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Abstract
Clustering is a hard discrete optimization problem. Nonconvex approaches such as low-rank semidefinite

programming (SDP) have recently demonstrated promising statistical and local algorithmic guarantees for
cluster recovery. Due to the combinatorial structure of the K-means clustering problem, current relaxation
algorithms struggle to balance their constraint feasibility and objective optimality, presenting tremendous
challenges in computing the second-order critical points with rigorous guarantees. In this paper, we provide
a new formulation of the K-means problem as a smooth unconstrained optimization over a submanifold
and characterize its Riemannian structures to allow it to be solved using a second-order cubic-regularized
Riemannian Newton algorithm. By factorizing the K-means manifold into a product manifold, we show
how each Newton subproblem can be solved in linear time. Our numerical experiments show that the
proposed method converges significantly faster than the state-of-the-art first-order nonnegative low-rank
factorization method, while achieving similarly optimal statistical accuracy.

1 Introduction
Clustering is a cornerstone of modern unsupervised learning, where the goal is to group similar observations
into meaningful clusters. The problem is commonly approached through the K-means formulation, which
seeks to partition n data points X1, X2, . . . , Xn ∈ Rd into K disjoint groups G1, . . . , GK by maximizing the
total intra-cluster similarity:

max
G1,...,GK

{
K∑

k=1

1
|Gk|

∑
i,j∈Gk

⟨Xi, Xj⟩ :
K⊔

k=1
Gk = [n]

}
. (1)

Here, the inner product ⟨Xi, Xj⟩ = X⊤
i Xj is used to measure pairwise similarity, |Gk| denotes the cardinality

of Gk, and ⊔ denotes disjoint union. Most common algorithms for K-means clustering, including Lloyd’s
algorithm [31] and spectral clustering [36, 32], can be understood as heuristics for finding “good enough”
solutions to the discrete optimization (1). These methods do not come with any guarantees of local optimality,
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let alone global optimality. Indeed, it is commonly argued that globally solving (1) is NP-hard in the
worst-case [19, 3], and would lead to statistically meaningless clustering that overfits the data.

Yet in average-case regimes, globally solving the K-means optimization problem (1) can be both com-
putationally tractable as well as statistically optimal. In particular, when the data X1, . . . , Xn arise from
a Gaussian mixture model with sufficiently well-separated components, Chen and Yang [17] showed that a
well-known semidefinite programming (SDP) relaxation of Peng and Wei [38], written

max
Z∈Rn×n

{
⟨XX⊤, Z⟩+ µ

∑
i,j

log(Zi,j)+ : Z1n = 1n, tr(Z) = K, Z ⪰ 0
}

, (2)

where X = [X1, . . . , Xn]⊤ and log(Zi,j)+ := log(max{Zi,j , 0}), is guaranteed to compute the globally optimal
clusters G⋆

1, . . . , G⋆
K for (1) in the limit µ→ 0+ in polynomial time, that in turn recover the ground truth

partitions. Note that the formulation (2) is equivalent to the standard K-means SDP formulation with the
elementwise nonnegativity constraint Zi,j ≥ 0 in Peng and Wei [38] and Chen and Yang [17] (see Appendix A
for more discussions). Moreover, this recovery occurs as soon as the separation between the clusters is
large enough for it to be possible. Put in another way, if solving (2) does not recover the ground truth
partitions, then the clusters are too closely spaced in a way that makes recovery inherently impossible in an
information-theoretic limit sense, see Section 2.1 for more details.

Unfortunately, the SDP (2) is not a practical means of solving (1) to global optimality, due to its need
to optimize over an n × n matrix to cluster n samples. Following Burer and Monteiro [13] and Boumal,
Voroninski, and Bandeira [11], a natural alternative is to factor Z = UU⊤ into its n× r factor matrix U for
rank parameter r ≥ K, impose the logarithmic penalty over U instead of Z, and then directly optimize over
U :

max
U∈Rn×r

{
⟨XX⊤, UU⊤⟩+ µ

∑
i,j

log(Ui,j)+ : UU⊤1n = 1n, tr(UU⊤) = K
}

. (3)

This reduces the number of variables and constraints from O(n2) down to O(n), but at the cost of giving up
the convexity of the SDP. In general, we can at best hope to compute critical points, which may be spurious
local minima or saddle points. The core motivation for our approach, and the impetus for this paper, is the
surprising empirical observation that all second-order critical points are global optima in this setting; this is
formalized as the following assumption.

Assumption 1 (Benign nonconvexity). In the average-case regime when (2) globally solves (1), all approximate
second-order critical points in (3) are within a neighborhood of a global optimum.

The phenomenon of benign nonconvexity is well-documented in the unconstrained version—optimizing
over semidefinite Z ⪰ 0 by factorizing Z = UU⊤—dating back to the early works of Burer and Monteiro
[13]. In contrast, it is rarely seen in our nonnegative variant, which adds the elementwise constraint U ≥ 0
to enforce doubly nonnegativity in Z = UU⊤. Despite a superficial similarity, the two formulations differ
in fundamental ways, with the nonnegative case known to admit numerous spurious critical points; see
Section 1.2 for some classic and recent examples. Nevertheless, we consistently observe that all second-order
critical points correspond to global optima, that in turn successfully recover the optimal clusters.

1.1 Contributions: Cheap and fast convergence to second-order critical points
Under Assumption 1, globally solving the K-means optimization problem (1) reduces to that of computing
a second-order critical point for (3). Unfortunately, in the constrained nonconvex setting, there is no
general-purpose algorithm that is rigorously guaranteed to compute a second-order critical point. The
core issue is the need to maintain feasibility, i.e. for each iterate U to satisfy the nonconvex constraints
UU⊤1n = 1n and tr(UU⊤) = K, while making progress towards optimality. General-purpose solvers like
fmincon [14] and knitro [15] promise convergence only to critical points of an underlying merit function,
which may be infeasible for the original problem. Augmented Lagrangian methods guarantee convergence only
to first-order critical points, and only when starting within a local neighborhood [47]. This is a significant
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departure from the unconstrained nonconvex setting, where a diverse range of algorithms—both cheap first-
order algorithms like gradient descent, as well as rapidly-converging second-order methods like trust-region
Newton’s method—globally converge to a second-order critical point starting from any initial point.

Our first contribution is to present an interpretation of (3) as a smooth unconstrained optimization over
a Riemannian manifold. This allows the immediate benefit of extending the wide array of unconstrained
optimization algorithms to the constrained setting, as well as their accompanying guarantees for first- and
second-order optimality. For the first time in the context of K-means, we open the possibility to guarantee
global convergence to first- and second-order optimality.

Our second contribution is to show that second-order Riemannian algorithms can be implemented with
linear per-iteration costs with respect to the number of samples n. In other words, of all practical algorithms
to compute second-order critical points, we show that the one with the best iteration complexity (second-order
methods) can be improved to have the same per-iteration costs as first-order methods. Our final algorithm
computes ϵ second-order points in n · ϵ−3/2 · poly(r, d) time.

1.2 Related work
Benign nonconvexity in the unconstrained Burer–Monteiro factorization Z = UU⊤ has been empirically
observed since the early 2000s [13], and widely exploited in nonconvex low-rank algorithms in machine
learning. In the past decade, theory has been developed to explain this phenomenon under some specialized
settings [6, 23, 5, 10, 22]. Unfortunately, these guarantees tend to be conservative in the number of samples
or the level of noise; they capture the general phenomenon but cannot rigorously explain what is broadly
observed in practice.

In contrast, the nonnegative Burer–Monteiro factorization Z = UU⊤ with U ≥ 0 is widely understood
not to exhibit benign nonconvexity. To give two simple examples, the functions f(U) = ⟨SU, U⟩ and
f(U) = ∥UU⊤ − U⋆U⊤

⋆ ∥2
F are easily confirmed to exhibit benign nonconvexity over U ∈ Rn×r. But

imposing U ≥ 0 causes spurious local minima to proliferate; this is unsurprising because both problems,
namely copositive testing [35] and complete positive testing [20], are well-known to be NP-hard. For a more
sophisticated example, the function f(U) = ∥A(UU⊤−U⋆U⊤

⋆ )∥2 is well known to exhibit benign nonconvexity
when the linear operator A : Sn(R)→ Rm satisfies the restricted isometry property (RIP) [6]. In this context,
a recent arXiv preprint [45] gave a strong counterexample for the equivalent statement over U ≥ 0.

Therefore, even though K-means is widely known to admit a nonnegative Burer–Monteiro reformulation
[38], there have been only two prior works that actually follow this approach, to the best of our knowledge.
Neither of these can rigorously guarantee global optimality under Assumption 1. The first is the first-order
Riemannian method introduced by Carson et al. [16]. It solves the following:

min
U∈M′

{
−⟨XX⊤, UU⊤⟩+ λ∥U−∥2

F

}
(4)

whereM′ := {U ∈ Rn×K : U⊤U = IK , UU⊤1n = 1n}, U− = max{−U, 0} is the (entrywise) negative part of
U and λ ≥ 0 is the penalty parameter for U ≥ 0. Although superficially similar, their approach fundamentally
lacks a convergence guarantee to a second-order critical point, due to: (i) their nonsmooth objective; (ii) their
use of a smooth penalty, which cannot truly enforce feasibility U ≥ 0; (iii) their use of a first-order method,
which can get trapped at a saddle point. Moreover, their manifold is geometrically complicated, necessitating
an expensive retraction that costs O(n2) time, which prevents their method from scaling to large datasets.

