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Abstract

In this paper, we propose a new method called Self-Training with Dynamic Weight-
ing (STDW), which aims to enhance robustness in Gradual Domain Adaptation
(GDA) by addressing the challenge of smooth knowledge migration from the
source to the target domain. Traditional GDA methods mitigate domain shift
through intermediate domains and self-training but often suffer from inefficient
knowledge migration or incomplete intermediate data. Our approach introduces
a dynamic weighting mechanism that adaptively balances the loss contributions
of the source and target domains during training. Specifically, we design an opti-
mization framework governed by a time-varying hyperparameter o (progressing
from O to 1), which controls the strength of domain-specific learning and ensures
stable adaptation. The method leverages self-training to generate pseudo-labels
and optimizes a weighted objective function for iterative model updates, main-
taining robustness across intermediate domains. Experiments on rotated MNIST,
color-shifted MNIST, portrait datasets, and the Cover Type dataset demonstrate that
STDW outperforms existing baselines. Ablation studies further validate the critical
role of ¢’s dynamic scheduling in achieving progressive adaptation, confirming its
effectiveness in reducing domain bias and improving generalization. This work
provides both theoretical insights and a practical framework for robust gradual
domain adaptation, with potential applications in dynamic real-world scenarios.
The code is available at https://github.com/Dramwig/STDW.

1 Introduction
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The phenomenon of domain shift presents a
fundamental challenge in machine learning sys-
tems, where the statistical properties of training
(source) and deployment (target) domains ex-
hibit significant divergence [1, 2]. As illustrated
in Figure 1, this distributional mismatch fre-
quently arises in practical applications where tar-
get domain annotations are either prohibitively
expensive or fundamentally unavailable. Do-
main adaptation (DA) methodologies [3, 4] have
emerged as a critical paradigm for addressing
this challenge, particularly through the frame-
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Figure 1: Overview of gradual domain adaptation.
The classifiers perform accurately in classifying
the sample points in the current domain and the
neighboring domains, but fail when classifying
the samples from the Source directly to the Target
domain.

work of unsupervised domain adaptation (UDA) [5]. However, conventional UDA approaches
demonstrate limited efficacy when confronted with substantial domain discrepancies or when transi-
tional domain data is sparse or absent.

Recent theoretical and empirical advances have established Gradual Domain Adaptation (GDA) as
a promising alternative for mitigating these limitations. The GDA framework, as formalized by
[6] and extended by [7], implements a sequential knowledge migration mechanism that systemati-
cally reduces the inter-domain discrepancy through intermediate transitional phases. Although this
paradigm demonstrates improved stability compared to direct adaptation approaches [8], current GDA
implementations exhibit inefficient information flow between adjacent domains, resulting in gradual
performance degradation throughout the adaptation trajectory [9]. Moreover, the sequential nature
of GDA introduces compounding approximation errors, particularly when transitioning through
numerous intermediate domains [10].

This paper proposed Self-Training with Dynamic Weighting (STDW), identify and address three
critical challenges in existing GDA approaches: (1) suboptimal knowledge propagation across do-
mains, (2) instability during transitional phases, and (3) limited generalization capability. Our STDW
introduces a principled framework that fundamentally rethinks the domain adaptation paradigm
through two key innovations:

* A theoretically-grounded optimization framework employing the time-dependent parameter
o0 € [0, 1], which orchestrates a smooth transition from source to target domain representation
learning. This mechanism ensures controlled knowledge assimilation while maintaining
model stability throughout the adaptation trajectory.

* An integrated self-training paradigm that synergistically combines pseudo-label refinement
with adaptive loss reweighting, effectively addressing the domain shift problem through
iterative model purification and confidence-aware sample selection.

Through extensive empirical validation across four benchmark datasets - including Rotated MNIST,
Color-shifted MNIST, Portrait, and Cover Type datasets - we demonstrate that STDW achieves
state-of-the-art performance, outperforming existing methods by significant margins. Comprehensive
ablation studies further verify the critical role of our dynamic weighting mechanism and its superior
ability to facilitate robust knowledge migration across domains. The proposed framework establishes
new theoretical foundations for gradual domain adaptation while providing practical insights for
real-world applications.

2 Related Work

Domain Generalization (DG) has emerged as a principled approach to address the fundamental
challenge of distributional shift without requiring access to target domain data during training [11].
The theoretical underpinnings of DG trace back to kernel-based methods for learning domain-invariant
representations, as formalized by [12], who established important connections between feature space
alignment and generalization performance. Subsequent developments have significantly expanded
this paradigm through adversarial learning frameworks that explicitly minimize the discriminability of
domain-specific features while preserving task-relevant information [13]. A parallel line of research
has demonstrated the effectiveness of data-centric approaches in simulating domain variations during
training. The work of [14] pioneered sophisticated data augmentation strategies that generate synthetic



domain shifts through carefully designed transformations, effectively creating a continuum of virtual
training environments.

