
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Behind Defective Mobile AR Apps: Studying Reviews and
Bugs of Android AR Software with Comparison to Prior Bug
Studies
ANONYMOUS AUTHOR(S)

As Augmented Reality (AR) applications grow in popularity, understanding and addressing AR software bugs
becomes crucial. AR applications, due to their interaction with the physical world, present unique challenges
that differ from traditional software. In this study, we try to understand the root causes of commonly complained
mobile AR bugs. In our study, we collected user reviews from Google Play market, and issue reports from open
source AR software projects from GitHub. We categorized bug symptoms and root causes, and studied the
correlation between them. We further studied the fixing commits of these bugs and compare their distribution
with findings from prior bug studies. Our study finds that (1) AR apps users are mostly affected by dysfunction
bugs such as Hang and Crash and these bugs are common in AR apps, (2) API Misuse is the mostly common
root cause of AR bugs, and property setting error is the most common form of API Misuse, (3) a small number
of API patterns and event handling practices may account for a large portion of API Misuse, and (4) besides
AR UI symptoms and the API Misuse root cause, bugs in AR apps have similar characters with bugs in other
Android apps.

ACM Reference Format:
Anonymous Author(s). 2025. Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR
Software with Comparison to Prior Bug Studies. 1, 1 (September 2025), 20 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 Introduction
Augmented Reality (AR) technology complements the real world in the camera with a digital
layer where various virtual object models can be placed. Using real-time camera feedback, data
from advanced sensors such as gyroscope, depth sensor, and onboard computational power, AR
Applications enrich the real-world environment through this digital layer and provide various
immersive user experiences. Estimated revenue by market size of AR as of 2024 is $40 billion
where 25% of that is in mobile AR [34]. Several AR functionality-specific devices such as Ray-ban
Meta [24], Meta Quest [23], Microsoft HoloLens [25], Apple Vision Pro [2], and other wearable
heads-up display devices, have been actively developed and launched into market which makes AR
gradually more accessible. More importantly, billions of handheld smartphones are also becoming
capable of AR. As of 2024, approximately 1.73 billion [33] active AR user devices are available. In
the meantime, software developers have also produced many AR applications in domains ranging
from education and gaming to retail and healthcare [11]. With advancements in mobile technology
and wearable devices, more users are engaging with AR experiences for entertainment, training,
and practical applications like navigation and shopping.
The quality of AR applications is crucial to ensuring smooth performance, realistic visuals,

and intuitive interactions. Poorly designed AR experiences can lead to user frustration, motion
sickness, or lack of engagement, ultimately harming adoption rates. High-quality AR applications,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/9-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Anon.

on the other hand, enhance immersion and usability, making them more effective and enjoyable.
Furthermore, since users may use AR applications to directly interact with the physical world, their
defects are more likely to cause immediate consequences in the real world. For example, erroneous
output in surgery-aiding AR software [28] may mislead the doctor and lead to medical accidents,
and errors in mobile AR navigation software may block the driver’s / pedestrian’s eyesight and
cause traffic accidents.
AR applications’ close interaction with the physical world also leads to many new types of

bugs that did not exist before in traditional software. For example, object misplacement bugs [32]
occur where virtual objects are not placed at users’ intended positions in the physical world. lose
tracking bugs [42] occur when placed virtual objects are drifting from their original location
while users move the camera. There are also object-rendering bugs where the color, reflection,
or shade of virtual objects become incorrect when placed into the physical world, especially in
certain lighting conditions. These new types of bugs bring unique challenges to software quality
assurance. Furthermore, some of these bugs are due to the limitations of existing AR techniques
and/or frameworks instead of defects in the application code.
Given the importance, obscurity, and complication of AR bugs, we believe empirical studies to

understand the landscape of AR bugs will likely (1) benefit the developers by providing a guideline
for them to avoid pitfalls and common mistakes in using AR frameworks and developing AR apps,
(2) benefit AR product managers by summarizing how the limitations of current AR frameworks
may lead to application failures that finally affect user experience so that they can make wiser
design and market decisions, and (3) benefit the software engineering researchers by providing
a basis for developing the best AR software engineering practices and tool support for AR bug
detection and repair.

To achieve these goals, this paper presents an empirical study that investigates the user reviews
of popular Android AR apps, common symptoms of documented bugs in Android AR software
projects, and the bugs’ root causes. We decided to have our study focus on Android AR apps
for the following reasons. First, mobile phones are the most widely used AR-enabled devices,
so studying bugs in mobile AR apps can provide a representative view of AR apps. Second, the
Android ecosystem is generally open-source, making it possible to study the root causes of bugs in
the source code. The user reviews from the Google Play store also allow us to connect symptom
categories observed in the bugs with those being complained about by users. Third, bugs in GUI-
based Android applications have been well studied and categorized in a recent work [41] (referred
to as the DroidBugStudy in the rest of the paper), so focusing on Android allows us to perform
a comparison study and understand how bugs in AR apps differ from bugs in traditional mobile
applications. We are also aware of a prior work by Li et al. [21] (referred to as the WebXRBugStudy
in the rest of the paper) which studied more than 300 bugs fromWeb-based XR software projects. So,
we can further compare our study results on mobile AR bugs with their results to find commonalities
and differences in bugs from different platforms.

Our study collected 2,846 closed issues from Github open-source AR projects which use Google
ARCore as their AR platform. From these issues, we identified 288 bug reports that are confirmed
by the developers and are directly related to AR features. We also collect 5,440 user reviews of top
AR apps from Google Play Store [7], from which we identified 635 reviews that complain about app
failures or bugs. It should be noted that most top AR apps are not open source, so we cannot trace
reviews directly back to the corresponding bug reports, but we can still link the two datasets with
symptoms and investigate the potential root causes of the most widely complained symptoms. We
further analyzed the the code and change features of the code commits associated with fixed bug
reports to confirm bug root causes and understand repairing patterns. Finally, we align our findings

, Vol. 1, No. 1, Article . Publication date: September 2025.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 3

with two earlier studies on Web AR bugs and mobile GUI bugs to summarize commonalities and
differences.

To sum up, our paper mainly makes the following contributions.
• A large dataset combining user reviews of top Android AR apps and bug reports from
open-source Android AR software projects in Github.

• A categorization of AR-related bug reports based on symptoms, root causes, and code repair
features.

• A correlation study of user reviews of AR apps and AR bug reports based on symptoms.
• A comparison of study findings from mobile AR bugs versus Web AR bugs and mobile GUI
bugs.

The rest of the paper is organized as follows. In Section 2, we list our research questions, as
well as the purposes and approaches to answer these questions. In Section 3, we describe our
methodology for data collection and analysis. In the following Sections 4 and 5, we present our
empirical data to answer the research questions, highlight the major findings, and discuss how
some important lessons can be learned from the observations of the study results. We summarize
some related works in Section 6. Finally, we conclude the study in Section 7 and point to some
future works.

2 ResearchQuestions
In this study, we aim to answer the following five research questions.

• RQ1: What types of Android AR app bugs are mostly complained in user reviews?
RQ1 tries to understand users’ perception of Android AR bugs, and find out what quality
factors are affecting users’ acceptance of AR apps. To answer RQ1, we collected AR app
reviews from the Google Play Store, identified the negative reviews that complained about
app bugs, and categorize the reviews by based on the symptoms of these bugs.

• RQ2: What are the common symptoms and root causes of Android AR bug reports?
RQ2 tries to understand developers’ perception of Android AR bugs, and find out the
common types of bugs they detected and fixed. To answer RQ2, we collected confirmed AR
bug reports from open source AR projects in Github, and categorize them based on their
symptoms and root causes.

• RQ3: How symptoms are correlated to root causes in Android AR bug reports?
RQ3 tries to understand what are the mostly likely root causes of specific bug symptoms.
Since symptoms can also be linked to user reviews, we can further investigate what types
of software defects are triggering most user complaints. To answer RQ3, we performed
correlation analysis between symptoms and root causes of AR bug reports to identify strong
correlations between symptoms and root causes.