The second work is the nonnegative low-rank (NLR) method of Zhuang et al. [47]. This is a simple
projected gradient descent that directly projects U onto the nonnegative spherical constraint and deals the row
sum constraint UU⊤1n = 1n via the augmented Lagrangian method. It is a first-order primal-dual method
that can only achieve local linear convergence in a neighborhood of its global solution. Like Carson et al. [16],
it is unclear whether there is a pathway that this algorithm can lead to a global optimality guarantee, or
even to second-order optimality.
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2 Background
2.1 SDP relaxation of K-means
Despite the worst-case NP-hardness of the K-means clustering optimization problem (1), common practical
heuristics and relaxed formulations like Lloyd’s algorithm [31], spectral clustering [36, 32], nonnegative matrix
factorization (NMF) [24, 28, 42] and SDPs [38, 40, 21, 18] work surprisingly well at solving it for real-world
data. To explain this discrepancy between theory and practice, suppose that the data X1, . . . , Xn ∈ Rd are
generated from a standard Gaussian mixture model (GMM)

Xi = µk + εi, εi
i.i.d.∼ N (0, σ2Id), for i ∈ G∗

k, (5)

where G∗
k denotes the ground truth clusters. Chen and Yang [17] proved that the SDP (2) of Peng and Wei

[38] (as µ→ 0+) achieves a sharp phase transition on the separation of centroids for the clustering problem,
in any dimension d and sample size n. Let

Θ2 := 4σ2

(
1 +

√
1 + Kd

n log n

)
log n, (6)

and Θmin := min1≤j<k≤K∥µj−µk∥ be the minimum centroid separation. Assume that m = n/K is an integer
without loss of generality and consider any α > 0. As soon as the exact recovery becomes possible in the
regime Θmin ≥ (1 + α)Θ, the SDP approach (2) solves the K-means problem without clustering error with
high probability. For precise statements on the information-theoretic threshold, please refer to Theorem 3
in Appendix B. As an immediate consequence of the global optimality guarantee of the K-means SDP in
(2), we deduce that the global solution of the nonconvex low-rank SDP in (3) solves the K-means clustering
problem in (1) in the exact recovery regime.

Next, from the membership matrix Z, we would like to convert it to the cluster label.

Lemma 1. Let Z = Z⊤ ∈ Rn×n be the symmetric block diagonal matrix defined by Zij = 1/|Gk| if i, j ∈ Gk,
and Zij = 0 otherwise. Then for any integer r ∈ [K, n], there is a unique (up to column permutation)
U ∈ Rn×K

+ such that Z = UU⊤. Moreover, U can be recovered from any Û ∈ Rn×r satisfying Z = Û Û⊤ in
n · poly(r) time.

For each block diagonal membership matrix Z, the unique U ∈ Rn×K
+ in Lemma 1 is the associated group

assignment matrix, i.e. the k-th column of U provides a one-hot encoding of membership in the k-th cluster.

2.2 Critical points in constrained optimization
The problems considered in this paper are instances of the following

min
U

f(U),

s.t. U ∈M := {U ∈ Rn×r : A(UU⊤) + B(U) = c},
(7)

where the linear operators A : Rn×n → Rm and B : Rn×r → Rm and right-hand side c ∈ Rm together are
assumed to satisfy the independence constraint qualification (LICQ)

2[A⊤(y)]U + B⊤(y) = 0 ⇐⇒ y = 0 ∀U ∈M. (8)

In this context, U ∈ Rn×r is said to be feasible if it satisfies U ∈M. The feasible point U is an ϵ-first-order
critical point if it satisfies

exists y ∈ Rm s.t.
∥∥∇f(U) + 2[A⊤(y)]U + B⊤(y)

∥∥ ≤ ϵ, (9)
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and an ϵ-second-order critical point if it additionally satisfies

⟨∇2f(U) + 2[A⊤(y)], U̇ U̇⊤⟩ ≥
√

ϵ∥U̇∥2 ∀U̇ ∈ TUM (10)

over the tangent space of M at the point U , given by TUM = {U̇ ∈ Rn×r : A(UU̇⊤ + U̇U⊤) + B(U̇) = 0}.
Under LICQ (8), every local minimum (and hence the global minimum) is guaranteed to be an ϵ-second-order
critical point (for any ϵ ≥ 0). Unfortunately, there is no general-purpose algorithm that is guaranteed to
converge to a critical point, due to the need to achieve and maintain feasibility across all iterates.

2.3 Second-order Riemannian optimization
Riemannian algorithms are special algorithms that maintain feasible iterates through a problem-specific
retraction operator, and are hence able to rigorously guarantee convergence to critical points. The basic idea
is to improve a feasible iterate U ∈ M by tracing a smooth curve on the feasible set γ : [0, ϵ) → M that
begins at γ(0) = U and proceeds in a direction of descent γ̇(0) = U̇ ∈ TUM. In analogy with unconstrained
algorithms, a good choice of U̇ ∈ TUM is found through a local Taylor expansion

f
(
γ(t)

)
= f(U) + t⟨grad f(U), U̇⟩+ t2⟨Hess f(U)[U̇ ], U̇⟩+ O(t3), (11)

where grad f and Hess f are respectively the Riemannian gradient and Riemannian Hessian of f on the
manifold M. Afterwards, we trace the curve γ(t) = RetrU (tU̇) using a second-order retraction operator
RetrU : TUM→M satisfying

RetrU (0) = U,
d

dt
RetrU (tU̇)

∣∣∣∣
t=0

= U̇ ,
d2

dt2 RetrU (tU̇)
∣∣∣∣
t=0
⊥ TUM,

for all U ∈ M and all U̇ ∈ TUM. After choosing step-size t so that Unew = γ(t) makes a sufficient
improvement over U , we repeat the algorithm until it reaches an ϵ-second-order critical point satisfying
∥grad f(U)∥ ≤ ϵ and λmin

(
Hess f(U)

)
≥ −
√

ϵ, which incidentally corresponds exactly to (9) and (10). Proofs
for the following convergence result can be found in Zhang and Zhang [44], Boumal, Absil, and Cartis [9],
and Agarwal et al. [2]; we have chosen the simplest but most restrictive settings to ease the exposition.

Theorem 1 (Riemannian cubic-regularized Newton). Suppose that minU∈M f(U) > −∞, and that the
pullback f̂ = f ◦ RetrU has Lipschitz continuous Hessian for all U ∈ M. Then, there exists a sufficiently
large regularizer L such that Uk+1 = RetrUk

(U̇k) where

U̇k = argmin
U̇∈TU M

f(U) + ⟨grad f(U), U̇⟩+ 1
2 ⟨Hess f(U)[U̇ ], U̇⟩+ L

6 ∥U̇∥
3

converges to an ϵ-second order critical point in O(ϵ−3/2) iterations, independent of dimension.

Each iteration of Riemannian cubic-regularized Newton solves an expensive Newton subproblem. Although
it converges in far fewer iterations compared to gradient methods, it is practically competitive only when the
added cost of solving the Newton subproblem can be offset by the corresponding reduction in iteration count.

3 Formulation and solution of K-means as manifold optimization
We now explain how we solve (3) using a Riemannian optimization approach. As a first attempt, we can
indeed verify that the the constraint set in (3), written

M :=Mr =
{

U ∈ Rn×r : UU⊤1n = 1n, tr(UU⊤) = K
}

, (12)

is a manifold by checking that (8) holds (cf. Lemma 4 in the appendix). In fact, directly applying Riemannian
optimization techniques results in a K-means algorithm very similar to the one proposed in Carson et al.
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[16]. The immediate and critical difficulty with this approach is the lack of an efficient retraction operator,
which must be called at every iteration to keep iterates feasible U ∈M. For example, Carson et al. [16] used
a complicated exponential retraction that costs O(n2) time, hence bottlenecking the entire algorithm and
preventing it from scaling to large n.

Instead, our first contribution in this paper is to reformulate (3) by establishing a submersion from the
product manifold M̃ = V × Orth(r) to M, where V = {V ∈ Rn×(r−1) : 1⊤

n V = 0, tr(V V ⊤) = K − 1} and
Orth(r) =

{
Q ∈ Rr×r : QQ⊤ = Ir

}
. In words, V is a projected hypersphere and Orth(r) is the set of r × r

orthonormal matrices.

Theorem 2. We haveM = φ(M̃) for φ(V, Q) =
[
1̂n V

]
Q, where 1̂n := (1/

√
n)1n. Moreover, the Jacobian

D φ : TM̃ → TM is surjective for all (V, Q) ∈ M̃, i.e., φ is a submersion.

0 250 500 750
Iterations

10−10

10−6

10−2

102

Global Suboptimality

0 250 500 750
Iterations

10−6

10−3

100

103

106
Gradient Norm

0 250 500 750
Iterations

−400

−200

0

200

Minimum Hessian Eigenvalue

Figure 1: Local convergence to second-order critical points yields global optimality. In the case of
GMMs, where ground truths can be planted, we consistently observe local convergence to global optimality,
yielding zero clustering error. This provides strong numerical evidence that near-second-order critical points
are near-globally optimal, as hypothesized in Assumption 1.