More recently, the field has witnessed significant advances through the integration of meta-learning
principles into the DG framework. [15] and [16] have reformulated the problem as a meta-
optimization task, where models are trained to rapidly adapt to simulated domain shifts presented in
episodic training scenarios. This meta-learning perspective provides formal generalization guarantees
and has established new state-of-the-art performance across multiple benchmark datasets. While these
approaches demonstrate impressive results in controlled evaluations, our analysis reveals persistent
limitations when confronting substantial domain discrepancies, particularly in scenarios where the
underlying data manifold undergoes complex nonlinear transformations. This observation motivates
our investigation of gradual adaptation strategies that can better preserve model stability across
significant distributional shifts.

Gradual Domain Adaptation (GDA) has emerged as a principled approach to address the funda-
mental challenge of substantial domain shifts by decomposing the adaptation process into a sequence
of intermediate, more manageable steps. The theoretical foundations of GDA were established by [7]
and [6] demonstrated that gradual transitions between domains can significantly improve adaptation
performance compared to direct source-to-target approaches. This paradigm shift builds upon the key
insight that complex real-world domain shifts often evolve gradually rather than occurring abruptly,
suggesting that modeling the continuous transformation between domains may better capture the
underlying data manifold structure.

Recent advances in GDA have focused on two primary directions: the generation of meaningful
intermediate domains and the development of robust adaptation strategies across these domains.
Theoretical work by [16] has provided rigorous mathematical frameworks for understanding the
benefits of gradual adaptation, while algorithmic innovations have explored various approaches to
constructing intermediate distributions. These include gradient flow-based geodesic paths [17] that
preserve the intrinsic geometry of the data manifold, style-transfer interpolation techniques [10] that
generate visually plausible intermediate samples, and optimal transport methods [9] that minimize the
Wasserstein distance between consecutive domains. These methodological advancements collectively
represent a significant step forward in addressing large domain gaps, though important challenges
remain in scaling these approaches to high-dimensional spaces and ensuring their robustness to noisy
or imperfect intermediate domains.

3 Problem Setup

Domain Space Let Z = X x ) denote the measurable instance space, where X C R9 is the
d-dimensional input space and Y = {1, 2, ..., k} is the label space with k denoting the number of
classes.

Gradually Shifting Domain Following the gradual domain shift framework [6], we assume a
sequence of n + 1 domains {D, }}"_, defined over Z. Here, D, represents the labeled source domain,
D,, denotes the unlabeled target domain, and the intermediate domains Dy, . .., D,,_1 form a smooth
interpolation between them. Each D; corresponds to a distinct data distribution, with the divergence
between consecutive domains assumed to be sufficiently small to enable stable adaptation.

Classification and Empirical Risk Minimization The goal of supervised classification is to learn
a hypothesis f : X — ) that minimizes the expected risk under a given distribution D,. Formally,
given a loss function [ : ) x ) — R, the optimal parameters 6 are obtained by solving:

0 = arg meinE(%y)NDt (1(f(2:0),y)]. @

Domain Adaptation In unsupervised domain adaptation (UDA), the model is trained on a labeled
source domain Dg but evaluated on an unlabeled target domain D, where Ps(z) # Pr(z) while the
conditional distribution P(y | =) is assumed to be invariant. The central challenge lies in transferring
knowledge across domains despite the distributional shift and the absence of labeled target data.

Gradual Domain Adaptation Gradual domain adaptation (GDA) addresses this challenge by
leveraging a sequence of unlabeled intermediate domains {Dt}?:_f that bridge Dy and D,,. Starting
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Figure 2: The framework of our Self-Training with Dynamic Weighting (STDW). It is designed to
facilitate a smooth and controlled adaptation of a model from a source domain to a target domain. The
hyperparameter ¢ governs the trade-off between the two domains: when ¢ = 0, the model operates
exclusively on the source domain, whereas as g increases toward 1, the model progressively shifts its
emphasis toward the target domain. Pseudo-labels, generated by the model itself, guide the adaptation
process, thereby ensuring a gradual and stable transition across domains.

from a model f(-;6p) trained on the source domain Dy, adaptation proceeds iteratively: at stage

t € {1,...,n}, the current model f(-;0;_1) generates pseudo-labels for samples from D;, which are
then used to update the model parameters via self-training:
6 = argmin Eqp, (£ (x;0'), f(2:60-1))] @

where §(z;6,—1) = argmaxyey f,(z;6;,—1) denotes the hard pseudo-label assigned by the previous
model. The resulting model f(-; 8;) is then employed to annotate data from the next domain Dy .
By constraining the distributional shift between consecutive stages to be small, this procedure ensures
a controlled and stable propagation of knowledge from source to target, thereby mitigating error
accumulation and enhancing generalization in the final target domain.

4 Methodology

This work proposes Self-Training with Dynamic Weighting (STDW), which reconstructs traditional
self-training paradigms through a triple adaptive mechanism. Fig. 2 illustrates the overall framework
of Self-Training with Dynamic Weighting (STDW).

4.1 Pseudo-labeling Dynamic Learning

Existing gradual domain adaptation (GDA) methodologies typically employ a static pseudo-labeling

paradigm, wherein the entire unlabeled dataset D = {x1,...,zy} is annotated in a single pass. This
process involves a classifier f(-;6) assigning hard labels through:
f(z) = arg m;mx f(@)y, 3)

followed by discarding a fixed proportion (e.g., 10%) of low-confidence samples to mitigate noise [6].
However, residual mislabeling inevitably persists, leading to compounded errors across successive
domains and exponential degradation in model accuracy—a phenomenon empirically validated in
prior studies.

