consider a binary contrastive learning objective (Qiu et al., 2022):

. R o - A
<$,ﬁli?efE<S’“>~d“ Elsrsanem(ilsia) {1°g<1+ ¢(s,a>Tw<s',a'>ﬂ + B )~ Prcs [log<1+¢(8’“) K (8’“))”’
(17)

where P,¢, is a negative sampling distribution that will be specified with justification later. We highlight that
the above objective implicitly guarantees an equal number of positive and negative samples.

The following derivations follow a similar pathway as those in Qiu et al. (2022). For notational consistency that
facilitates the application of known results, we introduce the following auxiliary notations. Define

F = {f:(s,a,8,a") = @(s,a0) " pu"(s',d) | (P, ™) € F}.
For clarity, we augment the sampled transitions to include a label y indicating whether the sample is positive
(y = 1) or negative (y = 0). Formally, given a dataset D = {(s;, a;, s,,a;) | i € [N]} of positive transitions, we
randomly sample N negative transitions (5;,a;) ~ Pneg (¢ € [N], 1.1.d.), and define the augmented dataset

6 = {(si,ai,s/» a’» 1),(si,ai,§i,di,0) ‘ 1€ [N]}

In this way, the NCE objective (17) can be equivalently rewritten (in MLE format) as
™ B o
r;lea%( E (s 0.5 a y)~d® log¥s(s,a,s",d’,y)], (18)
where the likelihood function ¢ is defined by

1-y
, o f(s,a,8,a") Y 1
s = (150000 ) ()
We point out that ¢¢(s,a,s’,d’, ) € A(Y) for any (s, a,s’,a’), where Y := {0,1}. In fact, given f* that optimizes

the unconstrained non-empirical version of (18), ¥4« can be interpreted as the probability of obtaining label y
given (s,a,s’,a’), as summarized in the following lemma that is similar to Lemma C.1 in Qiu et al. (2022).

Lemma 7 (non-empirical solution to NCE). The optimal solution f* := maxy E (50,5 0 y)md? log¥¢(s,a,s",d,y)]
to the unconstrained non-empirical version of (18) is characterized by

P7(s',ad|s, a)
*(s,a,8,a) = —2—"2,
f ( b b b ) Pneg(sl7 a/)

Proof. Note that the objective can be rewritten as
E(&%S’,a’,y)Ndﬁ llog s (s,a, s a,y)]

— /dﬁ(s,a,s’,a’) ZPr(y|s,a,s’,a’)logwf(s,a,s/,a/,y) dsdads’da’
yey

= f/dﬁ(s,a,s’,a’) . H(Pr(y|s,a,sl,a’);wf(s,a,sl,a’,y))dsdads’da’.

Here H(+;-) denotes the cross entropy between distributions, which, by Gibbs’ inequality, is minimized only when
* I Yy 1 1-y
P I ol — ahes ror _ f*(s,a,8',d) . ) 19
r(yls,a,s',a") =Py (s,a,8",a",y) (1+f*(57a’s,7a,) 1T Plsas,d) (19)
On the other hand, Bayes’ rule states that (note that Pr(y|s,a) = 3, Vy € V):
Pr(s’,a'[s,a,y = 1)Pr(y = 1|s,a) P7(s',d'|s,a)
> yey Pr(s’,als, a,y)Pr(y|s, a)  Pueg(8,a) +P(s',d'|s,a)

Pr(y = 1]s,a,5',0') = (20)
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Comparing (19) and (20) gives

f*(s,a,s’,a’) _ Pﬂ(8/7a/|s7a) — f*(s,a,s/,a/) _ Pﬂ(slaa/|8’a).
1+ f*(s,a,8",a")  Paeg(s',a’) +P7(s',d'|s,a) Poeg(s',a’)
This completes the proof. O

Remark 4. For conciseness, here we slightly abuse the notation Pr(:) to denote the distribution (density or

mass) of joint and conditional distributions involving random variables (s, a,s’,a’,y) ~ dP. Specifically, we write
Pr(--- ,z,---) to indicate an arbitrary value x taken by the random variable, and we also write Pr(--- ,z = zq,- )
to emphasize the specific value xg taken by that random variable.