Having established the submersion property of φ, it is a standard result that every ϵ-second order point
of M̃ is also an cϵ-second order point on M for some constant rescaling factor c; see e.g. Example 3.14 and
the surrounding text in Levin, Kileel, and Boumal [29]. Therefore, to solve (3), we equivalently solve

min
(V,Q)∈M̃

⟨C, V V ⊤⟩ − µ
∑
i,j

log
(
φi,j(V, Q)

)
+, (13)

where C = −XX⊤ is the (negative) data Gram matrix, and φi,j is the (i, j)-th element of the operator φ in
Theorem 2. A basic but critical benefit of the reformulation (13) is that the product manifold M̃ admits a
simple second-order retraction via its Euclidean projection [8, Sec. 5.12]

Retr(V,Q)(V̇ , Q̇) =
[
ΠV(V + V̇ ) ΠOrth(r)(Q + Q̇)

]
,

where ΠV(V ) =
√

K − 1(V − n−11n1
⊤
n V )/∥V − n−11n1

⊤
n V ∥ and ΠOrth(r)(Q) = (QQ⊤)−1/2Q. It is easy

to check that the retraction above costs just O(nr + r3) time to evaluate. In Section C.2, we give explicit
expressions for the Riemannian gradient and Hessian and explain how they can be computed in O(nr + r3)
time.

The appearance of the logarithmic penalty in (13) presents two difficulties. First, as a practical concern,
any algorithm for (13) must begin at a strictly feasible point (V0, Q0) ∈ M̃ that additionally satisfies
φ(V0, Q0) > 0. In Section C.4, we provide a good strictly feasible initial point, and prove that points exist
only if the search rank is over-parameterized as r > K. Second, some special care is needed to rigorously
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apply the guarantees from Section 2.3, given that the penalty φ(V, Q) is Lipschitz only when restricted to a
closed and strictly feasible subset; see Section C.5 for details.

Together, these ingredients allow us to apply Riemannian gradient descent [9] to (13) to compute
an ϵ-first-order critical point in (n/ϵ) · poly(r, d, K) time. In practice, the algorithm often converges to
an ϵ-second-order critical point, though this is not rigorously guaranteed without a carefully-tuned noise
perturbation. Alternatively, we can apply the conjugate-gradients (CG) variant of the Riemannian trust-region
algorithm (RTR), a general-purpose solver available in packages like MANOPT [7] or PYMANOPT [41], to guarantee
convergence to an ϵ-second-order critical point. Unfortunately, in our experiments, we observed that all of
these algorithms experience unsatisfactorily slow convergence, due to the severe ill-conditioning introduced
by the logarithmic penalty.

Instead, our best numerical results were obtained by the Riemannian cubic-regularized Newton (Theorem 1).
Our key insight is that the algorithm can be implemented with just O(nr3) time per-iteration, by exploiting
the underlying block-diagonal-plus-low-rank structure of the Riemannian Hessian. To explain, our core
difficulty is to efficiently solve the Newton subproblem

min
Ap=0

g⊤p + 1
2p⊤Hp + L

6 ∥p∥
3,

where g and H denote the vectorized Riemannian gradient and Hessian respectively, and A implements the
tangent space constraint (V̇ , Q̇) ∈ T(V,Q)M. We can verify that the subproblem contains n(r−1)+r2 = O(nr)
variables and is subject to m = r + r(r + 1)/2 = O(r2) constraints. Given that the subproblem has only
linear constraints, its local minima must always satisfy the first- and second-optimality conditions (9) and
(10), which read[

H + λI A⊤

A 0

] [
p
q

]
=
[
−g
0

]
, λ = L

2 ∥p∥, ξ⊤(H + λI)ξ ≥ 0 for all ξ satisfying Aξ = 0.

The following standard result shows that, with sufficient regularization L, the global minimum corresponds
to the unique second-order critical point.

Lemma 2. Let A have full row-rank (i.e. AA⊤ ≻ 0) and let λmin = min∥ξ∥=1,Aξ=0 ξ⊤Hξ. For λ > −λmin,

the parameterized solution p(λ) =
[
I
0

]⊤ [
H + λI A⊤

A 0

]−1 [−g
0

]
is well-defined and ∥p(λ)∥ is monotonously

decreasing with respect to λ.

The same lemma also suggests solving the Newton subproblem by simple bisection search. Indeed, the
solution is just p(λopt), where λopt is the solution to the monotone equation 2λ = L∥p(λ)∥ (via Lemma 2). Thus,
we pick a very small λlb ≈ −λmin such that ∥p(λlb)∥ > 2λlb/L, a very large λub such that 2λub/L > ∥p(λub)∥,
and then perform bisection until 2λopt = L∥p(λopt)∥ is approximately found. For each λ, if 2λ < L∥p(λ)∥,
then we increase λ; otherwise, we decrease λ.

The main cost of the bisection search is the computation of p(λ), which naively costs O(n3r3) time. For
our specific problem, we explain in Section E how a block-diagonal-plus-low-rank structure in the Hessian H
reduces the computation cost to just n · poly(r, d) time. Applying Theorem 1 shows that the overall method
computes an ϵ-second-order critical point in (n/ϵ1.5) · poly(r, d, K) time.

4 Numerical results
In this section, we showcase the superior performance of our proposed Riemannian second-order method for
clustering on both synthetic Gaussian mixture models (GMM) and real-world mass cytometry (CyTOF)
datasets. Compared to existing state-of-the-art methods, such as the nonnegative low-rank (NLR) factorization
[47] and prior Riemannian K-means algorithms [16], our approach achieves faster convergence, higher
clustering accuracy, and more reliable recovery of ground-truth cluster memberships. These results highlight
the convergence and accuracy advantages of second-order methods when they can be implemented with
per-iteration costs of just O(n) time. The implementation details are deferred to Section G.
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Figure 2: Real-world benchmark on CyTOF data. We compared our method to NLR, the previous
state-of-the-art, as well as classical benchmarks SC, NMF, and KM++. Our method and NLR achieve
the most consistently accurate clustering, with the smallest variance and the fewest outliers (left), but we
outperform NLR in ground truth recovery (right).

Datasets. We conducted experiments on both synthetic and real datasets. The synthetic data was generated
from a standard K-component, d-dimensional Gaussian mixture model (GMM), with centroids placed at
simplex vertices such that their separation equals γΘ2, where Θ is the information-theoretic threshold for
exact recovery in (6), and γ controls separation. The real dataset came from mass cytometry (CyTOF)
[30, 43]. It consists of 265,627 cell protein expression profiles across 32 markers, labeled into 14 gated cell
populations. Following Zhuang et al. [47], we uniformly sample 1,800 cells from K = 4 unbalanced clusters
(labels 2, 7, 8, 9) from individual 1 for our experiment.

Global optimality at second-order critical points (validation of Assumption 1). Figure 1 shows
the convergence behaviors of loss function (13) for GMMs (n = 500, γ = 1.2, µ = 0.01) with 50 randomized
initializations. We consistently observe that: (i) the loss value steadily decreases over iterations and converges
rapidly near the globally optimal point; (ii) the Riemannian gradient norm dynamics suggest that our
algorithm initially attempts to escape saddle points (with increased gradient norm) and eventually converges
to second-order local optimality, where zero-loss is achieved, indicating global optimality. To verify second-
order local optimality, we also plot the minimum eigenvalue of the Riemannian Hessian. This provides
strong numerical evidence that near-second-order critical points are near-globally optimal, as posited by
Assumption 1.

Benchmark on real world data. Prior studies on mass cytometry (CyTOF) and computer vision
(CIFAR-10) datasets identified the nonnegative low-rank (NLR) factorization [47] as the most reliable
clustering solver, attaining the lowest average mis-clustering error and the tightest variance compared to
classical baselines such spectral clustering (SC), nonnegative matrix factorization (NMF), and K-means++ [4]
(KM++). Our algorithm optimizes the same nonnegative low-rank model, so it inherits this reliability.
Because it applies second-order Hessian updates rather than first-order gradients, it refines each iterate more
thoroughly and therefore recovers the ground-truth membership matrix more accurately. Figure 2 illustrates
this on CyTOF: both methods keep mis-clustering near zero, yet our solver achieves a smaller Frobenius gap
to the oracle solution. The experiment was repeated 50 times on random subsamples of size n = 1800.

Comparison with NLR. Next, we compare our method directly to the nonnegative low-rank (NLR)
factorization. Figure 3 shows experimental results for GMM with n = 100, γ = 0.8, µ = 0.1, and with varying
n. Main observations: (i) Each Newton step is solved in O(n) time, matching the theory in Section 3. (ii)
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Figure 3: Comparison with previous state-of-the-art NLR on GMM. Our second-order method
reaches optimality in 152 iterations, while NLR needs 80k. Even though each second-order iteration costs
≈30–100 NLR steps, the total runtime is still two to four times shorter. (Left and middle) clustering accuracy
vs log iterations and linear time; (right) per-iteration time vs sample size n.

A Newton step is about 30–100 times costlier than a single NLR update. This is to be expected because
the Newton step solves several linear systems, while NLR performs only a single matrix-vector product.
(iii) Our solver reaches the optimum in hundreds of iterations, whereas NLR needs tens of thousands. The
orders-of-magnitude reduction in iterations more than offsets the costlier step, so wall-clock time drops by a
factor of two to four.
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Figure 4: Comparison with prior Riemannian K-means method of Carson et al. [16] on real-world
data. Each run is warm-started from the previous and the penalty is stepped through λi = 0, 104, 106, 107.
However: (Left) average mis-clustering exceeds 30%; (Middle) the recovery error ∥Z − Z⋆∥F remains large;
(Right) the infeasibility ∥U−∥ never vanishes. Our Riemannian method, shown for reference, enforces U− = 0
by design and achieves near-zero error in both metrics.

