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Abstract

Motivated by a problem in Generative
Specification-Producing Als (SPAIs), we
focus on a problem of deep clustering of three-
dimensional shapes specified by point clouds.
After reviewing deep clustering, we propose a
novel approach involving angle based clustering
and semisupervised contrastive penalties. The
proposed approach is evaluated on the ModelNet
dataset and compared against an unsupervised
approach leveraging autoencoding.

1. Introduction

We herein focus on the problem of deep clustering of three-
dimensional shapes. Our motivation is the problem of Gen-
erative Specification-Producing Als (SPAIs) (Dodds et al.,
2024). SPAIs may have multimodal prompts (as transformer
VLMs (Singh et al., 2018)) with diagrams (shapes) and text
conveying design requirements. That is, a description of a
new design is input and a “formal” design specification is
output. The output specification is informed by the designs
used to train (or fine-tune) a supervised-learned SPAI. A
good design specification for a given set of requirements
will be informed by similar ones used to train the SPAI. So,
we are concerned with feature maps (encoders) that are use-
ful for multimodal clustering to identify the similar designs
used for training, i.e., a retrieval function (Xiao et al., 2021).

In this paper, we review deep clustering, focusing on deep
clustering of shapes in particular, using highly discrimina-
tive encodings as, e.g., given by a DGCNN, e.g., (Zhang &
Zhu, 2019). Shapes are typically specified either by point
clouds or tessellations on their surfaces, where these two
formats can be translated from one to the other. Three-
dimensional shapes are invariant to point-order specification
(Charles et al., 2017), translations, rotations, and uniform
dilations (or contractions) (Small, 1996).

This paper is organized as follows. We first give an overview
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Figure 1. Ilustrative example of clustering scenario with K = 3
clusters.

of deep clustering. We then describe two main approaches:
One is based on unsupervised autoencoding involving either
first fixing the encoder feature map then applying K -means
(or training a nearest-prototype layer (LeCun, 1998)), or
jointly learning the encoder and prototypes. The other is
a semisupervised contrastive learning approach involving
fixed prototypes in the embedded feature (latent, activation)
space. Both methods are designed to avoid cluster collapse
to which deep clustering is particularly prone. There are, of
course, hybrid approaches too.

The main contribution is a novel approach to contrastive
and angle based deep clustering of shapes. We report results
for experiments conducted using the ModelNet10 dataset
(ModelNet), which pose challenges because they are highly
imbalanced.

2. Background on Clustering

Given an unlabeled training set X of point clouds, one can
apply K-means clustering (e.g., (Duda et al., 2001)) using
the Chamfer distance, d., between pairs of point clouds.
Given X, K-means clustering uses an iterative expectation-
maximization (map-reduce) to determine the K cluster pro-
totypes {71, ..., Tk } by minimizing the cluster-distortion
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where z;,y; € R3 respectively are the points of (point
clouds) z,y and || - || is the Euclidean norm. See Figure 1
for a simple illustrative example with K = 3 clusters.

Clearly, the cluster-distortion loss can be zero when K >
|X|. To optimize generalization performance (i.e., avoid
overfitting), the number of clusters K can be set using a
BIC penalty (Schwarz, 1978; Xiang et al., 2019),
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to the cluster-distortion loss, where here D be the common
or average dimension of each encoded shape representation.
Alternatively, one can apply a heuristic approach such as
the “elbow” method.

On the other hand, cluster collapse is a phenomenon where
the training samples are assigned to only a few (even just
one) cluster. K-means may exhibit cluster collapse, e.g.,
when the cluster prototypes are poorly initialized.

Deep clustering involves a front-end feature map (encoder)
and a back-end clustering. The motivation for applying
clustering within a deep learning setting is that, for certain
types of data, clustering applied directly to the “raw” in-
put data may produce poor results. For example, consider
image domains. The same object may appear in different
locations, at different scales, from different perspectives,
and in the presence of noise and occlusion, within an image
dataset. Applying clustering directly to the raw images is
not likely to assign images representing the same object (but
subject to these highly variable factors) to the same cluster.
However, a deep neural network can learn embedded feature
representations that are relatively invariant to these variable
factors. Thus, a clustering method applied to deep learning
embedded representations of images is much more likely to
assign the same object to a common cluster.

