

Dynamic Evolution of Mass and Physical Properties of Atmospheric Organic Aerosol under Solar Irradiance

by

Bin Bai,¹ Gregory W. Vandergrift,² Yutong Liang,^{3,4} Yaowei Li,⁵ Zezhen Cheng,² Yuchen Wang,^{3,6} Nara Shin,¹ Frank Keutsch,^{5,7,8} Andrew Lambe,⁹ Swarup China,² Nga Lee Ng,^{1,3,10} and Pengfei Liu^{1*}

Affiliations:

¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

² Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

³ School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

⁴ Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China.

⁵ School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

⁶ College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China.

⁷ Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.

⁸ Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

⁹ Aerodyne Research, Billerica, Massachusetts 01821, United States.

¹⁰ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

E-mail: pengfei.liu@eas.gatech.edu

Submitted: Jan 2025

Environmental Science & Technology

*To Whom Correspondence Should be Addressed

1 **Abstract**

2 Organic aerosol (OA) particles constitute a substantial fraction of sub-micron particulate mass in the
3 atmosphere and play a critical role in climate system. OA undergoes dynamic aging processes in the
4 atmosphere, with photolytic aging induced by ultraviolet solar irradiance being an important yet poorly
5 characterized mechanism. Knowledge gaps persist regarding the role of volatility transformations during
6 photolytic aging on the OA mass decay kinetics and the evolution of climate-relevant properties, such as
7 hygroscopicity, hindering the model evaluation of OA spatiotemporal distributions and atmospheric
8 budgets. In this study, we conduct isothermal photolytic aging experiments on both laboratory-generated
9 secondary organic aerosols and ambient-collected particles from urban Atlanta, utilizing a high-sensitivity
10 Quartz Crystal Microbalance. Our results reveal that photolytic aging reduces 40–66% of the low-volatility
11 OA mass with lifetimes ranging from 8 to 200 hours under solar irradiance, and 44–92% of the photolytic
12 mass loss is through slow evaporation of semi- or intermediate-volatile products, kinetically limited by their
13 volatility. We observe up to $\pm 50\%$ changes in OA hygroscopicity with the transformation of fresh OA to
14 photo-recalcitrant low-volatility products, associated with changes in oxygen-to-carbon ratio and molecular
15 weight. A kinetic model incorporating photolytic volatility transformation provides a cohesive explanation
16 for the observed photolysis-induced changes in mass, volatility, and hygroscopicity. Our results can help
17 constrain model representation of the dynamic evolutions of mass and climate-relevant properties during
18 photolytic aging processes of the ambient OA, improving our understanding of OA atmospheric behavior
19 and climate impact.

20

21 **One Sentence Summary:** Comprehensive measurements and model development of mass decay kinetics,
22 volatility, and hygroscopicity evolution of organic aerosol particles during photolytic aging under solar
23 irradiance

24

25 **Keywords:**

26 photolytic aging; volatility distribution; hygroscopicity; Quartz Crystal Microbalance (QCM); Nano-DESI
27 HRMS; elemental ratios; low-volatility products.

28

29

30 **Main text**

31 **Introduction**

32 Organic aerosol (OA) material constitutes 20–90% of the sub-micron particulate mass in the terrestrial
33 atmosphere.¹ A major fraction of OA is produced secondarily by the atmospheric oxidation of volatile
34 organic compounds (VOCs), dominantly emitted from biogenic sources.² OA can affect climate directly by
35 scattering and absorbing solar radiation and indirectly by serving as cloud condensation nuclei (CCN),
36 thereby altering cloud albedo and lifetime.^{2,3}

37 The atmospheric lifetime of OA against wet and dry deposition spans from several days in the
38 planetary boundary layer to weeks in the free troposphere.⁴ During this period, OA mass and properties
39 undergo dynamical evolution through various aging processes, such as gas–particle re-partitioning,⁵
40 heterogeneous oxidation,^{6–9} oligomerization,^{10–12} cloud water processing,^{13–15} and in-particle photochemical
41 reactions driven by ultraviolet (UV) light.^{16–24} OA composition such as carbonyls and peroxides can absorb
42 UV light,^{25,26} which is energetic enough to initiate complex aging reactions such as direct fragmentations^{27–}
43 ²⁹ and photosensitization initiated secondary reactions. For example, triplet excited states of organic
44 compounds from the irradiation of light-absorbing organics can oxidize organic molecules and generate
45 other radicals upon reactions with O₂.^{30–32} This UV light-induced aging process, referred to as *OA photolytic*
46 *aging* herein, might substantially reduce the lifetime and mass loading of atmospheric OA. Global modeling
47 indicated that photolytic loss plays a crucial role in compensating for the overestimation of the atmospheric
48 OA budget and in altering the vertical and spatial distribution of OA.^{4,33,34}

49 Laboratory experiments have directly quantified particle mass changes induced by UV light,^{16,19–}
50 ^{21, 23, 25, 35–38} suggesting significant particle mass loss, although a fraction of OA mass can resist UV
51 degradation (“photo-recalcitrant”). Several studies have identified various low-carbon-number vapors
52 evaporated from OA during photolytic aging.^{17,19,22,39} Properties such as light absorption and viscosity of
53 OA were found to change after photolytic aging.^{21,40} However, information regarding the intermediate
54 stages and time-dependent evolution of OA properties during photolytic aging is still limited, restricting
55 the application of laboratory findings in model simulation to evaluate the climate effect of OA. For example,
56 the evaporation or partitioning of semi- or intermediate-volatile organic compounds (S/IVOCs) play a
57 critical role in interpreting photolysis-induced mass decay kinetics and comprehending chemical
58 transformations.

59 Hygroscopicity, as an important climate-relevant physical property, determines how aerosol
60 particles interact with water vapor, and further affects aerosol water content, visibility, and the ability of
61 aerosol particles to serve as cloud condensation nuclei (CCN).⁴¹ Previous research has shown that the CCN
62 activity of α -pinene and naphthalene secondary organic aerosols (SOA) extracts in bulk aqueous phase
63 increases rapidly upon exposure to UV-B irradiation.⁴² However, how photolytic aging influences OA

64 particle hygroscopicity under atmospherically relevant humidity conditions remains unknown. Moreover,
65 previous photolytic aging studies focused on laboratory generated OA, leaving the kinetics and property
66 changes of ambient OA under photolytic aging insufficiently explored.²² As a result, substantial uncertainty
67 exists when attempting to reconcile laboratory results with OA in ambient atmosphere.

68 In this study, we conducted isothermal photolytic aging experiments for both laboratory-generated
69 secondary organic aerosol (SOA) from biogenic precursors (isoprene and limonene) and ambient-sampled
70 particles in urban Atlanta, United States, using a high-sensitivity quartz-crystal microbalance (QCM),
71 combined with chemical analyses using nanospray desorption electrospray ionization high resolution mass
72 spectrometry (Nano-DESI HRMS) directly on QCM sensors. We developed a new experimental procedure
73 within the QCM to simultaneously measure the changes in mass, volatility, and hygroscopicity of OA
74 samples during photolytic aging. We built a new thermodynamic volatility model that incorporates
75 photolytic volatility transformation, and successfully modeled the measured mass decay, volatility, and
76 hygroscopicity profiles during photolytic aging within a unified framework.

77

78 Materials and Methods

79 **SOA generation, collection and measurement** SOA were generated through OH-initiated isoprene
80 photooxidation in the absence of nitrogen oxides (NO_x) and limonene ozonolysis in a Potential Aerosol
81 Mass Oxidation Flow Reactor (PAM OFR, Aerodyne Research). Organic vapors were introduced via a
82 syringe pump. Detailed information on PAM OFR can be found elsewhere.⁴³ In brief, ozone (O₃) was
83 generated by passing the zero air through a mercury lamp ($\lambda = 185$ nm) externally, and hydroxyl radical
84 (OH) was generated by irradiating the injected ozone with internal mercury lamps ($\lambda = 254$ nm). The
85 average residence time inside PAM OFR was ~132s for an 8-lpm total flow rate, which was sufficient for
86 the homogeneous formation of SOA. Water vapor was introduced using a water bubbler. The
87 photochemical ages of the precursor oxidation were characterized using a kinetic model.^{44, 45} For specific
88 experimental conditions regarding the generation of SOA in the PAM OFR, refer to Table S1.

89 To collect the SOA particles, an electrostatic precipitator system downstream of the PAM OFR
90 was utilized. The generated SOA was charged by a Corona Charger (IONER CC-8020) and then deposited
91 onto a quartz crystal (14-mm diameter) using an electrostatic precipitator (TSI Nanometer Aerosol Sampler
92 3089) with a flow rate of 1.0 liter per minute (Figure S1). This process allowed the deposited SOA to grow
93 as a uniform thin film on the substrates.⁴⁶ This sampling method with improved sampling efficiency of 10–
94 50% enabled us to extend this technique to ambient aerosol particles sampling with lower concentrations
95 than laboratory conditions.

96 The aerosol particles were characterized by a scanning mobility particle sizer (SMPS model 3938,
97 with wide-range differential mobility analyzer 3083, TSI Inc.) and an aerosol mass spectrometer (HR-ToF-

98 AMS, Aerodyne Research). O:C and H:C ratios were calculated using PIKA v1.25c (Igor 8.0.3), following
99 the methodology in Canagaratna et al.⁴⁷ The particle density was estimated using the parameterization
100 described in Kuwata et al.⁴⁸ Detailed information regarding the laboratory-generated SOA can be found in
101 Table S2.

102

103 **Ambient particle collection** Ambient particles were collected using the same collection technique
104 employed for the laboratory-generated SOA. The collection took place on the rooftop of the Ford
105 Environmental Sciences and Technology building at Georgia Institute of Technology in Atlanta, Georgia
106 in August 2022.⁴⁹ Simultaneous HR-ToF-AMS measurements were conducted during sample collection.
107 The averaged submicron particle concentration measured by HR-ToF-AMS was $8.6 \pm 1.9 \mu\text{g m}^{-3}$ during
108 the campaign. The OA mass for each ambient particle sample was calculated based on HR-ToF-AMS
109 measured masses of sulfate, inorganic nitrate, chloride, and ammonium. The masses of black carbon (BC)
110 and mineral dust and other compositions were assumed to be 5% of the total mass. For more information
111 regarding the sampling times, conditions and masses, see Table S3.