Comparison with prior Riemannian K-means methods. We evaluate the clustering performance
of the algorithm proposed by Carson et al. [16] to solve the penalized formulation (4) on the CyTOF data.
Figure 4 presents the performance of this first-order manifold method. Unfortunately, we were unable to
identify a sequence of λ that would produce acceptable clustering results. While increasing the penalty
parameter λ improves feasibility, it also degrades clustering performance. This highlights the difficulty in
solving (4) using the method of Carson et al. [16], as it struggles to balance strict constraint satisfaction with
objective optimality in the K-means problem.
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Figure 5: Comparison with classical Riemannian Trust Region (RTR) on GMM. Our method
drives both loss and gradient norm to machine precision in around 360 iterations. In contrast, RTR stagnates
for over 21k iterations due to the extreme ill-conditioning induced by the log penalty.
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Figure 6: Dependence on hyperparameters. (Left) Error exhibits phase transition as penalty parameter
µ gets too large. (Right): Error seems insensitive to the search rank r = K + 1, . . . , 3K.

Comparison with classical Riemannian algorithms. As discussed in Section 3, Problem (13) can be
solved with CG or RTR as the gradient, Hessian, and retraction are all available. Nevertheless, both CG and
RTR perform poorly because the log-barrier induces an extremely ill-conditioned landscape. To illustrate this,
we solve (13) on GMM data using PYMANOPT’s implementation of CG and RTR. For CG, we were unable to
tune the method to produce a meaningful solution, as its updates frequently lead to infeasible points. While
RTR can converge to a solution comparable to ours, it requires significantly more iterations and time, as
shown in Figure 5.

Effect of hyperparameters. Our method displays a sharp phase transition with respect to the regular-
ization parameter µ. Below a critical threshold, the algorithm consistently converges to optimal solutions
and remains robust to variations in µ. However, once µ exceeds this threshold, the method fails to yield
meaningful results. This behavior is illustrated in Figure 6 where we used GMM synthetic data with four
clusters and separation γ = 0.8. Figure 6 also shows the clustering errors evaluated across different search
ranks r. Clustering performance appears insensitive to r, so the smallest feasible r = K + 1 should be used in
practice. A brief discussion on the choice of hyperparameters is provided in Section F.
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Appendices
A Relationship between SDP Formulations of K-means Clustering:

Standard and Interior Point Versions (2)
The standard K-means clustering for data in Rd has two formulations in the literature: (i) centroid-based
optimization

min
β1,...,βK ∈Rd

n∑
i=1

min
k∈[K]

∥Xi − βk∥2
2;

and (ii) partition-based optimization

min⊔K

k=1
Gk=[n]

K∑
k=1

∑
i∈Gk

∥Xi − X̄k∥2
2,

where X̄k = |Gk|−1∑
j∈Gk

Xj is the empirical centroid of cluster Gk. Formulations (i) and (ii) are known to
be equivalent, cf. Zhuang, Chen, and Yang [46, Eqn. (1)] or Qian, Zhang, and Chen [39, Appx. A]. Using the
parallelogram law in Zhuang, Chen, and Yang [46, Eqn. (5)]∑

i,j∈Gk

∥Xi −Xj∥2
2 = 2|Gk|

∑
i∈Gk

∥Xi − X̄k∥2
2,

we may write the partition-based objective function as

min⊔K

k=1
Gk=[n]

K∑
k=1

1
2|Gk|

∑
i,j∈Gk

∥Xi −Xj∥2
2.

Next, expanding the pairwise squared Euclidean distance and dropping
∑n

i=1∥Xi∥2
2 (no longer depending on

any partition G1, . . . , GK), we arrive at (1), in the form of maximizing the total intra-cluster similarity in
terms of the Gram matrix {⟨Xi, Xj⟩}n

i,j=1.
For general data without a likelihood derivation as in Chen and Yang [17], we can replace the Rd-inner

product with any (positive semidefinite) kernel k : X ×X → R and consider the kernelized version of K-means
clustering that involves data X1, . . . , Xn only via their Gram matrix {k(Xi, Xj)}n

i,j=1. Thus, our manifold
formulation of this paper carries over to the general kernel method setting with possibly nonlinear boundary
structure.

Next, we convexify the K-means problem (1) into an SDP. Note that each partition G1, . . . , GK via one-hot
encoding is equivalent to an assignment matrix Hn×K (up to cluster relabel) where the latter is a binary
matrix with exactly one non-zero entry in each row, i.e. Hik = 1 if i ∈ Gk. With this reparameterization, one
can write (1) as a mixed zero-one integer program:

max
H∈{0,1}n×K

{⟨XX⊤, HBH⊤⟩ : H1K = 1n}.

Now, applying the change of variables Zn×n = HBH⊤ and noting that the membership matrix Z and
assignment matrix H are not one-to-one, we relax the K-means problem by preserving the key properties of
Z as the following constraints:

Z ⪰ 0, tr(Z) = K, Z1n = 1n, Z ≥ 0,

which no longer depend on the assignment matrix H. Then, we arrive at the standard SDP relaxation for
K-means clustering, cf. Peng and Wei [38, Eqn. (13)] or Chen and Yang [17, Eqn. (11)]:

max
Z∈Rn×n

{⟨XX⊤, Z⟩ : Z ⪰ 0, tr(Z) = K, Z1n = 1n, Z ≥ 0}. (14)

14



In practice, the elementwise nonnegativity constraint Z ≥ 0 is almost always enforced by a logarithmic
barrier. This means that we can make (14) more explicitly in the form

max
Z∈Rn×n

⟨XX⊤, Z⟩+ µ
n∑

i,j=1
log(Zi,j)+ : Z ⪰ 0, tr(Z) = K, Z1n = 1n

 , (15)

which is precisely how any practical interior-point solver would solve the original SDP in (14). The barrier
cost is the actual objective used internally, with µ set to reflect the solver’s target accuracy, cf. Boyd and
Vandenberghe [12, Chapter 11] or Nocedal and Wright [37, Chapters 14 & 19]. In other words, we take the
standard SDP in (14), and make explicit the logarithmic penalty that is already implicit in how such an SDP
is actually solved.

B Information-theoretic Threshold for Exact Recovery
The following theorem is a precise statement of the information-theoretic threshold of Chen and Yang [17].

Theorem 3 (Average-case phase transition for exact recovery). Let α > 0 and

Θmin := min
1≤j<k≤K

∥µj − µk∥

be the minimum centroid separation. Suppose that data X1, . . . , Xn are generated from the Gaussian mixture
model (5) with equal cluster size |G∗

1| = · · · = |G∗
K | = m. Then we have the following dichotomy.

1. If K ≤ log n/ log log(n) and Θmin ≥ (1 + α)Θ, then there exist constants C1, C2 > 0 depending only on
α such that, with probability at least 1 − C1(log n)−C2 , the SDP (2) as µ → 0+ (cf. Appendix A for
the equivalence of two SDP formulations) has a unique solution that exactly recovers the true partition
G∗

1, . . . , G∗
K .

2. If K ≤ log n and Θmin ≤ (1− α)Θ, then there exists a constant C3 > 0 depending only on α such that

inf
Ĝ1,...,ĜK

sup
Ξ(n,K,Θmin)

P(∃k : Ĝk ̸= G∗
k) ≥ 1− C3K

n
,

where the infimum is taken over all possible estimators (Ĝ1, . . . , ĜK) for (G∗
1, . . . , G∗

K) and the parameter
space is defined as

Ξ(n, K, Θ) :=
{

(G1, . . . , GK , µ1, . . . , µk)

∣∣∣∣∣ ∥µj − µk∥ ≥ Θ, ∀j, k ∈ [K], j ̸= k

(1− δn)m ≤ |Gk| ≤ (1 + δn)m

}

with δn = C
√

K log(n)/n for some large enough constant C > 0.

C Additional Details on our Riemannian Formulation
C.1 Equivalence between Riemannian Optimization and SQP
Let us consider a constraint optimization problem,

min
u∈Rn

f(u),

s.t. gi(u) = 0 ∀i.
(16)

where LICQ: ∑
i

yi∇gi(u) = 0 ⇐⇒ yi = 0 ∀i.
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holds for every u in the constraint set. ThenM := {u ∈ Rn : gi(u) = 0 ∀i} is a smooth embedded manifold [8],
and we may employ Riemmanian methods to solve (16).

The Riemmanian method solves minu∈M f(u) by solving

min
u̇∈Tu M

f(u) + ⟨grad f(u), u̇⟩+ 1
2 ⟨Hess f(u)[u̇], u̇⟩+ L

6 ∥u̇∥
3 (17)

at each iteration. One can show that this is equivalent to the SQP method that solve (16) by minimizing the
Lagrangian

min
u̇

L(u, y(u)) + ⟨∇uL(u, y(u)), u̇⟩+ 1
2 ⟨∇

2
uuL(u, y(u))[u̇], u̇⟩+ L

6 ∥u̇∥
3,

s.t. ⟨∇gi(u), u̇⟩ = 0 ∀i.
(18)

where
L(u, y(u)) = f(u) +

∑
i

y
(u)
i gi(u) and y(u) = argmin

y
∥∇uL(u, y)∥.