Lemma 7 is important in that it echoes the form of primal-dual spectral representation in (6). Specifically, we
shall take Pheg(-,+) = d™(:,-) for an exact match, which is also implementable using offline data since d™ can be
effectively approximated by sampling the trajectories. We will stick to this choice of P, from now on.

Error Bound. We proceed to show the representation learning error bound for the NCE method, which requires
the following regularity assumption on the negative sampling distribution P, or equivalently, as per the choice
above, the state-action occupancy measure d™ (-, -) for the behavior policy 7.

Assumption 5 (regularity for NCE). dg"(s,a) > C%L >0, Vs, a.

We point out that Assumption 5 is a standard assumption for the negative sampling distribution (Qiu et al.,
2022), aiming at eliminating the cases where certain transitions are scarcely drawn as negative samples and
thus obstruct efficient representation learning for those cases. The assumption is also slightly stronger than the
effective behavior policy coverage assumption required by the OLS method (see Assumption 4).

Theorem 8 (NCE learning error). Under Assumptions 1 to 3 and the additional Assumption 5 for regularity, let
(¢, 1) be the solution to (17) with Paeg(-,-) = d™(-,-), and set P™(s',d’|s,a) := d™(s',a')p(s,a)T 17 (s'). Then,
for any ¢ € (0,1), with probability at least 1 — 8, we have

T DT 10g(|‘7:|/5)
E(s,a)wd;b |:HP ('7 '|Sa Cl) -P ('a "Sa Cl)H1:| < 2\/5(1 + Cd) ' T
The proof of Theorem 8 largely follows the same pathway and techniques established in Qiu et al. (2022).
Nevertheless, our proof is less technically involved since the offline non-episodic setting significantly weakens the
correlation between samples. For the sake of completeness, we restate the complete proof below.

Proof. We start by observing Pr(y, s’,d’|s,a) := Pr(y|s,a, s',a’)Pr(s’,a’|s, a), where Pr(s’,d’|s,a) can in turn be
calculated using Bayes’ rule as follows:
Pr(s’,d'|s,a) = Pr(s',d’|s,a,y = 0)Pr(y = 0|s,a) + Pr(s’,d'|s,a,y = 1)Pr(y = 1|s, a)
= 1 (P™(s',d'|s,a) + Paeg(s',a)). (21)
Here we use the fact that the data distribution dP implicitly assigns an equal number of labels as y = 0 and
y = 1 by the design of NCE objective (17). Since Pr(s’,a’|s,a) is a constant that is independent from f, we can
further rewrite the NCE objective to be

g max{B (5 08 Pl 0,80 | = argmax{B o pcnllogPrs ol )] (2)

where we define the shorthand notations .
! Y 1 -y
P ’ ') = f(saaa37a) ) 7
ls.a o) = (5 ) (e
Py (. ], a) o= (LE08hOPHE s @) \* [ Pr(s!,dlsia) )T
1+ f(s,a,s',a) 1+ f(s,a,s',a)

for any f € F. Note that the right-hand side of (22) is in the desired MLE form, with ground-truth conditional
density Pry«(y,s’,a’|s, a) specified by some f* € F, thanks to the realizability assumption (Assumption 3). Now,
using the PAC bound for MLE shown in Agarwal et al. (2020) (see Lemma 19), we have
N
2
> Euamaz [[[PriCoslsisa) = Prs (o lsi ao)|f}| < 81og(1F1/9)
i=1
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Since all (s;, a;) pairs are sampled i.i.d. from the same distribution d™, we shall further conclude that

2 8log(|.F|/9)
IE(s,a)wd];b |:HPrf(7 " "Sa a) - Prf* ('7 ) '|Sa a)H1i| < T
We proceed to further relate (23) with the desired format. For this purpose, note that

HPrJ;(~7 els,a) = Prp«(-, -, -|s,a)H1
= ||Prf(y = 1a Bl '|S,CL> - PI‘f*(y = 17 ) '|S7a)||1 + ||Prf(y = 07 ) '|S7a) - PI‘f* (y = 07 ) '|57a)“1 (24&)

(23)