112

113 **QCM mass measurement during OA dark and photolytic aging** Within 10 minutes of the collection of
114 laboratory SOA or ambient particles, the OA-laden sensor was mounted into a humidity and temperature-
115 controlled flow cell equipped with a sapphire window (Q-sense QWM401), and the real-time mass under
116 different humidity and UV irradiance conditions was monitored using a high-sensitivity quartz crystal
117 microbalance with dissipation (QCM-D, Q-sense Analyzer). The schematic diagram of the QCM apparatus
118 is depicted in Figure S2. The QCM technique has been previously applied to laboratory-generated OA
119 samples to characterize their volatility,⁵⁰ water diffusivity,⁸ hygroscopicity,⁵¹ and photolytic mass loss.^{19, 38}
120 The QCM operates on the principle that changes in the resonant frequency (Δf) of the quartz crystal are
121 proportional, through a sensitivity factor (ζ), to changes in mass (Δm) on the sensor. This relationship is
122 expressed by the equation $\Delta m = -\zeta \Delta f$. To ensure accuracy, six different frequency overtones were cross-
123 verified, as shown in Figure S3. By performing sensor cleaning after each experiment using methanol and
124 deionized water, the baseline of a blank sensor can be restored with a frequency error of 50 Hz or mass
125 error of $0.75 \mu\text{g}$. In all SOA experiments, the collected mass was controlled to be within the range of
126 $20.0 \pm 8.0 \mu\text{g}$, minimizing variations across cases. For ambient particles, the collected mass was lower due
127 to lower particle concentration in the ambient atmosphere. The information on collected SOA and ambient
128 particle mass loadings and corresponding experimental conditions is outlined in Table S4. UV lights emitted
129 from two different lamps at wavelengths of 300 nm (UV-B) and 345 nm (UV-A) can penetrate the optical
130 window of the flow cell and were used to conduct the photolytic aging experiments. Photon fluxes emitted
131 by the two UV lamps are shown in Figure S4. The irradiance applied was approximately an order of

132 magnitude higher than typical ambient conditions to mimic photolytic aging equivalent to multiple days of
133 photolysis in the atmosphere. The temperature of the QCM sensor was controlled at 294.15 ± 0.02 K to allow
134 for isothermal photolytic aging.

135 To evaluate potential light attenuation through particle film, we calculated the deposited film
136 masses, film thicknesses, and light attenuation ratios for QCM samples in Table S5. The SOA film
137 thicknesses on QCM crystals ranged from 100 to 300 nm. Even at 300 nm wavelength, where SOA
138 absorption is stronger than at 345 nm, the light attenuation remained negligible (<1 %) because of the
139 relatively weak absorption of these SOA types. For ambient particles, the film thicknesses were 25–100
140 nm, and even under the worst estimate using the highest mass absorption coefficient, the light transmission
141 through the film remained >70%. Therefore, no attenuation corrections were applied.

142

143 **Volatility measurement during OA dark and photolytic aging** Mass loss rates (evaporation rates) of the
144 deposited particle film were derived as the first derivative of the measured real-time masses. To effectively
145 measure volatility, two equilibrium conditions must be examined: gas-phase diffusion equilibrium and
146 particle-phase diffusion equilibrium. To confirm that the gas-phase diffusion equilibrium was established
147 within the flow cell, we have conducted a flow rate test as shown in Figure S5. During the evaporation of
148 the SOA that contains S/IVOCs, the SOA mass loss during dark conditions would be limited by gas flow
149 rate if film–gas phase equilibrium was established. Our test experiments showed that evaporation mass
150 losses were proportional to the flow rates ranging from 3 to $30 \text{ cm}^3 \text{ min}^{-1}$, indicating that gas-phase diffusion
151 was sufficiently fast so that the headspace of the flow cell was saturated with the composition of the film
152 surface.⁵⁰ We also justified a rapid liquid-like diffusion equilibrium for fresh SOA examined in this study
153 by observing the evaporation rate under dark conditions at different RH. Since water can act as a plasticizer
154 and increase the diffusivity of the SOA material,^{8, 50} if the evaporation was kinetically limited by the in-
155 film diffusion, we would have observed continuously enhanced evaporation mass losses with increased
156 relative humidity (RH). In our dark experiments, for both SOA, evaporation mass losses showed no
157 difference between dry and up to ~60% RH, implying that the two investigated SOA types are liquid-like
158 and the diffusion process in the film does not impose a significant kinetic limitation on evaporation.
159 Therefore, the measured mass loss rate by QCM was proportional to the volatility of the SOA thin film,
160 i.e.,

$$C^* = \frac{dm}{Qdt} \quad (1)$$

161 With a sensitivity factor (ζ) of $17.7 \text{ ng cm}^{-2} \text{ Hz}^{-1}$ (provided by crystal vendor), mass changes on the order
162 of 1 ng could be detected in QCM. This mass change corresponded to a vapor mass concentration (volatility)
163 of $33 \mu\text{g m}^{-3}$ under the experimental conditions employed ($Q = 30 \text{ cm}^3 \text{ min}^{-1}$) assuming $\Delta t = 1 \text{ min}$. In dark

164 aging experiments, the SOA and ambient particle film was purged with zero air in the absence of light, and
165 the gradual mass losses were attributed to the evaporation of compounds that have semi- or intermediate-
166 volatility between 10^2 to $10^5 \mu\text{g m}^{-3}$. The long-term mass loss was used to retrieve the volatility distribution
167 of fresh SOA. For photolytic aging experiments, the lamp was periodically turned on and off at 15-min
168 intervals, allowing for the dynamic measurement of the intrinsic volatility of OA, i.e., the vapor mass
169 concentration within the dark periods.

170

171 **Hygroscopicity measurement during OA dark and photolytic aging under humid conditions** The flow
172 conditions were switched between dry and humidified states at 15-min intervals to enable the measurement
173 of particle dry mass and absorbed water mass, allowing the real-time measurement of hygroscopicity with
174 a resolution of 30 min. Evaporation of the dry mass baseline during this period was accounted for using
175 linear interpolation of the dry mass measurements taken before and after each humidified period. During
176 aging experiments, a constant RH was applied periodically throughout the experiment. In separate
177 hygroscopicity (κ) measurement experiments before and after the aging, different RH levels were scanned
178 to measure the RH dependence of hygroscopicity. The hygroscopicity of the film was calculated using the
179 following equation:

$$\kappa = \left(\frac{100}{\text{RH}(\%)} - 1 \right) \frac{m_{\text{water}} \rho_{\text{dry particle}}}{\rho_{\text{water}} m_{\text{dry particle}}} \quad (2)$$

180 The density of OA during aging was assumed to be constant. Note that the relative error in density
181 prediction does not propagate to the relative change in κ . For photolytic aging experiments conducted under
182 humid conditions, the UV light was only turned on during the humid periods, i.e., the particles were
183 irradiated while the flow was humidified in a co-frequency manner, allowing real-time hygroscopicity
184 measurement. The typical frequency profiles for different experiment conditions are provided in Figure S6.
185 There was a slight temperature disturbance induced by irradiance, resulting in a direct frequency offset and
186 an indirect RH adjustment. Such disturbance was corrected to ensure accurate determination of
187 hygroscopicity (Figure S7). The adsorption of water vapor onto the surface of the sensor was found to be 2
188 orders lower than the absorption (Figure S8).

189

190 **Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry (Nano-DESI**
191 **HRMS) measurement** The quartz crystal sensors, prepared in the same way as those used for photolytic
192 aging experiments and loaded with fresh and photolytic aged SOA samples were stored under -18°C until
193 nano-DESI HRMS measurements. The fresh samples may experience evaporation comparable to that
194 observed in dark aging experiments under dry conditions. The design and implementation of the nano-DESI
195 source can be found elsewhere.^{52, 53} Here, all nano-DESI experiments were coupled with a high-resolution

196 LTQ Velos Orbitrap mass spectrometer (Thermo Scientific, Waltham) in negative ion mode (nano-DESI
197 HRMS). All samples were analyzed by MS1 (m/z 100–1000) with a mass resolution of 100 000 (unitless)
198 at m/z 400. The maximum ion injection time was set to 500 ms to reach an automatic gain control (AGC)
199 target of 10^6 . The MS inlet capillary was maintained at 275 °C for all analyses. The nano-DESI assembly
200 was scanned along the XY plane of the substrate at 75 $\mu\text{m/s}$ and 100 MS1 scans were collected for each
201 sample which were then averaged in Xcalibur (Thermo Scientific) and exported as a .csv peak list (5 decimal
202 points per m/z). Centroided peak lists were subsequently processed via MFAssignR, an open-source
203 molecular formula (MF) assignment software package. Since the SOA samples here were generated under
204 NO_x-free conditions, final MF assignments for the collected SOA samples were limited to the form of
205 C_xH_yO_z between m/z 100–1000 with restrictions: 0.3 \leq H/C \leq 3; O/C \leq 2.5; -20 \leq DBE-O \leq 25 (DBE-O:
206 double bond equivalents minus oxygen count). Blank subtractions were conducted, and final assigned
207 formulas were manually inspected and cleaned for outliers. For Nano-DESI HRMS mass spectra-based
208 volatility prediction, we followed Li et al.⁵⁴

$$\log_{10} C_0 = (n_c^0 - n_c) b_c - n_o b_o - 2 \frac{n_o n_c}{n_c + n_o} b_{co} \quad (3)$$

209 where $n_c^0 = 22.66$, $b_c = 0.4481$, $b_o = 1.656$ and $b_{co} = -0.779$.

210

211 **Photolytic rate conversion from laboratory lamps to solar irradiance** The product of absorption cross-
212 section and quantum yield $\sigma_\Phi(\lambda) = \sigma(\lambda)\Phi(\lambda)$ (unit: photon⁻¹ cm²) values for limonene SOA, isoprene SOA,
213 and ambient OA under humid conditions were calculated by normalizing the model-derived photolysis rates
214 at 300 nm and 345 nm to a unit photon flux corresponding to the irradiation of laboratory lamps. The photon
215 flux for each experiment was determined based on the frequency offset caused by light (Figure S9). We
216 assume that $\sigma_\Phi(\lambda)$ at a logarithmic scale decreased linearly as a function of wavelength. By integrating the
217 product of $\sigma_\Phi(\lambda)$ and solar photon flux between 280 nm and 370 nm, the reaction rate of OA photolytic
218 aging under ambient solar radiation was calculated. Here, solar photon flux from the standard solar spectra
219 was used. 370 nm was roughly the upper limit of 345 nm lamp we used in the laboratory and also the upper
220 limit of limonene SOA photoreactivity. Assuming 370 nm as the cutoff wavelength above which no
221 photolytic reactions occur represents a lower estimate for the ambient photolysis rate.

