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Abstract—Multimodal learning seeks to combine data from

multiple input sources to enhance the performance of different

downstream tasks. In real-world scenarios, performance can

degrade substantially if some input modalities are missing. Exist-

ing methods that can handle missing modalities involve custom

training or adaptation steps for each input modality combination.

These approaches are either tied to specific modalities or become

computationally expensive as the number of input modalities

increases. In this paper, we propose Masked Modality Projection

(MMP), a method designed to train a single model that is robust

to any missing modality scenario. We achieve this by randomly

masking a subset of modalities during training and learning to

project available input modalities to estimate the tokens for the

masked modalities. This approach enables the model to effectively

learn to leverage the information from the available modalities

to compensate for the missing ones, enhancing missing modality

robustness. We conduct a series of experiments with various

baseline models and datasets to assess the effectiveness of this

strategy. Experiments demonstrate that our approach improves

robustness to different missing modality scenarios, outperforming

existing methods designed for missing modalities or specific

modality combinations.

Index Terms—Multimodal learning, missing modality robust-

ness

I. INTRODUCTION

Multimodal learning (MML) [1], [2] leverages information
from multiple input sources to enhance task performance [3],
[4]. However, these models are typically trained assuming
all modalities are present at inference. In real-world settings,
modalities may be missing due to sensor malfunction, pri-
vacy constraints, or limited acquisition, causing significant
performance degradation [5], [6]. This paper investigates this
missing modality problem and shows that a single robustly
trained model can outperform existing methods across differ-
ent missing-modality scenarios.

Existing approaches include robust training [7], [8], modal-
ity masking [9], [10], and knowledge distillation [11]–[13].
Prompt-based methods [6], [14] require separate prompts per
scenario and do not scale, while imputation via GANs/VAEs
[15]–[17] adds overhead. In this paper, we propose Masked
Modality Projection (MMP), a method for training a single
model robust to any missing-modality case. As illustrated
in Figure 1, MMP applies modality masking during training
and uses modality projection to predict tokens for masked
modalities from available ones. An alignment loss encourages
projected tokens to match actual tokens, while projected tokens
replace missing inputs at inference. MMP is architecture-
agnostic and requires no per-scenario retraining. Experiments

Fig. 1. Architecture of the proposed MMP approach for training a single
multimodal model that is robust to missing modalities. Input modalities are
passed through embedding layers, generating tokens. For a masked modality
Mi, a projection function utilizes the tokens from the available modalities
to generate projected tokens. These projected tokens are then passed to the
masked modality branch.

across three models, five datasets, and three tasks (Section IV)
show that MMP significantly improves performance under
missing modalities while maintaining strong performance
when all modalities are present. Our main contributions are:

• We introduce MMP, a novel approach to predict missing
modality tokens from available modalities, improving
robustness to missing data.

• MMP achieves strong performance under missing modal-
ities, often matching or exceeding networks trained for
specific modality subsets.

• MMP requires minimal architectural changes, making it
broadly applicable across multimodal tasks and models.

• We validate MMP on image segmentation, image-text
classification, and text-visual-audio sentiment analysis
across five diverse datasets.

II. RELATED WORK

Robust model design approaches include learning
modality-specific and shared features [18], modality masking
with knowledge distillation [10], dynamic token replacement
[19], and robust fusion strategies [20]–[22]. [23] proposed a
Transformer-based approach for MRI missing modality tasks.
However, these models are generally task-specific and difficult
to generalize.



Robust training approaches apply modality dropout [7],
[8], complementary random masking [10], [21], masked au-
toencoders [9], masked cross attention [5], and modality per-
turbation [24]. While these methods improve robustness, they
cannot fully compensate for performance drops with missing
modalities.

Model adaptation methods learn prompts for each modality
combination [6] or per modality [14]. Recent work in [25]
utilized parameter-efficient adaptation for generic robustness,
while [26] utilizes cross-modal proxy tokens along with the
parameter-efficient adaptation of the encoders. The main limi-
tation is the requirement for separate learnable parameters for
each modality combination.

Generation and knowledge distillation approaches use
GANs [15], [16], [27], VAEs [17], diffusion models [28], or
feature generation [29] to handle missing modalities. Knowl-
edge distillation methods [10], [12], [13], [30] transfer com-
prehensive multimodal information. These approaches require
training or utilizing additional models.

In this paper, we train a single model robust to any missing
modality scenario by generating tokens for missing modalities
from available inputs, without tuning or adapting for specific
modality combinations.

III. METHOD

In this section, we introduce Masked Modality Projection
(MMP), a novel approach for training a single multimodal
model that is robust to missing modalities. During training, a
subset of modalities is randomly masked out, and we introduce
projection functions that learn to map tokens from available
modalities to the missing modality tokens. These projected
tokens are aligned with actual tokens using an alignment loss
objective.