• RQ4: What are the common code repair patterns of Android AR bugs? RQ4 tries
to understand the code features of AR bug repairs and what code / API methods are often
involved in them. The findings may be helpful for designing detection and repair tools for
AR bugs. To answer RQ4, we performed code analysis on code commits associated with
AR bugs reports, and report the statistics on different code-related facts of the commits.

• RQ5: Are findings from Android AR bugs similar to those from Android GUI bugs
andWeb AR bugs? RQ5 tries to understand the uniqueness of Android AR bugs, and their
relationship with Android GUI bugs / Web AR bugs. It will help researchers better place
problems and techniques related to Android AR bugs in the research domain. To answer
RQ5, we aligned our labeled bug symptoms and root causes with those in two previous
studies, and compared our statistical results and findings with theirs.

, Vol. 1, No. 1, Article . Publication date: September 2025.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Anon.

Package Name Total Reviews Rating Downloads
com.tasmanic.camtoplanfree 71.0K 4 10.0M
com.grymala.arplan 89.3K 4.2 5.0M
com.grymala.aruler 84.4K 3.9 5.0M
com.sensopia.magicplan 81.4K 4.1 5.0M
io.spoton.viewer 11.6K 4.2 5.0M
com.Elementals.Bike3DConfigurator 40.3K 4 1.0M
com.ar.augment 32.1K 3.8 1.0M
com.arloopa.arloopa 27.3K 4.7 1.0M
com.blippar.ar.android 26.9K 2.4 1.0M
com.puteko.colarmix 20.0K 3.5 1.0M

Table 1. Top 10 AR Apps in Our Review Dataset
3 Methodology
Our approach to this study consists of three major steps. The first step is data collection. In this
step we collect user reviews on AR applications on Google Play Store, and collect a list of issues
created on open-source AR applications on GitHub. The next step is data cleaning. In this step we
filter out the user reviews that are either five stars, written in non-English text, or does not contain
any legible text. In this step we also filter out the GitHub issues to only keep those that are closed
and does not belong to any library or framework. After data cleaning we categorize the data in the
third step, where two of the authors independently labeled all the data with conflicts resolved with
other authors.

3.1 Data Collection
Our data collection consists of two parts: the collection of user reviews from Google Play Store,
and the collection of issue reports from the Github repositories.
Collection of User Reviews. To collect user reviews from Google Play store, we first need to

identify top AR apps. In particular, we first go to the AR category of Google Play Store, and sort
the apps by their number of downloads. From the sorted app list, we consider only the apps that
has the words “AR”, “Augmented”, or “Reality” in their name or summary. We perform this filtering
to identify the apps with AR as their main feature, and remove the general Apps with AR features,
such as Amazon and Snapchat. We further set a criterion of having at least 1000 downloads and 10
reviews. Finally, we acquire 67 apps in the sorted list which satisfy our filtering criterion above.
The package names of the 67 apps is available on our project website. For each of the 67 apps,
we download up to 150 most recent reviews from each app because Google is restricting review
downloading now and shows only up to 150 reviews on the web portal of Google Play. From these
apps, we collected 5,440 reviews in total. We further filter out all the five-star reviews because they
should not mention any defects of apps, and end up acquire a dataset of 2,588 non-perfect reviews.
Table 1 presents the top 10 apps in our dataset with highest downloads.

Collection of Issue Reports. To collect issue reports from Github, we first use code search in
Github to fetch all the projects whose code contains import statements of Google AR Core Package
Signature com.google.ar.core, so we can tell that AR Core has been used in the project. Then,
from the projects, we keep only those with closed issues, and we collect all those closed issues to
form a dataset of 2,846 issues from 77 apps. Table 2 presents the top 10 software projects in our
dataset with highest number of issue reports.

3.2 Data Labeling and Categorization.
Data Labeling Procedure. In our study, we need to label a lot of user reviews and issue reports to
categorize them and extract their characteristics. To enhance the quality of our labeling outcomes,
we use the following procedure of three steps. First, for each labeling task, two authors manually
go over all the data independently and create their own labels for each data item. Second, all the
labels created by both labeling authors are brought together into a discussion to align them. Other

, Vol. 1, No. 1, Article . Publication date: September 2025.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 5

Repo Name Total Issue Reports Stars
introlab/rtabmap 664 3.3K
Azure/azure-spatial-anchors-samples 350 2.1K
SceneView/sceneform-android 246 666
tukcomCD2024/DroidBlossom 210 10
spe-uob/2021-ARMessaging 178 12
gluonhq/attach 156 53
isl-org/OpenBot 148 3.1K
willowtreeapps/vocable-android 142 121
appoly/ARCore-Location 82 483
giandifra/arcore_flutter_plugin 59 446

Table 2. Top 10 Software Projects in Our Issue Report Dataset

authors also provide their opinions until all the labels are aligned, so a unified labeling system is
created. Third, both labeling authors re-label the data items (i.e., translate their original labels to
labels in the unified labeling system), and any unresolved conflicts are given to a third author to
resolve. To measure the consistency of the labeling, we further calculate the Cohen’s Kappa value
for each labeling task.

Labeling of User Reviews.When labeling user reviews, we first removed all the five star reviews
because they unlikely contain any descriptions of defects. From the remaining 2,588 reviews, we
identified 635 reviews complaining about specific misbehavior (i.e., we removed the bad reviews
with just general judgments such as “Trash app.”, and reviews asking for only feature changes such
as “The app should support GPS.” or “The app has too many ads.”).

When trying to categorize the 635 reviews by their symptoms, we further refer to the symptom
classification system in WebXRBugStudy [21] on the Web AR bugs and reuse their symptom
categories for better alignment. For symptoms not covered in the previous study, we label them
with new category tags and resolve the conflicts using the approach mentioned above.

Labeling Symptoms of Issue Reports.When labeling issue reports, we first performed a high-
level classification of the issue reports into three categories: non-bugs, non-AR-bugs, and AR-bugs.
The non-bugs category includes issue reports that describe feature requests, questions, comments
and other software related issues, but not a buggy behavior of the corresponding software. The
non-AR-bugs category includes issue reports that describe a buggy behavior, but the behavior is
not related to AR features of the corresponding software. For example, errors in software log-in,
network connections, system I/O and crashes happening before the AR sessions are turned on are
all considered as non-AR-bugs. The AR-bugs category includes issue reports that describe buggy
behavior related to AR features (i.e., those happened when the AR session is being started). Among
all 2,846 issue reports, our initial labeling process identified 296 AR-specific bugs reports and 184
general bugs reports.

We further label the AR-bugs to categorize them based on their symptoms. During the labeling,
we refer to the same set of category tags we developed during the labeling of user reviews, and
create new category tags only when we are not able to find a proper category tag in the existing
set.
Labeling Root Causes of Issue Reports. Besides symptoms, we also label the issue reports

based on their root causes. Since we want to align our study with existing studies, before labeling,
we try to align the root cause classification systems in both DroidBugStudy [41] (which has 16 root
causes in three categories) and WebXRBugStudy [21] (which has 19 root causes in seven categories)
papers. It should be noted that when labeling symptoms we refer to only the WebXRBugStudy
because we focus on AR bugs and thus most of the symptoms in DroidBugStudy are irrelevant.
However, the root causes are more common and apply to both AR and non-AR features, so we
decide to further consider the root-cause classification system in DroidBugStudy.

In Table 3, we present how we align root causes from DroidBugStudy and WebXRStudy to form
a unified root cause classification. From the tables, we can see that the two classifications differ

, Vol. 1, No. 1, Article . Publication date: September 2025.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Anon.

