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Abstract

While Transformers rely on a distinctive attention mechanism, the recent emergence
of Mamba and other selective state space models (SSMs) offers a strong alterna-
tive. These models incorporate attention-like mechanisms with hardware-aware
efficiency and a unique selection strategy, yet their theoretical properties remain
poorly understood. In this work, we present a first-step theoretical analysis of the
selection mechanism in Mamba. We study a simplified single-layer Mamba block
trained with gradient descent on structured data containing both label-relevant and
irrelevant tokens. Our results show that the gating vector dynamically aligns with
label-relevant features while negating irrelevant ones, formalizing its role as an
implicit feature selector. Moreover, we prove that training achieves guaranteed
generalization, with explicit bounds on sample size and convergence rate. These
findings offer principled insight into when and why Mamba’s selection mechanism
enables efficient learning, offering a theoretical counterpoint to Transformer-centric
explanations of generalization.

1 Introduction

The selective SSM [4, 3] and its variants [30, 24, 2, 12, 25], or commonly referred to as Mamba, have
shown strong performance across language, vision, graphs, audio [26], medicine [27, 13, 16, 22],
and genomics [15, 29, 27], revitalizing interest in non-attention architectures for sequence modeling.
Unlike Transformers [23], which rely on distinctive attention weights to capture token interactions,
Mamba employs a selection mechanism based on input-dependent gating. This design has demon-
strated strong empirical performance across language and vision tasks, while offering hardware
efficiency and autoregressive modeling capabilities. Yet, despite this progress, the theoretical princi-
ples underlying Mamba’s selection mechanism remain largely unexplored. In particular, it is unclear
how the gating vector evolves during training, and under what conditions it enables efficient learning
and generalization. Prior theoretical work has mostly focused on Transformers, analyzing how
attention aligns with label-relevant features [7, 11, 14, 1, 19-21]. Comparable results for selective
SSMs [5, 6, 17] are missing, leaving open fundamental questions about their learnability.

Scope of this work. We present a theoretical study of Mamba’s selection mechanism in a simplified
but representative setting: a single-layer, single-head Mamba block followed by a two-layer MLP
trained via gradient descent (GD). Our analysis is conducted on a simplified structured data model
with both label-relevant and label-irrelevant features under token-level noise, chosen to enable a
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tractable theoretical study of the gating mechanism, which constitutes a distinctive property of Mamba
in contrast to Transformer-based architectures.

Connection to Transformers. Prior work has noted that Mamba can be viewed as a gated linear
attention mechanism, where the gating term dynamically modulates how past information contributes
to the current output [3]. From this perspective, our framework complements existing theoretical
analyses of Transformer attention by showing how an alternative gating-based mechanism can also
align with relevant features while ignoring irrelevant ones.

Contributions. Our results provide the first theoretical characterization of the training dynamics of
Mamba’s gating mechanism. We prove that: (i) training with GD achieves guaranteed generalization
once the sample size and number of iterations scale according to our derived sample complexity and
convergence rate bounds; (ii) the gating vector aligns with class-relevant features while negating
irrelevant ones, thereby formalizing its role as a feature selector (See Lemmas 5 and 6 in Appendix
D); (iii) the distance between class-relevant features, captured by AL, directly impacts learning
speed, highlighting the role of token order and scanning strategies in Mamba. Overall, this work
establishes foundational insights into when and why Mamba’s selection mechanism enables efficient
learning, offering a theoretical counterpart to Transformer-centric analyses.

2 Problem Setup and Main Theoretical Result

We study a binary classification task with training data {(X (), z(")}N_ where each sequence

X = [:cgn), cee :B(Ln)] € R*L contains label-relevant and irrelevant tokens. Labels are deter-
mined by a majority vote over the class-relevant tokens. For example, a positive sample may contain
two occurrences of the positive token o+ and only one occurrence of the negative token o—, whereas
a negative sample would contain the opposite. We use a simplified Mamba block with input-dependent
gating, followed by a two-layer MLP trained with SGD on hinge loss. Given a sequence X, the
model output is

F(X)=1 ii”z ¢ (Wo(i,-) i ( ﬁ (1—0(1023’3]'))) ‘o(wazs) (Wp ) (We @) ms), (1

=1 i=1 s=1 “j=s+1
where ¢(-) is the ReLU activation.

Our main result, Theorem 1, gives conditions under which the model generalizes.

Theorem 1 (Generalization of Mamba). Suppose the model width satisfies m > d? log q for some
constant q > 0, and the token noise level is bounded as T < O(é). Then, with high probability, if

4L%d

the number of training samples N satisfies N > ) (’72[”(1/2)“]2

) , and the number of iterations

T satisfies T = © (17[1+(?/22)M]) the returned model achieves guaranteed generalization.