As another example, an attempt to detect poisoned samples
in the training dataset of a DNN-based classifier has been
based on clustering of embedded representations of the train-
ing data samples (Tran et al., 2018; Chen et al., 2019; Xiang
etal., 2019). (Tran et al., 2018; Chen et al., 2019) employ a
two-component clustering approach (simple 2-means clus-
tering in the case of (Chen et al., 2019)), while (Xiang et al.,
2019) employs a Gaussian mixture model whose number
of components is determined by BIC. As another example,

(Kulis & Jordan, 2013) also consider mixture models and
penalizes the number of clusters.

Cluster collapse is more problematic for deep clustering
because the feature map (encoder) and cluster prototypes
(in the range of the feature map) both need to be learned.
There are two main ways to proceed:

» Unsupervised learning leveraging an autoencoding to
create the encoder and then apply K -means (or attach
a nearest prototype layer as in LeNet and learn it by
gradient-based back-propagation (LeCun, 1998)).

» Semisupervised with contrastive loss penalties wherein
“must link” and “cannot link” decisions are determined
by an expert regarding the cluster membership for a
small subset of the training dataset.

In both cases an encoder of the form of, e.g., a Deep Graph
Convolutional Neural Network (DGCNN) (Zhang & Zhu,
2019) or FoldingNet (Yang et al., 2018).

One alternative supervised approach involves learning an
encoder, followed by a decoder and nearest prototype layer
in parallel with a training objective being a combination of
the reconstruction loss (decoding) and cluster distortion loss
(clustering), e.g., (Opochinsky et al., 2020).

In the semisupervised approach, the encoder and nearest
prototype layer are jointly learned using fixed prototypes
(m € RP) with a cluster-distortion loss objective penalized
by the contrastive must-link and, particularly, cannot-link
terms regarding pairs of training examples.

Regarding deep clustering of shapes in particular, training-
set augmentation is used to ensure invariance of point-order
specification, translation, rotation, and uniform dilation (or
contraction). Thus, training-set augmentation will create
additional must link requirements.

Note that the point cloud classifier PointNet (Charles et al.,
2017) has a (point-order specification invariant) encoder
that is not very expressive but relies on supervising class
labels. Thus its classification error is low'

On the other hand, for purposes of clustering, an autoen-
coder can be computationally costly, especially for large-
scale datasets, with an overly expressive encoder for clus-
tering purposes. one can try to “early stop” the autoencoder
training or deprecate how reconstruction loss is weighed
against the cluster-distortion loss.

Several works have proposed graphical encoders, including
(Yang et al., 2018; Hassani & Haley, 2019; Zhang & Zhu,
2019), where the former two references incorporate autoen-
coding mechanisms to prevent cluster collapse. In partic-

"PointNet’s classification accuracy for ModelNet40 is reason-
ably high at 89.2%, though this is significantly smaller than 93.5%
for classification based on a DCGNN encoder.



ular,(Hassani & Haley, 2019) optimizes a joint objective
combining cluster-distortion, autoencoding and classifica-
tion terms. On the other hand, (Zhang & Zhu, 2019) use an
unsupervised contrastive approach based on object slicing
to learn point-cloud features.

More specifically, in (Zhang & Zhu, 2019): Every training
shape is randomly sliced in half and a binary classifier on
random slices is trained using a DGCNN encoder assigning
1 to pairs of slices from the same object (must links) and O
otherwise (cannot links). This trained DGCNN encoder is
then applied to the whole training shapes x. K-means on
these encodings gives (one of K') pseudo-labels for each x €
X. Finally, a second DGCNN based network is trained on
the whole shapes using the K -means pseudo-labels, refining
the embedding space for cleaner separation. Presumably,
cannot links (0) are supposed to avoid cluster collapse, but
they include slices from different shapes of the same class
in this unsupervised setting. Using planar-aligned slicing
may yield cross-sections that are more indicative of the
(axis aligned) shape, but this may not improve accuracy
considering the cannot links. So, the first DGCNN may only
learn about similar slices (cross-sections) of shapes, which
may be why it’s retrained on whole shapes x. But retraining
will just reinforce the K -means decisions based only on
matching cross-sections of slices (as the prediction task of
(Hassani & Haley, 2019)).