To address this limitation, we propose dynamic pseudo-labeling, a sequential strategy that alternates
between incremental pseudo-label generation and classifier refinement. Specifically, we partition



D into T disjoint mini-batches { By, ..., Br}. Atiteration ¢, the model 6;_; labels samples within
batch B; via:

@,(t) =argmax f(z;;60,-1)y Vz; € By, @
Yy

yielding pseudo-labels {@2@ }. These labels then drive a parameter update by minimizing the cross-
entropy loss £ over By:

0y =01 —nmVeL (f(Bt; 0i—1), {Z?Z(t)}) ) (5)

where 7 denotes the learning rate. This iterative process is formalized through a batch-wise update
operator U:
9t:U(9t,1,Bt), t:].,,T (6)

By progressively refining pseudo-labels with an incrementally improved classifier, our approach
circumvents the error accumulation inherent to static labeling schemes. This dynamic interaction
between label generation and model adaptation ensures that each batch benefits from the enhanced
discriminative capability acquired from preceding batches, thereby alleviating label noise propagation
and fostering more stable domain adaptation. The resultant framework demonstrates superior
robustness, as evidenced by our experimental analyses.

4.2 Cyclic Batch Matching Across Neighboring Domains

Data comes from a range of domains in the gradual domain adaptation scenario. Consider two
neighboring domains D; (left domain) and D, (right domain), which are partitioned as D; =
{Bl,lv Bl,27 ey Bl,n}va = {BT,17 BT,27 ey B'r,m}-

To facilitate robust inter-domain adaptation, we define cyclic sequences that allow batches from
each domain to be matched in a fixed, periodic manner. Specifically, we define the sequences
{B(t)}+>0and{ B, (t) }+>0, with the mapping given by:

Bl(t) = Bl,i(t)a Br(t) = Br,j(t)v @)
where the indexing functions i(¢) and j(¢) are defined as:

i) =(t modn)+1,
i) = ((t+ M) mod m) L ®)

This formulation ensures the batches are sampled cyclically over the two domains. The resulting
cyclic matching can then be represented by the ordered pair sequence:

{ (Bz, i(k)s Br,j(k)) }kzo' )

Consider a sequence of n + 1 domains {D; }}-,, where each domain D, consists of mn data batches
denoted by {B; 1, Bt 2, ., By m(t) }. We define a time-varying classifier f(t’k) to be the model after
the k-th batch update within domain D,_; and D,. Its evolution is governed by the incremental
update rule:

OURD = @ (0R) B,y i), Bejy)s (10)

where @ is an optimization operator defined via the following objective:

o= arg Héi/n{EwNBt,i(k) |:60e<(f($i; 9/)’ f(xv 9))} +E'Jf~Bt,j(k) [gce((f(xi; 0/)5 f(ma 9))} }7 (11)
Just like Eq. 5 and Eq. 6, we can update 6 through ®.

4.3 Stepwise Dynamic Osmosis
We formulate the cross-domain adaptation process as the following optimization problem:

0(t7k+1) = @(e(t,k)’ Bt—l,i(k})a Bt,j(k})a Q)a (12)



@ = argmin {(1 OB, | feo(((250'), f20))]| + 0B, o [ (258) . (230) }

(13)
where ¢ € [0, 1] is a hyperparameter that balances the contribution of the current domain D; and
the subsequent domain D, ;. As the training progresses, g increases from 0 to 1, thereby gradually
migrating the learned knowledge from the source domain D; to the target domain D, ;.

Algorithm 1 Self-Training with Dynamic Weighting (STDW)

1: Input: Source batches { By 1.}, domain sequence {D;}?_;, initial model f(°-%), Inter-domain
migration steps: s

2: Output: Adapted model f(™)

3 g+ 1/s

4: fort =1TOndo

5. whilep < 1do

6: for kK =1 TO m - epochs do

7 Fetch batch B; 5, generate pseudo-labels: § < f(x; 0(:F—1)

8: Use Eq. 12, Eq. 13 update model: 6% « &(0“F=1 B, ), By i1, 0)

9: end for

10: o< o0+g

11:  end while

12:  Switch to the next domain: #(t+1,0)  g(t:m)

13: end for

S Experiments

5.1 Environments Setup

Datasets. Following established gradual domain adaptation protocols [6, 9], we utilize four core
datasets: Rotated MNIST [18] and Color-Shift MNIST for controlled synthetic transformations,
Portraits Dataset [19] for real-world temporal shifts, and Cover Type Dataset [20] for tabular domain
adaptation. The Rotated MNIST dataset, derived from the standard MNIST digits [18], introduces a
progressive geometric transformation where source images (0° rotation) gradually evolve to target
images (45° rotation) through intermediate domains of increasing rotation angles [9]. Similarly,
Color-Shift MNIST examines photometric transformations by systematically varying pixel intensity
ranges from [0,1] in the source domain to [1,2] in the target domain [9]. For real-world evaluation,
the Portraits Dataset [19] provides a temporal domain shift spanning over a century (1905-2013),
partitioned into nine chronological domains with distinct fashion and photographic characteristics [6].
The Cover Type Dataset [20] offers a challenging tabular scenario where domains are constructed
based on ecological proximity to water sources [6]. To further stress-test our method under severe
distribution shifts, we incorporate two additional corruption benchmarks: CIFAR-10-C and CIFAR-
100-C [21], which systematically apply 15 types of image corruptions at varying severity levels,
treating the highest severity as the target domain.