Hence, our contribution is to efficiently solve the SQP subproblem by exploiting a block-diagonal-plus-low-
rank structure in the Hessian, and the fact that there are only r + r(r + 1)/2≪ n constraints. We provide
more details in Appendix C.2 and Section C.3.

To establish the equivalence, we first observe that the search space of (17) and (18) are the same. Indeed,
the tangent space TuM = {u̇ : ⟨∇gi(u), u̇⟩ = 0 ∀i}. Next, we write the expressions for the Riemannian
gradient and Hessian (Proposition 3.61 and Corollary 5.16 [8]):

grad f(u) := Proju
(
∇f(u)

)
, Hess f(u)[u̇] := Proju

(
Du grad f(u)[u̇]

)
, (19)

where Proju(v) := argminu̇∈Tu M∥v − u̇∥, and Du denotes the usual differential operator. We then obtain

grad f(u) := Proju
(
∇f(u)

)
= ∇f(u) +

∑
i

y
(u)
i ∇gi(u) = ∇uL(u, y(u)). (20)

For the second equality, see Equation (7.75) in Boumal [8].
For the second order terms, we have ⟨Hess f(u)[u̇], u̇⟩ = ⟨∇2

uuL(u)[u̇], u̇⟩ for all u̇ in TuM by the facts
that

(i) Hess f(u)[u̇] = Proju
(
∇2

uuL(u, y(u))[u̇]
)
.

(ii) ⟨Proju(v), u̇⟩ = ⟨v, u̇⟩.

We obtain fact (i) by (19) and (20):

Hess f(u)[u̇] := Proju
(
D grad f(u)[u̇]

)
= Proju

(
∇2f(u)[u̇] +

∑
i

(Du y
(u)
i )∇gi(u)[u̇] +

∑
i

y
(u)
i ∇

2gi(u)[u̇]
)

= Proju
(
∇2f(u)[u̇] +

∑
i

y
(u)
i ∇

2gi(u)[u̇]
)

= Proju
(
∇2

uuL(u, y(u))[u̇]
)
.

Inside the projection operator, the term
∑

i(Dy
(u)
i )∇gi(u) vanishes because TuM is a linear subspace,

and (TuM)⊥ = span
(
∇gi(u)

)
. Fact (ii) is due to that the projection operator is self-adjoint and that the

projection of any tangent vector is itself. For more on the connection between SQP and Riemannian Newton
method, we refer to Absil et al. [1] and Mishra and Sepulchre [34].
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C.2 General form of the Riemannian gradient and Hessian
Throughout this section, we use a bar over a function defined on the manifold M to denote its smooth
extension defined on a neighborhood of M so that the Euclidean gradient and Hessian can be defined on M.
Namely, for f :M→ Rm, we use f̄ : N(M)→ Rm to denote the smooth extension. The notations grad f
and Hess f denote the Riemmanian gradient and Hessian; ∇f̄ and ∇2f̄ denote the Euclidean gradient and
Hessian.

For manifolds that can be defined by

min
U∈M

f(U), M = {U ∈ Rn×r : A(UU⊤) + B(U) = c},

where A : Rn×n → Rm and B : Rn×r → Rm are linear operators, and c ∈ Rm, its tangent space can be written
as:

TUM = {U̇ ∈ Rn×r : A(U̇U⊤ + UU̇⊤) + B(U̇) = 0}.

We call the function A(UU⊤) + B(U) = c as the defining function of M. Let us denote

L(U̇) := A(U̇U⊤ + UU̇⊤) + B(U̇). (21)

Immediately, we see that TUM = ker(L), and the adjoint operator

L∗(y) = 2A⊤(y)U + B⊤(y). (22)

The projection operator onto the tangent space is defined to be

ProjU (W ) := argmin
U̇∈TU M

∥W − U̇∥.

We also know that ker(L)⊥ = image(L∗). Thus, by the orthogonal projection theorem, we may see that

ProjU (W ) = W −W ⊥ = W − L∗(ỹ), (23)

where ỹ = argminy ∥W − L∗(y)∥ is the solution to the linear system W − L∗(y) ∈ ker(L) = TUM, and both
ProjU (W ) and ỹ are unique.

Consequently, the Riemannian gradient and the Hessian matrix-vector product have the following form:{
grad f(U) := ProjU (∇f̄(U)) = ∇f̄(U) + 2[A⊤(yU )]U + B⊤(yU ),
Hess f(U)[U̇ ] := ProjU

(
D grad f(U)[U̇ ]

)
= ProjU

(
∇2f̄(U)[U̇ ] + 2[A⊤(yU )]U̇

)
,

(24)

where yU = −ỹ in (23) is the unique Lagrange multipliers

yU = argmin
y∈Rm

∥∥∇f(U) + 2[A⊤(y)]U + B⊤(y)
∥∥. (25)

For a detailed proof, see Boumal, Voroninski, and Bandeira [11].

C.3 Efficient computation of the Riemannian gradient and Hessian
We first write down the Euclidean gradient and Hessian for our objective function, and then explain how to
compute the Riemannian counterparts efficiently. Specifically, we show that yU can be computed in O(nr +r3)
time.

We decompose the objective function as f = f1 + µf2, where

f1(V, Q) := ⟨C, V V ⊤⟩, f2(V, Q) := −
∑
i,j

log φi,j(V, Q).
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The Euclidean gradients are respectively: ∇V f1(V, Q) = 2CV, ∇Qf1(V, Q) = 0, and

∇V f2(V, Q) = −U (−1)
[
0r−1
Ir−1

]
Q⊤, ∇Qf2(V, Q) = −

[
1̂⊤

n

V ⊤

]
U (−1),

where U := φ(V, Q) and U (−1) is its element-wise inverse, i.e., [U (−1)]i,j = (Ui,j)−1. The Euclidean Hessians
are given in vectorized form as

∇2f1(V, Q) =
[
2Ir−1 ⊗ C 0

0 0

]
, ∇2f2(V, Q) =

[
J⊤

V

J⊤
Q

]
D2 [JV JQ

]
−
[

0 HV Q

HQV 0

]
,

where
D = dvec

(
U (−1)), JV =

(
Q⊤

[
0

Ir−1

]
⊗ In

)
, JQ = Ir ⊗QU⊤,

and
HV Q =

([
0 Ir−1

]
⊗ U (−1)

)
K(r,r) = H⊤

QV ,

with dvec
(
U (−1)) := diag[vec(U (−1))], and K(n,r−1), K(r,r) denoting the commutation matrices [33, Sec. 3.7].

We can then compute the Riemannian gradient and Hessian-vector-product according to (24) and (25). In
the remainder of this section, we show how to efficiently solve (25).

The manifold we consider, M̃ := V ×Orth(r), can be written as

M̃ =
{

(V, Q) ∈ Rn×(r−1) × Rr×r : 1⊤
n V = 0r−1, tr(V V ⊤) = K − 1, svec(QQ⊤ − Ir) = 0

}
,

where svec denotes the symmetric vectorization operator [27, Appx. E]. Note that there are no cross terms
(V Q⊤ or QV ⊤) in the defining functions of M. Thus, we can treat the defining functions with respect to V
and Q separately. The corresponding terms are

AV (V V ⊤) :=
[

0r−1
tr(V V ⊤)

]
, BV (V ) :=

[
1⊤

n V
0

]
, AQ(QQ⊤) := svec(QQ⊤)

and
cV :=

[
0r−1

K − 1

]
and cQ := svec(Ir).

Mimicking (21) and (22), we use the notation LV , LQ, L∗
V , and L∗

Q respectively. For any (y1, y2) ∈ Rr−1×R
and y3 ∈ Rr(r+1)/2, we have

L∗
V (y1, y2) = 1ny⊤

1 + 2y2V and L∗
Q(y3) = 2 smat(y3)Q,

where smat is the inverse of svec, that is, smat(svec(M)) = M for all symmetric matrices M . Denote
GV := ∇V f(V, Q) and GQ := ∇Qf(V, Q). By solving the linear systems

GV − L∗
V (y1, y2) ∈ ker(LV ) and GQ − L∗

Q(y3) ∈ ker(LQ),

we obtain the following closed form solutions:

ỹ1 = 1
n

G⊤
V 1n, ỹ2 = 1

2(K − 1) ⟨GV , V ⟩, ỹ3 = 1
4 svec(GQQ⊤ + QG⊤

Q). (26)

The computation of ỹ1, ỹ2, and ỹ in total requires O(nr + r3) time. Therefore, we can compute
yU = −(ỹ1, ỹ2, ỹ3) with the same cost. Given a Euclidean gradient and a Euclidean Hessian-vector product,
we may write out explicitly the Riemannian gradient:

grad f(V, Q) =
[(

I − 1
n
1n1

⊤
n

)
GV −

1
K − 1 ⟨GV , V ⟩V

GQQ⊤ −QG⊤
Q

2 Q

]
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and the Riemannian Hessian-vector product:

Hess f(V, Q)[V̇ , Q̇] =


ProjV

(
∇2f(V, Q)[V̇ , Q̇]V −

1
K − 1 ⟨GV , V ⟩V̇

)
ProjQ

(
∇2f(V, Q)[V̇ , Q̇]Q −

GQQ⊤ + QG⊤
Q

2 Q̇

)


⊤

.