Root Cause DroidBugStudy WebXRStudy
API Misuse Third Party Library Misuse (subtype of General

Programming Error), Android API Misuse (subtype
of Android-related error)

ARG (API Arguments), including sub-
types of Wrong API Configurations,
Missing Arguments, and Wrong Argu-
ment Values

General Programming Error General Programming Error, including subtypes of
incorrect assignments, missing case, multi-thread
error, wrong control flow, and exception handling

Data Asset Android Resource Related Error (subtype of
Android-related error)

External Bugs Third-party Library Bugs and Limitations, Android
Framework Bugs (subtype of Android-related error)

DEPEND (bugs in dependencies)

Event Handling Android Mechanism Related Error (subtype of
Android-related error)

EVENT (Event Handling), including sub-
types lifecyle events, system events and
other events

Incompatibilities Android Compatibility Issue (subtype of Android-
related error)

COMPAT (Incompatibilities) including
hardware, library, OS, and other incom-
patibilities

Missing Feature Missing Feature (subtype of General Programming
Error)

DUI (missing support of diversified UI)

Redundant Code RDDOP (Redundant Operations)
Table 3. Alignment of Root Causes in DroidBugStudy, WebXRStudy, and Our Study

a lot on their granularity on different bug categories. In particular, DroidBugStudy has a more
fine-grained classification for general program errors, while WebXRStudy has a more fine-grained
classification for life-cycle events, API misuse, and incompatibility. This is reasonable because the
two studies were performed on two very different data sets (Android functional bugs vs. Web-
based XR bugs), and their classification systems were generated through open coding based on the
distribution of root causes in their corresponding dataset.

However, the data-centric classification systems also make it very difficult to compare results of
different studies and understand the characteristic of certain bug groups (e.g., Android AR Bugs) in
a larger context. Therefore, in our study, we first create a union set of all root causes from both
studies and then map these root causes to each other to align the two bug classifications.
The root causes from both studies are aligned to eight root causes. We performed some re-

categorization to enable the alignment. For example, in DroidBugStudy, Third Party Library Misuse
and Android API Misuse are subtypes of General Programming Error and Android Related Error,
respectively, but they are grouped as one root cause inWebXRBugStudy. For alignment, we consider
them as one root casue API Misuse. Also, DUI (missing support of Diversified UI) is a root cause in
WebXRBugStudy. We believe the root cause Missing Feature from DroidBugStudy is more general
and DUI is a special case of Missing Feature, so we align them into one root cause Missing Feature.

In our root cause study, we use this pre-defined aligned classification instead of creating a new
classification from the data (although we still add new root causes that are not covered by the
existing classification system), so our study results can be easily compared with both previous
studies.
We calculated the Cohen’s kappa scores for all of our labeling tasks. Specifically, the score is

0.845 for identifying defect-related user review, 0.736 for categorization of user reviews, 0.764 for
identifying confirmed AR-related and non-AR-related issues reports, 0.720 for labeling symptoms
of issue reports, and 0.708 for labeling root causes of issue reports. The scores are mostly between
0.7 and 0.8, showing substantial agreement between labeling results.

3.3 Code Commit Analysis
For a portion of the bugs confirmed by the developers, we are able to track their corresponding
bug fixing commits. From these commits, we can further study how Android AR bugs were fixed
by the developers. Our commit tracking includes the following three steps.

, Vol. 1, No. 1, Article . Publication date: September 2025.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 7

Fig. 1. Categorization of Bug Symptoms in AR App Reviews

• For each bug, we examine the comments in the corresponding issue report to identify any
commit IDs or pull request IDs. For all commits or pull requests mentioned in the comments,
we investigate the their code change and messages to find out whether they are fixes of
the bug. It should be noted that we may end up identify multiple commits or part of a pull
request (when a pull request contains multiple commits) as the fixing commits of a bug.

• If we cannot identify bug-fixing commits or pull requests in the comments, we acquire all
the code commits between the date of the last comment indicating the bug has not been
fixed (e.g., “Will look into it”, “The bug seems to be related to ...”, “Will fix it”) and the date
of the first comment indicating the bug has been fixed (e.g., “Closed”, “Fixed in version
2.0”, “Should work now”). In the acquired commits, we search for the bug report ID and the
keywords in the bug report title, and try to identify bug-fixing commits from the search
results.

• If we still cannot identify bug-fixing commits from the search results, we perform a final
scan on up to 10 commits immediately before the date of the first comment indicating the
bug has been fixed, and committed by the developer who posted that comment.

With the process above, we are able to map 227 of all 480 confirmed bugs to their bug-fixing
commits. We believe this matched dataset can also be valuable for future research in the area.
Our study then tracked several key metrics from each bug-fixing commit: the number of files

modified, lines of code (LOC) added or removed, and changes to API calls. Tracking API calls
added or removed helps us understand a bug fix’s correlation with underlying AR frameworks and
libraries, and whether certain API methods are specifically error-prone.

4 Study Results
In this section, we present the study results to answer each of the research questions.

4.1 RQ1: Commonly Complained Bugs from User Reviews
To answer RQ1, we categorize 635 negative reviews from 67 top AR apps mentioning defective app
behaviors, and the results are shown in Figure 1. Our categorization identifies the following major
complained bug symptoms.

• Hang: A user review is put into this category when it contains descriptions such as “hang”,
“black/white screen”, or “freezing”. It indicates that the app goes into an abnormal state and
cannot respond to any user input.

, Vol. 1, No. 1, Article . Publication date: September 2025.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 Anon.

• Crash: A user review is put into this category when it contains descriptions such as “crash”
or “unexpected quit”. It indicates that the app unexpected exits with failures.

• Misplacement: A user review is put into this category when it contains descriptions such
as “float”, “block”, or “object placed too far”. It indicates that a virtual object is not placed in
the correct location.

• Lose Tracking: A user review is put into this category when it contains descriptions such as
“no plane” or “cannot find surface”. It indicates that the app cannot properly fetch trackables
(e.g., planes, images, human faces) from the physical world.

• Interaction Error: A user review is put into this category when it contains descriptions
such as “no effect”, “nothing happens”, or “it should do ... but”. It indicates that the app is
not deliver a proper response / action after a user interaction.

• Power&Perf: A user review is put into this category when it contains descriptions such as
“lag”, “slow”, or “overheating”. It indicates that the app is experiencing low performance or
fast energy drainage.

• Render: A user review is put into this category when it contains phrases such as “looks
weird” or “wrong color”. It indicates that a virtual object is not rendered correctly.

• Login: A user review is put into this category when it contains phrases such as “login error”
or “cannog login”. It indicates that the app shows error in its login process.

It should be noted that the number of bugs in negative reviews does not necessarily reflect the
number of bugs. For example, crashes and hangs are easy-to-see errors, so their proportion may
have been exaggerated in the statistics because they are more severe and users facing them are
more likely to write a negative review. Despite the imprecise reflection of bug distribution, we
believe the categorization can provide a general landscape on what AR app users mostly care and
complain about.
From Figure 1, we have the following observations. First, Hang and Crash are the two largest

categories, together accounting for almost half of the reviews. Asmentioned above, this is reasonable
as these two types of bugs are the most severe and the most likely to be reported in reviews. Second,
Misplacement, Lose Tracking, and Interaction Error are the following three largest bug categories.
All of them are related to augmented reality features and they have a similar share among all
bugs in user reviews. Third, complaints on performance and virtual object rendering are relatively
uncommon in the user reviews studied. We summarize these observations as our Finding 1.

Finding 1: Mobile AR apps users complain most about Hang and Crash bugs, followed by
three AR-feature-related bug symptoms: Misplacement, Lose Tracking, and Interaction Error.

Since it is possible that many negative reviews of a certain bug symptom come from a small
number of apps, we further study the the distribution of bug symptom in different apps. Figure 2
presents how many apps receive negative reviews of each bug symptom.
From Figure 2, we can see that the top bug symptoms in Figure 1 are still most common seen

bug symptoms across apps. The leading edge of Hang and Crash are not as large as in Figure 1,
which somewhat confirms our earlier speculation that they affect user experience more so they
are more likely to be reported. The figure also shows that dysfunction bugs (i.e., bugs causing the
app to not work at all, including Hang, Crash, Lose Tracking, and part of Interaction Errors) are
commonly complaint among apps, indicating that the overall quality of AR apps (or AR features)
are low, and they may have not been well tested because such bugs should be relatively easily
detected in testing. Other symptoms such as Power&Perf bugs and Render bugs are also common,

, Vol. 1, No. 1, Article . Publication date: September 2025.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 9

Fig. 2. Number of AR Apps with Each Bug Symptoms in Reviews
but users may not complain about them much because they are relatively minor compared with
other bug symptoms. We summarize these observations as our Finding 2.