222

223 **Results**

224 **SOA Mass loss** Figure 1 shows the temporal profiles of mass fraction remaining for SOA material derived
225 from isoprene photooxidation (Figure 1a, b) and limonene ozonolysis (Figure 1c, d), representing biogenic
226 OA. During dark aging, both SOA exhibited 20–30% mass decay over 1–2 days purged by zero air,
227 indicating the presence of a significant fraction of S/IVOCs within the organic film.⁵⁰ The evaporation

228 behavior of isoprene-derived SOA showed no discernible difference between dry and humid (~60% RH)
229 conditions. Similarly, the evaporation of limonene-derived SOA exhibited no enhanced mass loss below
230 80% RH (Figure S10). Previous studies reported that kinetic diffusion limitations for anthropogenic SOA
231 derived from aromatics disappeared at RH above 20–40%.⁸ These results suggest that the viscosities of both
232 SOA investigated here were low even under dry conditions and that particle evaporation was not limited
233 by diffusion. The dark mass loss rate of limonene-derived SOA increased at RH above 80%, and the mass
234 fraction remaining was lower compared to dry conditions. Such a high transition RH is likely associated
235 with water-promoted reactions rather than the plasticizer effect that typically occurs at lower RH.^{8, 50} Water
236 can enhance evaporation by promoting the decomposition of oligomers and increasing SOA volatility.
237 Hydroperoxide dimers in α -pinene ozonolysis SOA were found to decompose into monomers, increasing
238 SOA volatility and evaporation rates at similar high RH.⁵⁵ The different water impacts between the two
239 SOA types might be attributed to their chemical compositions, particularly their functional groups.

240 In the photolytic aging experiments, we examined the influences of photolysis wavelength, RH,
241 and the surrounding gas environment. SOA mass losses during photolytic aging were faster and more
242 extensive than during dark aging, suggesting the importance of photolytic mass loss under atmospherically
243 relevant UV wavelengths. Notably, a residual photo-recalcitrant fraction was observed in all photolytic
244 aging experiments. The mass loss rates under 300 nm light were higher than those under 345 nm light for
245 both types of SOA when normalized to the same photon flux (Figure S11). Both SOA showed stronger
246 absorption at 300 nm than at 345 nm, and the higher photon energy at 300 nm could contribute to a higher
247 quantum yield.⁵⁶

248 Regarding the effect of RH, photolytic mass loss fractions were higher under humid conditions for
249 both types of SOA after 40 h of UV irradiation, indicating that aerosol water can enhance photolytic mass
250 losses. Previous studies have found that higher RH promotes SOA photolysis,^{16, 38} although inhibiting
251 effects have been reported elsewhere.²³ Several plausible mechanisms could explain how aerosol water
252 affects photolytic mass loss rates, including matrix effects related to viscosity,^{57, 58} viscosity-induced
253 diffusion limitations, or direct water participation in photolytic reactions. In this study, diffusion-limited
254 evaporation was not observed for either type of fresh SOA during dark evaporation. We hypothesize that
255 water can facilitate fragmentation or induce alternative reactions (see *SOA Chemical Composition Change*).

256 The presence of O₂ also had a substantial impact on photolytic reactions. Compared with photolytic
257 aging experiments conducted in air, the photolytic aging in N₂ showed a higher initial mass loss rate for the
258 first 1–2 h, but a lower overall mass loss fraction afterwards (Figure S12). In a test experiment, we replaced
259 N₂ with air after long-term illumination and observed an elevated photolytic mass loss rate (Figure S13).
260 These results imply that photosensitization-mediated secondary processes might play an important role
261 during photolytic aging depending on the availability of O₂. For example, triplet excited states can act as

262 precursors for singlet oxygen, superoxide, hydroperoxyl radicals, and hydroxyl radicals upon reactions with
263 O₂. The unavailability of O₂ prevents the formation of these oxidants, which might explain the inhibited
264 mass losses in N₂.

265

266 **SOA volatility evolution** Figure 2a shows the mass loss rates of isoprene SOA in dark and with 300 nm
267 UV light turned on and off at 15 min intervals under dry conditions. Upon irradiation, the mass loss rate
268 increased by an order of magnitude compared to dark evaporation, indicating that UV light can directly
269 trigger fragmentation reactions and produce gases, leading to rapid mass loss. However, even after the light
270 was turned off following 15 minutes of illumination, the mass loss rate remained elevated compared with
271 dark aging under both dry and humid conditions (Figure S14). This observation suggests that photolytic
272 aging produces more volatile S/IVOCs, for which evaporation continues after irradiation and is kinetically
273 limited by their volatility. These S/IVOCs (termed as more volatile organic species, MVOS, in this study),
274 quantified by the QCM, had volatilities between 100 and 10⁵ µg m⁻³ (see Text S1). Species with volatilities
275 ≤10 µg m⁻³ were termed as less volatile organic species (LVOS) here. The release of MVOS into the gas
276 phase in the QCM flow cell was kinetically limited by their volatility under both dry and humid conditions,
277 which explains the extended evaporation after the light was turned off. The rapid decrease of mass loss
278 rates during each light-off periods resulted from the evaporation of relatively high volatility species (~10⁵
279 µg m⁻³). We considered photolytic aging of particles to involve two distinct processes driven by photo-
280 induced reactions. The first process corresponds to the production of highly volatile VOCs that evaporate
281 immediately upon irradiation, and their losses gradually decline as the reactants are consumed. These
282 reactions produce volatile species such as carbon monoxide, methane, and small oxidized VOCs (OVOCs),
283 whose evaporation is kinetically limited by the rates of the underlying photochemical reactions. The second
284 process involves the formation of semi- or intermediate-volatility MVOS, whose evaporation increases
285 gradually as photolytic reactions produce and accumulate these products in the particle phase and their
286 release is limited by their partial vapor pressures. Consequently, the overall mass loss rate does not decrease
287 monotonically during each light-on period; instead, it evolves as MVOS production and evaporation
288 progressively approach equilibrium. As photolysis rates decrease with time, evaporation losses become the
289 dominant mass decay process, as indicated by monotonically increasing mass loss rate during each light-
290 on period after 8 h.

291 To examine long-term SOA volatility transformations during photolytic aging, we depict the
292 volatility measured during the last 150 s of each light-off period for isoprene SOA and limonene SOA under
293 both dry and humid conditions (Figure 2b and Figure S14). This value represents the lowest volatility prior
294 to each light-on period and provides robust evidence that photolytic aging produces MVOS and increases
295 SOA volatility at the initial stage of irradiation. These results highlight the importance of considering the

296 volatility and evaporation of photolytic aging products, as the observed mass decay may appear slower than
297 the underlying photolysis rates. Moreover, the evaporation and partitioning of S/IVOCs can be strongly
298 influenced by the OA mass concentration, which is significantly lower in ambient atmosphere than in
299 laboratory experiments. Constrained by the observed long-term volatility evolution, the modeled
300 underlying SOA compositions segregated by volatility are shown in Figure 2c–f (see *Modeling*).

301

302 **SOA hygroscopicity evolution** The evolutions of the hygroscopicity parameter (κ) as a function of mass
303 fraction remaining under humid conditions are depicted in Figure 3 for isoprene photooxidation SOA
304 (Figure 3a) and limonene ozonolysis SOA (Figure 3b). During dark aging, both isoprene SOA and limonene
305 SOA exhibited a minor increase in κ . In contrast, these two types of SOA showed distinct κ changes during
306 photolytic aging, associated with their initial chemical compositions. For isoprene SOA photolytic aging in
307 air, κ remained unchanged until the remaining mass fraction dropped below 0.3, after which κ sharply
308 decreased with further mass decay. In contrast, limonene SOA photolytic aging under 300 nm light in air
309 exhibited a rapid κ increase with mass loss, followed by a slight κ reduction at later stages. Consistent κ
310 trends were observed across replications (Figure S15) and similar κ changes were observed after aging
311 across the entire RH range (Figure S16). On average, during photolytic aging under humid conditions with
312 300 nm light, isoprene SOA κ changed from 0.18 ± 0.02 to 0.16 ± 0.02 while limonene SOA κ increased
313 from 0.06 ± 0.00 to 0.11 ± 0.01 . Although temporal information was not available, dry photolytic aging
314 resulted in a greater decrease in isoprene SOA κ from 0.18 ± 0.02 to 0.14 ± 0.02 , while limonene SOA κ
315 remained unchanged at 0.06 ± 0.00 (Table S6). For photolytic aging in N_2 with 300 nm light, κ values at
316 45% mass fraction remaining were 0.15 ± 0.01 and 0.06 ± 0.00 for isoprene SOA and limonene SOA,
317 respectively, substantially lower than 0.20 ± 0.01 and 0.10 ± 0.01 in air. Those results indicate that
318 photolysis-induced secondary in-particle reactions vary depending on the gas environment.

319

320 **SOA chemical composition changes** To relate photolysis-induced changes in SOA volatility and
321 hygroscopicity to associated changes in SOA chemical composition, we conducted Nano-DESI HRMS
322 measurements directly on QCM crystal sensors for both fresh samples and 300 nm UV-aged samples under
323 dry and humid conditions. Figure 3c, d shows the signal intensities of molecules at each carbon number
324 that are normalized by the total signal intensity for fresh and aged isoprene photooxidation SOA (Figure
325 3c) and limonene ozonolysis SOA (Figure 3d). Figure 3 also shows the signal intensity weighted oxygen-
326 to-carbon (O:C) ratios segregated by monomer unit (carbon number = 5 for isoprene SOA in Figure 3e and
327 10 for limonene SOA in Figure 3f). The colored background shows volatility calculated based on carbon
328 number and O:C ratio following Li et al.⁵⁴

329 Various high-volatility C1–C3 vapors, including carbon monoxide, methane, ethene, and small
330 OVOCs such as formaldehyde, formic acid, acetaldehyde, acetone, acetic acid, and methanol, have been
331 identified as dominant products of OA photolytic aging.^{17, 19, 22, 27, 28, 39, 59–61} Although direct vapor
332 measurements were not available here, Nano-DESI HRMS results for limonene SOA provided consistent
333 insights for the particle-phase remaining after aging. Fresh limonene SOA showed distinct monomer and
334 oligomer patterns (Figure 3d). After photolytic aging under humid conditions, the average molecular weight
335 of dimers decreased from 17.2 to 14.9, and that of trimers decreased from 26.4 to 23.4. Under dry conditions,
336 these values changed to 15.3 and 24.3, respectively (Figure 3f). These results agree with the formation of
337 C1–C3 vapors as dominant products from photolytic reactions. In contrast, the monomers only showed an
338 average reduction in carbon number of about 0.5. Following cleavage of the original carbon skeleton, the
339 fate of the remaining moiety depends on its volatility. The remaining moiety of oligomers with very low
340 volatility can still reside in the particle phase, while for many monomers, the loss of 1–3 carbons might
341 result in the formation of S/IVOCs or even vapors. Consequently, the observed carbon number decrease of
342 particle phase monomers is further regulated by an upper volatility bound. As shown in Figure 3e, f, and
343 Figure S17, S18, the carbon number vs. O:C spaces of both fresh and aged SOA are well constrained by
344 volatility on the low carbon number and low O:C side. These results agree with the observed temporary
345 volatility increase (see *SOA volatility evolution*) and underscore the necessity of considering volatility
346 transformation and partitioning behavior in photolytic aging kinetics.