C.4 Feasible initial point
In this section, we show that r > K is necessary and sufficient for the existence of an interior point of M.
The following Lemma 3 shows the necessity of r > K. When r = K, the structure of the unique U ∈ Rn×K

+
in Lemma 1 can be explicitly written as

U =
[

1√
|G1|

1G1 ,
1√
|G2|

1G2 , . . . ,
1√
|GK |

1GK

]
, (27)

where 1Gk
∈ {0, 1}n denotes the binary vector with its support being Gk.

Lemma 3 (Isolated feasibility when r = K). Let M+ = M ∩ Rn×K
+ and M′

+ = M′ ∩ Rn×K
+ , where

Rn×K
+ = {U ∈ Rn×K : U ≥ 0}. Then, we have: (i) M+ =M′

+; (ii) U ∈ M+ if and only if U is a group
assignment matrix defined in (27); (iii) if U is a group assignment matrix, then the intersection of the tangent
space TUM and the cone CU := {V ∈ Rn×K : vij ≥ 0, ∀uij = 0} is trivial, i.e., TUM∩ CU = {0}.

In Lemma 5, we moreover provide a complete analytical construction for an interior point of M when
r > K. Here, we present the construction when n = qr is an integer multiple of r. Let U0 = (x−y)I + y1n1

⊤
n ,

where x = r−1(1 +
√

(r − 1)(K − 1)) and y = r−1(
√

r − 1−
√

K − 1).
Then U = 1̂q ⊗U0 is an interior point of M. Next, we show how to compute the pair V , Q corresponding

to the interior point U by SVD. For a given U ∈Mr, let U = PU ΣQ⊤
U be the SVD of U . We can find (V, Q)

such that U =
[
1̂n V

]
Q by V = sgn(PU (1,1))[PU Σ](:,2:r) and Q = sgn(PU (1,1))Q⊤

U .

C.5 Lipschitz continuity of penalty
To apply the guarantees in Section 2.3, we need to take care of the logarithmic penalty in (13) since it
does not have Lipschitz gradients nor Hessians over its whole domain. The standard workaround, widely
used in the analysis of nonlinear interior-point methods, is to observe that all iterates Uk = φ(Vk, Qk)
remain strictly feasible. Consequently, the penalty could be modified by a Huber-style smoothing, where
δ = mini,j,k(Uk)i,j > 0:

r(x) =

log x x ≥ δ

log δ + (x− δ)
δ

− (x− δ)2

2δ2 + (x− δ)3

2δ3 x < δ

The function r(x) is both concave and has Lipschitz Hessians. Therefore, the guarantees in Section 2.3 apply.
The smoothing is only needed for theoretical purposes. In practice, we apply the Riemannian algorithms
directly to log x, and not to r(x). Since we have assumed that all queries satisfy x ≥ δ, the actual behavior
remains consistent with the smoothed model.

D Proofs
Proof of Lemma 1. Note that the membership matrix Z associated to a partition G1, . . . , GK contains a
diagonal principal submatrix of rank K. The lemma follows from Theorem 4 in Kalofolias and Gallopoulos
[26].
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Proof of Lemma 2. Let N denote the null space basis of A, such that AN = 0 and N⊤N = I. Then, we have
λmin = λmin(N⊤HN) and p(λ) = Np̂(λ) where (N⊤HN + λI)p̂(λ) = −N⊤g. Then, λ > −λmin implies that
N⊤HN + λI ≻ 0, so p(λ) = −N(N⊤HN + λI)−1N⊤g is always well-defined. Moreover, ∥p(λ)∥ = ∥p̂(λ)∥ is
monotonously decreasing because all the eigenvalues of N⊤HN + λI are strictly positive and increasing with
λ.

Proof of Lemma 3. To prove the first statement, note that the implication

U ∈ Rn×K
≥0 ∧ UU⊤1n = 1n ∧ U⊤U = IK =⇒ U ∈ Rn×K

≥0 ∧ UU⊤1n = 1n ∧ ∥U∥2
F = K

is straightforward. To see the converse, note that UU⊤ is a (doubly) stochastic matrix, tr(UU⊤) = K, and
rank(UU⊤) = K, thus all the K eigenvalues of UU⊤ are 1, i.e. U ∈ St(n, K).

For the second statement, it is trivial that

U =
[ 1√
|G1|

1G1 . . .
1√
|GK |

1GK

]
∧

K⊔
k=1

Gk = [n]

=⇒ U ∈ Rn×K
≥0 ∧ UU⊤1n = 1n ∧ U⊤U = IK .

The converse is also true. Let us denote Gk := supp(uk). Observe that Gi ∩Gj = ϕ for all i ≠ j since U ≥ 0
and u⊤

i uj = 0 for all i ≠ j. Then UU⊤1n = 1n implies uku⊤
k 1Gk

= 1Gk
and

⊔K
k=1 Gk = [n]. Since ∥uk∥ = 1,

we have that uk = 1Gk
/
√
|Gk|.

Finally, we will prove the third statement. Let U be a group assignment matrix as defined by (27). Note
that for all V ∈ TUM∩ CU , V must satisfy (UV ⊤ + V U⊤)1n = 0n, ⟨U, V ⟩ = 0, and vi,j ≥ 0, ∀ui,j = 0.
Define A : [n]→ [K] to be the group assigning function, i.e. A(i) =

∑K
k=1 kI{ui,k ̸= 0}, then

UV ⊤ =
[ 1√
|GA(i)|

vj,A(i)

]

=



1√
|GA(1)|

v1,A(1)
1√
|GA(1)|

v2,A(1) · · · 1√
|GA(1)|

vn,A(1)

1√
|GA(2)|

v1,A(2)
. . .

...

...
. . .

...
1√
|GA(n)|

v1,A(n) · · · · · · 1√
|GA(n)|

vn,A(n)


.

Observe that

(i) A(i) = A(j) ⇐⇒ i ∈ GA(j) ⇐⇒ j ∈ GA(i)

(ii) i /∈ GA(j) ⇐⇒ (ui,A(j) = 0 ∧ uj,A(i) = 0) =⇒ (vi,A(j) ≥ 0 ∧ vj,A(i) ≥ 0)

(iii) ⟨U, V ⟩ = 0 ⇐⇒ ∀j ∈ [n],
∑

i∈GA(j)
vi,A(j) = 0 .

Denote w := (UV ⊤ + V U⊤)1, then

wj =
∑
i∈[n]

(
1√
|GA(j)|

vi,A(j) + 1√
|GA(i)|

vj,A(i)

)

=
∑

i∈GA(j)

(
1√
|GA(j)|

vi,A(j) + 1√
|GA(i)|

vj,A(i)

)

+
∑

i/∈GA(j)

(
1√
|GA(j)|

vi,A(j) + 1√
|GA(i)|

vj,A(i)

)
.
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By (i) and (iii), we know that

∑
i∈GA(j)

(
1√
|GA(j)|

vi,A(j) + 1√
|GA(i)|

vj,A(i)

)
=
√
|GA(j)|vj,A(j).

By (ii), we know that ∑
i/∈GA(j)

(
1√
|GA(j)|

vi,A(j) + 1√
|GA(i)|

vj,A(i)

)
≥ 0.

Thus we can write
wj =

√∣∣GA(j)
∣∣vj,A(j) + Rj for some Rj ≥ 0.

Next, we use proof by contradiction. Suppose there exists V ∈ TUM∩ CU such that V ̸= 0, then there must
be both positive and negative entries in V to satisfy ⟨U, V ⟩ = 0. This implies that there exists j1 ∈ [n] such
that vj1,A(j1) < 0 since vj,A(j)’s are the only entries that can take negative value. To satisfy ⟨U, V ⟩ = 0, there
must exist j2 ∈ GA(j1) such that vj2,A(j1) > 0. Then for such j2,

wj2 =
√∣∣GA(j2)

∣∣vj2,A(j2) + Rj2 =
√∣∣GA(j2)

∣∣vj2,A(j1) + Rj2 > 0.

This contradicts (UV ⊤ + V U⊤)1 = 0. Therefore, TUM∩ CU = {0}.

Lemma 4. If K ≥ 2, then the set M defined in (12) satisfies linear independence constraint qualification
(LICQ) for all U ∈ Rn×r, and is therefore a smooth submanifold of Rn×r.

Proof of Lemma 4. Following Boumal, Voroninski, and Bandeira [11], the setM = {U ∈ Rn×r : ⟨Ai, UU⊤⟩ =
bi for all i} is a smooth submanifold of Rn×r if LICQ holds for all U ∈M, i.e., that

∑
yiAiU = 0 if and only

y = 0. For the definition in (12), we can verify that∥∥∥∑ yiAiU
∥∥∥2

F
= ∥(1y⊤ + y1⊤ + y0I)U∥2

F

= ∥(1y⊤ + y1⊤)U∥2
F + 2⟨(1y⊤ + y1⊤)U, y0U⟩+ y2

0∥U∥2
F

= [ny⊤(I + UU⊤)y + 2(1⊤y)2] + 4y0(1⊤y) + y2
0K

≥ [2(1⊤y)2 + 4y0(1⊤y) + y2
0 ] + n∥y∥2 + (K − 1)y2

0

= (21⊤y + y0)2 + n∥y∥2 + (K − 1)y2
0

≥ ∥y∥2 + y2
0 .

