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Abstract—Many imaging systems require accurate char-

acterization of their forward operators for reliable re-

construction. While shift-invariant systems admit efficient

convolutional representations, many practical imaging sys-

tems are shift-varying and cannot be captured by clas-

sical convolution models. We propose the Shift-Varying

Neural Operator, an efficient and expressive architecture

for learning spatially varying linear operators directly

from measurements. Our method builds on existing fac-

torizations of spatially varying convolutions and expresses

them in a learnable architecture. Each layer implements a

spatially adaptive transformation constructed from a low-

rank factorization of modulated convolutional bases. Our

experiments show that our proposed method accurately

recovers spatially varying point spread functions (PSFs)

and learns interpretable operators. Furthermore, we show

that the learned forward operator can be integrated into

existing iterative inverse problem solvers.

I. INTRODUCTION

Several imaging systems such as microscopy [1],
atmospheric imaging [2], multi-aperture optics [3], and
other non-stationary systems [4]–[6] can be formulated
as general linear mappings between finite-dimensional
spaces. Let x → RN→N denote the unknown scene and
y → RN→N the measured image. The forward model
takes the form of y = Ax, where A → RN2→N2 is an
imaging operator determined by the system point spread
function (PSF). In the continuous domain, the forward
model can be expressed as

y(u) =

∫
h(u, v)x(v) dv, (1)

where h(u, v) describes how a point source at location v

contributes to the measurement at location u. A special
case arises when the PSF is shift-invariant, i.e., h(u, v) =
h(u ↑ v). In this case, the forward model reduces to
convolution and the operator A becomes a structured
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convolution matrix. This structure enables significant
computational advantages as convolution operators can
be computed using fast Fourier transforms (FFTs) in
O(N2 logN) time.

However, many real-world systems do not satisfy shift
invariance. Spatially varying aberrations [1], [3], [7] lead
to PSFs that change significantly across the field of
view. Consequently, the associated operators lack the
convenient diagonalization and structure of the convo-
lutional case. In the worst case, an N ↓ N image with
a spatially varying kernel requires O(N4) storage and
computational cost. This makes naive implementations
infeasible for high-resolution sensors.

To address this challenge, a broad line of work has
explored how to approximate the fully space-variant
kernel h(r, s) using structured, computationally efficient
decompositions. A comprehensive and unified treatment
of these approximations was provided in [7]. The spa-
tially varying PSFs are expressed using a separable
expansion

h(u, v) ↔
∑

r

mr(u)wr(v),

where {mr} denotes a set of basis kernels defining the
PSF model and {wr(v)} are spatially varying weights.
After substituting this model into (1), the integral reduces
to a product convolution approximation of the form

y(u) ↔
∑

r

(
mr ↗ (wr x)

)
(u).

Another related approach [8] distinguishes two factor-
izations of the discrete operator, column-wise and row-

wise decompositions. In the column-wise decomposition,
each local PSF is expressed as a mixture of basis kernels,
leading to an operator of the form

Ax =
∑

r

(
mr ↗ (wr ↘ x)

)
,

where the spatial weight field wr modulates the input
first, and the result is then passed through a convolution



Fig. 1. Shift-varying operator expressed as a low-rank sum of mod-
ulated convolutions. Each kernel is applied to a spatially weighted
input, and the outputs are summed to form the final result.

with kernel mr. In the row-wise decomposition, the roles
are reversed and the operator becomes

Ax =
∑

r

wr ↘
(
mr ↗ x

)
,

where each kernel mr produces a filtered image that is
combined using spatially varying weights.

A complementary perspective comes from the analysis
of spatially varying models in [9]. The study identifies
two basic constructions, gathering and scattering. In
the gathering formulation, a fixed convolution is applied
first and its outputs are combined with spatially varying
weights. This follows the same ordering as the row-wise

model above and is commonly used for image filtering
applications. In the scattering formulation, the spatial
weights act first and the weighted input is then passed
through a fixed convolution. This matches the column-

wise ordering and is appropriate for optical simulation
and image formation models.