347 The measured κ changes can be explained by the combined effects of O:C ratio changes and
348 molecular weight changes. The O:C ratio has been found to correlate positively with κ of OA samples
349 previously,^{62–64} although such a relationship may be mediated through solubility.^{65–68} On the other hand, κ
350 decreased with increasing molecular weight for fully dissolved organic compounds or organic mixtures.^{66,}
351 ^{69, 70} For isoprene SOA, the average molecular weight changed insignificantly (<3%) after photolytic aging
352 under dry and humid conditions (Table S6), agreeing with previous research.^{21, 40} The average O:C of
353 isoprene SOA remained unchanged under humid conditions (from 0.90 to 0.88) but decreased to 0.77 under
354 dry conditions. A decrease in O:C was also observed during isoprene SOA photolytic aging in previous
355 chamber study.²³ Since mass loss under humid conditions was higher than under dry conditions, the
356 unchanged O:C under humid conditions suggests that water could induce different in-particle reactions that
357 lead to additional oxygen incorporation and compensate for oxygen loss. These measured O:C changes
358 agree with the minor κ decrease under humid conditions and the larger κ decrease under dry conditions.

359 For limonene SOA, distinct changes in chemical composition were found between photolytic aging
360 under humid and dry conditions. The different effects of water on photolytic reactions of isoprene and
361 limonene SOA can be attributed to their contrasting interactions with water, as also demonstrated in dark
362 aging experiments. Under humid conditions, molecules in limonene SOA underwent water-induced

363 decomposition prior to photoreactions, and Nano-DESI HRMS results revealed a strong reduction in
364 oligomer signals after photolytic aging. In contrast, under dry conditions, molecules larger than the original
365 trimers were detected, and the signal fraction of molecules with carbon number > 30 increased from 0.5%
366 to 2.9%, indicating oligomerization. Limonene ozonolysis SOA was less oxidized and contained more
367 carbonyl and hydroxyl functional groups, which can promote oligomerization pathways such as
368 esterification. In contrast, isoprene SOA was highly oxidized and enriched in carboxylic acid groups, which
369 are less favorable for oligomerization.²¹ Moreover, previous studies have reported that oxidation during dry
370 photolytic aging gradually increases the viscosity of limonene SOA, creating diffusion-limited conditions
371 that might favor oligomerization.⁴⁰ These results are consistent with previous studies showing no oligomer
372 formation through photolytic reactions of limonene SOA in bulk water,²⁶ but significant oligomerization
373 under dry particle conditions.⁴⁰ Meanwhile, the measured limonene SOA O:C ratio increased from 0.53 to
374 0.69 under humid conditions and to 0.64 under dry conditions, similar to previous research for monoterpene
375 ozonolysis SOA.^{21, 38, 40} Following the combined chemical composition changes, κ of limonene SOA
376 showed a substantial increase under humid conditions in contrast to no change under dry conditions (Table
377 S6), as O:C increase effect under dry conditions was offset by a concurrent increase in average molecular
378 weight from 267 Da to 338 Da, which acts to decrease κ .

379 The different directions of O:C ratio changes observed for the two SOA types studied can be related
380 to their initial oxidation states. The O:C change reflects a combination of oxygen loss during carbon
381 skeleton cleavage and oxygen addition in air. Fresh isoprene SOA was highly oxidized and more prone to
382 losing oxygen atoms during carbon skeleton cleavage. In contrast, for fresh limonene SOA with a relatively
383 lower O:C ratio (0.53), photolytic oxygen addition was more likely to surpass oxygen loss and to increase
384 O:C. The O:C ratios for photolytically aged particles under humid conditions were higher than those under
385 dry conditions, possibly because secondary reactions involving water promoted additional oxygen
386 incorporation and generated new highly oxygenated photolytic products. In N₂, where oxygen was
387 unavailable, both SOA exhibited lower κ values during photolytic aging.

388 The average molecular weights of SOA either remained unchanged or increased after photolytic
389 aging (Table S6), which may seem counterintuitive. This can be explained by two factors. First, particle-
390 phase species are regulated by volatility; as S/IVOCs and vapors evaporate, the expected decrease in
391 molecular size cannot be observed in particle phase. Second, as shown in Figure 3c, d, monomers exhibited
392 the greatest loss, resulting in higher oligomer-to-monomer ratios. In some cases such as limonene SOA
393 aged under dry conditions, oligomerization played a significant role, leading to increases in both the
394 oligomer-to-monomer ratio and the average molecular weight.

395

396 **Ambient OA photolytic aging** Photolytic aging experiments were performed on ambient fine particle
397 samples collected in Atlanta during summer. High OA mass fractions (0.67–0.84) were determined by HR-
398 ToF-AMS measurements (Table S3). Major OA factors, including more-oxidized oxygenated organic
399 aerosol (MO-OOA), less-oxidized OOA (LO-OOA), and isoprene-derived OA, together constituted 0.77–
400 0.89 of the OA mass, implying that most of the OA mass was SOA. No significant mass loss was observed
401 after 10 h of dark aging (Figure 4a), indicating that the ambient OA was predominantly low-volatility
402 species, as expected based on the gas–particle partitioning under low OA mass concentrations. 40–50% of
403 the ambient OA mass was depleted after 40 h of photolytic aging with either 300 nm or 345 nm light under
404 humid conditions (RH~60%), the latter representing the most atmospherically relevant conditions. In
405 contrast, mass loss was around 10% under dry conditions with 345 nm light. Water played multiple roles
406 in facilitating photolytic mass loss. For limonene SOA, water promoted oligomer-to-monomer
407 fragmentation prior to photoreactions. For isoprene SOA, water could induce alternative photolytic
408 pathways involving additional oxygen incorporation. Water might also act as a plasticizer, enhancing
409 particle-phase diffusion and thereby influencing secondary reactions and the evaporation of photolytically
410 produced MVOS. The higher photolytic mass losses observed under humid conditions for ambient particles
411 may result from a combination of these factors. We conducted a control experiment using reduced-intensity
412 345 nm irradiance (13.3 W m^{-2} , approximately an order of magnitude lower than the photon fluxes typically
413 used in other experiments, but still comparable to ambient irradiance) with similar particle mass loadings.
414 After normalizing by UV intensity, the reduced-intensity experiment showed a faster mass loss but a similar
415 mass loss fraction (Figure S19). Under higher irradiance, the faster photolytic reaction rates cause MVOS
416 to accumulate to higher mass fractions until photolytic production is balanced by evaporation, which
417 reduces the apparent mass decay because more mass initially remains in the particle phase. The results
418 suggest that converting laboratory results using UV dose alone may underestimate photolytic mass loss
419 rates, and that mass loss rates in real atmosphere can be higher with longer time to evaporate S/IVOCs.

420 The κ change of ambient OA after 40 h of photolytic aging was also determined and the mass-
421 dependent profiles are provided in Figure S20. Ammonium sulfate was assumed to have minor
422 contributions to particle water absorption at ~60% RH. Nitrate contributed negligible mass (Table S3).
423 Figure 4b demonstrates that the photolytic κ change ($\kappa_{\text{aged}}/\kappa_{\text{fresh}}$) under humid conditions for both laboratory
424 SOA LVOS and ambient OA followed a consistent trend dependent on the AMS-measured initial O:C ratio
425 of OA. Photolytic aging increased the O:C ratios of less oxidized SOA, such as monoterpene ozonolysis
426 SOA, through oxidation and functionalization, but decreased the O:C ratios of highly oxidized SOA, such
427 as isoprene SOA. Because changes in average molecular weight were minor, the direction of O:C ratio
428 changes were consistent with the changes in κ . Consequently, photolytic aging under humid conditions

429 increased κ for less oxidized OA but decreased κ for more oxidized OA, resulting in a negative relationship
430 between κ change and the initial O:C ratio of OA.

431
432 **Modeling** We developed a volatility box model to predict the observed mass decay, volatility changes and
433 hygroscopicity evolution within a unified framework during photolytic aging. Details of the box model are
434 provided in Text S1. In brief, the model categorizes SOA species into decadal volatility bins, and first-order
435 photolytic reactions are incorporated by parameterizing the transformation of these volatility bins into
436 products having different volatilities. To constrain the model, we first optimized a volatility distribution
437 with four volatility bins ($C^0 \leq 10, 10^2, 10^3, 10^4 \mu\text{g m}^{-3}$) for fresh SOA that reproduced the observed dark
438 evaporation behavior (Figure 2a, Figure S21, Table S7). Our results agree with reported limonene SOA
439 volatility distributions derived in chamber under dry conditions.⁷¹ Approximately 54% of the collected mass
440 of isoprene SOA was MVOS. For limonene SOA, the fraction of MVOS increased from 25% under dry
441 conditions to 45% under humid conditions.