Implementation. For image datasets (Rotated MNIST, Color-Shift MNIST, Portraits), we imple-
ment a convolutional neural network comprising three 32-channel convolutional layers followed
by two 256-unit fully connected layers. The tabular Cover Type dataset utilizes a progressively
expanding fully connected architecture (128-256-512 units). All models incorporate ReL U activa-
tions, batch normalization [22], and dropout regularization [23], optimized using Adam [24] with
carefully tuned hyperparameters. The transport network architecture features residual-connected
generators and three-layer discriminators (128 hidden units per layer) to facilitate domain transitions.
Our evaluation systematically varies the number of intermediate domains (0-4) to analyze adaptation
trajectory smoothness. For the corruption benchmarks, we employ established robust architectures:
WideResNet-28 [25] for CIFAR-10-C and ResNeXt-29 [26] for CIFAR-100-C, following Robust-
Bench protocols [27, 28] to ensure comparable evaluation conditions. All experiments are conducted
on NVIDIA RTX 4090 GPUs with identical random seeds for reproducibility.



Benchmarks. Our comparative analysis encompasses the following state-of-the-art domain adapta-
tion methods spanning both conventional and gradual adaptation paradigms. The evaluation includes
three unsupervised domain adaptation baselines: DANN [29] (adversarial adaptation), DeepCoral
[30] (correlation alignment), and DeepJDOT [31] (joint distribution optimal transport). For gradual
domain adaptation, we benchmark against five recent approaches: GST [6] (gradual self-training),
IDOL [8] (intermediate domain learning), GOAT [9] (geodesic optimal transport), GGF [17] (gradual
geometric flow), and GNF [32] (gradual normalizing flows). To evaluate the adaptability of the model
in a slowly evolving environment, we conducted experiments using TTA application methods includ-
ing TENT-continual [33], AdaContrast [34], CoTTA [35], GTTA-MIX [36] and the GDA method
GST. In all the experiments, we took the error rate as the main indicator in order to make a direct
comparison with the existing literature and provide a clear explanation of the model performance
under different adaptation challenges at the same time.

5.2 Results

Table 1 presents a comprehensive comparison of our method against state-of-the-art unsupervised
domain adaptation (UDA) and gradual domain adaptation (GDA) approaches across multiple bench-
mark datasets. Our Self-Training with Dynamic Weighting (STDW) consistently achieves the best
performance, establishing new state-of-the-art results with substantial margins. Specifically, STDW
improves absolute accuracy by 11.2%, 6.5%, 0.94%, and 4.3% over the second-best methods.
These gains underscore the effectiveness of STDW in modeling continuous distributional shifts
through its dynamic weighting mechanism, in contrast to static alignment strategies (e.g., DANN)
or single-step gradual adaptation schemes. Moreover, among the limited set of domain adaptation
frameworks capable of operating across diverse adaptation scenarios—including both abrupt and
gradual shifts—STDW demonstrates exceptional versatility and robustness, highlighting its broad
applicability.

Table 1: Benchmarks Comparison on different datasets, including UDA methods and GDA methods.

UDA/GDA methods Rotated MNIST  Color-Shift MNIST  Portraits  Cover Type

DANN [37] 44.2 56.5 73.8 65.2
DeepCoral [30] 49.6 63.5 71.9 66.8
DeepJDOT [31] 51.6 65.8 72.5 67.4
GST [6] 83.8 74.0 82.6 73.5
IDOL [8] 87.5 78.3 85.5 72.1
GOAT [9] 86.4 91.8 83.6 69.9
GGF [17] 67.72 73.6 86.1 71.2
CNF [38] 62.55 70.4 84.6 70.8
STDW (Ours) 97.6 98.3 87.1 74.2

The experimental results presented in Table 3 demonstrate the effectiveness of our proposed STDW
method compared to seven state-of-the-art approaches across 15 distinct corruption types at severity
level 5 achieving superior performance overall, attaining the lowest mean error rate of 15.5% on
CIFAR-10-C and 25.8% on CIFAR-100-C. This represents a significant improvement over the source-
only baseline (43.5% and 46.4% respectively) and outperforms all comparison methods, including the
closest competitor GTTA-MIX (15.6% and 28.9%). Notably, STDW achieves the best performance
on 11 out of 15 corruption types for CIFAR-10-C and 14 out of 15 for CIFAR-100-C, demonstrating
remarkable consistency across diverse corruption patterns.