-9 PI‘(A',"S,G) _ PI‘(','|S,G,) (24b)
1+f(8 (L,,') 1+f*(s7a,-,-) 1
/ |f s,a, 8, a') — f*(s, a,s’,a')‘ -Plr(s’,a’|s,a)ds,da,7 (240)
1—|—f s,a,8',a)) (14 f*(s,a,s',a"))
where in (24a) we use the definition of L'-norm; in (24b) we use the fact that
Pr(-,-|57a) PI‘(','|S,(I)
Pr:(y,-,-|s,a) — Pre(y, -, |s,a) = (=1)Y o — .
Fre1-15,0) = Prye (g, [s,0) = (~1) (Hf(w.).) T
Now, plugging Lemma 7 and (21) into the integrand in (24c), we have
|f(sa a, 5/7 a/) - f*(sa a, 5/5 a/)| ’ PI‘(S/, a/‘sa a)
(1 + f(sv a, 5/7 a/)) (1 + f*(sa a, S/a CL’))
‘]Pm(slv a/|s7a)/Pneg(s/a a/) - f(S,(l, Sl?al)‘ ! %(PF(S/7 a/‘87 a) + Pneg(sl7a/)) (25 )
= - a
(14 f(s,a,8",a)) (1 +P7(s',a|s,a)/Paeg(s',a))
[P 15,0) = Pag (') .05, o
2(1 + f(s,a,s',a )
> ‘P”(s’,a’|5,a) Preg(s', )f(s a,sﬂa’)‘7 (250)
21+ Cy)
where we use the upper bound f(s, a,s’,a') = I@’”(s’,a’|s,a)/d”b (s',a’) < Cq in (25¢). Consequently,
HIP’”(-, ‘|s,a) = P7(-, s, a)Hl
= /|IP”T(5' d'|s,a) — Paeg(s',d') f (s, a, sl,a')’ds'da’ (26a)
2(1+Cy) 75,05, a) = (5, ', )| - Pr(s' 'l a)ds’da’ (26b)
1+fs a,s a))(1+f (s a,s7a))
=(1+Cy) ||Prf saels,a) = Prps(c, 08, a) Hl, (26¢)

where we use the definition P7(-,-[s,a) = Paeg(-,-) f(s,a,-,-) in (26a), (25) in (26b), and (24) in (26¢). Finally,
E(S’G‘)Nd];"b D|HD’T(.7 ‘Is,a) — [@’77(., s, a)Hl]

5 2
< \/E(s,a)fwd;:b |:||I[D7r(’ "57 CL) - ]Pm('v '|S7 a)||1:| (27&)
2
< \/(1 + Cd)QE(s,a)Nd;b [HPrf(> Yy '|S7 a’) - PI‘f* ('7 "y '|S7 a)||1:| (27b)
1
<2v2(1+Ca) - L(‘;'/é), (27¢)
where we use Cauchy-Schwartz inequality in (27a), (26) in (27b), and (23) in (27c¢). O

D Sample Complexity Guarantee

In this appendix, we derive the sample complexity guarantee for the proposed SPECTRALDICE algorithm,
assuming a known bound on the representation learning error induced by the REPLEARN subroutine (see Claim 3).
As discussed in the main text, the objective is to bound the estimation error £ := p(m) — p(7), which can be
intuitively split into the following three terms that are easier to bound:

E = p(m)—pr) + p(r) —pp(m) + pp(m) — pp(m) -

statistical error dataset error representation error
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We point out that the statistical error results from replacing the expectation with empirical estimates, the
dataset error comes from the offline dataset that samples transitions from the true transition kernel P™ instead of
the learned kernel P7, and the representation error accounts for the error induced by plugging in the learned
representation ((]Ab, ™) instead of the ground truth (¢*, u™*) into the DICE estimator.

As described in the proof sketch, for the rest of this appendix, we provide an upper bound for each of these three
terms, and eventually conclude with an overall sample complexity guarantee.

Representation Error. We start by bounding the representation error term, which by intuition should be a
direct consequence of the representation learning error shown in Claim 3.
Lemma 9. Conditioned on the event that the inequality in Claim 3 holds, under Assumptions 1 to 3, we have

vC%

pp(m) = pp(m) < T3z (71, N 0).