3. ModelNet Dataset for Clustering

ModelNet40 (ModelNet) consists of 12,311 pre-aligned
shapes from 40 categories (classes), which are split into
9,843 (80%) for training and 2,468 (20%) for testing, where:
each shape is a 3D triangle (surface) mesh in the .OFF
format (see Figure 2), and each shape was normalized by in-
scribing in a unit sphere and converted to a point cloud. The
ModelNet10 dataset is a subset of ModelNet40, containing
4,899 shapes from 10 categories. ModelNet10 shares the
same preprocessing pipeline as ModelNet40: each mesh is
normalized to a unit sphere and converted to a point cloud
with 1,024 points sampled from the surface.

For unsupervised clustering, we combined ModelNet40’s
test and training set.

To assess clustering accuracy after training, training-set
class plurality is ascertained for each cluster (i.e., using the
class labels which were not used for training). That is, if
the plurality of training samples clustered to prototype
belong to class x(m), and c(x) is the ground-truth class of
point cloud z, then the estimated error rate is
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Figure 2. Some example ModelNet shapes and their labeled cate-
gory.

learning (if any). Performance metrics are discussed further
below.

We conduct our experiments on the ModelNet10 (MN10)
dataset (ModelNet).

We evaluate our approach using the following met-
rics:

e Accuracy (ACC): Clustering accuracy measures the per-
centage of samples correctly assigned to clusters using
a plurality matching strategy. For each predicted cluster
7, we find the most common (plurality) true label within
that cluster, then count how many samples in the cluster
have that label. To clarify (2), let C; = {i : ¢; = j} be
the set of samples indexed 7 assigned to cluster j, and
let yc, be the ground-truth labels of samples in cluster j.
The plurality label for cluster j is:
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where ) is the set of true class labels. The number of
matching ground-truth and plural label assignments m in
cluster j is:

mj = |{i €Cj:yi =y} “
The clustering accuracy is then:
K

ACC = @ 5)

N



where K is the number of clusters and N = > |C;| the
total number of training samples. This metric ranges from
0 to 1, with 1 indicating perfect clustering.

Normalized Mutual Information (NMI): This metric
measures the information-theoretic agreement between
true labels and predicted clusters. It quantifies how much
information is shared between the two labelings, normal-
ized by their individual entropies. The mutual informa-
tion between true labels y and predicted clusters c is:
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where p(y, §) = |{i : i = , ¢ = j}|/N is the joint
probability, p(y) = |{¢ : y; = y}|/N is the marginal

probability of true label y, and p(j) = |{i : ¢; = j}|/N
is the marginal probability of cluster j.
The entropies are:
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The normalized mutual information is:
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This metric ranges from 0 to 1, where 1 indicates perfect
agreement and 0 indicates independence. NMI is symmet-
ric and does not require label-to-cluster matching, making
it robust to different numbers of clusters and classes.
Adjusted Rand Index (ARI). this measures the pairwise
similarity between two partitions while correcting for the
agreement that would be expected by chance. ARI evalu-
ates how many pairs of samples are clustered together in
both labelings, compared to the expected number under
a random assignment with the same cluster-size distri-
bution. Let n;; = |{k : yx = i Acxy = j}| be the
contingency table count of samples with true class 7 and
predicted cluster j. Leta; = ) j Tij denote the size of
true class 4, and b; = . n;; the size of predicted cluster
j. The number of sample pairs that appear in the same
class and the same predicted cluster is:
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The expected number of such same agreements under
random labeling (with fixed class sizes {a;} and cluster
sizes {b;}) is:

i \2) Lxg \2) (11
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The average number of same cluster pairs in the two
partitions is:
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The Adjusted Rand Index is then defined as:

A—-B
ARI = ok (13)
ARI equals 1 when the two partitions are identical, equals
0 when the agreement matches the expected value under
random labeling, and can be negative when the agreement
is worse than random. ARI is symmetric and permutation
invariant.

4. Semi-supervised using Contrastive Learning

In this section, we describe a semisupervised approach to
deep clustering by contrastive learning. The K prototypes
on the unit sphere in the embedded feature space R” are
fixed by initializing them as vertices of a regular simplex
(SIMPLEX_COORDINATES), which maximizes the min-
imum Euclidean distance (equivalently, cosine similarity)
between any pair of them.