Furthermore, for high-frequency corruptions like Gaussian noise, shot noise, and impulse noise,
STDW shows particularly strong performance with error rate reductions of 3.3-11.6 percentage points
compared to the next best method. This suggests our approach effectively handles high-frequency
distortions that typically challenge conventional adaptation methods. For geometric distortions
(e.g., zoom, motion) and weather-based corruptions (e.g., snow, frost), STDW maintains consistent
advantages, indicating robust performance across both spatial and photometric transformations.
The consistent superiority of STDW across both datasets and corruption types validates our key
contributions: (1) the effectiveness of progressive domain transport through weighted intermediate
steps, and (2) the robustness of our approach to diverse types of domain shifts.



Table 2: Classification error rate (%) on the highest damage severity level 5 after gradual adaptation
of CIFAR100-to-CIFAR100C with progressively higher damage. For all method results evaluated on
the same ResNeXt-29 that has been trained on the source domain, for STDW we fixed the use of 2
intermediate steps. We report the average performance of our method over 5 runs. Red indicates the
best value, Green indicates the second-best.

Methods Source only BN-1 TENT-cont. AdaContrast CoTTA GTTA-MIX GST STDW (ours)
Gradual X X X X X X v v
Gaussian 72.3 28.1 24.8 29.1 24.3 234 50.0 21.5
Shot 65.7 26.1 20.6 22.5 21.3 18.3 43.9 19.0
Impulse 72.9 36.3 28.6 30.0 26.6 25.5 50.3 27.9
Defocus 46.9 12.8 144 14.0 11.6 10.1 20.6 9.6
Glass 54.3 353 31.1 32.7 27.6 27.3 51.2 28.3
) Motion 34.8 14.2 16.5 14.1 12.2 11.6 17.2 10.3
& | Zoom 42.0 12.1 14.1 12.0 10.3 10.1 16.7 8.5
; Snow 25.1 17.3 19.1 16.6 14.8 14.1 17.5 3.0
L<£ Frost 41.3 17.4 18.6 14.9 14.1 13.0 24.3 13.3
) Fog 26.0 15.3 18.6 144 124 10.9 17.5 11.7
Bright 9.3 8.4 12.2 8.1 7.5 7.4 6.9 7.1
Contrast 46.7 12.6 20.3 10.0 10.6 9.0 13.2 8.8
Elastic 26.6 23.8 25.7 21.9 18.3 19.4 24.9 19.6
Pixelate 58.5 19.7 20.8 17.7 134 14.5 39.9 134
JPEG 30.3 27.3 24.9 20.0 17.3 19.8 26.6 20.1
Mean 43.5 20.4 20.7 18.5 16.2 15.6 28.1 15.5
Gaussian 73.0 42.1 37.2 42.3 40.1 36.4 49.8 31.0
Shot 68.0 40.7 35.8 36.8 37.7 32.1 56.7 27.6
Impulse 394 42.7 41.7 38.6 39.7 34.0 323 26.1
Defocus 29.3 27.6 37.9 27.7 26.9 24.4 22.5 22.1
Glass 54.1 41.9 51.2 40.1 38.0 35.2 41.6 31.6
© | Motion 30.8 29.7 48.3 29.1 27.9 25.9 25.0 22.9
g': Zoom 28.8 27.9 48.5 27.5 26.4 23.9 233 22.6
= | Snow 39.5 349 584 329 32.8 28.9 30.3 25.0
% | Frost 458 350 637 30.7 31.8 275 322 25.4
& | Fog 50.3 41.5 71.1 38.2 40.3 30.9 38.1 25.8
© Bright 29.5 26.5 70.4 25.9 24.7 22.6 22.1 21.9
Contrast 55.1 30.3 82.3 28.3 26.9 234 27.0 24.3
Elastic 37.2 35.7 88.0 339 325 29.4 33.1 27.2
Pixelate 74.7 329 88.5 333 28.3 25.5 40.8 22.9
JPEG 41.2 41.2 90.4 36.2 335 33.3 35.8 30.0
Mean 46.4 354 60.9 334 325 28.9 333 25.8

Table 3: Comparison of accuracy for our STDW method across various datasets, considering different
numbers of given intermediate domains (including the source and target domains). Results are
averaged over 5 runs, with error bars representing the 95% confidence interval of the mean.