Proof. By the well-known Simulation Lemma (see Lemma 20), we have
p5(m) — pp()

- %E(MMS Byt [VE ()] = Eompisn) [VE ()] (28a)
= %E@va)% [E s s,y [QF (53 0)] = g anyre, o [QE (5 @)] (28b)
= ﬁ dﬂ(s,a)dsda/@%(sf’a’) (ﬁ””(s',a’\s,a) - P”(s',a'|s,a))ds’da’ (28c)
< ﬁ/C’godfpfb(s,a)dsda/‘[?”(s’,a’|s,a) —I@’”(s’,a’|s,a)‘ds’da’ (28d)
- (17_055)21@(8@)%? [[P7(s",'ls, a) = B7(s" '], ) (28¢)
< 1AL D), ost)

where in (28a) we use the Simulation Lemma; in (28b) we use the relationship between value functions; in (28d)

we plug in df (s, a) < CZ,dp"(s,a) (Assumption 2) and the fact that QF(,-) < ﬁ; in (28f) we use Claim 3. O

Dataset Error. The dataset error can be accounted for by a bounded difference in the objective function,
which turns out to be another consequence of the representation learning error. For this purpose, we first show
the following technical lemma that formalizes the above intuition.

L 10. min max Fy (z,y) — min max F(z, y) < Fi(z,y) — Fy(z,y)|.
emma 10. i Fi@.9) - pipmac (e y) < e |A@.9) = Bl )

Proof. Let ¢ := max|F1(a:, y) — Fg(a:,y)|. Then we have
z,y

min max Fi(xz,y) < min{mang(a:, y) + max{Fi(x,y) — Fg(:l:,y)}} (29a)
x y x Yy Yy
< min{maxF2(m, y)+ 5} (29b)
x Y
= minmax Fy(z,y) + ¢, (29¢)
x oy
where in (29a) we use the fact that max,{f(y) + g(y)} < max, f(y) + maxy, g(y). O

Now we are ready to show the following lemma regarding dataset error.
Lemma 11. Conditioned on the event that the inequality in Claim 3 holds, under Assumptions 1 to 3, we have
™

_ %
p(m) = pp(m) < 7 = -&(|F], N, 6).
Proof. For the sake of clarity, denote the optimization objectives of p(7) and py(m) as follows:

p(m) = minmax F(0g, wa), pp(m) = min max F(8g,wa).
0 wd 0 wa
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Then we can show that

|p(m) — pp(m)| = ‘min max F (6, wq) — min max F(0¢, wa)
BQ wyq OQ wq

< |F(6,wa) — F(Bq,wa) (30a)

= ‘/dgb(s,a) (PW(S/,GI|S7(I) - I@’”(s’,a’\s,a)) (B (s,a) "wq) -

(r(s, a) +v¢(s',a’ ) 0o — @(s, a)TGQ)dsdads’da’ (30b)
< /dgb(s,a)}P”(s',aﬂs,a) - I@’”(s’,a’|s,a)} . |;l7r(s,a)de|~
[r(s,a) +v9(s',a') " 0g — d(s,a) " Og|dsdads’da’ (30c)
< By [[P7C 15 @) = B s, 0)], - O 5] (30d)
= 10”7 £(1F|, N, ), (30¢)
where in (30a) we use Lemma 10; in (30c) we use the integral triangle inequality; in (30d) we plug in
|07 (s,a) Twqy| < CZ, and |r(s,a )+v9 (s, a NT0g— &(s,a) To,| < 1 (see Remark 2); in (30¢) we use Claim 3. [

Statistical Error. Finally, the statistical error is caused by replacing the expectations with their empirical
estimations, which can be bounded by Hoeffding’s concentration inequality (see Lemma 16).