442 The fresh SOA species (fresh MVOS+LVOS) were then allowed to evaporate and photolyze
443 competitively in a QCM flow cell during photolytic aging. In our final model, we allowed fresh LVOS and
444 fresh MVOS to have different photolysis rates and assumed the photolytic products span from LVOS to
445 MVOS and vapors ($C^0 \geq 10^6 \mu\text{g m}^{-3}$). Both MVOS formation and volatility-dependent photolysis rates are
446 necessary to explain the observed volatility evolution. We measured dark mass loss rates before and after
447 the first light-on period under both dry and humid conditions and found substantially enhanced dark
448 evaporation after photolytic aging, which verified the MVOS formation (Figure 2a, b, Figure S14, S22). In
449 a control experiment, SOA was allowed to evaporate in the dark for 20 h before the light was turned on.
450 We found that the normalized mass loss rates (photolysis rates) decreased by 40% to 70% after evaporation,
451 confirming that the evaporated SOA fraction (i.e., MVOS) exhibited higher photolysis rates.⁶¹ These two
452 factors were then simultaneously optimized in our photolytic volatility transformation model and a higher
453 photolysis rate for fresh MVOS than that of fresh LVOS explained the decreased photolysis rates well after
454 fresh MVOS evaporation (Table S8). The optimized parameterization for the final model of SOA photolytic
455 aging can be found in Table S9. The modeled temporal profiles of the underlying composition, categorized
456 as fresh LVOS, fresh MVOS, aged LVOS, and aged MVOS are shown in Figure 2c–f. Fresh MVOS were
457 rapidly consumed during photolytic aging, accompanied by the formation of aged MVOS that had higher
458 volatility than fresh MVOS on average. The photolytic loss of fresh LVOS prevailed for a longer time and
459 a fraction of the mass was transformed into aged LVOS residing in the particle phase. Those aged LVOS
460 have previously been termed photo-recalcitrant SOA.^{20, 23, 38}

461 The optimized model was then used to predict κ profiles under different conditions by assigning
462 four κ values to fresh LVOS, fresh MVOS, aged LVOS, and aged MVOS. Good agreement between the

463 measurements and model predictions was found. The composition-specific κ values for isoprene SOA and
464 limonene SOA are shown in the insets of Figure 3a and 3b, respectively. For isoprene SOA, fresh LVOS
465 had a higher κ (0.21) than fresh MVOS (0.17), consistent with the observed κ changes during dark aging.
466 Aged MVOS had a κ value of 0.17, while aged LVOS had a much lower κ of 0.11. The initial stage of
467 isoprene SOA photolytic aging was characterized by rapid consumption of fresh MVOS and accumulation
468 of aged MVOS, resulting in no net change in κ . However, as fresh LVOS was transformed into aged LVOS
469 (Figure 2e), κ decreased substantially. For limonene SOA, fresh LVOS and fresh MVOS had κ values of
470 0.06 and 0.03, respectively, while κ of both aged MVOS ($\kappa = 0.15$) and aged LVOS ($\kappa = 0.095$) were much
471 higher. Evaporation of the most hydrophilic MVOS can explain the slight κ reduction observed at later
472 stages of photolytic aging under 300 nm light. The κ value of SOA aged under 300 nm light was higher
473 than that observed under 345 nm light at the same mass fraction, because of more accumulation of aged
474 MVOS driven by the higher photolysis rate under 300 nm.

475 The formation of S/IVOCs had an important influence on hygroscopicity evolution and photolysis
476 kinetics. First, the underlying photolysis rates can be much higher than those calculated by the observed
477 mass decay curves because of the slow evaporation of S/IVOCs. Photolysis rates determined by models
478 with S/IVOCs formation were 1–2.5 times higher than those ignoring S/IVOCs formation (Table S9, S10,
479 S11). The rapid depletion and regeneration of S/IVOCs also depict a more dynamic partitioning nature of
480 SOA during daytime. Previously reported discrepancies between photolytic particle mass loss and released
481 vapor mass might also be explained by S/IVOCs formation. For the two investigated SOA, evaporation of
482 MVOS represented 44–92% of the mass loss of SOA (Table S9). Previous studies combining Proton
483 Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) and QCM measurements found that
484 the measured vapors represented ~50% of the SOA mass losses.¹⁹ However, it should be recognized that
485 total mass is not conserved considering the oxygen addition during SOA aging in air. The ‘true’ vapor mass
486 is obtained by direct vapor measurements, whereas mass changes in substrates or particles represent the
487 ‘net’ vapor mass loss.

488

489 **Atmospheric implications** The photolysis rates for limonene, isoprene SOA, and ambient OA under
490 laboratory irradiance were determined by our volatility box model (Text S1). We then calculated the
491 products of absorption cross section and quantum yield (σ_Φ values) by normalizing the model-derived
492 photolysis rates at 300 nm and 345 nm for MVOS and LVOS (Figure S23, Table S12). The σ_Φ values for
493 limonene and isoprene SOA MVOS were 15–106% of their corresponding SOA absorption cross sections,
494 suggesting that fresh MVOS signifies the fresh SOA absorptivity and exhibits high photoreactivity.
495 Carbonyls^{26, 60} and organic peroxides^{25, 59} have been identified as the main chromophores around 300 nm
496 and are responsible for OA photolytic reactions. Previous research has also shown that the initial stage of

497 α -pinene SOA photolytic aging is accompanied by a rapid decrease in absorptivity associated with
498 carbonyls depletion.²¹ We then multiplied the σ_Φ values by the solar photon flux to calculate the
499 wavelength-dependent ambient photolysis rate $j_{\lambda, \text{amb}}$ assuming that $\log(\sigma_\Phi)$ decreases linearly with
500 wavelength. Figure 4c shows $j_{\lambda, \text{amb}}$ for the less photoreactive compositions of the three types of OA under
501 humid conditions. The dominant wavelength range for photolytic aging in the ambient atmosphere was
502 found to be between 320–350 nm, reflecting a compensation between increasing photon flux and decreasing
503 σ_Φ as the wavelength increases. The integrated photolysis rate under standard solar irradiance, denoted as
504 j_{amb} , was then calculated by integrating $j_{\lambda, \text{amb}}$ from 280 nm to 370 nm. The resulting j_{amb} values and their
505 corresponding lifetimes for different compositions of different OA are summarized in Table S13.

506 A rapid photolytic decay with lifetimes ranging from 8 to 36 h (0.26–1.13% j_{NO_2}) was found for the
507 more photoreactive components. The lifetimes determined here agree with previous estimates of aliphatic
508 carbonyl photolysis lifetimes of several hours for limonene ozonolysis SOA.^{26, 60} The calculated photolysis
509 rate for isoprene MVOS was $3.0 \pm 0.5 \times 10^{-5} \text{ s}^{-1}$ or $1.00 \pm 0.17\% j_{\text{NO}_2}$, which is only slightly lower than that
510 reported for isoprene SOA in a chamber study ($1.5 \pm 0.3\% j_{\text{NO}_2}$).²³ One difference between chamber
511 experiments and substrate experiments is that photo-lensing effect can occur within suspended submicron
512 particles, amplifying the photo flux by a factor of 1–3.⁷² We also recognize that photon flux can be doubled
513 by substrate reflection here, therefore the measurements for suspended particles and thin films on substrates
514 are comparable. A slower decay with lifetimes ranging from 80–200 h (0.04–0.12% j_{NO_2}) was determined
515 for the less photoreactive components, which is still significant compared to the physical lifetime of OA in
516 the atmosphere. LVOS represented 46% of isoprene SOA mass and 55% of limonene SOA mass under
517 humid condition. It turned out that 15% of the ambient OA was rapidly photolyzed with complete mass loss
518 while the remaining 85% photolyzed more slowly, and a relative mass fraction remaining of $60.3 \pm 5.2\%$
519 was determined. This remaining fraction was higher than that determined for isoprene SOA LVOS ($34.0 \pm$
520 19.1%) and limonene SOA LVOS ($40.2 \pm 4.7\%$). This result is expected because the collected particles
521 were already partially photolyzed in ambient air. Moreover, compositions other than SOA might have a
522 higher photolytic mass remaining.

523

524 **Discussion** In this study, we showed that photolytic aging increased OA volatility and reduced 40–66% of
525 the low-volatility OA mass with lifetimes ranging from 8 to 200 h (0.04–1.00% j_{NO_2}) under solar irradiance.
526 Previous modeling studies have applied a lower photolysis rate of 0.02% j_{NO_2} yet still found a strong effect
527 of SOA photolytic aging in decreasing the budget and reshaping the spatiotemporal distribution of
528 atmospheric SOA.^{4, 33, 34} However, these modeling studies applied complete mass loss, which contrasts with
529 the photo-recalcitrant fractions found here and in other laboratory studies.^{20, 23, 38} Therefore, higher
530 photolysis rates combined with remaining photo-recalcitrant fractions should be applied in chemical

531 transport models to better represent OA photolytic aging. Notably, we found that photolytic-induced
532 reactions led to the formation of highly volatile vapors that rapidly entered the gas phase, semi- or
533 intermediate-volatility moieties that underwent dynamic partitioning, and photo-recalcitrant low-volatility
534 products that resided in particle phase with distinct physicochemical properties. Our findings reveal that
535 the κ of OA could be significantly altered by photolytic aging, and the direction of change followed
536 combined effects of O:C ratio changes and molecular weight changes. The κ change direction and
537 magnitude were influenced by the initial OA O:C ratio, humidity, and gas environment. Photolytic
538 oligomerization could play an important role by increasing average molecular weight and suppressing κ ,
539 although the specific conditions favoring oligomerization remain unclear and warrant further investigation.

540 We developed a volatility kinetic model that incorporates photolytic volatility transformation. Our
541 model reproduces the observed non-monotonic high-resolution mass decay profiles, including both light-
542 on and light-off periods as continuous constraints, and the κ evolution profiles, highlighting the importance
543 of volatility transformation, particularly the formation of S/IVOCs, during photolytic aging. Our model can
544 be used to predict photolytic aging processes in the ambient atmosphere with better recognition of
545 underlying volatility changes. As an example, the volatility distribution of ambient isoprene-derived
546 organic aerosol was used to simulate photolytic mass loss in ambient atmosphere. Fresh SOA with a
547 volatility distribution from Lopez-Hilfiker et al ⁷³ was subjected to solar radiation within our
548 thermodynamic model in ambient particles for 240 solar hours (Text S1). The results show that photolytic
549 aging with a higher initial mass concentration leads to a higher photo-recalcitrant fraction because more
550 semi-volatile products can reside in the particle phase as a result of partitioning (Figure S24). The
551 evaporation of S/IVOCs might be kinetically limited by particle-phase diffusion under low RH conditions
552 as SOA becomes increasingly viscous during photolytic aging,⁴⁰ in an originally viscous organic matrix,⁵⁰
553 or when the OA is transported higher up in the atmosphere. Our volatility model offers a basic framework
554 for understanding and predicting the complex dynamics of OA during photolytic aging. Although the
555 current modeling framework does not explicitly include photosensitized reactions, such processes represent
556 a plausible additional pathway for OA aging and are an important topic for future investigation. Broader
557 types of laboratory-generated and ambient OA and the interplay between viscosity and photolytic aging
558 should also be explored in future studies.

559

560 **Author contributions**

561 BB and PFL designed and led the project and contributed to all aspects of the study; YWL, YCW and NS
562 contributed to photolytic aging experiments and data analysis; YTL contributed to HR-ToF-AMS
563 measurements and data analysis; GWV, ZZC and SC contributed to Nano-DESI HRMS measurements and

564 data analysis; FK, AL, SC, NLN contributed to data interpretation and paper writing. All authors reviewed,
565 edited, and approved the paper.

566

567 **Supporting Information:** Additional description of the volatility model; details of film light-attenuation
568 calculations; tabulated experimental details; model results; and supplementary figures illustrating the
569 experimental setup, method validation, and supporting experimental results.