Rotated MNIST Color-Shift MNIST
# Given # Inter-domain counts in STDW # Inter-domain counts in STDW
Domains 0 1 2 3 4 0 1 2 3 4
2 81.5+1.3 82.8+3.5 81.744.4 82.0+6.4 83.6x1.2 |86.2+0.1 96.5+0.0 87.2+3.6 86.6+0.0 86.6+0.1
3 95.9+0.4 96.5£0.8 96.8+0.3 96.9+0.1 96.8+0.1 [98.1+0.0 98.2+0.0 98.2+0.0 98.3+0.0 98.3+0.0
4 96.5+0.2 96.9+0.1 96.8+0.0 96.8+0.0 96.8+0.1 |98.3+0.0 98.3+0.0 98.3+0.0 98.3+0.0 98.3+0.0
5 96.8+0.1 96.9+0.1 96.7+0.1 96.9+0.0 97.0+0.1 |98.3+0.0 98.3+0.0 98.3+0.0 98.2+0.0 98.3+0.0
6 96.9+0.1 96.9+0.1 96.9+0.1 97.6+0.0 96.9+0.0 |98.3+0.0 98.3+0.0 98.3+0.0 98.2+0.0 98.2+0.0
Portraits Cover Type
# Given # Inter-domain counts in STDW # Inter-domain counts in STDW
Domains 0 1 2 3 4 0 1 2 3 4
2 83.7£0.3 84.4+0.8 85.1+0.6 85.1+0.8 85.1+0.5 |69.7+0.0 70.0+0.0 70.5+0.1 71.2+0.0 71.8+0.1
3 84.1£0.3 84.6+0.2 84.8+0.5 84.7+0.1 84.7+0.2 |70.1£0.0 72.3+0.0 73.9+0.0 74.3+0.0 74.4+0.1
4 83.8+0.7 84.0+0.1 84.0+0.2 83.8+0.3 83.9+0.1 |71.5+£0.0 73.8+0.0 74.2+0.0 74.0+0.0 74.2+0.0
5 84.8+0.4 84.8+0.4 84.8+0.4 84.8+0.2 84.9+0.4 |72.5+0.1 74.2+0.0 74.1+0.0 74.2+0.1 73.9+0.0
6 85.3+0.9 86.1+0.4 85.8+1.0 85.6+1.8 85.4+0.9 |73.1£0.0 74.1+0.0 73.4+0.0 73.9+0.0 73.4+0.0




We present a comparative evaluation of the proposed STDW framework across four benchmark
datasets: Rotated MNIST, Color-Shift MNIST, Portraits, and Cover Type, with detailed results
provided in Table 3. For each dataset, experiments were repeated multiple times under identical
conditions, and the reported metrics represent the mean performance together with their associated
variance intervals (e.g., £ one standard deviation). The leftmost column in each table corresponds to
the baseline obtained via adversarial training alone—specifically, a domain-adversarial setup without
the integration of flow matching—serving as a reference point to quantify the contribution of our
proposed components.

The experimental results demonstrate the effectiveness of the STDW framework across the four
benchmark datasets. For each dataset, we systematically vary two key factors: (i) the total number
of available domains (including the source and target), and (ii) the number of inter-domain adap-
tation steps employed in the STDW procedure. We evaluate model performance as the number
of adaptation steps increases, thereby providing a fine-grained analysis of how the granularity of
domain interpolation influences the overall efficacy of the adaptation process. Notably, the observed
standard deviations across five independent runs remain consistently low (all < 1.2%), underscoring
the stability and reliability of our method under diverse domain configurations.

5.3 Ablation Study
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Figure 3: Ablation of STDW under different domain configurations and step counts. Accuracy on
four benchmarks when varying the total number of domains (x-axis) and the inter-domain step counts
used by STDW (curves). Each curve labeled “0—4 steps” indicates how many stepwise dynamic

osmosis updates are performed per adjacent domain pair.

To investigate the impact of intermediate domains on adaptation performance, we conduct ablation
studies on four benchmark datasets under a non-STDW baseline, varying the number of domains from
2 (i.e., source and target only) to 6 (i.e., source, target, and four unlabeled intermediate domains). The
results, summarized in Figure 3, reveal a consistent trend: the inclusion of intermediate domains leads
to substantial improvements in classification accuracy across most settings, accompanied by a notable
reduction in standard deviation (computed over multiple runs). These findings strongly support the
hypothesis that gradual, stepwise domain adaptation—enabled by intermediate distributions—plays a
pivotal role in enhancing both the effectiveness and stability of domain generalization, particularly
under significant source—target shifts.

Table 4: Comparison of STDW Method (Ours) with baselines across different domain adaptation
steps on Rotated MNIST and Portraits datasets.

Rotated MNIST Portraits
Method| ) 1 2 3 4 0 1 2 3 4
Ours  |83.3+£00 85005 86.1+04 86902 8811582012 84.6=02 85009 851=02 853 £ 0.1

Sorted |84.1+0.8 86.4+0.6 86.0+1.7 86.3+0.1 85.7+0.5|82.7+£0.5 84.0+0.6 84.2+0.1 84.3+£0.2 84.5+0.1
Rand |83.4+0.2 80.9+7.0 84.5+2.8 86.3+0.9 86.1+0.4(8244+0.5 84.0+0.6 84.2+0.2 84.3+0.2 84.1£0.1
Fixed |83.3+£0.0 83.74+0.0 83.8+0.1 83.8+0.1 84.1+0.0(83.9+0.3 83.4+0.0 83.1+2.1 84.1+0.1 84.7+0.3

Additionally, we compare our stepwise dynamic osmosis strategy—referred to as Ours (Equal),
which linearly increases the weighting hyperparameter o in equal increments across adaptation
steps—against three representative baselines: Fixed (¢ = 0.5 held constant), Rand (o sampled
independently from a uniform distribution 2/(0, 1) at each step), and Sorted (a variant of Rand where



sampled p values are sorted in ascending order to enforce monotonicity). Experiments are conducted
on the Rotated MNIST and Portraits datasets under a two-domain setting (source and target only),
with the number of inter-domain adaptation steps varied from O to 4. Results, reported in Table 4,
show that Equal consistently achieves the highest final accuracy—for instance, attaining 88.1% on
Rotated MNIST at Step 4, compared to 84.1% and 86.1% for Fixed and Rand, respectively. Moreover,
Equal exhibits significantly lower variance across runs (e.g., £1.5 vs. 7.0 at Step 1 on Rotated
MNIST), highlighting its superior stability. These results demonstrate that a controlled, monotonic
increase of p—as opposed to static, random, or even sorted-random schedules—yields more reliable
and optimal adaptation performance.