A. Modality Masking

In the MMP framework, each modality is randomly avail-
able or masked at each iteration with probability 0.5, pro-
viding balanced exposure to different modality combinations.
Masked modalities are replaced with placeholders (zeros for
visual/audio data or empty strings for text), following standard
practices from prior works [6], [25].

B. Modality Projection

We propose a modality projection approach for masked
modality i, illustrated in Figure 2. The embedding layers
generate tokens from each input modality as

Ti = EmbeddingLayer(Ii), (1)

where Ii represents input for modality i → {1, 2, . . . ,M},
Ti → RN→d represents tokens for the corresponding modality,
N is the number of tokens, and d is the embedding dimension.
For simplicity, we assume N and d are consistent across
modalities (see Section III-C for handling variability).

Following [31], we use eight learnable aggregated tokens
Ti per modality to summarize information compactly. When

Fig. 2. Visualization of the modality projection approach. Available modality
tokens are processed through cross-attention to update their aggregated tokens.
These aggregated tokens are combined with those of the masked modality
through another cross-attention step. The resulting cross-modal relationships
are used to attend to the actual tokens of the available modalities. The final
output tokens are passed through an MLP to generate the projected tokens of
the masked modality.

modality j is available, its aggregated tokens are updated via
cross-attention:

Tupdatedj = CrossAttention
(
Tj ,Tj | j → A

)
, (2)

= softmax

(
TjWqW↑

k T↑
j↑

d

)
TjWv,

where A is the set of available modalities and Wq, Wk, and
Wv are learnable weight matrices. For missing modality i,
we perform cross-attention between its aggregated tokens and
those of each available modality:

Tij = CrossAttention(Ti,Tupdatedj ), (3)

where Tij represents the attended tokens for available modal-
ity j in relation to missing modality i. These attended tokens
are refined with the original tokens of available modalities:

Tattendedj = CrossAttention(Tj ,Tij). (4)

The refined tokens are concatenated and fed through an
MLP to produce projected tokens:

T↓
i = MLP

(
Concat

({
Tattendedj | j → A

}))
. (5)

These projected tokens T↓
i replace the missing modality tokens

and are passed to their respective branch.

C. Token and Dimension Variability
When embedding dimensions differ across modalities, we

apply a linear layer to map tokens to a common dimension. For
varying token counts, we incorporate a linear layer in the MLP
to align the projected token count with the missing modality.

D. Alignment Loss Objective
To minimize discrepancy between projected and real tokens,

the alignment loss is computed as

Lalignment =
1

Nmasked

∑

i↔masked

Lalignmenti(T
↓
i,Ti), (6)



where Lalignmenti represents Smooth L1 loss. The total loss
combines task-specific and alignment losses:

Ltotal = Ltask + Lalignment. (7)

IV. EXPERIMENTS AND RESULTS

We evaluate our proposed method on multimodal segmen-
tation and classification tasks across five datasets, comparing
with established baseline methods for missing modalities.

A. Datasets
We evaluate on five datasets: MCubeS [32], NYUDv2 [33],

and FMB [34] for multimodal segmentation; UPMC Food-
101 [35] for image-text classification; and CMU-MOSI [36]
for text-visual-audio sentiment analysis.

B. Implementation Details
We use CMNeXt [37] for segmentation, ViLT [38] for

classification, and multimodal transformer [39] for sentiment
analysis with standard training configurations and AdamW
optimizer [40].

C. Results on Multimodal Segmentation
Table I compares performance across MCubeS, NYUDv2,

and FMB datasets using CMNeXt [37]. Pretrained indicates
training without dropout augmentation, Modality Dropout

uses dropout during training, and MMP uses our modality
projection approach.
Effects of missing modalities. Pretrained models show sig-
nificant performance drop with missing modalities. While
modality dropout improves robustness, MMP outperforms both
approaches in every missing modality scenario. The slightly
lower MMP performance with all modalities available is due
to the base model being pretrained with modality dropout.

For MCubeS, when RGB is missing and A-D-N are avail-
able, MMP achieves 38.57 mIoU versus 33.88 for modality
dropout and 1.45 for pretrained. With only A available, MMP
achieves 31.31 versus 26.3 and 1.13. For NYUDv2 with
only Depth available, MMP achieves 41.08 versus 29.79 and
6.01. For FMB with only Thermal, MMP achieves 51.73
versus 39.66 and 23.35, demonstrating consistent superiority
in handling missing modalities.
Comparison with other methods. Table II shows MMP
achieves superior average performance on NYUDv2. When
Depth is missing, MMP ranks second to Reza et al. [25] with
minimal difference (-0.78%), while outperforming in average
(+1.79%) and RGB-missing (+4.36%) scenarios without re-
quiring separate adaptation for each modality combination.
When RGB is missing, MMP is second to MMANet [30],
which relies on a teacher model, yet MMP achieves better
performance in other cases without this complexity.