570

571 **Acknowledgments.** This work is supported by the U.S. NSF grant AGS-2131458, and by start-up funding
572 for P. L. from Georgia Tech. N. L. N. acknowledges support from the NOAA Climate Program Office's
573 Atmospheric Chemistry, Carbon Cycle, and Climate program NA21OAR4310221. Y. W. acknowledges
574 support from the National Nature Science Foundation of China Grants 22306059, and the Science and
575 Technology Planning Project of Hunan Province 2023JJ40128. A. L. acknowledges support from the U.S.
576 NSF grant AGS-2131368. Y. L. and F. K. acknowledge support from the NASA Grant 80NSSC19K0326.

References

- (1) M. Kanakidou.; J. H. Seinfeld.; S. N. Pandis.; I. Barnes.; F. J. Dentener.; M. C. Facchini.; R. Van Dingenen.; B. Ervens.; A. Nenes.; C. J. Nielsen.; E. Swietlicki.; J. P. Putaud.; Y. Balkanski.; S. Fuzzi.; J. Horth.; G. K. Moortgat.; R. Winterhalter.; C. E. L. Myhre.; K. Tsigaridis.; E. Vignati.; E. G. Stephanou.; Wilson., a. J. Organic aerosol and global climate modelling: a review. *Atmos. Chem. Phys.* **2005**, *5*, 1053-1123. DOI: <https://doi.org/10.5194/acp-5-1053-2005>.
- (2) Shrivastava, M.; Cappa, C. D.; Fan, J.; Goldstein, A. H.; Guenther, A. B.; Jimenez, J. L.; Kuang, C.; Laskin, A.; Martin, S. T.; Ng, N. L.; Petaja, T.; Pierce, J. R.; Rasch, P. J.; Roldin, P.; Seinfeld, J. H.; Shilling, J.; Smith, J. N.; Thornton, J. A.; Volkamer, R.; Wang, J.; Worsnop, D. R.; Zaveri, R. A.; Zelenyuk, A.; Zhang, Q. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. *Reviews of Geophysics* **2017**, *55* (2), 509-559. DOI: 10.1002/2016rg000540.
- (3) Intergovernmental Panel on Climate, C. *Climate Change 2021 – The Physical Science Basis*; 2023. DOI: 10.1017/9781009157896.
- (4) Hodzic, A.; Kasibhatla, P. S.; Jo, D. S.; Cappa, C. D.; Jimenez, J. L.; Madronich, S.; Park, R. J. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. *Atmospheric Chemistry and Physics* **2016**, *16* (12), 7917-7941. DOI: 10.5194/acp-16-7917-2016.
- (5) Palm, B. B.; Peng, Q.; Fredrickson, C. D.; Lee, B. H.; Garofalo, L. A.; Pothier, M. A.; Kreidenweis, S. M.; Farmer, D. K.; Pokhrel, R. P.; Shen, Y.; Murphy, S. M.; Permar, W.; Hu, L.; Campos, T. L.; Hall, S. R.; Ullmann, K.; Zhang, X.; Flocke, F.; Fischer, E. V.; Thornton, J. A. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. *Proc Natl Acad Sci U S A* **2020**, *117* (47), 29469-29477. DOI: 10.1073/pnas.2012218117.
- (6) George, I. J.; Abbatt, J. P. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. *Nat Chem* **2010**, *2* (9), 713-722. DOI: 10.1038/nchem.806.
- (7) George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A. Heterogeneous photochemistry in the atmosphere. *Chem Rev* **2015**, *115* (10), 4218-4258. DOI: 10.1021/cr500648z.

(8) Liu, P.; Li, Y. J.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Bertram, A. K.; Martin, S. T. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter. *ACS Cent Sci* **2018**, *4* (2), 207-215. DOI: 10.1021/acscentsci.7b00452.

(9) Schnitzler, E. G.; Gerrebos, N. G. A.; Carter, T. S.; Huang, Y.; Heald, C. L.; Bertram, A. K.; Abbatt, J. P. D. Rate of atmospheric brown carbon whitening governed by environmental conditions. *Proc Natl Acad Sci U S A* **2022**, *119* (38), e2205610119. DOI: 10.1073/pnas.2205610119.

(10) V. Pospisilova.; F. D. Lopez-Hilfiker.; D. M. Bell; I. El Haddad; C. Mohr; W. Huang; L. Heikkinen; M. Xiao; J. Dommen; A. S. H. Prevot; U. Baltensperger; Slowik, J. G. On the fate of oxygenated organic molecules in atmospheric aerosol particles. *Science Advances* **2020**, *6* (11). DOI: DOI: 10.1126/sciadv.aax8922.

(11) Li, Y.; Ji, Y.; Zhao, J.; Wang, Y.; Shi, Q.; Peng, J.; Wang, Y.; Wang, C.; Zhang, F.; Wang, Y.; Seinfeld, J. H.; Zhang, R. Unexpected Oligomerization of Small alpha-Dicarbonyls for Secondary Organic Aerosol and Brown Carbon Formation. *Environ Sci Technol* **2021**, *55* (8), 4430-4439. DOI: 10.1021/acs.est.0c08066.

(12) Zhang, X.; McVay, R. C.; Huang, D. D.; Dalleska, N. F.; Aumont, B.; Flagan, R. C.; Seinfeld, J. H. Formation and evolution of molecular products in alpha-pinene secondary organic aerosol. *Proc Natl Acad Sci U S A* **2015**, *112* (46), 14168-14173. DOI: 10.1073/pnas.1517742112.

(13) Ervens, B.; Turpin, B. J.; Weber, R. J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. *Atmospheric Chemistry and Physics* **2011**, *11* (21), 11069-11102. DOI: 10.5194/acp-11-11069-2011.

(14) Lee, A. K. Y.; Hayden, K. L.; Herckes, P.; Leaitch, W. R.; Liggio, J.; Macdonald, A. M.; Abbatt, J. P. D. Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing. *Atmospheric Chemistry and Physics* **2012**, *12* (15), 7103-7116. DOI: 10.5194/acp-12-7103-2012.

(15) Dadashazar, H.; Corral, A. F.; Crosbie, E.; Dmitrovic, S.; Kirschler, S.; McCauley, K.; Moore, R.; Robinson, C.; Schlosser, J. S.; Shook, M.; Thornhill, K. L.; Voigt, C.; Winstead, E.; Ziembra, L.; Sorooshian, A. Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data. *Atmospheric Chemistry and Physics* **2022**, *22* (20), 13897-13913. DOI: 10.5194/acp-22-13897-2022.

(16) Wong, J. P.; Zhou, S.; Abbatt, J. P. Changes in secondary organic aerosol composition and mass due to photolysis: relative humidity dependence. *J Phys Chem A* **2015**, *119* (19), 4309-4316. DOI: 10.1021/jp506898c.

(17) Malecha, K. T.; Nizkorodov, S. A. Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds. *Environ Sci Technol* **2016**, *50* (18), 9990-9997. DOI: 10.1021/acs.est.6b02313.

(18) Wong, J. P. S.; Nenes, A.; Weber, R. J. Changes in Light Absorptivity of Molecular Weight Separated Brown Carbon Due to Photolytic Aging. *Environ Sci Technol* **2017**, *51* (15), 8414-8421. DOI: 10.1021/acs.est.7b01739.

(19) Malecha, K. T.; Cai, Z.; Nizkorodov, S. A. Photodegradation of Secondary Organic Aerosol Material Quantified with a Quartz Crystal Microbalance. *Environmental Science & Technology Letters* **2018**, *5* (6), 366-371. DOI: 10.1021/acs.estlett.8b00231.

(20) O'Brien, R. E.; Kroll, J. H. Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction. *J Phys Chem Lett* **2019**, *10* (14), 4003-4009. DOI: 10.1021/acs.jpclett.9b01417.

(21) Walhout, E. Q.; Yu, H.; Thrasher, C.; Shusterman, J. M.; O'Brien, R. E. Effects of Photolysis on the Chemical and Optical Properties of Secondary Organic Material Over Extended Time Scales. *ACS Earth and Space Chemistry* **2019**, *3* (7), 1226-1236. DOI: 10.1021/acsearthspacechem.9b00109.

(22) Xia, H.; Huang, D.; Bao, F.; Li, M.; Zhang, Y.; Chen, C.; Zhao, J. Photochemical aging of Beijing urban PM(2.5): Production of oxygenated volatile organic compounds. *Sci Total Environ* **2020**, *743*, 140751. DOI: 10.1016/j.scitotenv.2020.140751.

(23) Zawadowicz, M. A.; Lee, B. H.; Shrivastava, M.; Zelenyuk, A.; Zaveri, R. A.; Flynn, C.; Thornton, J. A.; Shilling, J. E. Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol. *Environ Sci Technol* **2020**, *54* (7), 3861-3870. DOI: 10.1021/acs.est.9b07051.

(24) Hopstock, K. S.; Klodt, A. L.; Xie, Q.; Alvarado, M. A.; Laskin, A.; Nizkorodov, S. A. Photolytic aging of organic aerosol from pyrolyzed urban materials. *Environmental Science: Atmospheres* **2023**. DOI: 10.1039/d3ea00078h.

(25) Epstein, S. A.; Blair, S. L.; Nizkorodov, S. A. Direct photolysis of alpha-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content. *Environ Sci Technol* **2014**, *48* (19), 11251-11258. DOI: 10.1021/es502350u.

(26) Bateman, A. P.; Nizkorodov, S. A.; Laskin, J.; Laskin, A. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. *Phys Chem Chem Phys* **2011**, *13* (26), 12199-12212. DOI: 10.1039/c1cp20526a.

(27) Anthony L. Gomez; Jiho Park; Maggie L. Walser; Ao Lin; Nizkorodov, S. A. UV Photodissociation Spectroscopy of Oxidized Undecylenic Acid Films. *J. Phys. Chem. A* **2006**, *110* (10), 3584-3592. DOI: <https://doi.org/10.1021/jp0554442>.

(28) Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A. Ozonolysis and photolysis of alkene-terminated self-assembled monolayers on quartz nanoparticles: implications for photochemical aging of organic aerosol particles. *Phys Chem Chem Phys* **2006**, *8* (21), 2506-2512. DOI: 10.1039/b602704k.

(29) Parmentier, E. A.; David, G.; Arroyo, P. C.; Bibawi, S.; Esat, K.; Signorell, R. Photochemistry of single optically trapped oleic acid droplets. *Journal of Aerosol Science* **2021**, *151*. DOI: 10.1016/j.jaerosci.2020.105660.