6 Conclustion

This paper presents Self-Training with Dynamic Weighting (STDW), an innovative approach to
Gradual Domain Adaptation (GDA) that systematically addresses the fundamental challenge of
smooth knowledge migration across evolving domains. The proposed methodology introduces a
dynamic weighting mechanism governed by the hyperparameter o, which continuously modulates
the relative influence between source and target domains throughout the adaptation process. This
dynamic balancing enables a progressive and efficient knowledge migration within the self-training
framework, effectively mitigating domain bias while maintaining model stability. Comprehensive
experimental validation across multiple benchmark datasets confirms that STDW achieves superior
performance compared to existing state-of-the-art methods, demonstrating significant improvements
in both classification accuracy and model robustness under varying domain shift conditions.
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Limitations

While the proposed STDW method demonstrates significant improvements in gradual domain adap-
tation, several limitations should be acknowledged. First, the performance of STDW relies heavily
on the availability and quality of intermediate domains, which may not always be accessible or
well-defined in real-world scenarios. Second, the dynamic weighting mechanism, though effec-
tive, introduces additional hyperparameters (e.g., the scheduling of p) that require careful tuning,
potentially increasing the computational overhead during training. Third, the method assumes a
smooth transition between domains, which might not hold for highly discontinuous or abrupt domain
shifts. Additionally, the current experiments focus primarily on image and tabular data, leaving its
applicability to other data modalities (e.g., text or time-series) unexplored. Finally, the theoretical
analysis, while rigorous, relies on assumptions such as bounded Wasserstein distances and Lipschitz
continuity, which may not fully capture the complexity of all practical domain adaptation problems.
These limitations highlight directions for future work, such as automating hyperparameter selection
and extending the framework to handle more diverse and challenging domain shifts.

A Supplementary Experimental Results

Classification correctness (%) for the CIFAR10-to-CIFAR-10-C, CIFAR100-to-CIFAR-100-C, and
ImageNet-to-ImageNet-C adaptation task on the highest corruption severity level 5. For CIFAR-10-C
the results are evaluated on WideResNet-28, for CIFAR-100-C on ResNeXt-29, and for Imagenet-C,
ResNet-50 is used.

Table 5: Classification correctness (%) on the highest damage severity level 5 after gradual adaptation
of CIFAR10-to-CIFAR10C with progressively higher damage. For all method results evaluated on
the same WideResNet-28 that has been trained on the source domain, for STDW we fixed the use of
2 intermediate steps. We report the average performance of our method over 5 runs.
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B Theoretical Arguments

B.1 Lyapunov Stability Under Cyclic Matching and Switching Anchors

For completeness, we extend the stability argument to the piecewise-smooth path constructed for
discontinuous shifts. Let §; denote the parameters at step ¢ and consider the mixed loss on a matched
pair of mini-batches

La(8,) = 061, B,) + (1 — 0)0(6:, B ™), (14)
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Table 6: Classification correctness (%) on the highest damage severity level 5 after gradual adaptation
of CIFAR100-to-CIFAR100C with progressively higher damage. For all method results evaluated on
the same ResNeXt-29 that has been trained on the source domain, for STDW we fixed the use of 2
intermediate steps. We report the average performance of our method over 5 runs.
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where £ is cross-entropy and g; € [0, 1]. Assume ¢ is L-smooth and p-strongly convex in a neigh-
bourhood of the local joint minimizer 67 for the pair (Dg_1, Dg). With gradient descent

9t+1 =0 — UVLd(et) (15)

and step size ) € (0,2/L), define the Lyapunov function

1
Va(®) = 516 - 03 (16)

Standard smooth strongly-convex analysis yields

L
ValOrs1) < Va(0r) = — =010 = 03, )

so Vy strictly decreases whenever 6; # 6% and n < 2u/L? Cyclic matching enumerates all
batch pairs once per epoch without changing smoothness or curvature, so the decrease persists across
iterations. For a discontinuous path approximated by anchors Ao, . . . , A, we obtain a switched system
with modes d € {1,.. ., q}. If there exists a common quadratic Lyapunov function V () = 1|6 —6*|>
valid in the union of neighbourhoods of §%—for instance when |#; — 6*| is bounded and the Hessians
share eigenvalue bounds (u, L)—then the same inequality holds for all modes with the same 7,
ensuring global asymptotic stability under arbitrary switching. When a common Lyapunov function is
too conservative, we adopt a dwell-time condition implemented by the discrepancy-aware controller:
the mode can switch (i.e., we advance p or move to the next anchor) only after the gradient norm on
the current mode falls below a tolerance and the consistency gates are met. In both cases, the energy
decreases monotonically, preventing divergence even under abrupt transitions.
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NeurlIPS Paper Checklist

1.