Lemma 12. Under Assumptions 1 to 3, with probability at least 1 — §, we have

o) - p(r) < 10_% los(1/20),

Proof. For clarity, label the samples in D as D = {(s;, a;, s},a}) | i € [N]}, and define
F(s,a,8',d") = (@™ (s,q) wd)( (s,a) + (s’ a') g — ¢(s a)TBQ).
Note that [ (s,a) wq| < CZ and |r(s,a ) +v0(s', a NTog — &(s,a )T6g| < f (see Remark 2), we have

Ccr,
F,,7 < 7V,,,~
|F(s,a,s' )| T s,a,8' a

Therefore, by Hoeffding’s inequality (see Lemma 16), we conclude that
ZF Siya;, Siya;) —E [F(s,a,s',a)]| >t| < 2exp< 2N )
y Qs S s~d™ (-), a~mp(als), s Uy o, X - p .
N v s/ ~P(- ‘(s)a)7 a’ EST(‘ |) D) 4(CL)% /(1 =7)?
I/['i(s,(/L,s/)ND, [F(s,a,s’,a’)} - IESwd"b(-), a~m(als), [F(s,a,s’,a’)]

Or equlvalently, Wlth probability at least 1 — J, we have
. CL [log(1/24)
a’~m(-]s") s'~P(-|s,a), a’~m(c|s”) 1= v 2N

Finally, the conclusion follows from Lemma 10 using the same argument as above. O

Conclusion. Now we are ready to prove the Main Theorem.
Theorem 4. Suppose Claim 3 holds for the REPLEARN(F, D, ) subroutine. Then under Assumptions 1 to 3,
with probability at least 1 — §, we have

Cr [log(1/9) n cn

&<
-4V 2N (1—=7)

5 - (1N, 0/2).

Proof. Consider the following high-probability events:
Cri By [[B7C 15, @) = PP ols, )|, | < €071, N, 6/2),

~ CT [log(1/0)
. ro o
o Pl el = Boso, e, eSOl S 795V T
As per Claim 3 and Lemma 12, we know Pr[C;] > 1 —§/2 (i = 1,2). Hence by Union Bound we have
PI‘[Cl N CQ} >1-0.
On the other hand, conditioned on C; N Cs, Lemma 9, Lemma 11 and Lemma 12 in combination guarantee

& = p(m) = p(m) + p(m) = pp() + pp(m) — pp(7)
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C%L  [log(1/d)  C% 1C%
< .
< TN T SN 6/2) + g€ FL N 6/2)
_ C%  [log(1/9) C%
This completes the proof. O

For completeness, we also include the corollaries of the Main Theorem that characterize the overall sample
complexity of our SPECTRALDICE algorithm using OLS and NCE representation learning methods.

Corollary 13 (sample complexity of OLS-based SPECTRALDICE). Under Assumptions 1 to 3 and the additional

Assumption J for reqularity, let (dg7 @) be the solution to the OLS problem (14). Then, for any ¢ € (0,1), with
probability at least 1 — §, we have

e C& [loa(1/d)  C%y/CiCey \/1og(2|f|/5) - L [log(|F|/3)
S 1-4V 2N (1—7)? N Y (1-9)2 N

where Creg = %\/C’COV + 8C.ov 1S a universal constant determined by the PAC bound for OLS..

Corollary 14 (sample complexity of NCE-based SPECTRALDICE). Under Assumptions 1 to 3 and the additional
Assumption 5 for regularity, let (¢, p™) be the solution to the NCE problem (17) with Pyeg(-,-) = d™(-,-). Then,
for any § € (0,1), with probability at least 1 — §, we have

oz, [log(1/6) 2[0” 1+Cd log 2\f|/5 log( If\/5
£< -
1—v 2N (1-

Remark 5 (Sampling the dataset). Throughout thls paper, we have been slightly abusmg the notation (s, a, s’) ~ D,
which is a little subtle in practice since only trajectories (rather than transitions) are collected. To ensure the
correct data distribution d?(s,a) = d™ (s, a), we shall first randomly sample the trajectories, within which we

sample each transition (s, as, S¢11,a;+1) with probability (1 —~)~t.

E Technical Lemmas
In this final appendix, we include all the technical lemmas used in the previous sections.
E.1 f-Divergence

Definition 1 (f-divergence). Let P and Q be two probabilities distribution over a sample space X, such that
PP is absolutely continuous with respect to Q. Given a convex function f : Ry — R such that f(1) = 0 and
£(0) :=lim;_ o+ f(t). Then the f-divergence of P with respect to Q is defined as

0,712 = [ £( 55 )02

The following variational representation of f-divergences is well-known in literature.