The third line is because ⟨(1y⊤ + y1⊤)U, U⟩ = 2⟨y, UU⊤1⟩ = 2(y⊤1) and∥∥(1y⊤ + y1⊤)U
∥∥2

F
= tr[(1y⊤ + y1⊤)UU⊤(1y⊤ + y1⊤)]
= tr[1y⊤UU⊤y1⊤ + y1⊤UU⊤1y⊤ + 2 · 1y⊤UU⊤1y⊤]
= tr[1y⊤UU⊤y1⊤ + y1⊤1y⊤ + 2 · 1y⊤1y⊤]
= ny⊤UUy + ny⊤y + 2(1⊤y)2.

Lemma 5 (Interior point construction forMr). Given a K ∈ N, for any r such that r > K, for large enough
n, we have the following two cases:
Case 1: n ≡ 0 (mod r)
Denote q := n/r, let U0 = (x− y)I + y11⊤, where

x = 1
r

(
1 +

√
(r − 1)(K − 1)

)
, y = 1

r

(√
r − 1−

√
K − 1

)
.
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Then U = (1/
√

q)1q ⊗ U0 is an interior point of Mr.
Case 2: n ̸≡ 0 (mod r)
Let us denote q := ⌊n/r⌋ and p := n mod r. Construct the block matrix B ∈ Rr×r:

B =
[
B1,1 B1,2
B2,1 B2,2

]
,

where

B1,1 = (x− y)I + y1p1
⊤
p , B1,2 = z1p1

⊤
r−p,

B2,2 = (w − z)I + z1r−p1
⊤
r−p, B2,1 = y1r−p1

⊤
p ,

The coefficients x, y, z and w depends on n, K and r. They will be specified in the proof. Then

U =
[
In 0

]
(1q ⊗B)

is an interior point of Mr.

Proof of Lemma 5. For a general large enough n, n is either divisible or nondivisible by r. We present two
different constructions of an interior point of Mr corresponding to the two cases.
Case 1: n ≡ 0 (mod r)
We first construct a U0 ∈ Rr×r such that U0U⊤

0 1r = 1r, and ∥U0∥2
F = K. Using the ansatz U0 =

(x− y)I + y11⊤, where x, y > 0, we can find x and y by solving the system:{
x + (r − 1)y = 1 (U0U⊤

0 1r = 1r)
x2 + (r − 1)y2 = K/r (∥U0∥2

F = K)
.

The first equation gives x = 1− (r − 1)y. By substituting into the second equation, we obtain the following
quadratic equation of y:

r(r − 1)y2 − 2(r − 1)y + 1− K

r
= 0.

By the quadratic formula and x, y > 0, we have the following solution
x = 1− (r − 1)y = 1

r
(1 +

√
(r − 1)(K − 1)),

y =
r − 1−

√
(r − 1)(K − 1)

r(r − 1) = 1
r

(
√

r − 1−
√

K − 1).

Note that if r = K, we can still solve the quadratic equation, but without an all positive solution. Denote
q := n/r, then U = (1/

√
q)1q ⊗ U0 is an interior point of Mr.

Case 2: n ̸≡ 0 (mod r)
Let us denote q := ⌊n/r⌋ and p := n mod r. We consider the ansatz

U =
[
In 0

]
(1q ⊗B) for some block matrix B =

[
B1,1 B1,2
B2,1 B2,2

]
∈ Rr×r,

where

B1,1 = (x− y)I + y1p1
⊤
p , B1,2 = z1p1

⊤
r−p,

B2,2 = (w − z)I + z1r−p1
⊤
r−p, B2,1 = y1r−p1

⊤
p .

Additional to the constraints ∥U∥2
F = K, and UU⊤ = 1n, we assume that U1r = cr1n, U⊤1n = cc1r, and

crcc = 1 for some cr and cc, which are sufficient for UU⊤ = 1n. Then we can find x, y, z, and w by solving
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the system: 
x + (p− 1)y + (r − p)z = py + w + (r − p− 1)z,

(q + 1)x + q(r − 1)y + (p− 1)y = qw + q(r − 1)z + pz,

(py + w + (r − p− 1)z)(qw + q(r − 1)z + pz) = 1,

(q + 1)p(x2 + (p− 1)y2 + (r − p)z2) + q(r − p)(py2 + w2 + (r − p− 1)z2) = K.

(28)

The four equations correspond to the following constraints, respectively: U1r = cr1n, U⊤1n = cc1r, crcc = 1,
and ∥U0∥2

F = K. From the first two equations, we can express x and y in terms of z and w (note that
n = qr + p):

x =
(

1− 1
n

)
w + 1

n
z, y =

(
1 + 1

n

)
z − 1

n
w. (29)

By substituting (29) to the third and fourth equations of (28), we are left with a system of quadratic equations
of two variables: {

a1z2 + a2zw + a3w2 + c1 = 0,

b1z2 + b2zw + b3w2 + c2 = 0,
(30)

where

a1 = nr − qr + p− p(2q + 1)/n, a2 = 2p(1 + 2q − n)/n,

a3 = n− p(2q + 1)/n, b1 = (r + p/n− 1)(n− q),
b2 = (1− p/n)(n− q) + q(r + p/n− 1), b3 = q(1− p/n),
c1 = −K, c2 = −1.

Now our goal is to solve (30). By multiplying the first equation with b1 and the second one with a1 and
subtraction, we can express z in terms of w:

z = aw + b

w
with a = a3b1 − a1b3

a1b2 − a2b1
, b = c1b1 − a1c2

a1b2 − a2b1
. (31)

Suppose that w ≠ 0, we substitute (31) into the second equation and multiply by w2. The result is a quintic
equation:

(b1a2 + b2a + b3)w4 + (2abb1 + bb2 + c2)w2 + b2b1 = 0. (32)

By solving (32) with z = aw + b/w > 0, we obtain

w =

√
−(2abb1 + bb2 + c2) +

√
(2abb1 + bb2 + c2)2 − 4(a2b1 + ab2 + b3)b2b1

2(a2b1 + ab2 + b3) . (33)

The proof is completed by combining (29), (31), and (33).

Proof of Theorem 2. For “⊇,” if U =
[
1̂n V

]
Q, then UU⊤ = (1/n)1n1

⊤
n + V V ⊤ and hence UU⊤1 = 1

and tr(UU⊤) = K respectively, because 1⊤
n V = 0 and tr(V V ⊤) = K − 1. For “⊆,” let U = PΣQ denote

the singular value decomposition with P ⊤P = QQ⊤ = Ir. Since UU⊤1n = 1n, the decomposition can
be chosen so that PΣe1 = (1/

√
n)1n = 1̂n. So if V = PΣ[e2, . . . , er], then 1⊤

n V = e⊤
1 [e2, . . . , er] = 0 and

∥V ∥2 = ∥U∥2 − ∥PΣe1∥2 = K − 1.
In the final part, we first construct the inner approximation S of the tangent space

T(V,Q)M̃ = {(V̇ , Q̇) : 1⊤
n V̇ = 0, ⟨V, V̇ ⟩ = 0, QQ̇⊤ + Q̇Q⊤ = 0}

⊇
{

(V̇ , Q̇) : 1⊤
n V̇ = 0, ⟨V, V̇ ⟩ = 0, Q̇Q⊤ =

[
0 −h⊤

h 0

]}
= S.
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We observe that [
1̂n V

]
Q̇ =

[
1̂n V

] [0 −h⊤

h 0

]
Q =

[
V h 1̂nh⊤]Q

and therefore the Jacobian operator is injective for all (V̇ , Q̇) ∈ S:∥∥D φ(V, Q)[V̇ , Q̇]
∥∥2 =

∥∥[0 V̇
]

Q +
[
1̂n V

]
Q̇
∥∥2

=
∥∥[0 V̇

]∥∥2 +
∥∥[V h 1̂nh⊤]∥∥2 ≥ ∥V̇ ∥2 + ∥h∥2 ≥ 1√

2
∥∥(V̇ , Q̇)

∥∥2

where we used the fact that 1⊤
n V̇ = 0. Hence, the Jacobian operator is surjective, as claimed:

dim
(
image(D φ(V, Q))

)
≥ dim(S) = n(r − 1)− 1 = dim(TUM).

E Efficient Implementation and Cost of Bisection Search

To implement the proposed method, we vectorize the input as u =
[
vec(V ⊤) vec(Q)

]⊤. The cost function
we used is

f(u) = −∥X⊤V ∥2 − µ1⊤
n log

(
φ(V, Q)

)
1n,

and the constraint functions are defined as

g1(u) = ∥V ∥2 − (K − 1), g2(u) = 1⊤
n V, g3(u) = svec(Q⊤Q− Ir).

The Jacobian J and Hessian H are computed analytically, as in Section C.3, in order to exploit their sparsity.
For convenience, we list some of the derivatives in this section. The (Euclidean) Jacobian of the constraints

can be written in block form as

J =

J1v 0
J2v 0
0 J3q

 ,

where
J1v = 2 vec(V ⊤), J2v = (Ir−1 ⊗ 1⊤

n )K(r−1,n), J3q = 2Ψ⊤
r (Ir ⊗Q⊤),

with Ψr being the orthogonal basis matrix of size-r symmetric matrices.
Computing the second-order derivatives of g1, g2 are trivial, since J1v is linear in V and J2v is constant.