In this work, we introduce the Shift-Varying Neural

Operator, a deep architecture for efficiently representing
general spatially varying linear operators. Each layer
implements a spatially adaptive linear transformation
realized through a learned low-rank factorization of mod-
ulated convolutional bases. This construction provides
the expressive capacity needed to capture locally varying
PSFs while avoiding the large parameter count of fully
unstructured operators. The resulting parameterization is
computationally efficient and compatible with iterative
inverse problem frameworks.

We demonstrate that our approach can accurately re-
cover spatially varying PSFs and learn operator structure
directly from data in a supervised manner. Our method
provides a flexible and powerful alternative to existing
structured approximations for shift-varying systems.

II. PROPOSED METHOD

To learn shift-varying imaging operators in a scalable
manner, we adopt a structured parameterization based on

spatially modulated convolutions. This viewpoint builds
on earlier decomposition strategies to design a learnable
neural framework. Instead of pre-specifying bases or
computing global factorizations, the model learns weight
maps and kernels directly from data while preserving the
interpretability and efficiency of low-rank decomposition
structure.
Shift-varying operator parameterization. We represent
a shift-varying linear operator using spatial modulation
and convolution. For an input image x, a single operator
layer is defined as

A(x) =
R∑

r=1

((
x↘W(1)

r

)
↗ kr

)
↘W(2)

r , (2)

where W(1)
r and W(2)

r are spatial weight maps applied
before and after convolution, ↗ denotes convolution, and
kr is the kernel associated with index r. This representa-
tion allows each kernel to process a spatially modulated
version of the input and then apply a second spatial
modulation to the filtered response. The resulting linear
operator is expressive enough to approximate general
space-variant imaging models.

This structure relates closely to several classical for-
mulations of space-variant blur. Modulation before con-
volution corresponds to the column-wise PSF expansion
in [7], while modulation after convolution reflects the
row-wise formulation in [8]. Similarly, our method also
combines both scattering and gathering interpretations
from [9] into the learning framework.
Efficient representation of weight maps. A full-
resolution weight map W(j)

r for an N ↓N image would
require N

2 parameters per index r, which is not scalable.
To reduce dimensionality, we parameterize each weight
map at a lower resolution,

Ŵ(j)
r → R(N/d)→(N/d)

, j = 1, 2,

and obtain the full-resolution map through bilinear in-
terpolation, W(j)

r = U
(
Ŵ(j)

r

)
, where U denotes 2D

upsampling to size N ↓ N . This reduces the number
of learnable weight parameters by a factor of d

2. For
a kernel of size K ↓ K, the parameter count of a
single layer is R

(
N2

d2 +K
2
)

, which scales well to large
images.
Shift-Varying Neural Operator. To increase modeling
capacity, we compose several operators of the form in
equation (2). Let A(1)

, . . . ,A(L) denote these layers. The
overall mapping is

AL(x) = A(L) ≃A(L↑1) ≃ · · · ≃A(1)(x), (3)



Fig. 2. The first column shows the spatial mask and the motion
blur kernel (bottom-left corner). The last two columns show the
measurement and the ground-truth images.

which creates a deep sequence of spatially adaptive linear
transformations. Each layer is implemented using an
input and output modulated convolutional structure. All
parameters, including the kernels and the modulation
weights are learned directly from data.

III. EXPERIMENTS AND RESULTS

We conduct a set of experiments using fully simu-
lated data derived from natural images in the DIV2K
dataset [10]. We evaluate the ability of the Shift-Varying
Neural Operator to learn three spatially varying forward
models: (1) a simulated spatially varying motion blur
operator, (2) a ring-convolution microscopy model [1],
and (3) a wide-field microscopy PSF [3]. We train our
model on randomly extracted 256 ↓ 256 patches from
DIV2K, and all models are implemented in PyTorch.
Each measurement operator is learned in a supervised
manner by minimizing the measurement loss.

A. Shift-Varying Motion Blur

We begin with a simulation-based experiment de-
signed to evaluate whether the proposed model can
recover the structure of a spatially varying linear system.
In this setting, we construct a synthetic forward operator
that applies motion blur selectively across the image.
The operator is defined by a fixed motion blur kernel
together with a spatial mask that specifies where the blur
is applied. Regions outside the mask are passed through
unchanged. Figure 2 shows an example input image,
the resulting measurement, and the forward-operator
parameters. This system can be represented exactly as
a rank-R = 2 model under the formulation in (2).
Learning the operator. We train the Shift-Varying
Neural Operator using 128 measurement pairs generated
from DIV2K [10]. The network is trained to minimize
the ω2 loss generated by the true shift-varying motion
blur operator. The trained operator achieved an MSE
validation loss of 4.7↓ 10↑5, as shown in Table I.