(30) Go, B. R.; Li, Y. J.; Huang, D. D.; Chan, C. K. Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems. *Environ Sci Technol* **2024**, *58* (18), 7924-7936. DOI: 10.1021/acs.est.3c10199.

(31) Go, B. R.; Li, Y. J.; Huang, D. D.; Wang, Y.; Chan, C. K. Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate. *Atmospheric Chemistry and Physics* **2023**, *23* (4), 2859-2875. DOI: 10.5194/acp-23-2859-2023.

(32) Go, B. R.; Lyu, Y.; Ji, Y.; Li, Y. J.; Huang, D. D.; Li, X.; Nah, T.; Lam, C. H.; Chan, C. K. Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate. *Atmospheric Chemistry and Physics* **2022**, *22* (1), 273-293. DOI: 10.5194/acp-22-273-2022.

(33) Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime. *Atmospheric Chemistry and Physics* **2015**, *15* (16), 9253-9269. DOI: 10.5194/acp-15-9253-2015.

(34) Lou, S.; Shrivastava, M.; Easter, R. C.; Yang, Y.; Ma, P. L.; Wang, H.; Cubison, M. J.; Campuzano - Jost, P.; Jimenez, J. L.; Zhang, Q.; Rasch, P. J.; Shilling, J. E.; Zelenyuk, A.; Dubey, M.; Cameron - Smith, P.; Martin, S. T.; Schneider, J.; Schulz, C. New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. *Journal of Advances in Modeling Earth Systems* **2020**, *12* (12). DOI: 10.1029/2020ms002266.

(35) Henry, K. M.; Donahue, N. M. Photochemical aging of alpha-pinene secondary organic aerosol: effects of OH radical sources and photolysis. *J Phys Chem A* **2012**, *116* (24), 5932-5940. DOI: 10.1021/jp210288s.

(36) Pospisilova, V.; Bell, D. M.; Lamkaddam, H.; Bertrand, A.; Wang, L.; Bhattu, D.; Zhou, X.; Dommen, J.; Prevot, A. S. H.; Baltensperger, U.; El Haddad, I.; Slowik, J. G. Photodegradation of alpha-Pinene Secondary Organic Aerosol Dominated by Moderately Oxidized Molecules. *Environ Sci Technol* **2021**, *55* (10), 6936-6943. DOI: 10.1021/acs.est.0c06752.

(37) Wu, C.; Bell, D. M.; Graham, E. L.; Haslett, S.; Riipinen, I.; Baltensperger, U.; Bertrand, A.; Giannoukos, S.; Schoonbaert, J.; El Haddad, I.; Prevot, A. S. H.; Huang, W.; Mohr, C. Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition. *Atmospheric Chemistry and Physics* **2021**, *21* (19), 14907-14925. DOI: 10.5194/acp-21-14907-2021.

(38) Baboomian, V. J.; Gu, Y.; Nizkorodov, S. A. Photodegradation of Secondary Organic Aerosols by Long-Term Exposure to Solar Actinic Radiation. *ACS Earth and Space Chemistry* **2020**, *4* (7), 1078-1089. DOI: 10.1021/acsearthspacechem.0c00088.

(39) Arroyo, P. C.; Malecha, K. T.; Ammann, M.; Nizkorodov, S. A. Influence of humidity and iron(III) on photodegradation of atmospheric secondary organic aerosol particles. *Phys Chem Chem Phys* **2018**, *20* (47), 30021-30031. DOI: 10.1039/c8cp03981j.

(40) Baboomian, V. J.; Crescenzo, G. V.; Huang, Y.; Mahrt, F.; Shiraiwa, M.; Bertram, A. K.; Nizkorodov, S. A. Sunlight can convert atmospheric aerosols into a glassy solid state and modify their environmental impacts. *Proc Natl Acad Sci U S A* **2022**, *119* (43), e2208121119. DOI: 10.1073/pnas.2208121119.

(41) M. D. Petters; Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. *Atmos. Chem. Phys.*, **2007**, *7* (8), 1961–1971. DOI: <https://doi.org/10.5194/acp-7-1961-2007>.

(42) Borduas-Dedekind, N.; Nizkorodov, S.; McNeill, K. UVB-irradiated Laboratory-generated Secondary Organic Aerosol Extracts Have Increased Cloud Condensation Nuclei Abilities: Comparison with Dissolved Organic Matter and Implications for the Photomineralization Mechanism. *Chimia (Aarau)* **2020**, *74* (3), 142-148. DOI: 10.2533/chimia.2020.142.

(43) Lambe, A. T.; Ahern, A. T.; Williams, L. R.; Slowik, J. G.; Wong, J. P. S.; Abbatt, J. P. D.; Brune, W. H.; Ng, N. L.; Wright, J. P.; Croasdale, D. R.; Worsnop, D. R.; Davidovits, P.; Onasch, T. B. Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. *Atmospheric Measurement Techniques* **2011**, *4* (3), 445-461. DOI: 10.5194/amt-4-445-2011.

(44) Li, Y.; Bai, B.; Dykema, J.; Shin, N.; Lambe, A. T.; Chen, Q.; Kuwata, M.; Ng, N. L.; Keutsch, F. N.; Liu, P. Predicting Real Refractive Index of Organic Aerosols From Elemental Composition. *Geophysical Research Letters* **2023**, *50* (12). DOI: 10.1029/2023gl103446.

(45) Peng, Z.; Day, D. A.; Stark, H.; Li, R.; Lee-Taylor, J.; Palm, B. B.; Brune, W. H.; Jimenez, J. L. HO_x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling. *Atmospheric Measurement Techniques* **2015**, *8* (11), 4863-4890. DOI: 10.5194/amt-8-4863-2015.

(46) Liu, P.; Zhang, Y.; Martin, S. T. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm. *Environ Sci Technol* **2013**, *47* (23), 13594-13601. DOI: 10.1021/es403411e.

(47) Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; Surratt, J. D.; Donahue, N. M.; Jayne, J. T.; Worsnop, D. R. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. *Atmospheric Chemistry and Physics* **2015**, *15* (1), 253-272. DOI: 10.5194/acp-15-253-2015.

(48) Kuwata, M.; Zorn, S. R.; Martin, S. T. Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen. *Environ Sci Technol* **2012**, *46* (2), 787-794. DOI: 10.1021/es202525q.

(49) Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. *Atmospheric Chemistry and Physics* **2015**, *15* (13), 7307-7336. DOI: 10.5194/acp-15-7307-2015.

(50) Liu, P.; Li, Y. J.; Wang, Y.; Gilles, M. K.; Zaveri, R. A.; Bertram, A. K.; Martin, S. T. Lability of secondary organic particulate matter. *Proc Natl Acad Sci U S A* **2016**, *113* (45), 12643-12648. DOI: 10.1073/pnas.1603138113.

(51) Liu, P.; Song, M.; Zhao, T.; Gunthe, S. S.; Ham, S.; He, Y.; Qin, Y. M.; Gong, Z.; Amorim, J. C.; Bertram, A. K.; Martin, S. T. Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. *Nat Commun* **2018**, *9* (1), 4076. DOI: 10.1038/s41467-018-06622-2.

(52) Vandergrift, G. W.; Shawon, A. S. M.; Dexheimer, D. N.; Zawadowicz, M. A.; Mei, F.; China, S. Molecular Characterization of Organosulfate-Dominated Aerosols over Agricultural Fields from the Southern Great Plains by High-Resolution Mass Spectrometry. *ACS Earth and Space Chemistry* **2022**, *6* (7), 1733-1741. DOI: 10.1021/acsearthspacechem.2c00043.

(53) Schum, S. K.; Brown, L. E.; Mazzoleni, L. R. MFAssignR: Molecular formula assignment software for ultrahigh resolution mass spectrometry analysis of environmental complex mixtures. *Environ Res* **2020**, *191*, 110114. DOI: 10.1016/j.envres.2020.110114.

(54) Li, Y.; Pöschl, U.; Shiraiwa, M. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. *Atmospheric Chemistry and Physics* **2016**, *16* (5), 3327-3344. DOI: 10.5194/acp-16-3327-2016.

(55) Yao, M.; Li, Z.; Li, C.; Xiao, H.; Wang, S.; Chan, A. W. H.; Zhao, Y. Isomer-Resolved Reactivity of Organic Peroxides in Monoterpene-Derived Secondary Organic Aerosol. *Environ Sci Technol* **2022**, *56* (8), 4882-4893. DOI: 10.1021/acs.est.2c01297.

(56) Romonosky, D. E.; Ali, N. N.; Saiduddin, M. N.; Wu, M.; Lee, H. J.; Aiona, P. K.; Nizkorodov, S. A. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols. *Atmospheric Environment* **2016**, *130*, 172-179. DOI: 10.1016/j.atmosenv.2015.10.019.

(57) Lignell, H.; Hinks, M. L.; Nizkorodov, S. A. Exploring matrix effects on photochemistry of organic aerosols. *Proc Natl Acad Sci U S A* **2014**, *111* (38), 13780-13785. DOI: 10.1073/pnas.1322106111.

(58) Hinks, M. L.; Brady, M. V.; Lignell, H.; Song, M.; Grayson, J. W.; Bertram, A. K.; Lin, P.; Laskin, A.; Laskin, J.; Nizkorodov, S. A. Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. *Phys Chem Chem Phys* **2016**, *18* (13), 8785-8793. DOI: 10.1039/c5cp05226b.

(59) Maggie L. Walser; Jiho Park; Anthony L. Gomez; Ashley R. Russell; Nizkorodov, S. A. Photochemical Aging of Secondary Organic Aerosol Particles Generated from the Oxidation of d-Limonene. *J. Phys. Chem. A* **2007**, *111* (10), 1907-1913. DOI: <https://doi.org/10.1021/jp0662931>.

(60) Stephen A. Mang; Dana K. Henricksen; Adam P. Bateman; Mads P. Sulbaek Andersen; Donald R. Blake; Nizkorodov, S. A. Contribution of Carbonyl Photochemistry to Aging of Atmospheric Secondary Organic Aerosol. *J. Phys. Chem. A* **2008**, *112* (36), 8337-8344. DOI: 10.1021/jp804376c.

(61) X. Pan; J. S. Underwood; J.-H. Xing; S. A. Mang; Nizkorodov, S. A. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry. *Atmospheric Chemistry and Physics* **2009**, *9* (12), 3851-3865. DOI: <https://doi.org/10.5194/acp-9-3851-2009>.

(62) Zhou, R.; Deng, Y.; Kunwar, B.; Chen, Q.; Chen, J.; Ren, L.; Kawamura, K.; Fu, P.; Mochida, M. Relationships of the Hygroscopicity of HULIS With Their Degrees of Oxygenation and Sources in the Urban Atmosphere. *Journal of Geophysical Research: Atmospheres* **2022**, *127* (24). DOI: 10.1029/2022jd037163.