The second-order derivatives of g3 can be computed explicitly by noticing that the entries of svec(Q⊤Q) can
be expressed as inner products with bases outer products, i.e.

⟨Ei,j , Q⊤Q⟩ = vec(Q)⊤(Ei,j ⊗ Ir) vec(Q),

where

Ei,j =


eie

⊤
j i = j,

eie
⊤
j + eje⊤

i√
2

i ̸= j.
.

It follows then the second-order derivative w.r.t. each entry is given by 2(Ei,j ⊗ Ir).
Collecting results, we have

H =
(

Hvv −BB⊤ Hvq

Hqv Hqq

)
,
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with

B =
√

2(X ⊗ Ir−1) (34)
Hvv = µK(n,r−1)(Q̂⊗ In) dvec

(
U (−2))(Q̂⊤ ⊗ In)K(r−1,n) + 2ỹ2I, (35)

Hqq = µ(Ir ⊗ V̂ ⊤) dvec
(
U (−2))(Ir ⊗ V̂ ) + 2

(
Ir ⊗ smat(ỹ3)

)
, (36)

and
Hvq = −µ(U (−1) ⊗

[
0r−1 Ir−1

]
) + µ(In ⊗ Q̂) dvec

(
U (−2))(Ir ⊗ V̂ ) = H⊤

qv, (37)

where Q̂ :=
[
0r−1 Ir−1

]
Q, V̂ :=

[
1̂n V

]
, and ỹ2, ỹ3 follow (26).

To solve the saddle point problem with bisection search, we solve the linear system Hvv + λI −BB⊤ Hvq J⊤
v

Hqv Hqq + λI Jq

Jv Jq 0

 pv

pq

r

 =

 −gv

−gq

0

 .

Repartition along the lines shown to yield the following[
K11 K12
K21 K22

] [
x1
x2

]
=
[

b1
b2

]
with dimensions x1, b1 ∈ Rn(r−1) and x2, b2 ∈ Rr2+m. Critically, we observe that the block K11, which
corresponds to the Riemannian Hessian with respect to the v variable, has the form K11 = D11 − BB⊤,
where D11 = Hvv + λI is block-diagonal, with n blocks of r − 1, and B has at most dr columns. Therefore,
we instead solve  D11 K12 B

K21 K22 0
B⊤ 0 I

 v̇
q̇
z

 =

 b1
b2
0

 .

First, it costs n(r − 1)3 = O(nr3) time to invert D11. Afterwards, forming and solving the size m + r2 + rd
Schur complement problem:

(
L22 − L⊤

12D−1
11 L12

) [q̇
z

]
=
[
b2
0

]
− L⊤

12D−1
11 b1, (38)

where
L12 :=

[
K21 B

]
L22 :=

[
K22 0
0 I

]
,

cost O(nr3(d + r) + r6 + r3d3) time. In the end, we substitute to recover

v̇ = D−1
11

(
b1 − L12

[
q̇
z

])
in O(nr3(d + r)) time, and apply retractions to v̇ and q̇. In total, it takes O(nr3(d + r) + r6 + r3d3) time to
solve the system, which is indeed n · poly(r, d). Putting pieces together, a pseudo-code of our Riemannian
method is shown in Algorithm 1.

F Additional Numerical Details
We collect additional numerical results in this section.

Hardware information. All experiments in this work were conducted on a machine equipped with a
single Intel Core i9-14900K CPU and 32 GB of RAM.
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License of assets. The MANOPT solver is distributed under the terms of the GPLv3 license; the PYMANOPT
solver is released under the 3-Clause BSD license; the CyTOF dataset is the work of Levine et al. [30], cleaned
and distributed by Weber [43] under the MIT license.

Dataset visualization. Figure 7 and Figure 8 display the first two principal components of the GMM
dataset and CyTOF dataset, respectively.
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Figure 7: Visualizing the effect of the separation parameter in GMMs. As γ decreases, the clusters become
increasingly difficult to distinguish.

Hyperparameters tuning. In the various numerical experiments, we observed that a smaller value of µ
led to more accurate solutions but at the cost of slower convergence. Therefore, we recommend selecting the
largest possible µ that does not trigger the phase transition. A good heuristic we found is to choose such that
the initial penalty term µf2 remains less than 20 times the main term f1 in the loss function. The onset of
phase transition is also easy to notice, as the algorithm will quickly stagnate and terminate in just a few
iterations. If higher accuracy is desired, one can reduce µ gradually, using the solution obtained with a larger
µ as initialization. This warm-start strategy significantly speeds up convergence compared to using a small
from the start.

The other hyperparameters in Algorithm 1 primarily influence the speed of the inner optimization. The
initial multiplier λ affects only the number of inner steps required during the first iteration. We recommend
doing a simple trial run with only two iterations; the resulting optimization history typically offers a reliable
guide for choosing an appropriate initial scale for λ. For the other two parameters, we suggest setting κ−
slightly smaller than κ+. Empirically, we found κ− = 1.1 and κ+ = 1.3 work well.

Robustness to initialization. As illustrated by Figure 1, our method is robust to initialization, all 50
trials successfully converged to second-order optimal solutions. Although the solutions differ (Figure 9), their
corresponding membership matrices Z are close to each other (Figure 10), and yield identical clustering result.
Moreover, the minimum eigenvalues upon convergence form distinct clusters that align with clusters in the
recovered membership matrix Z, as shown in Figure 10. These local critical points consistently produce
perfect clustering, indicating that they remain close to the global optimum.
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Figure 8: Visualization of the CyTOF dataset. Two clusters exhibit significant overlap, implying the difficulty
of clustering.
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Figure 9: Difference between the solutions. First 25 rows of selected solution U obtained from the global
optimality experiment described in Section 4.

Comparison with another Riemannian clustering method. Inexact Accelerated Manifold Proximal
Gradient Method (I-AManPG) by Huang et al. [25] is a recent first-order Riemannian method for solving
general problems of the form

min
X

f(X) + λ∥X∥1,

s.t. X ∈ Fv := {X : X⊤X = I, v ∈ span(X)}.
(39)

We evaluated its performance on the clustering problem using the on the CyTOF dataset with 50 repetitions
(same settings as in Figure 2). The results are shown in Figure 11. While I-AManPG is generally fast and
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Figure 10: Similarities of the membership matrices. Frobenius distances between the membership
matrices Z obtained from the global optimality experiment in Section 4, sorted according to their corresponding
minimum Hessian eigenvalues.

accurate, its median error is higher than that of our methods. In particular, several runs of I-AManPG
exhibited large errors, indicating convergence failures.

Ours I-AManPG
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Mis-clustering Error

Figure 11: Comparison with I-AManPG using CyTOF. Performance of I-AManPG is comparable
to that of other clustering methods; however, it suffers from convergence failures occasionally and requires
careful parameter tuning. In contrast, our method consistently demonstrates both accuracy and stability.
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Additional convergence plots. Figure 12, Figure 13, and Figure 14 illustrate the convergence of our
method on GMM with different parameters and on the CyTOF dataset, demonstrating its stability across
different datasets.
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Figure 12: Convergence of our method on synthetic Gaussian mixture data with perfect separation (n =
500, γ = 1.0). The loss value steadily decreases over iterations and converges rapidly near the optimal point.
This example achieved a perfect final clustering result in the end.
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Figure 13: Convergence of our method on synthetic Gaussian mixture data with low separation (n = 500, γ =
0.25).
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Figure 14: Convergence behavior on real world CyTOF dataset.
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G Pseudocode
This section presents the pseudocode of our implementation. For the derivation, see Section E.

Algorithm 1 Riemannian Second-order Method
Require: Data X,

Initial point (V0, Q0),
Initial multiplier λ,
Increment/decrement factors (κ+, κ−),
log-barrier penalty µ,
Max number of outer/inner iterations T and B.

1: (V, Q)← (V0, Q0)
2: for i = 1, . . . , T do
3: Vectorize input u← [vec(V ⊤), vec(Q)]⊤.
4: Compute current loss L = f(u).
5: Compute Riemannian gradient d← ∇f(u) and Jacobian J ← D g(u).
6: Compute Riemannian Hessians Hf ← ∇2f(u) and Hi ← D2 gi(u).
7: Solve yu = miny∥d + Jy∥ by least-squares.
8: Compute ∇uL(u, yu): G← d + Jyx

9: Compute ∇2
uL(u, yu): H ← Hf +

∑3
i=1(yu)iHi

10: for j = 1, . . . , B do
11: v̇, q̇ ← SolveInner(H, G, J, λ)
12: Reconstruct V̇ , Q̇ from vector v̇, q̇
13: (V, Q)← Retr(V,Q)(V̇ , Q̇)
14: Compute new loss L′ from (V, Q)
15: if L > L′ then
16: λ← λ/κ−
17: break
18: else
19: λ← λ · κ+
20: output (V, Q)
21:
22: function SolveInner(H, G, J, λ)
23: Adding λI to the V and Q blocks of H
24: Forming block matrices as in (38)
25: S ← L22 − L⊤

12D−1
11 L12

26:

[
q̇
z

]
←
[
b2
0

]
− L⊤

12D−1
11 b1

27: v̇ ← D−1
11

(
b1 − L12

[
q̇
z

])
28: return v̇, q̇
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