[Yes]

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the novel optimization framework
(Self-Training with Dynamic Weighting) with dynamic hyperparameter p, the incorporation
of self-training for pseudo-labels, and the demonstrated empirical improvements on multi-
ple benchmarks; these match the theoretical and experimental developments presented in
Sections 1 and 4 of the paper.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly discusses limitations in several parts, most notably in the
methodological framing and ablation studies. The authors recognize and address three key
limitations of prior GDA methods that their approach (STDW) aims to solve: suboptimal
knowledge propagation, instability during domain transitions, and limited generalization.
Moreover, the paper acknowledges potential sources of error such as mislabeling during
pseudo-labeling and includes a theoretical discussion on error propagation and stability
(Appendix B). The ablation studies (Section 5.3) further demonstrate awareness of the
method’s performance sensitivity to the number of intermediate domains and adaptation
strategies. These discussions reflect a thoughtful and transparent treatment of limitations in
both theory and empirical practice.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are clearly stated alongside each theorem in Section 3 (e.g.
Assumptions 1-3 preceding Theorem 1), and full, detailed proofs appear in Appendix B of
the supplemental material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.
* The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient detail to reproduce the main experimental results
supporting its claims. The authors clearly specify: The datasets used (Rotated MNIST,
Color-Shift MNIST, Portraits, Cover Type, CIFAR-10-C, CIFAR-100-C) along with their
source and transformation details (Section 5.1). Model architectures for each dataset,
including convolutional and fully connected networks, as well as backbone choices like
WideResNet-28 and ResNeXt-29 (lines 196-198, 204-205). Optimization methods (Adam),
hyperparameter tuning, and hardware used (line 206). Detailed description of the algorithm
(Algorithm 1 and Section 4), including the update rules, dynamic weighting strategy with
the o parameter, and pseudo-labeling procedure. Experimental setup involving the number
of intermediate domains and adaptation steps, and performance metrics (accuracy, error rate)
across multiple baselines (Tables 1-4, Figures 2—4).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary materials include all code files necessary to reproduce the
experiments, and detailed instructions for data preparation and execution of training scripts.
Additionally, all datasets used are publicly available and referenced in the supplemental
README.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: All experimental settings—including dataset splits, optimizer (Adam) settings,
full hyperparameter tables (learning rates, batch sizes, number of epochs, ¢ schedule
parameters), and selection criteria—are documented in Appendix C of the supplemental
material and are directly instantiated in the provided code files with accompanying README
instructions.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main results tables (e.g., Table 2) explicitly report the 95% confidence
interval of the mean across five independent runs, clearly indicating the variability due to
random initialization and dataset splits.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides key information about the compute resources used for the
experiments. Specifically, it states that all experiments were conducted on NVIDIA RTX
4090 GPUs (line 206), which gives a clear indication of the type of compute hardware used.
The authors also mention that identical random seeds were used to ensure reproducibility.
While detailed metrics such as runtime, memory usage, or total compute cost are not
quantified, the provided GPU type, consistent setup, and fixed architecture configurations
across datasets give a sufficient basis for estimating resource needs and replicating the
results. Therefore, the disclosure meets a reasonable standard for reproducibility and
resource transparency.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors reviewed and adhered to the NeurIPS Code of Ethics, ensuring no
misuse of data, respecting privacy and consent for all datasets, maintaining anonymity, and
avoiding any potential harm or bias in experimental design and reporting.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The authors highlight that their method, Self-Training with Dynamic Weight-
ing (STDW), enhances model robustness under gradual domain shifts, which is especially
relevant for real-world dynamic environments (e.g., shifting lighting conditions in visual
systems, evolving demographics in user behavior). This robustness has positive societal
implications for improving machine learning reliability in safety-critical or long-term de-
ployment scenarios. Although explicit negative impacts are not discussed, the general
applicability of domain adaptation methods (e.g., surveillance or profiling systems) raises
potential ethical concerns regarding fairness and misuse if applied without safeguards. A
fuller, more explicit discussion would strengthen this component, but the paper does touch
on societal relevance through its goals and benchmarks.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that pose a high risk for
misuse.The research focuses on improving domain adaptation using existing benchmark
datasets (e.g., Rotated MNIST, CIFAR-10-C, etc.) and standard model architectures. No
new pretrained models, scraped datasets, or generative tools with dual-use concerns are
introduced or released. Therefore, safeguards for responsible release are not applicable in
this context.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper and supplemental README explicitly cite each public benchmark
(e.g., CIFAR-10, Office-31, MNIST) along with version numbers and links to their licenses

(e.g., MIT for code dependencies, CC-BY for datasets) and properly credit the original
dataset and library authors.

Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new datasets, codebases, or other assets
beyond code for reproducing experiments (already provided in supplemental), and relies on
existing publicly available benchmarks, so this question is not applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study does not involve any crowdsourcing or research with human partici-
pants, relying solely on publicly available datasets without new data collection or participant
interaction.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The work uses only pre-existing, publicly available image and tabular datasets
and does not involve any new data collection from human participants or crowdsourcing
experiments, so IRB considerations are not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology centers on gradual domain adaptation for vision and
tabular data using self-training and transport networks, with no use of large language models
in any part of the algorithm or experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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