(63) J. L. JIMENEZ ; M. R. CANAGARATNA; N. M. DONAHUE; A. S. H. PREVOT ; Q. ZHANG; J. H. KROLL; P. F. DECARLO; J. D. ALLAN; H. COE; N. L. NG; A. C. AIKEN; K. S. DOCHERTY; I. M. ULBRICH; A. P. GRIESCHOP; A. L. ROBINSON; J. DUPLISSY; J. D. SMITH; K. R. WILSON; V. A. LANZ; C. HUEGLIN; Y. L. SUN; J. TIAN; A. LAAKSONEN; T. RAATIKAINEN; J. RAUTIAINEN; P. VAATTOVAARA; M. EHN; M. KULMALA; J. M. TOMLINSON; D. R. COLLINS; M. J. CUBISON; E., J. D.; J. A. HUFFMAN; T. B. ONASCH; M. R. ALFARRA; P. I. WILLIAMS; K. BOWER; Y. KONDO; J. SCHNEIDER; F. DREWNICK; S. BORRMANN; S. WEIMER; K. DEMERJIAN; D. SALCEDO; L. COTTRELL; R. GRIFFIN; A. TAKAMI; T. MIYOSHI; S. HATAKEYAMA; A. SHIMONO; J. Y SUN; Y. M. ZHANG; K. DZEPINA; J. R. KIMMEL; D. SUEPER; J. T. JAYNE; S. C. HERNDON; A. M. TRIMBORN; L. R. WILLIAMS; E. C. WOOD; A. M. MIDDLEBROOK; C. E. KOLB; U. BALTENSPERGER; WORSNOP, D. R. Evolution of Organic Aerosols in the Atmosphere. *Science* **2009**, *326* (5959), 1525-1529. DOI: DOI: 10.1126/science.1180353.

(64) Kuwata, M.; Shao, W.; Lebouteiller, R.; Martin, S. T. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN). *Atmospheric Chemistry and Physics* **2013**, *13* (10), 5309-5324. DOI: 10.5194/acp-13-5309-2013.

(65) Chen, J.; Lee, W. C.; Itoh, M.; Kuwata, M. A Significant Portion of Water-Soluble Organic Matter in Fresh Biomass Burning Particles Does Not Contribute to Hygroscopic Growth: An Application of Polarity Segregation by 1-Octanol-Water Partitioning Method. *Environ Sci Technol* **2019**, *53* (17), 10034-10042. DOI: 10.1021/acs.est.9b01696.

(66) Han, S.; Hong, J.; Luo, Q.; Xu, H.; Tan, H.; Wang, Q.; Tao, J.; Zhou, Y.; Peng, L.; He, Y.; Shi, J.; Ma, N.; Cheng, Y.; Su, H. Hygroscopicity of organic compounds as a function of organic

functionality, water solubility, molecular weight, and oxidation level. *Atmospheric Chemistry and Physics* **2022**, 22 (6), 3985-4004. DOI: 10.5194/acp-22-3985-2022.

(67) Lee, W. C.; Deng, Y.; Zhou, R.; Itoh, M.; Mochida, M.; Kuwata, M. Water Solubility Distribution of Organic Matter Accounts for the Discrepancy in Hygroscopicity among Sub- and Supersaturated Humidity Regimes. *Environ Sci Technol* **2022**, 56 (24), 17924-17935. DOI: 10.1021/acs.est.2c04647.

(68) Xiong, C.; Chen, X.; Ding, X.; Kuang, B.; Pei, X.; Xu, Z.; Yang, S.; Hu, H.; Wang, Z. Reconsideration of surface tension and phase state effects on cloud condensation nuclei activity based on the atomic force microscopy measurement. *Atmospheric Chemistry and Physics* **2022**, 22 (24), 16123-16135. DOI: 10.5194/acp-22-16123-2022.

(69) Nakao, S. Why would apparent κ linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols. *Aerosol Science and Technology* **2017**, 51 (12), 1377-1388. DOI: 10.1080/02786826.2017.1352082.

(70) Wang, J.; Shilling, J. E.; Liu, J.; Zelenyuk, A.; Bell, D. M.; Petters, M. D.; Thalman, R.; Mei, F.; Zaveri, R. A.; Zheng, G. Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility. *Atmospheric Chemistry and Physics* **2019**, 19 (2), 941-954. DOI: 10.5194/acp-19-941-2019.

(71) Jieyuan Zhang; Kara E. Huff Hartz; Spyros N. Pandis; Donahue, N. M. Secondary Organic Aerosol Formation from Limonene Ozonolysis: Homogeneous and Heterogeneous Influences as a Function of NO_x. *J. Phys. Chem. A* **2006**, 110 (38), 11053–11063. DOI: <https://doi.org/10.1021/jp062836f>.

(72) Arroyo, P. C.; David, G.; Alpert, P. A.; Parmentier, E. A.; Ammann, M.; Signorell, R. Amplification of light within aerosol particles accelerates in-particle photochemistry. *Science* **2022**, 376 (6590), 293-+, Article. DOI: 10.1126/science.abm7915.

(73) Lopez-Hilfiker, F. D.; Mohr, C.; D'Ambro, E. L.; Lutz, A.; Riedel, T. P.; Gaston, C. J.; Iyer, S.; Zhang, Z.; Gold, A.; Surratt, J. D.; Lee, B. H.; Kurten, T.; Hu, W. W.; Jimenez, J.; Hallquist, M.; Thornton, J. A. Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. *Environ Sci Technol* **2016**, 50 (5), 2200-2209. DOI: 10.1021/acs.est.5b04769.

List of Figures

Figure 1. Temporal decay of the mass fraction for isoprene photooxidation SOA and limonene ozonolysis SOA during dark and photolytic aging under varying relative humidity in a QCM flow cell. The upper panels (a, b) show the temporal decay of mass fraction for isoprene photooxidation SOA, while the lower panels (c, d) display the same profiles for limonene ozonolysis SOA. The aging processes include dark aging, photolytic aging with 300 nm light (a, c), and with 345 nm light (b, d). These experiments were conducted at different relative humidity (RH) levels in zero air. Under humid conditions, the isoprene SOA experiments were conducted at approximately 60% RH, while the limonene SOA experiments were at around 80% RH. An uncertainty of 0.75 μg was used for a single measurement, and for multiple measurements, a collective uncertainty is shown as the shaded area. The time resolution for plotting is 30 min.

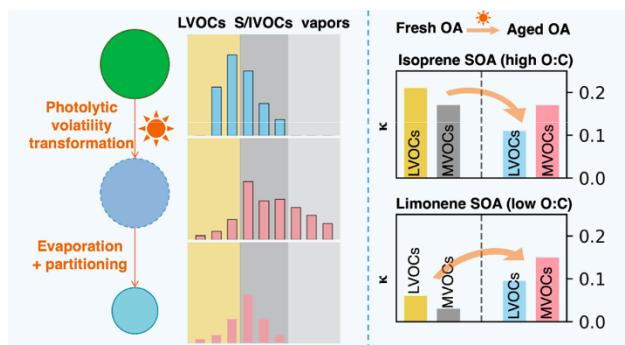

Figure 2. Measured and modeled mass loss rates, intrinsic volatilities and absolute masses of isoprene and limonene SOA during photolytic aging under humid and dry conditions in a QCM flow cell. (a) Comparison of measured and modeled mass loss rates for isoprene SOA during dark aging and photolytic aging with 300 nm light under dry conditions. The temporal resolution is 2.5 min. Pink shading represents periods of illumination. The time axis denotes the relative time since the first light-on. (b) Comparison of measured and modeled intrinsic volatilities of isoprene SOA under dry conditions. The shown intrinsic volatilities correspond to the last 2.5 min of each light-off period. Intrinsic volatility was modeled using a volatility box model that incorporates photolytic volatility transformation. Further model details are provided in Text S1. (c-f) Measured and modeled absolute masses for isoprene and limonene SOA under both humid and dry conditions. The modeled mass is segregated into fresh MVOS (more volatile organic species), fresh LVOS (less volatile organic species), aged MVOS, and aged LVOS.

Figure 3. Hygroscopicity (κ) evolution and chemical composition transformation of SOA. The left panels (a, b) show the hygroscopicity (κ) evolution as a function of mass fraction remaining for isoprene photooxidation SOA (a) and limonene ozonolysis SOA (b) during dark and photolytic aging under different lamp wavelengths and gas compositions in a QCM flow cell. Data points represent binned averages at 2% mass fraction intervals. To model κ evolution in zero air, each segregated composition, i.e., fresh MVOS, fresh LVOS, aged MVOS, and aged LVOS, was assigned a unique κ value. Determined parameterization is shown in the insets. The middle panels (c, d) show Nano-DESI HRMS signal intensities normalized by carbon number for fresh and aged samples with 300 nm light under humid and dry conditions for isoprene photooxidation SOA (c) and limonene ozonolysis SOA (d). The total signal after aging was further scaled based on QCM-measured mass fraction remaining. The right panels (e, f) show the oxygen-to-carbon (O:C)

ratios segregated by a monomer unit (carbon number = 5 for isoprene SOA, e and 10 for limonene SOA, f). Volatility was calculated based on carbon number and O:C following Li et al.⁵⁴

Figure 4. Analysis of photolytic aging processes in ambient organic aerosols. (a) Temporal decay of mass fraction for ambient OA during dark and photolytic aging under varying RH in a QCM flow cell in zero air. A control experiment was conducted using low-intensity 345 nm irradiance (13.3 W m^{-2} , an order of magnitude lower than typical irradiance). The shaded area represents the mass-induced uncertainty. For photolytic aging under humid conditions with typical irradiance, uncertainties for all mass decay curves are merged. (b) Hygroscopicity change ($\kappa_{\text{aged}}/\kappa_{\text{fresh}}$) for isoprene SOA LVOS, limonene SOA LVOS, and ambient OA as a function of the O:C ratios before aging. The hygroscopicity changes for SOA were determined using volatility box model. For ambient OA, the hygroscopicity changes were obtained from the measured values before and after ~ 40 h of photolytic aging. The dashed dot line is shown to guide the eye. (c) Wavelength-dependent ambient photolysis rates ($j_{\lambda, \text{amb}}$) under standard solar radiation for isoprene SOA LVOS, limonene SOA LVOS, and less photoreactive ambient OA LVOS under humid conditions.

TOC:

Supplementary Materials:

S1. Volatility box model

S2. QCM film thickness and light attenuation ratio calculations

Table S1–S13

Figure S1–S24