The regular simplex construction proceeds as follows: for K
prototypes in R”, we construct a regular k-simplex where
the first vertex is placed at vo = (1,0,0,...,0), and each
subsequent vertex v; forv = 1,..., K — 1 is constructed
such that its first ¢ coordinates are set to —1/+/4(¢ + 1) and
its 4 coordinate is set to y/i/(i + 1), with all remaining
coordinates set to zero. All vertices are then normalized to
lie on the unit sphere, ensuring that the prototypes 73, € R
are unit vectors with maximum pairwise separation.

Another approach for constructing the prototypes is to use
Tamme’s algorithm which maximizes the minimum Eu-
clidean distance (equivalently, cosine similarity) between
any pair of them (Erber & Hockney, 1997). Using angle
based clustering, the encoder 7;, € R” is then learned by
minimizing the cluster-distortion loss objective C'x over
the training dataset using angle-based clustering (Zhu et al.,
2016; Beer et al., 2020; 2024):
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Because the prototypes are all on the surface of a unit sphere,
this is equivalent to clustering using Euclidean distance.
Because of the regular simplex, the domain of every cluster
is an infinitely tall regular pyramid (i.e., a cone with flat
size) emanating from the origin (its apex) with its prototype
on its axis.
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Figure 3. Regular tessellation of the plane with prototypes fixed
by Tamme’s algorithm producing a regular square tessellation.
Note that the angle « corresponding to the largest cosine similarity
between such prototypes, «, is smaller than the angle between
diagonal neighbors. That is, there are some points in a square
tile whose cosine similarity with the tile’s prototype (center) is
< cos(a/2). Note that for a square tessellation of the sphere, only
three squares meet at a vertex (as a cube).

The overall objective combines a clustering term with super-
vised contrastive and augmentation consistency penalties:

£lotal =Cg + ‘Ccon + Eaug (15)

Consider the minimum cosine similarity between pairs of
prototypes (€ RP) of a regular simplex,

cos(a) := min Ami, ™) (16)
i |mill [l

If the cosine similarity of y and 7(x) is < cos(«/2) then
y and x are in the same cluster, but the converse is not
necessarily true; see Figure 3. That is, to ensure = and y are
in different clusters, then their the cosine similarity of 7 (x)
and y needs to be < cos(a/2). In the following, the angle
o is such that cos(a//2) < cos(a/2).

The augmentation consistency term L, enforces that aug-
mented views A, of the same point cloud = remain within
a narrower cone around their prototype:
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where |A| = | A, | for all z € X, penalty parameter A > 0,
and (z)* := max{z,0}.

A small subset of the training set U C X x X is processed
and pairs of samples (point-clouds) in U that must (V C
U xU) or must not (V_ C U x U) be in the same cluster are
identified. The supervised contrastive term L., penalizes
pairs in the subset U whose prototypes are too close in angle
despite being in different clusters:
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with A\_ > 0. Lcon also includes a term similar to that of
Lug for pairs of samples in U that are deemed to be in the
same cluster (with penalty parameters Ay > 0):
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Finally, note that during the deep learning process (i.e., back
propagation (Kingma & Ba, 2014)), the cluster prototypes
for the training samples are updated before the gradients of
Lyoar are calculated.

S. Experimental Result for ModelNet10

We first give results for the autoencoder/ K -means unsuper-
vised approach to act as a baseline for our semisupervised
contrastive learning approach.

5.1. KMeans++ on FoldingNet Encoder

We train a FoldingNet autoencoder (Yang et al., 2018) on
our split of the ModelNet dataset. The encoder takes as
input 2,048 points uniformly sampled from each shape in
the dataset, and the decoder outputs a 2,025-point recon-
struction, corresponding to the size of the 2D grid that is
“folded” into the target shape. The minimizing objective
of the autoencoder is the averaged bidirectional Chamfer
distance between the source and target shape. Table 1 shows
clustering results for KMeans++ on encoder embeddings.
The reconstruction loss (Chamfer distance before applying
KMeans++) was 0.0931.