Lemma 15 (variational representation using Fenchel conjugate). Let F denote the class of measurable real valued
functions on X that is absolutely integratable with respect to Q. Then

Dy (P|Q) = sup{Eanrlg(@)] - Eunclfs(9(2)] },
geEF
where fy is the Fenchel conjugate of f. Further, if f is differentiable, then the optimal dual variable is given by
@ =1 (%) = OsPIO=Eer|r(55)] - Eene[ £ (#(%)))

Proof. See Theorem 4.4 in Broniatowski and Keziou (2006). O

E.2 Concentration Inequalities

Lemma 16 (Hoeffding’s inequality, Hoeffding (1994)). Let X1, X5, , Xy be i.i.d. random variables with mean
u and taking values in [a,b] almost surely. Then for any € > 0 we have

N
1 2Ne?
— . < _ ).
N ;:1 X; > E‘| < 2exp< = a)2>
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In other words, with probability at least 1 — §, we have

N
1 log(1/26)
— Y X;—pl < - —_—
N ; a D\ "N
Lemma 17 (Bernstein s inequality, Bernstein (1924)). Let Xy, Xa, -+ , Xy be i.i.d. random variables with mean
w, variance o2, and bounded range |X; — u| < B almost surely. Then with probability at least 1 — &, we have
2log(1/6) = Blog(1/0)
+| = X; — < .
(5 -r) <o PR 21

E.3 Statistical Learning: PAC Bounds
In this section, we present the standard PAC bounds for OLS and MLE. Although these are both classic results,
we fail to trace back to the original literature of the former, and thus provide a short proof here for completeness.

Lemma 18 (PAC bound for OLS, fast rate). Consider a regression problem over a finite family F = {f : X —
[a,b]} of bounded functions with data distribution (X,Y) ~ M, where the objective is to solve for

argljfcréijrll_ﬁ(f), where L(f) = Exy)om [(f(X) = Y)?].
Suppose the regression function f*(x) :=E[Y | X =] € F (realizability), and we have access to i.i.d. sample
(x5, y;) ~ M, Vi € [N]. Let the Empirical Risk Minimization (ERM) estimator be

f= arg?g;l_ﬁ(f), where L(f) : =N Z (x:) — yi)
Then, with probability at least 1 — &, the ERM estimator induces a regret that is at most
5 . log(|F|/é
£0) < £U) + Coog 22D,
Suppose further that the ground truth is deterministic such that y = f*(x) for some f* € F, in which case we have
A log(|F|/d
L(f) < CregM'

N
Here Creg = 8(b — a)? + 3(b— a) is a universal constant depending only on the range [a,b].

Proof. Define a random variable Z; := (f(X;) — Y;)? — (f*(X;) — Y;)?, such that
(X

(
E(x, vomm[Zi(9)] = B, vomm [(F(X) = Yo = (£(X0) = ¥i)?] (31a)
= Eqx, o | ((FO0) = F7(0) + (7(0) = Y0)* = (F*(X0) = Yo)?] (31b)
= Ex, viem [(FX0) = F7 (X)) + 2B, vt (F(X) = FF(XD)(F(X0) = Y] (31c)
=E(x, v [(f(Xs) — f1(X0))?] = E(f), (31d)

1
where in (31c) we use the following fact E(x, y,)~m[(f(X3) — (X)) (f*(Xi) = Y3)] = Ex, [(f(X:) — f*(X4)
Ey, ~ a1 x) [f*(Xs) — Yi]] = 0 that directly follows from the definition of f*. Similarly, for any ¢ € [T,
2

Var(x, vyl Zi( )] = Ex vy em [ Zi(F)?] = (Eex,viemlZi(£)]) (32a)
< B, voem [ ((FO6) = Y0 = (£4(X0) = Yi))] (32b)
= E(x, vy [(F(X0) = F1(X0)*(F(X0) + [5(X,) — 2Y5)] (32¢)
S A6 = a)’Eix, vy [(F(X0) = F(X3))?] = 4(b — a)*E(f)- (32d)

where in (32a) we simply drop the second term, and in (32c) we use the fact f(X;)+ f*(X;)—2Y; € [-2(b—a), 2(b—
a)] as f(X;), [*(X;),Y; € [a,b]. Further, for any © € X, y € Y and f € F, we have f(z) —y € [-(b—a),b— a,
implying Z;(f) € [-(b —a),b — a] and E[Z;(f)] € [-(b — a), (b — a)]. Therefore, |Z;(f) —E[Z;(f)]| < 2(b— a).
Then by Bernstein’s inequality (Lemma 17), we conclude that, with probability at least 1 — 4,
N
BIZ()] -+ 3 2(0) < ValZ (7] 2 20 Z e osl/0), (33)