Finding 2: Dysfunction bugs are commonly complained across many apps, indicating
general low quality of AR apps/features and potential lack of testing.

4.2 RQ2: Common Symptoms and Root Causes of Bug in Open Source AR Projects
To answer RQ2, we identified 480 bugs from 2,846 issue reports in 77 open source AR projects from
Github, and labeled their symptoms and root causes. Since many AR software projects also have
non-AR features (e.g., log in, configuration, traditional GUI), we separate bugs into AR bugs (296
bugs) and non-AR bugs (184 bugs). A bug is considered an AR bug if it is triggered when an AR
feature of the software is used, and all other bugs are considered non-AR bugs. To keep consistency
and allow more clear comparison, the symptom categories are aligned between user reviews (RQ1)
and GitHub bug reports (RQ2). There are four additional major bug symptoms that are not listed in
Section 4.1, so we list as follows.

• Camera: A bug is put into this category when it reflects anomaly of the camera (such as
not focusing). This symptom also appears in user reviews but is categorized as Others due
to its rarity.

• Internal State: A bug is put into this category when it reflects an internal state error
without external behavior symptoms, such as a failed unit test. This symptom only appear
in GitHub bugs instead of user reviews because normal users can never observe internal
state errors.

• Wrong Output: A bug is put into this category when it reflects an erroneous output not
falling into other categories (such as incorrect messages or text on the screen). We do not
observe this symptom in user reviews.

• Network: A bug is put into this category when it reflects network errors such as an offline
server. This symptom also appears in user reviews but is categorized as Others due to its
rarity.

Figures 3 (a) and Figure 3 (b) show the distribution of symptom categories among AR bugs and
non-AR bugs, respectively. From the figures, we can see that AR Bugs and Non-AR Bugs have
very different profile on symptom distributions. First, Hang and Crash bugs account for a large
portion (more than half) of Non-AR Bugs, but their proportions in AR Bugs are relatively small. One

, Vol. 1, No. 1, Article . Publication date: September 2025.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 Anon.

(a) AR Bugs (b) Non-AR Bugs

Fig. 3. Symptom Distribution in AR and Non-AR Bugs from GitHub AR Projects

potential reason is that Hang and Crash bugs often happen when the app starts so AR features have
not been reached yet. Second, the three commonly complaint AR-related symptoms (Misplacement,
Lose Tracking, and Interaction Error) appear almost exclusively in AR bugs, with Interaction Error as
an exception because traditional GUI also may have interaction errors. Third, Render accounts for
a large proportion of AR bugs, and Wrong Output accounts for a large portion of Non-AR bugs.
From these observations, we summarize Finding 3.

Finding 3: AR apps often have both AR and Non-AR features which have very different
bug symptom distributions, so separate bug detection strategies may be used to handle
them.

Furthermore, comparing Figure 3 with Figure 1, we can see that although their distribution of
symptoms generally follow the same pattern, there are two major differences. First, Hang symptom
is the most common one in user reviews, but are not so common in GitHub bugs. We believe
the reason is that, normal users tend to describe bugs in a brief and superficial way, so they may
also use the general terms “hang” or “black / white screen” to describe Crash or Lose Tracking. In
contrast, developers in GitHub projects tend to describe bugs from a technical perspective, so they
will describe a same bug as a Crash (e.g., because stack traces were observed in the log) or Lose
Tracking (because they know that the app is in the tracking phase). This observation also shows
that a large portion of the Hang symptoms complained by users may be actually Crash or Lose
Tracking bugs behind the scene.
Second, Render bugs account for only 3% of negative reviews, but they account for more than

19% of GitHub AR bugs, more than all the other AR-related symptoms. This shows that Render
bugs may be relatively tolerable by users so they do not complain about them much despite its
commonality. Another potential reason is that Render bugs may not be easily noticed by normal
users who do not know the ground truth rendering. For example, many GitHub Render bugs are
about incorrect color or shade effects. Users may not be aware of them if they do not know what is
the supposed color and shade effects.

Finding 4: Many user complained Hang bugs may actually refer to Crash or Lose Tracking
bugs, which may need further attention. Render bugs are common but do not concern users
much, which may be considered when making decisions on effort investment.

, Vol. 1, No. 1, Article . Publication date: September 2025.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 11

(a) AR Bugs (b) Non-AR Bugs

Fig. 4. Root Cause Distribution in AR and Non-AR Bugs from GitHub AR Projects

Figures 4 (a) and 4 (b) show the distribution of root cause categories among AR bugs and non-AR
bugs, respectively. Referring existing studies [21, 41], we categorize root causes of GitHub bugs
into the following categories.

• API Misuse: This root cause refers to misuse of API methods, including platform API
(e.g., Android SDK and ARCore), library API (e.g., Android SceneForm), and internal API
(programming interface of the project’s internal modules).

• Build Error: This root cause refers to errors in build configuration or scripts. Note that we
do not include build-time failures in our study, so these bugs are all runtime errors caused by
wrong build configuration (e.g., building with a library of wrong version or configuration).

• General Programming Error: This root cause refers to all common code logic errors. We
borrow this root cause and its subtypes (described later) from the DroidBugStudy [41].

• Configuration: This root cause refers to errors in runtime configurations such as a wrong
option value for a library or the AR platform in meta files. Note that errors in build configu-
rations are put into category Build Error, and incorrect configurations performed with API
calls (e.g., value setting methods) are put into category API Misuse.

• Data Asset: This root cause refers to errors in resource files and asset files such as 3D
models, images, and data files.

• Event Handling: This root cause refers to erroneous implementation of life cycle events
(e.g., ARSession.OnPause()) and other events (e.g., from the underlying operating system).

• External Bugs: This root cause refers to bugs in external code such as the AR platform
(including its technical limitation on identifying objects in the physical environments) and
third-party libraries.

• Incompatibilities: This root cause refers to incompatibility between the AR app and its
environment including the hardware, the operating system, and third-party libraries.

• Missing Feature: This root cause refers to unimplemented features in the app which cause
bugs.

• Other: This category includes bugs with root causes cannot be confirmed and singletons
that cannot be categorized.

From the figures, we have the following observations. First, API Misuse is the most common root
cause for AR bugs, and General programming Error is the most common root cause for non-AR bugs,
further confirming the different characteristics of AR and non-AR bugs. Second, Incompatibility is
a major root cause for both AR and non-AR bugs, showing its commonality across different code

, Vol. 1, No. 1, Article . Publication date: September 2025.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Anon.

(a) API Misuse

(b) General Programming Errors

(c) Incompatibilities

Fig. 5. Subtype Distribution of Major Root Causes in AR and Non-AR Bugs

and features. Third, Event Handling and Data Asset are two root causes more specific to AR Bugs,
as they appear frequently in AR bugs, but not so frequently in Non-AR bugs. Summaring these
observations we have Finding 5.

Finding 5: AR bugs and non AR bugs have very different distribution of root causes. API
Misuse, Event Handling, and Data Asset are three root causes more specific to AR bugs.

In Figure 4, we can see that API Misuse, General Programming Error, and Incompatibilities and
three most common root causes across all bugs. Since these root cause categories cover multiple
cases, we further divide them into subtypes. In particular, we divide API Misuse into eight subtypes:
Missing Method Invocation, Missing Property Setting, Missing Arguments, Wrong Method Invocation,
Wrong Method Invocation Order, Wrong Argument Value, Wrong Property Value, and Wrong Return
Value Processing. In particular, we separate property settings (where an assignment to an API field
or a simple setter method is called) from other method invocations because they are very common
and much simpler in nature. We also separate “Missing” errors and “Wrong” errors, where the
former indicates that a method invocation or property setting is missing, and the latter indicates
that a wrong method has been called or a wrong value has been set. Another specific subtype is
Wrong Return Value Processing where the code incorrectly process the return values from an API
invocation, such as forgetting to cast the return value to a subclass, or extracting the wrong part
from it.