3 Numerical Experiments

We complement our theory with simple synthetic experiments under the majority-voting data model.
The results confirm our prediction that larger AL slows convergence (Table 1). We also measured the
cosine similarity between wa and feature directions, finding 0.18 for o+, 0.22 for o—, and —0.08
for irrelevant features, confirming that the gating filters in relevant tokens while ignoring irrelevant
ones.

Table 1: Average epochs for convergence under varying distances between class-relevant features A L.
N ||AL=1 2 4 6 10 25

100 190 410 1855 2225 3215 47.65
200 1.50 250 10.60 19.50 26.65 36.50

4 Conclusion and Future Work

This paper provides a first-step theoretical analysis of the Mamba architecture by examining its
gated selection mechanism under the majority-voting data model. We establish sample complexity



and convergence guarantees for training with GD, and show that the gating vector aligns with
class-relevant features while ignoring irrelevant ones. To the best of our knowledge, this is the first
generalization result for Mamba, highlighting its role as an implicit feature selector. Our results
also reveal that token order has a significant impact on the performance, and that different scanning
strategies in Mamba can lead to distinct behaviors. Future research directions include extending
the analysis to more general data distributions, deeper or multi-head Mamba variants, and hybrid
architectures that combine Mamba with attention.
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A Data Model

Consider an arbitrary set of orthonormal vectors {01,0_,03,...,04} in R%, where o, and o_
represent discriminative features, and the remaining o; are non-discriminative (filler) features (o4 =

01, 0_ = 02). We add token-level noise to all input tokens; each token zcl(”) in X™ isa noisy

version of one of the input patterns. The label is determined by a majority vote over the class-relevant
features in the input sequence. In our data model, a positive sample contains two instances of o and
one instance of o_. Let LT and L3 denote the positions of the two o tokens (with L] < L3), and
let L~ denote the position of the o_ token. We assume that L7, L3, and L~ are drawn independently
from the same distribution over sequence positions.

In addition, we consider a balanced dataset sampled from an unknown distribution D. Let Ny =
{(X™) 2y 20 = 41, n e [N]}and N = {(X™) 2(™)) . 2(") = —1 n € [N]} denote the
sets of positive and negative samples, respectively. The class imbalance satisfies | [NV | — [N_| | =

O/,

B Related Work

State Space Models (SSMs). State space models (SSMs) have recently gained attention as a
competitive alternative to attention-based architectures for sequence modeling. Early works such
as S4[5, 6, 17] demonstrated that carefully parameterized state space recurrences can capture long-
range dependencies with strong hardware efficiency, achieving competitive results on long-sequence
language and audio benchmarks. More recent variants, including Mamba [4, 3], extend this line
of research by introducing input-dependent gating, which enables dynamic selection of relevant
features and further improves performance across natural language and vision tasks. Beyond 1D
sequences, SSMs have also been adapted to two-dimensional data. For instance, VMamba [12]
proposes SS2D, which leverages multiple scanning routes to align the ordered structure of selective
1D scans with the non-sequential nature of vision inputs, thereby enhancing contextual aggregation
and boosting recognition performance. Other extensions, such as Graph Mamba [24, 2], demonstrate
the adaptability of selective SSMs to non-Euclidean data domains by incorporating structured graph
information. These empirical advances underscore the importance of input ordering and scanning
strategies in determining the effectiveness of SSMs, a phenomenon that resonates with the structured
data models considered in our theoretical analysis.

Theoretical Analysis of SSMs. While empirical studies have demonstrated the effectiveness of
SSMs across language, vision, and graph domains, theoretical investigations remain relatively
scarce. Existing analyses primarily focus on drawing connections between SSMs and attention-
like mechanisms, such as interpreting the recurrence as a form of linear attention or highlighting
similarities in feature selection[3]. Although these works provide valuable intuition, they do not
address fundamental questions regarding how selective mechanisms in SSMs affect learning dynamics,
sample complexity, or generalization under different data distributions. This gap motivates us to study
how selective mechanisms in SSMs interact with structured data, a perspective inspired by recent
theoretical works on structured models such as vision transformers and graph neural networks(GNNs)
[7, 8, 28]. In particular, our work develops a theoretical framework that directly characterizes the role
of the gating mechanism in Mamba under structured data models.

Feature Learning Framework. The feature learning framework provides a systematic perspective
for analyzing how neural networks gradually emphasize informative features while suppressing
uninformative ones during training. Several recent works have adopted this framework to study the
optimization and generalization of Transformers [7, 11, 8, 10, 18], showing how attention mechanisms
evolve to highlight class-relevant tokens and ignore irrelevant noise. Similar analyses have also been
conducted for GNNs [28, 9], where message passing is shown to amplify discriminative structures in
the graph progressively.