Table 1. Autoencoding/KMeans++ Clustering Results on Model-
Netl10

# Clusters (K) | NMI | ARI | ACC
2 0.372 | 0.217 | 0.356
4 0.576 | 0.382 | 0.516
6 0.665 | 0.576 | 0.654
8 0.697 | 0.702 | 0.762
10 0.684 | 0.627 | 0.775
12 0.670 | 0.582 | 0.772
14 0.663 | 0.542 | 0.787

5.2. Contrastive Semisupervised Deep Clustering

Experimentally, we employed the class labels to indicate
only cannot links, i.e., if two examined training samples
have different class label then then they can’t be in the same
cluster, where the converse is not true because a class can
consist of multiple clusters.

The only must links are augmentations of the same training
sample.

We evaluate the performance of our semi-supervised angle-
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Figure 5. t-SNE visualization of ModelNet10 embeddings using
semi-supervised clustering. Each point is a 3D shape from Mod-
elNet10, colored by their true classes. The clustering shows the
model learns class-separable representations.

# Clusters (K) | NMI ARI ACC

(5, 10} 0.6740 | 0.5889 | 0.6578

’ 0.7282 | 0.7105 | 0.7338
0.7325 | 0.6934 | 0.7522

0.7242 | 0.7400 | 0.7846

11-15 0.7522 | 0.7501 | 0.7853
0.7511 | 0.7693 | 0.7983

0.7631 | 0.7662 | 0.8048

20 0.7612 | 0.7848 | 0.8202

Table 2. Performance of the semi-supervised, contrastive, angle
based clustering method on ModelNet10. Rows are grouped to
reflect different step sizes in the number of clusters. Moreover, the
bolded row indicates the elbow point of the performance curves.

based clustering approach on the ModelNet10 dataset, exam-
ining both quantitative metrics and qualitative visualizations
of the learned representations. 10% of the training samples
were involved in the contrastive learning terms. Figure 4 il-
lustrates the relationship between the number of prototypes
K and classification accuracy, revealing a clear trend of
improving performance with increasing K. The accuracy
increases from 0.66 at K = 5 to 0.82 at K = 20, demon-
strating that the model benefits from a larger number of
prototypes. However, the rate of improvement diminishes
significantly after K = 12, where the accuracy reaches
0.78. We identify K = 12 as the optimal configuration
using the elbow method, which balances performance gains
with model complexity.

The quantitative performance metrics across different values
of K are summarized in Table 2. At the optimal configu-
ration of K = 12, our method achieves an NMI of 0.7242,
an ARI of 0.7400, and an accuracy (ACC) 0.7846. These
results demonstrate strong clustering performance, with the
ARI score of 0.7400 indicating substantial agreement be-
tween the predicted clusters and the true class labels.

Note that at ' = 10 to 12, semisupervised contrastive and
unsupervised autoencoding give comparable performance.

The quality of the learned representations is further vali-
dated through the t-SNE visualization shown in Figure 5,
which projects the high-dimensional embeddings into a
two-dimensional space while preserving local neighbor-
hood structures. The visualization reveals ten distinct, well-
separated clusters corresponding to the ten object classes
in ModelNet10, demonstrating that the model success-
fully learns class-separable representations. Each cluster is
clearly identifiable and spatially distinct, with minimal over-
lap between different classes. Some minor intermingling
occurs between semantically similar classes, such as table
(yellow) and desk (red), or night stand (pink) and dresser
(purple), which is expected given their geometric similari-
ties. Overall, the clear separation of clusters in the t-SNE
visualization corroborates the quantitative results, indicating



that the semi-supervised angle-based clustering approach
effectively captures the underlying class structure of the 3D
shape data.

6. Summary

This paper concerns deep clustering of three-dimensional
shapes specified by point clouds. Two general deep-
clustering approaches are discussed (with possible hybrids)
particularly to avoid cluster collapse: the first is unsuper-
vised involving a feature-map (encoder) through an autoen-
coding mechanism and K -means clustering on the encod-
ings, while the second is semisupervised involving fixed
cluster centers and angle-based cluster-distortion loss train-
ing objective with contrastive-loss penalties. We herein
focused on a novel semisupervised approach. Experimental
results are provided for ModelNet10 point cloud dataset,
together with baseline performance for the simple unsuper-
vised approach. Comparing the two general approaches for
large-scale datasets, note that the heightened computational
complexity of training an autoencoder for the unsupervised
approach is traded-off against the effort required to cannot-
link label pairs of training examples for the semisupervised
approach.
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