, Vol. 1, No. 1, Article . Publication date: September 2025.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 13

Following the same definition in DroidBugStudy [41], we divide General Programming Errors
into five subtypes: Incorrect Variable Assignment, Missing Case, Multi-Thread, Wrong Control Flow,
Exception Handling. Note that Missing Feature has also been categorized into General Programming
Errors in DroidBugStudy, but we decide to move it out as a separate root cause because it is more
requirement related. Finally, for Incompatibility, we divide it into Hardware, OS, and Library based
on the source of the incompatibility, following the WebXRBugStudy [21].

From Figure 5, we have the following observations. First,Missing API Property Setting andWrong
Property Value are two most common subtypes of API Misuse in AR bugs and they are very rare in
non-AR bugs, showing that property setting is an error-prone part in AR feature implementation,
and developers often miss property settings or setting wrong values. Second,Missing API invocation
is another subtype common in AR bugs but uncommon in non-AR bugs. We further observe that
AR feature implementation often involves patterns of multiple API calls, and missing an API call in
a pattern often triggers bugs. Third, the subtype distribution of General Programming Errors in AR
bugs and non-AR bugs are very similar, re-affirming that these root causes are general across bug
types and features. Fourth, the distributions of OS Incompatibility and Library Incompatibility are
similar across AR and non-AR bugs, but Hardware Incompatibility is more seen in AR bugs. This
is because AR features use more hardware components (e.g., sensors, cameras), so they are more
likely to trigger hardware incompatibilities. Summarizing these observations we have Finding 6.

Finding 6: Missing Property Setting and Wrong Property Value are two mostly seen root
cause subtypes, showing that property setting is an AR-specific error-prone programming
task and may need more support from tools and documentation.

4.3 RQ3: Root Causes of Commonly Complained Bugs
To answer RQ3, we correlated symptoms with the corresponding root causes and put the date in
Tables 4 and 5. The tables show the root-cause distribution of bugs with specific symptoms, with
highlight on larger numbers. From the tables, we have the following observations. First, Crash
symptom is mostly caused by General Programming Errors and Incompatibilities. In AR bugs, it
is also often caused by API Misuse and Event Handling. These root causes are generally not AR-
specific so enforcing traditional quality assurance practice such as unit / system testing and static
code checking should help with reducing Crash. Second, Misplacement is the most complained
AR-specific symptom, and is mainly caused by API Misuse and General Programming Errors. Looking
deeper, 17 of the 25 API Misuse cases belong to Missing Property Setting and Wrong Property Value
subtype, and most General Programming Error cases are related to wrong calculation of coordinates
through projection formula. Furthermore, Render symptoms in AR bugs are mostly caused by API
Misuse, 20 of those 28 cases belong to Missing Property Setting andWrong Property Value subtype.
These number show that API Misuse especially property setting related errors are mostly relevant to
the placing and rendering of virtual objects. Third, some Lose Tacking and Misplacement symptoms
are caused by external bugs (5 bugs), including limitation of the AR framework. However, more
of those symptoms are caused by other software errors, indicating that software engineering
challenges may be a large factor affecting the limited adoption of AR techniques. Fourth, Render
symptoms in non-AR bugs are mainly caused by General Programming Error because these Render
issues are related traditional GUI instead fo AR UI, further showing the correlation between API
Misuse and AR UI bugs. Summarizing the above observations, we have Finding 7 and 8.

, Vol. 1, No. 1, Article . Publication date: September 2025.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Anon.

API Misuse Build Gen. Prog. Err. Config. Data Asset Event Handl. External Incomp. Miss. Feat.
Hang 1 1 4 1 1 4 0 4 0
Crash 11 3 14 2 4 9 0 15 0

Misplacement 25 0 10 2 5 4 1 2 0
Lose Tracking 7 0 4 6 1 5 4 6 0

Interaction Error 10 0 8 0 1 1 0 1 4
Power&Perf 0 0 1 2 0 1 2 4 1

Render 28 0 9 1 10 2 0 2 1
Camera 4 1 1 0 0 0 0 6 0

Internal State 4 0 2 0 0 1 0 0 0
Table 4. Root Cause Distribution over Symptoms in AR Bugs

API Misuse Build Gen. Prog. Err. Config. Data Asset Event Handl. External Incomp. Miss. Feat.
Hang 2 0 7 1 0 0 2 3 1
Crash 3 5 32 8 1 4 3 22 1

Interaction Error 1 1 5 1 0 0 0 1 7
Power&Perf 1 0 0 1 0 0 0 0 0

Render 2 0 5 0 0 0 0 0 0
Wrong Output 1 0 16 2 0 0 0 2 3

Network 2 0 1 0 0 0 1 2 2
Internal State 3 0 5 0 0 1 0 1 1

Table 5. Root Cause Distribution over Symptoms in Non-AR Bugs

Finding 7: Property-setting-related errors are the main root cause behind AR UI symptoms
including the placement and the rendering of virtual objects.

Finding 8: Many AR imprecision symptoms (i.e., Lose Tracking and Misplacement) are not
caused by limitation of the AR platform but code errors in the application, highlighting the
crucial role of software quality assurance in AR adoption.

4.4 RQ4: Characters of AR Bug Fixes
To answer RQ4, we further studied the AR and non-AR bugs for which we can find their bug-fixing
commits. Figure 6 shows the the number of lines and files changed on code files and resource files
in the bug-fixing commits of AR / non-AR bugs. From the figure we can see that bug-fixing commits
of AR and non-AR bugs have similar number of revised code files and code lines, but the bug-fixing
commits of AR bugs have many more revised non-code files and lines than non-AR bugs. Therefore,
we have Finding 9.

Finding 9: AR bug fixes are more likely to involve non-code files such as resource, asset,
and configuration files. So techniques tracing dependencies between code and non-code
files could be very helpful for fixing AR bugs.

API Misuse and Event Handling are two major root causes for AR bugs and they are platform-
related, so findings on concrete API methods and events are more likely to generalize. Therefore,
we further investigated the top five misused API and top five incorrectly handled events in AR
bugs and list them in Tables 6 and 7. From the tables, we can see that the top misused API methods
and mishandled events cover a large portion (27 of 94 API Misuse cases and 17 of 28 Event Handling
cases) of relevant cases. Furthermore, initialization and cleaning-up issues dominate event handling
errors. Based on these observations, we have Finding 10.

, Vol. 1, No. 1, Article . Publication date: September 2025.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 15

Nu
m

be
r o

f F
ile

s R
ev

is
ed

0
1
2
3
4
5
6
7
8
9

10

ARBug Code ARBug NonCode

NonARBug Code NonARBug NonCode

Nu
m

be
r o

f L
in

es
 C

ha
ng

ed

0

10

20

30

40

50

60

70

80

ARBug Code ARBug NonCode

NonARBug Code NonARBug NonCode

Fig. 6. Number of Updated Code and Non-Code Files and Lines in AR and NonAR Bug-fixing Commits

API Freq. Most Common Reason
com.google.ar.sceneform.ux.ARFragment.getScene() 7 Forgetting to call the method when

adding objects, often causing Null
Pointer Exceptions.

com.google.ar.sceneform.Node.setRenderable(...) 7 Forgetting to set renderable or pass-
ing wrong arguments on virtual objects,
causing them to be invisible, at wrong
location, or missing rendering effects.

uk.co.appoly.arcorelocation.LocationScene.setAnchorRefreshInterval(...) 5 Forgetting to set the property or passing
a wrong value will cause lose tracking or
misplacement errors.

com.google.ar.core.Session.createAnchor(...) 4 Wrong arguments are passed, causing
lose tracking and misplacement errors.

com.google.ar.sceneform.rendering.RenderableInstance.setCulling(...) 4 Forgetting to set the property or passing
a wrong value will cause wrong render-
ing effects.

Table 6. Top Five Misused API Methods

Life Cycle Event Freq. Most Common Reason
com.google.ar.core.ARSession.OnDestroy 5 Missing or Incomplete clean up of objects

or resources
com.google.ar.core.ARSession.Reset 5 Forgetting to initialize or clean up objects

or resources
com.google.ar.core.ARSession.OnCreate 3 Forgetting to initializing scenes or ob-

jects
com.google.ar.core.OnPause 2 Missing or Incomplete clean up of objects

or resources
com.google.ar.core.OnFrameUpdate 2 Missing required operations

Table 7. Top Five Incorrectly Handled Events

Finding 10: A large portion of API Misuse and Event Handling cases are related to a small
number of API methods and initialization / cleaning up operations. Pattern or AI-based
helpers and reminders may help largely reduce such errors.