TABLE I
SUMMARY OF LEARNED SHIFT-VARYING OPERATORS.

Forward model # Parameters Measurement Loss

Shift-varying motion blur 0.1M 4.7→ 10→5

Ring convolution 0.59M 4.0→ 10→4

Wide-field microscopy 2.1M 4.5→ 10→3

Reconstruction. We then evaluate whether the learned
measurement operator can support model-based image
recovery. For this experiment, we use the learned forward
and adjoint operators within a plug-and-play reconstruc-
tion method based on DPIR. Figure 3 shows that recon-
structions obtained with the learned operator are visually
similar to those produced using the true shift-varying
operator: textures, contrast, and the spatially varying blur
pattern are all reliably recovered. These results indicate
that the learned model provides sufficiently accurate
gradients for iterative reconstruction and can be reliably
used within a model-based pipeline.

B. Ring Convolution

Ring convolution describes a class of spatially varying
imaging models in which each location is blurred by
a radially symmetric PSF whose shape depends on the
distance from the optical center [1]. In these systems,
the PSF changes radially with distance from the optical
center but is invariant with respect to the angular coor-
dinate. Such models arise naturally in microscopes with
rotationally symmetric aberrations.

The ring-convolution model in [1] is implemented by
transforming the image to polar coordinates, applying
radius-dependent 1D convolutions along the radial di-
mension, and mapping the result back to Cartesian space.
We generate training pairs using this forward model and
supervise our model to learn the corresponding shift-
varying blur. The learned operator contains approxi-
mately 5.9↓105 parameters and achieves a measurement
loss of 4.0 ↓ 10↑4 on the validation set. The trained
model generates measurements in a single forward pass,
providing a computationally efficient alternative to the
original ring-convolution implementation, which requires
per-radius PSF evaluation and explicit coordinate trans-
forms.

C. Wide-Field Microscopy

We conduct an additional study to learn a spatially
varying point spread function from a microlens array.
For this setup, we construct a synthetic forward model by
selecting the calibrated PSFs from a single microlens in



Fig. 3. Reconstruction results show that the learned operator produces outputs that closely match the output obtained using the true filters.

the multi-aperture system of [3]. Following the procedure
in the paper, we use sampled PSFs on a uniform grid
across the field of view and perform a truncated SVD
to obtain a compact low-rank basis that captures the
smooth spatial variation of the aberrations. We use this
system to obtain simulated measurements. Using these
measurements, we train our shift-varying operator with
2.1M parameters to approximate the wide-field forward
process directly from input images. The learned operator
achieves a final measurement error of 4.5↓ 10↑3.

IV. DISCUSSION AND LIMITATIONS

While the proposed Shift-Varying Neural Operator
is effective across a wide range of spatially varying
imaging models, its performance depends on the intrinsic
structure of the forward operator. In our wide-field
microscopy experiment, the ground-truth measurements
are generated using an SVD-based approximation of
the space-variant PSF field. At low truncation ranks,
the model is able to learn the forward map accurately.
However, as we increase the truncation rank and the
underlying system becomes more complex, we observe
a degradation in performance and the measurements
from the learned operator begin to deviate from the
true measurements. This suggests that modeling highly
complex shift-varying systems may require enhancing
the proposed operator architecture.

V. CONCLUSION

We presented a data-driven framework for learning
shift-varying measurement operators and demonstrated
its effectiveness on multiple spatially varying imaging
models. By training on simulated pairs generated from
physically grounded forward operators, our approach
accurately recovers both local kernel structure and global
field-dependent variations. The learned operators can
also be integrated into iterative reconstruction. This

enables high-quality image recovery using the learned fil-
ters. Experiments on spatially varying models show that
the proposed method provides a compact, scalable, and
consistent representation of spatially varying systems.
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