To proceed, plug (31) and (32) into EBB), and we have

£(1) — (E() — £() < 200 — ) /a7y 28 20 =) osll/0) (340

(;g A(b— a)Nlog(l/5)> L 20— ag)jl\;)g(l/@ 7 (34D)
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where in (34a) we apply the AM-GM inequality. Finally, we rearrange the terms to obtain

reg 10g(1/6
£() < 2L() — £(7)) + T80 (35)
for any fixed f € F, with probability at least 1 — §. Finally, we take the union bound with respect to all f € F,

such that with probability at least 1 — §, we have

£() < 2L0) — £ + CexlPBE) g e (36)

In particular, (36) also applies to the ERM estimator f, which gives

£(f) < 2AL(f) — £(g7) + L loBUF0)  CrosloBIZI/0)

Here we use the inequality £(f) < £(f*), as f minimizes £(-) within F. This completes the proof. O

(37)

Lemma 19 (PAC bound for MLE, Agarwal et al. (2020)). Consider a conditional probability estimation problem
over a finite family F = {f : (X x Y) — R}, where the objective is to estimate f*(x,y) := P(y|z). Suppose the
ground truth f* € F (realizability), and we have access to (potentially correlated) samples {(x;,v;) | i € [N]} such
that x; ~ D; (D; is allowed to depend on (1.-1,Yy1.i-1), forming a martigale process) and y; ~ P(:|z;). Let the
Mazimum Likelihood Estimator (MLE) be

N

f= argmaleogf Tiy Yi)-

Then, with probability at least 1 — 5 the error of the MLE estimator is bounded as follows:

S E.on, (£ 2) = () ]1}] < 810g(11/9).
i=1
Specifically, when {(x;,y;) | i € [N]} are i.i.d. samples from a dataset D, we have
; 8 log( |]:|/5)
oo 700 — (o] < 22807

E.4 Simulation Lemma in MDPs

The following Simulation Lemma is a simplified version of Lemma 21 in Uehara et al. (2021).
Lemma 20 (Simulation Lemma). Given two MDPs (P,r) and (]P’, r), for any policy w € II, we have

2 7T T
pp(m) = po(m) = T Es0)mdg {]Eswp(.b,a) V()] = Egnp(is.a) [VE (SI)H-
Proof. Note that, for any uniformly bounded function f:S x A — R, we have
IEs~,u,o,a~7r(-\s) [f(S, Cl)]
1

= EEMP lz (V' f(se,ae) = VT f(Se41, ae41))

S0 ~ Mo, a0 ~ 7T('|So)]

=0
1 o0
= T Zf(s,a ‘Er, Z YW {se = s,ar = a} — V" T {5131 = 5,041 = a}) | s0 ~ po, ag ~ 7r(~|30)1
s,a t=0

= j]E(s,a)Ndﬂ’,f [f(57 a’) - VE(S/,G/)NP"(-,-ls,G) [f(sl7 al)]] .

Therefore, since pp(7) = ﬁE(S)a)Ndw [r(s,a)] and pp(7) = Esnpg ann(-|s)[@F (s, a)], we have
x 1
P3(m) = () = Bsvpo a1 [ Q3 (5, )] = T Bs.a)naz [1(5, 0)]

1

= T B [QF(5,0) = B a)npr s [QF (5, 4)] = r(s, 0)]

2 T ™
=T Mg [E (v ayte(ofona) [QF (' @] = Bt annn sy [QE (5, )]
where in the last equality we plug in the Bellman equation QF(s,a) = r(s;a) + VE(, 1) pn(. |s.0)[@F (5" a")].
Finally, we leverage the relationship between @Q- and V-functions to complete the proof.
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