4.5 RQ5: Comparison with Previous Studies
Finally, to answer RQ5, we compare the distribution root causes of the bugs in our study and those
from two previous studies [41] [21].The results are presented in Table 8. In the table, if prior studies
do not report bugs with specific root cause, we leave the cell as blank because it is not clear whether
such bugs were not found or such bugs were uncommon so they were categorized into the Other
category.

, Vol. 1, No. 1, Article . Publication date: September 2025.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Anon.

Root Causes AR Bugs Non-AR Bugs Droid Bug Web XR Bug
(Our Study) (Our Study) Study [41] Study [21]

API Misuse Total 95 (32.1%) 18 (9.8%) 24 (6.1%) 27 (7.3%)
-Missing API Invoc. 12 (4.1%) 2 (1.1%)
-Missing Property Set 24 (8.1%) 0
-Missing Args 1 (0.3%) 0 4 (1.1%)
-Wrong API Invoc. 15 (5.1%) 6 (3.3%)
-Wrong API Invoc. Order 3 (1.0%) 1 (0.5%)
-Wrong Arg Value 12 (4.1%) 6 (3.3%) 7 (1.9%)
-Wrong Property Value 27 (9.1%) 1 (0.5%) 16 (4.3%)
-Wrong Return Value Proc 1 (0.3%) 2 (1.1%)

Build 5 (1.7%) 6 (3.3%)
Gen. Prog. Err. Total 55 (18.6%) 72 (39.1%) 151 (38.4%)

-Incorrect Assign 15 (5.1%) 17 (9.2%) 19 (4.8%)
-Missing Case 27 (9.1%) 40 (21.7%) 62 (15.8%)
-Multi-Thread 10 (3.4%) 7 (3.8%) 34 (8.7%)
-Wrong Control Flow 3 (1.0%) 7 (3.8%) 26 (6.6%)
-Exception Handling 0 1 (0.5%) 10 (2.5%)

Configuration 17 (5.7%) 14 (7.6%)
Data Asset 22 (7.4%) 1 (0.5%) 62 (15.8%)
Event Handl. Total 28 (9.5%) 5 (2.7%) 45 (11.4%) 76 (20.7%)

-Lifecycle Event 28 (9.5%) 4 (2.2%) 45 (11.4%) 56 (15.2%)
-OS Event 0 1 (0.5%) 17 (4.6%)
-Other Event 0 0 3 (0.8%)

External 7 (2.4%) 6 (3.3%) 22 (5.6%) 15 (4.1%)
Incomp. Total 41 (13.9%) 32 (17.4%) 27 (6.9%) 78 (21.2%)

-Hardware 11 (3.8%) 3 (1.6%) 35 (9.5%)
-OS 11 (3.8%) 11 (6.0%) 11 (3.0%)
-Library 19 (6.4%) 18 (9.8%) 17 (4.6%)
-Other 0 0 15 (4.1%)

Missing Feature 6 (2.0%) 17 (9.2%) 29 (7.4%) 36 (9.8%)
Redundant Code 0 1 (0.5%) 11 (3.0%)
Other 20 (6.8%) 12 (6.5%) 33 (8.4%) 125 (34.0%)
Total 296 184 393 368

Table 8. Comparison of Root Cause Distribution with Existing Studies

From the table, we have the following observations. First, compared with DroidBugStudy, our
study shows many more API Misuse cases in AR bugs, but similar number of API Misuse cases in
non-AR bugs, indicating that AR features highly rely on API usages and AR developers may not be
always familiar with APIs. Our non-AR bugs show similar proportion of root causes from General
Programming Errorswith DroidBugStudy, showing their consistent distribution in different software
and bugs. Our study also show many more Incompatibility cases in our bug dataset, indicating that
AR apps are more likely to suffer from Incompatibilities due to more complicated dependencies
on hardware and libraries. Second, compared with WebXRBugStudy, our study also shows more
API Misuse cases, potentially because web-based software rely less on directly API method calls,
and the property settings as well as General Programming Errors may have been categorized to the
Other category. Our study also shows fewer Incompatibility cases thanWebXRBugStudy, potentially
because web-based XR system has an additional layer of dependency: the HTTP server and the
browser. To sum up, we have Finding 11.

Finding 11: The root causes of bugs in mobile AR software share some similarity with
existing bug studies, such as the similar distribution of General Programming Errors in
non-AR features with traditional Android apps, and the high proportion of incompatibilities
similar to Web XR Software. The specialty of mobile AR apps is that their AR features
heavily rely on platform and third-party API libraries which developers may not always be
familiar with.

, Vol. 1, No. 1, Article . Publication date: September 2025.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 17

4.6 Threats to Validity
The major threat to the internal validity of our study comes from errors in our data collection
and labeling process. To reduce the threat, we carefully checked all of the scripts used for data
collection, and have two of the authors independently label all datasets with other authors helping
on resolving conflicts. The Cohen’s Kappa scores of our labeling tasks are mostly between 0.7
and 0.8, showing substantial agreement. The major threat to the external validity of our study is
whether our study results can be generalized. To reduce this threat, we use a large set of AR apps
and GitHub AR projects with high downloads and high number of stars. We further align and
compare our study results with prior bugs studies. The consistency (on the distribution of general
programming errors, incompatibilities, and other root causes such as missing features) supports
that our study results is to some extent generalizable.

5 Lessons Learned
In this section, from the observations and findings of our study, we further summarize lesson
learned for different parties and propose actionable items.
Lessons learned for AR app developers. Our study shows that the most complained bug

symptoms in AR apps are still dysfunction bugs (e.g., Hang, Crash) and these bugs are common
among top AR apps, showing that the general quality of AR apps is low. Furthermore, many of
these symptoms are caused by traditional root causes such as General Programming Errors and
Incompatibility, which may be easily detected through random testing and smoke testing. Therefore,
AR app developers should invest more effort on software quality and testing their apps. Writing
more unit tests and perform random testing or monkey testing on their apps may help detect many
bugs and largely enhance their user satisfaction. The commonality of bugs caused Incompatibility
also shows that using multiple devices or emulators in testing is especially important for AR apps. In
contrast, Render-related bugs are not often complained so they can be handled with lower priority.
Lessons learned for AR platform developers. Our study shows that API Misuse is the

most common root cause of AR bugs, so AR platforms have a large room to improve, especially
on providing more examples and documentation on how and when to use API methods. These
examples may also be leveraged by large language models or co-pilot as training data and later
better help AR app developers. Our study also finds that app developers often forget (or do not
know they need) to set properties or invoke API methods. One API design to avoid such missing
cases is to inject conditional API access into parameters. For example, if client developers often
need to call function B(...) after function A(...) (not always, otherwise B can be incorporated
into A), the platform developers can put the invocation to B at the end of A’s code, and add a flag
parameter to A(...). Therefore, A(...) becomes A(..., boolean callB), and client developers
are enforced to consider whether B needs to be called.
Lessons learned for Software Engineering Researchers. Our study shows that many bug

symptoms in mobile AR apps should have been detected with automatic testing tools, and many
API-related bugs should have been avoided by co-pilot or API guidance tools. However, these
existing techniques seem to have not helped AR developers a lot, potentially due to the challenges
of adopting them for AR apps. Automatic testing of AR apps is extremely difficult due to the
requirement of physical environment setup. Some recent frameworks [6] [14] allow automatic
testing with VR scenes or videos, but it is still not clear whether they can trigger bugs as in real
world usage scenarios. The vague user interface of AR apps places another challenge for automatic
testing. Although co-pilot and LLMs can often provide correct API usage examples or detect API
usage errors, AR apps are different in that there is often not an absolute correct way of using API.
Whether and how to access API often depends on the desired way to interact with physical world

, Vol. 1, No. 1, Article . Publication date: September 2025.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Anon.

and rendering effect. App developers often needs to determine API usage while watching how
the app perform in real physical world, which limits the usability of API usage recommendation
tools. Our study calls for novel testing and code recommendation techniques to address the above
challenges and study their effectiveness. Actually, our dataset can be used for such research tasks,
and the symptom / root cause distribution we find may also be used to develop mutation-based
benchmarks for various bug detection tools.