D. Visualization of Predictions
Figure 3 visualizes predictions from pretrained CMNeXt

and MMP. The pretrained model struggles when modalities
are missing: failing to detect bikes and cars on MCubeS
with missing RGB (Figure 3a), showing reduced accuracy

TABLE I
PERFORMANCE COMPARISON (MIOU) ON MULTIMODAL SEGMENTATION.

A, D AND N DENOTE ANGLE OF LINEAR POLARIZATION, DEGREE OF
LINEAR POLARIZATION, AND NEAR-INFRARED. BEST AND SECOND-BEST

RESULTS ARE SHOWN AS BOLD AND UNDERLINED, RESPECTIVELY.

Dataset Input Pretrained Dropout MMP

MCubeS

All 51.54 48.56 48.95
RGB 42.32 47.64 48.65

A-D-N 1.45 33.88 38.57

A-D 0.93 33.15 37.74

A 1.13 26.30 31.31

NYUDv2
All 56.30 51.12 53.81

RGB 51.05 48.80 52.04

Depth 6.01 29.79 41.08

FMB
All 62.68 54.11 60.03

RGB 22.20 48.32 55.83

Thermal 23.35 39.66 51.73

TABLE II
PERFORMANCE (MIOU) COMPARISON ON NYUDV2 DATASET. RGB,

DEPTH AND AVG. COLUMNS SHOW RGB ONLY, DEPTH ONLY AND
AVERAGE PERFORMANCE. BEST AND SECOND-BEST RESULTS ARE SHOWN

AS BOLD AND UNDERLINED, RESPECTIVELY.

Methods Backbone RGB Depth Avg.

AsymFusion [41] ResNet-101 46.50 34.30 40.40
CEN [42] ResNet-101 39.59 19.32 29.46
TokenFusion [19] MiT-B3 49.32 36.84 43.08
Reza et al. [25] MiT-B4 52.82 36.72 44.77
MMANet [30] ResNet-50 44.93 42.75 43.84
HeMIS [43] ResNet-50 33.23 31.23 32.23
CMNeXt [37] MiT-B4 51.19 5.26 28.23
RFNet [44] ResNet-50 42.89 40.76 41.82
MMP (Ours) MiT-B4 52.04 41.08 46.56

for kitchen objects on NYUDv2 (Figure 3b), and failing
to detect cars, bicyclists, and humans on FMB (Figure 3c).
MMP successfully detects these objects even with missing
modalities, with predictions either better or comparable to the
pretrained model with all modalities available.

E. Results on Multimodal Classification

Table III compares MMP against missing-aware prompts [6]
on UPMC Food-101 [35] using ViLT [38]. MMP outperforms
prompting-based methods in most scenarios, particularly when
all modalities are available, when 35% of both modalities
are missing, when 70% of images are missing, and when
no images are available. MMP shows slight decreases in
two cases: 0.21% lower when 70% of text is missing, and
2.04% lower when no text is available, as prompting methods
learn dedicated prompts for each scenario. Notably, MMP
maintains strong performance without requiring training for
every modality combination.

F. Results on Multimodal Sentiment Analysis

Table IV presents results on CMU-MOSI [36] using multi-
modal transformer (MulT) [39]. When text is present, missing
audio or video has minimal impact. However, performance



Fig. 3. Visualization of predicted segmentation maps for the Pretrained (CMNeXt) model and our MMP approach. Title above each image indicates the method
name (available modalities). Blue boxes mark the areas where the differences are more prominent. A and D denote angle and degree of linear polarization,
respectively.

TABLE III
PERFORMANCE COMPARISON ON UPMC FOOD-101 DATASET. AVAILABLE

MODALITY SHOWS PERCENTAGE AVAILABLE DURING INFERENCE. †
INDICATES RESULTS GENERATED FROM AUTHORS’ CODE. BEST AND

SECOND-BEST RESULTS ARE SHOWN AS BOLD AND UNDERLINED,
RESPECTIVELY.

Available Modality ViLT Missing Prompts [6] MMP
Image Text [38] Attention Input (Ours)

100% 100% 92.71† 92.71 92.71 92.87

100% 30% 66.29 72.57 74.53 74.32
100% 0% 23.70† 67.70 68.10 66.06
65% 65% 69.25 78.09 79.08 80.28

30% 100% 76.66 86.05 86.18 87.71

0% 100% 82.65† 85.30 84.80 85.37

drops significantly without text, where MMP provides substan-
tial improvements: 5.8% in accuracy and 10.29% in F1 when
text is missing, and 6.72% in accuracy and 13% in F1 when
only audio is available. MMP outperforms existing methods
in both metrics across all scenarios except when only text is
missing, where it ranks second with minimal difference from
[25], while surpassing this method by large margins in other
scenarios.