6 Related Works
Mobile and XR Bug Studies. Besides the two studies (DroidBugStudy and WebXRBugStudy)
we compare in our paper, there are also other recent studies on mobile and XR bugs. Johnson et
al.[16] studied the reproduction of bug reports in Android apps, revealing factors that influence
whether developers can reproduce reported issues. Hogan et al. [10], examined the distinctive
performance problems in VR applications, characterizing common performance bottlenecks. Guo et
al. [9] conducted a large-scale empirical study of Oculus VR applications and uncovered significant
security and privacy weaknesses. Li et al. [20] studied visual inconsistency issues in VR applications
and developed a noval technique to detect such issues. Tang et al. [36] explored app-review–driven
collaborative bug finding, showing that user-generated reviews can be leveraged to discover and
cluster recurring issues.
Augmented Reality Software Development. AR techniques have been adopted in different
domains such as education, entertainment and sports [29] [13] [3] [4]. Large indoor areas also
adopting indoor navigation tools to guiding users to desired location [12] [17] [37] [15] [26].
AR enables doctors and surgeons [28] visualize complex 3D models of MRI, CT Scans [27], and
Ultrasound scans [22] offering detailed view of internal organs assisting in improved diagnosis and
surgical planning [35] [38]. With smart glasses such as Vuzix Blade [39], the hardware market is
growing at an unprecedented pace. Matching pace with the hardware arena, several SDk platforms
including Google ARCore [6], Apple ARKit [14], Vuforia [31], and Wikitude![40] are also offering
distinct features and capabilities.

Software engineering techniques, especially testing techniques, have also been developed for AR
app. ARCHIE [18] [19] collects user feedback and system state data to identify and debug issues in
AR applications in real-world settings. XR testing mapping study [8] provides the first systematic
mapping of software testing for XR, tools and datasets. Model-Based Testing for AR [30] explores
model-based testing notions tailored to AR app behaviors and scene graphs. Youkai [1, 5] describes
a cross-platform framework to script tests for VR/AR apps across engines/devices.

7 Conclusion
As Augmented Reality (AR) applications gain popularity, understanding and addressing their unique
software bugs is increasingly important. In this study, we analyzed user reviews from Google Play
and issue reports from open-source AR projects on GitHub, categorizing bug symptoms and root
causes, then examining their correlations and fix commits. Our findings reveal that AR users are
most affected by dysfunction bugs like hangs and crashes, API misuse—particularly property setting
errors—is the most frequent root cause, a small number of API patterns and event-handling practices
account for many of these issues. In the future, we plan to explore automated detection techniques
for API misuse patterns in AR apps to prevent these issues earlier in development. Additionally, we
plan to work on longitudinal studies to examine how AR bug characteristics evolve as AR apps and
platform get mature.

Data Availability. Our dataset, including the reviews, issue reports, and all scripts used in our
study is available in the uploaded replication package.

, Vol. 1, No. 1, Article . Publication date: September 2025.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Behind Defective Mobile AR Apps: Studying Reviews and Bugs of Android AR Software with Comparison to Prior Bug
Studies 19

References
[1] Stevão A. Andrade, Fátima L. S. Nunes, and Márcio E. Delamaro. 2020. Automated Test of VR Applications. In Advances

in Computer Graphics. LNCS, Vol. 12221. Springer. https://doi.org/10.1007/978-3-030-60703-6_18
[2] Apple. 2024. Apple Vision Pro Augmented Reality Headset. Apple Inc.. Available: https://www.apple.com/vision-pro,

[Accessed: October 20, 2024].
[3] AroundAR. 2024. Around AR: Augmented Reality Solutions and Experiences. https://aroundar.com/ Accessed:

October 29, 2024.
[4] dfl.de. 2024. Video on Augmented Reality Experience. https://www.youtube.com/watch?v=vYqOG_Tzi4I Accessed:

October 29, 2024.
[5] Thiago Figueira and Adriano Gil. 2022. Youkai: A Cross-Platform Framework for Testing VR/AR Apps. In HCI

International 2022 – Late Breaking Papers: Interacting with Computers. Springer, 3–12. https://doi.org/10.1007/978-3-
031-21707-4_1

[6] Google. 2024. Google ARCore: Augmented Reality Platform. https://developers.google.com/ar Accessed: October 29,
2024.

[7] Google. 2024. Google Play Store: Apps, Games, and More. https://play.google.com/store Accessed: October 29, 2024.
[8] Ruizhen Gu, José Miguel Rojas, and Donghwan Shin. 2025. Software Testing for Extended Reality Applications: A

Systematic Mapping Study. Automated Software Engineering (2025). https://doi.org/10.1007/s10515-025-00523-7 Early
access.

[9] Hanyang Guo, Hong-Ning Dai, Xiapu Luo, Zibin Zheng, Gengyang Xu, and Fengliang He. 2024. An empirical study on
oculus virtual reality applications: Security and privacy perspectives. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. 1–13.

[10] Jason Hogan, Aaron Salo, Dhia Elhaq Rzig, Foyzul Hassan, and Bruce Maxim. 2022. Analyzing Performance Issues of
Virtual Reality Applications. CoRR abs/2211.02013 (2022). https://doi.org/10.48550/arXiv.2211.02013 arXiv preprint.

[11] Josh Howarth. 2024. 24+ Augmented Reality Stats (2024-2028). https://explodingtopics.com/blog/augmented-reality-
stats Accessed: April 20, 2024.

[12] Bo-Chen Huang, Jiun Hsu, Edward T.-H. Chu, and Hui-Mei Wu. 2020. ARBIN: Augmented Reality Based Indoor
Navigation System. Sensors 20, 20 (Oct. 2020), 5890. https://doi.org/10.3390/s20205890

[13] Immersiv.io. 2024. ARISE: Augmented Reality Solutions for Enhanced Experiences. https://www.immersiv.io/arise/
Accessed: October 29, 2024.

[14] Apple Inc. 2024. ARKit: Augmented Reality for iOS. https://developer.apple.com/augmented-reality/arkit/ Accessed:
October 29, 2024.

[15] Insider Navigation. 2024. AR Indoor Navigation Solutions. https://insidernavigation.com/ar-indoor-navigation/
Accessed: October 29, 2024.

[16] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2022. An Empirical
Investigation into the Reproduction of Bug Reports for Android Apps. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). 321–332. https://doi.org/10.1109/SANER53432.2022.00048

[17] Rhuta Joshi, Anuja Hiwale, Shivani Birajdar, and Renuka Gound. 2019. Indoor Navigation with Augmented Reality.
Springer Singapore, 159–165. https://doi.org/10.1007/978-981-13-8715-9_20

[18] Sarah M. Lehman, Semir Elezovikj, Haibin Ling, and Chiu C. Tan. 2020. ARCHIE: A User-Focused Framework for
Testing Augmented Reality Applications in the Wild. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
https://doi.org/10.1109/VR46266.2020.00013

[19] Sarah M. Lehman, Semir Elezovikj, Haibin Ling, and Chiu C. Tan. 2023. ARCHIE++: A Cloud-Enabled Framework for
Conducting AR System Testing in the Wild. IEEE Transactions on Visualization and Computer Graphics 29, 4 (2023),
2102–2116. https://doi.org/10.1109/TVCG.2022.3141029

[20] Shuqing Li, Cuiyun Gao, Jianping Zhang, Yujia Zhang, Yepang Liu, Jiazhen Gu, Yun Peng, and Michael R Lyu. 2024.
Less cybersickness, please: Demystifying and detecting stereoscopic visual inconsistencies in virtual reality apps.
Proceedings of the ACM on Software Engineering 1, FSE (2024), 2167–2189.

[21] Shuqing Li, Yechang Wu, Yi Liu, Dinghua Wang, Ming Wen, Yida Tao, Yulei Sui, and Yepang Liu. 2020. An exploratory
study of bugs in extended reality applications on the web. In 2020 IEEE 31st International symposium on software
reliability engineering (ISSRE). IEEE, 172–183.

[22] Medivis. 2024. Medivis: AR Body Navigation Solutions. https://www.medivis.com/body-navigation Accessed:
October 29, 2024.

[23] Meta. 2024. Meta Quest Headset Series. Meta Platforms, Inc.. Available: https://about.meta.com/quest, [Accessed:
October 20, 2024].

[24] Meta. 2024. Ray-Ban and Meta Collaboration for AR Smart Glasses. Meta Platforms, Inc. and Ray-Ban. Available:
https://www.meta.com/ray-ban-stories, [Accessed: October 20, 2024].

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1007/978-3-030-60703-6_18
https://www.apple.com/vision-pro
https://aroundar.com/
https://www.youtube.com/watch?v=vYqOG_Tzi4I
https://doi.org/10.1007/978-3-031-21707-4_1
https://doi.org/10.1007/978-3-031-21707-4_1
https://developers.google.com/ar
https://play.google.com/store
https://doi.org/10.1007/s10515-025-00523-7
https://doi.org/10.48550/arXiv.2211.02013
https://explodingtopics.com/blog/augmented-reality-stats
https://explodingtopics.com/blog/augmented-reality-stats
https://doi.org/10.3390/s20205890
https://www.immersiv.io/arise/
https://developer.apple.com/augmented-reality/arkit/
https://insidernavigation.com/ar-indoor-navigation/
https://doi.org/10.1109/SANER53432.2022.00048
https://doi.org/10.1007/978-981-13-8715-9_20
https://doi.org/10.1109/VR46266.2020.00013
https://doi.org/10.1109/TVCG.2022.3141029
https://www.medivis.com/body-navigation
https://about.meta.com/quest
https://www.meta.com/ray-ban-stories

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Anon.

[25] Microsoft. 2024. Microsoft HoloLensMixed Reality Headset. Microsoft Corp.. Available: https://www.microsoft.com/en-
us/hololens, [Accessed: October 20, 2024].

[26] MobiDev. 2024. Augmented Reality Indoor Navigation App Development. https://mobidev.biz/blog/augmented-
reality-indoor-navigation-app-development Accessed: October 29, 2024.

[27] Navaneeth V Nair, Naeema Ziyad, Gopika Madhu, Navya Prasad, and M V Rajesh. 2023. Visualizing MRI and CT Scans
Using Mixed Reality. https://www.youtube.com/watch?v=KTN0O4n1Xv8 Accessed: October 29, 2024.

[28] Novarad Corporation. 2018. 3D Medical Images Using Augmented Reality. https://www.youtube.com/watch?v=
M3yY_b8jT54 Accessed: October 29, 2024.

[29] Orange 5G Lab. 2024. Immersiv.io: A New Way to Watch Football with Augmented Match and 5G. https://5glab.
orange.com/en/realisations/immersiv-io-a-new-way-to-watch-football-with-augmented-match-and-5g/ Accessed:
October 29, 2024.

[30] André Porfirio, Antônio Roberto R. Araújo, Gustavo Gava, Jefferson Silva, Erick Souza, and Rodrigo Souza. 2022. An
Approach for Model Based Testing of Augmented Reality Applications. In RCIS 2022 Workshops (CEUR-WS.org, vol.
3201). https://ceur-ws.org/Vol-3201/

[31] PTC Inc. 2024. Vuforia: Augmented Reality SDK. https://developer.vuforia.com/ Accessed: October 29, 2024.
[32] Tahmid Rafi, Xueling Zhang, and Xiaoyin Wang. 2022. PredART: Towards Automatic Oracle Prediction of Object

Placements in Augmented Reality Testing. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’22). ACM, 1–13. https://doi.org/10.1145/3551349.3561160

[33] sifted.eu. 2024. The future of augmented reality in four charts. https://sifted.eu/articles/future-augmented-reality-
data-brnd Accessed: May 29, 2024.

[34] statista.com. 2024. AR VR - Worldwide. https://www.statista.com/outlook/amo/ar-vr/worldwide Accessed: October
20, 2024.

[35] Rui Tang, Long-Fei Ma, Zhi-Xia Rong, Mo-Dan Li, Jian-Ping Zeng, Xue-DongWang, Hong-En Liao, and Jia-Hong Dong.
2018. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary
surgery: A review of current methods. Hepatobiliary amp; Pancreatic Diseases International 17, 2 (April 2018), 101–112.
https://doi.org/10.1016/j.hbpd.2018.02.002

[36] Xunzhu Tang, Haoye Tian, Pingfan Kong, Saad Ezzini, Kui Liu, Xin Xia, Jacques Klein, and Tegawendé F Bissyandé.
2024. App review driven collaborative bug finding. Empirical Software Engineering 29, 5 (2024), 124.

[37] Treedis. 2024. Indoor Navigation Solutions by Use Case. https://www.treedis.com/solutions-by-use-case/indoor-
navigation Accessed: October 29, 2024.

[38] Raul N. Uppot, Benjamin Laguna, Colin J. McCarthy, Gianluca De Novi, Andrew Phelps, Eliot Siegel, and Jesse Courtier.
2019. Implementing Virtual and Augmented Reality Tools for Radiology Education and Training, Communication,
and Clinical Care. Radiology 291, 3 (June 2019), 570–580. https://doi.org/10.1148/radiol.2019182210

[39] Vuzix Corporation. 2024. Vuzix Blade Smart Glasses. https://www.vuzix.com/products/blade-smart-glasses Accessed:
October 29, 2024.

[40] Wikitude. 2024. Wikitude: Augmented Reality SDK. https://www.wikitude.com/ Accessed: October 29, 2024.
[41] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su.

2023. An empirical study of functional bugs in android apps. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 1319–1331.

[42] Xiaoyi Yang, Yuxing Wang, Tahmid Rafi, Dongfang Liu, Xiaoyin Wang, and Xueling Zhang. 2024. Towards Automatic
Oracle Prediction for AR Testing: Assessing Virtual Object Placement Quality under Real-World Scenes. In Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis.

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://mobidev.biz/blog/augmented-reality-indoor-navigation-app-development
https://mobidev.biz/blog/augmented-reality-indoor-navigation-app-development
https://www.youtube.com/watch?v=KTN0O4n1Xv8
https://www.youtube.com/watch?v=M3yY_b8jT54
https://www.youtube.com/watch?v=M3yY_b8jT54
https://5glab.orange.com/en/realisations/immersiv-io-a-new-way-to-watch-football-with-augmented-match-and-5g/
https://5glab.orange.com/en/realisations/immersiv-io-a-new-way-to-watch-football-with-augmented-match-and-5g/
https://ceur-ws.org/Vol-3201/
https://developer.vuforia.com/
https://doi.org/10.1145/3551349.3561160
https://sifted.eu/articles/future-augmented-reality-data-brnd
https://sifted.eu/articles/future-augmented-reality-data-brnd
https://www.statista.com/outlook/amo/ar-vr/worldwide
https://doi.org/10.1016/j.hbpd.2018.02.002
https://www.treedis.com/solutions-by-use-case/indoor-navigation
https://www.treedis.com/solutions-by-use-case/indoor-navigation
https://doi.org/10.1148/radiol.2019182210
https://www.vuzix.com/products/blade-smart-glasses
https://www.wikitude.com/

	Abstract
	1 Introduction
	2 Research Questions
	3 Methodology
	3.1 Data Collection
	3.2 Data Labeling and Categorization.
	3.3 Code Commit Analysis

	4 Study Results
	4.1 RQ1: Commonly Complained Bugs from User Reviews
	4.2 RQ2: Common Symptoms and Root Causes of Bug in Open Source AR Projects
	4.3 RQ3: Root Causes of Commonly Complained Bugs
	4.4 RQ4: Characters of AR Bug Fixes
	4.5 RQ5: Comparison with Previous Studies
	4.6 Threats to Validity

	5 Lessons Learned
	6 Related Works
	7 Conclusion
	References