G. Ablation Studies
Table V presents ablation results on NYUDv2. Adding lin-

ear projection (LP) to modality dropout improves performance
across all scenarios. Adding alignment loss (Align) provides
further improvements, particularly when RGB is missing.
Finally, replacing linear projection with cross-attention based
(CA) projection achieves the best performance, demonstrating



TABLE IV
PERFORMANCE (BINARY ACCURACY AND F1 SCORE) COMPARISON WITH EXISTING METHODS FOR MULTIMODAL SENTIMENT ANALYSIS ON
CMU-MOSI DATASET. COLUMN NAMES INDICATE AVAILABLE MODALITIES. BEST AND SECOND-BEST RESULTS ARE SHOWN AS BOLD AND

UNDERLINED, RESPECTIVELY.

Method Backbone Text-Visual-Audio Visual-Audio Audio Average
Acc F1 Acc F1 Acc F1 Acc F1

MulT [39] Transformer 79.57 79.67 48.93 41.95 48.31 40.98 58.93 54.20
TFN [45] LSTM 73.90 73.40 42.23 25.07 42.23 25.07 52.78 41.18
LMF [46] LSTM 76.40 75.70 43.29 27.61 42.23 25.07 53.97 42.79
Reza et al. [25] Transformer 79.57 79.67 55.49 53.96 50.00 46.71 61.68 60.11
MMP (Ours) Transformer 80.03 80.04 54.73 52.24 55.03 53.98 63.26 62.08

TABLE V
ABLATION STUDIES ON NYUDV2 DATASET. PERFORMANCE INCREASES

WITH LINEAR PROJECTION (LP), ALIGNMENT LOSS (ALIGN), AND CROSS
ATTENTION (CA).

Methods RGB-Depth RGB Depth Average

Dropout 51.12 48.80 29.79 43.23
Dropout + LP 51.31 51.08 35.48 45.95
Dropout + LP + Align 52.84 50.73 40.60 48.05
Dropout + CA + Align 53.81 52.04 41.08 48.97

TABLE VI
COMPARISON OF TRAINING TIME IN HOURS (H) AND PARAMETER COUNT

IN MILLION (M) FOR BASELINE MODELS AND WITH MMP. MMP
PARAMETERS SHOW ADDITIONAL PARAMETERS; MMP TRAINING TIME

SHOWS TOTAL TRAINING TIME.

Model (Dataset) Parameters (M) Training Time (H)
Baseline MMP Baseline MMP

CMNeXt [37] (MCubeS) 58.73 0.63 7.1 7.2
CMNeXt [37] (NYUDv2) 117.00 0.20 25.9 27.6
CMNeXt [37] (FMB) 90.01 0.20 11.0 13.5
ViLT [38] (UPMC Food-101) 112.26 11.05 15.1 15.4
MulT [39] (CMU-MOSI) 2.57 14.61 0.9 2.5

that each component in MMP contributes to enhanced robust-
ness.

H. Computational Cost Analysis
MMP’s computational cost arises from cross-attention oper-

ations and the MLP layer. For M modalities with N tokens and
embedding dimension d, the total parameter count is O(Md

2)
and computation complexity is O(NM

2
d
2 + 3MNd). The

number of cross-attention blocks is 2m + nm, where m is
available modalities and n is missing modalities.

Table VI shows MMP adds minimal parameters except
for ViLT [38] and MulT [39] due to large text embedding
dimensions, though training time overhead remains low. MMP
introduces minimal computational cost while providing strong
robustness with a single training procedure.

V. CONCLUSION

In this paper, we introduced Masked Modality Projection
(MMP), a novel approach designed to enhance missing modal-
ity robustness of multimodal models. Our approach eliminates
the need for training or adapting models for specific missing
modality scenarios. We demonstrate that a single model can

effectively handle any missing modality scenario and out-
perform current baselines. Thus, it reduces both time and
computational overhead. Experimental results across several
baseline models and datasets validate that MMP significantly
improves performance and robustness compared to existing
baseline methods. Future work will focus on further refining
MMP and exploring its applicability to other multimodal
tasks and datasets. Additionally, while our method is agnostic
to modality quality, the quality of available modalities can
influence MMP’s performance. Investigating these effects rep-
resents an interesting direction for future research. We believe
that MMP offers an efficient and effective solution to the
challenge of missing modalities.

Acknowledgment: This work is supported in part by NSF
awards 2046293 and 2406199, AFOSR award FA9550-21-1-
0330, and an Amazon Gift award. This work used Indiana Jet-
stream2 through allocation CIS220128 from the ACCESS pro-
gram supported by NSF grants 2138259, 2138286, 2138307,
2137603, and 2138296.

REFERENCES
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