Despite the recent empirical success of Mamba, its feature learning properties in selective SSMs
remain theoretically unexplored. To the best of our knowledge, we provide the first such characteriza-
tion. In particular, we analyze how the gating mechanism in Mamba evolves under stochastic gradient
descent, thereby extending the feature learning perspective to this new family of architectures.



C Main Theorems

In this section, we present the formal statements of our main theorems.

Let ¥ = (v, Wp, wa, Wg, W) denote the set of parameters to train. The generalization perfor-
mance of the learned model W is evaluated using the population risk f(¥), defined as

f(‘I’) :f(UaWOawAaWvaC) :E(X,Z)N’DE(Xaz)v (2)

where ¢(X, z; ¥) is the hinge loss function.

Theorem 1 establishes the sample complexity (3) and convergence rate (4) required to guarantee
generalization when training with SGD for the majority-voting data model. In other words, the model
generalizes once enough samples are available (3) and training has run for the required number of
iterations (4).

Theorem 1 (Generalization of Mamba). Let the learning rate ny > 0 be a positive constant. Suppose
the model width satisfies m > d? log q for some constant ¢ > 0, and the token noise level is bounded
ast <O (é)

Then, with probability at least 1 — N~ if the number of training samples N satisfies

2
N >Q % , 3)

= ALT?
w1+ (3)]
and the number of iterations T’ satisfies

2
r-ef L @)

ALT |
n[1+ ()]
the model obtained after T iterations of SGD achieves guaranteed generalization, i.e.,

(v W W W W) =o. 5)

Theorem 2 establishes that after sufficient training, the gating vector wa aligns positively with the
class-relevant features o4 (6) and o_(7), while its alignment with irrelevant features remains strictly
negative (8). In other words, the selection mechanism implicitly acts as a feature selector, amplifying
relevant tokens and suppressing irrelevant ones.

Theorem 2 (Gating Vector Alignment). Suppose training is performed under the same conditions as
in Theorem 1, with initialization where each entry of W is drawn independently from N (0, £2) and

(0)

wy’ = 0. If the number of training samples N satisfies N > §) 4L%d

W , and the number

L ; _ 2
of iterations T satisfies T = © (n[1+(1/2)“] >

r ALt 27
T nTc? | 1 1
(wi0:) 2 6L |2 " \2 ©
5 T AL~ —2]
(T) 7]TC/3 1 1
<"’A ’°*> = er |22 ?

(o0«

AT 0] e

for any irrelevant feature o;.



D Useful Lemmas

Lemma 1. Suppose p; < <wg),o+> <qn,p1 < <wg),o_> < q1, and py < (wg),oﬁ < qs for

j # 1,2. Then, for any lucky neuron i € W(t) at iteration t, the following bounds hold:

(L1.1) A lower bound on the gradient ofﬁ with respect to W ; .y at iteration t, in the direction of
o, is given by

oL 1 P dlog N
= > . 14+(1— 2(1 - Lz—Ll—Q]—O .
< oW .)=°+> 2 JmiL 0(1?1){ +(1=0(q1))"(1 —o(g2)) —
©)
(L1.2) An upper bound on the gradient of L with respect to W ; .y at iteration , in the direction of

o4, is given by

oL 1 ) L —1f 2 dlog N
<—W((),5()M;O+> < W'U(Ch) L+ (1 —0a(p1))*(1 —a(p2)) }"‘O N |

(10)

(L1.3) A lower bound on the gradient of L with respect to Wo; .y at iteration t, in the direction of
o_, is given by

oL ! S —L7— dlog N
<_Wét()m’o> = _mL'U(pl) [24‘ (1 —U(ql))2(1 —U(qQ))L2 Ly 2] ) ( e > .
(11)

(L1.4) An upper bound on the gradient off, with respect to W ; . at iteration t, in the direction of

o_, is given by
b log N
_%,07 <ol HeN] (12)
oW, | mN

(L1.5) An upper bound on the gradient ofﬁ with respect to W ; . at iteration t, in the direction of

0;, is given by
oL dlog N
<—(t)7oj> < (9( Ofv ) . forj£1,2. (13)

W5 m

Lemma 2. For any unlucky neuron i € K \ W(t) at iteration t, the following bounds hold:

(L2.1) An upper bound on the gradient off, with respect to W ; . at iteration t, in the direction of
o, is given by

oL dlog N
8WO(1‘,-) m
(L2.2) An upper bound on the gradient ofﬁ with respect to W ; . at iteration t, in the direction of
o_, is given by
oL dlog N
m
8W0(i7~)
(L2.3) An upper bound on the gradient of L with respect to W ;,.y at iteration t, in the direction of
0;, is given by
C dlog N
—%7%— <0 BT forj#1,2. (16)
8WO(¢ ) mN

Lemma 3. Suppose p; < <wg)7o,> <q,p < (wg),oJr) < q, and py < (wg),o]) < g3 for

j # 1,2. Then, for any lucky neuron i € U(t) at iteration t, the following bounds hold:



(L3.1) A lower bound on the gradient of L with respect to Wo; .y at iteration t, in the direction of
o_, is given by

oL 1 2 L2 dlog N
< aW(()t()l ’O_> Z \/RL'U(pl) [1 +(1=0o(q))*(1 - U(QQ))L2 Ly }—O ( N > .
(17)

(L3.2) An upper bound on the gradient of L with respect to W ;,.y at iteration t, in the direction of
o_, is given by

oL L S—Li— dlog N
<_Wg()m,o_> < m'g((h) 1+(1—0'(p1))2(1—0(p2))L2 Ly 2} +0O < o > .
| (18)

(L3.3) A lower bound on the gradient of L with respect to Wo; .y at iteration t, in the direction of
o, is given by

oL L Fori- dlog N
<«%’O+> = mﬂdpl) [QJF (1 =o(q@)*(1 = o(g))™= ~* 2}70 ( — ) .
(19)

(L3.4) An upper bound on the gradient of L with respect to W ;) at iteration t, in the direction of
o, is given by

oL dlog N
_ < .
< awg()l +> <O ( mN ) (20)

(L3.5) An upper bound on the gradient ofﬁ with respect to W ; . at iteration t, in the direction of
0;, is given by

oL dlog N .
) < .
< 5 g()l 70]>_(9< N ), forj #1,2 21

Lemma 4. For any unlucky neuron i € K_ \ U(t) at iteration t, the following bounds hold:

(L4.1) An upper bound on the gradient of L with respect to W ;) at iteration t, in the direction of
o_, is given by

oL dlog N
m
oW, (i)
(L4.2) An upper bound on the gradient of L with respect to W ;,.y at iteration t, in the direction of
o, is given by
oL dlog N
8WO( i) m
(L4.3) An upper bound on the gradient of L with respect to W ;) at iteration t, in the direction of
0;, is given by
oL dlog N
< ﬂ7oj>s0< = ) forj #1.2. (24)
8WO( i) m
Lemma 5. Suppose p; < <w(A),o+> < g andri < <Wg(jl)) 1) < s1. Let [W(t)| = p;f and

[U(t)| = p, . Then, we have:
(L5.1) A lower bound on the gradient of L with respect to wg) at iteration t, in the direction of o,
is given by

A — 0\q1 TT:F m o
< aiﬁmv +>_U(p1)(12 (@) {2 P fﬂo( dlgN). 25)

V

vm 2 mN



(t) x t+n T . _ 4 _ -
Suppose p1 < (wp’,0-) < qpandr} < <W0(i,‘) ,04) < st Let \W(t)| = pi and |[U(t)| = p; .
Then, we have:

(L5.2) A lower bound on the gradient of L with respect to wx) at iteration t, in the direction of o_,

is given by

<aﬁ O_> , 0ot [ V] @< dlogN). 26)
0

w0’ 2 Jm 2 mN

Lemma 6. Suppose p; < (wg),oJr) < q,p < (wg)7o,> < q, (wx),oﬁ < qo forj # 1,2,

.
and ry < <Wg()i 3 ,04.). Let pf = |W(t)| and p; = |[U(t)|. Then we have:

oL 5 ) o
<_aw(t)’0j> S_2\74/15“7(191)(1—ff(fh)) (1= (@)™ 5 pf + (1= o)) 5 p
A
(27)

E Proof of Convergence

Proof. Suppose w&” = 0. Then, we have

(wh’ 01) =0, (wf’.0-) =0, and (wf’.0;) =0 Vi

From Lemma 1, identify p; =0, ¢; = 0, p2 = 0 and g5 = 0. Let Lf and L; denote the positions of
the two o tokens in the positive sample, with L] < L3 . Define the gap between them as
ALT =L - L}. (28)

Similarly, for the negative sample, let L; and L, be the positions of the two o_ tokens, with
L] < Ly, and define

AL :=L; —L7. (29)
Then, for any lucky neuron ¢ € W(0), we obtain

IR A A BN W W -
2/mL 2 poly(d) ) =\ aw@ °*
ot (30)
ALt
<L |is(d Lot
~ 2y/mL 2 poly(d) )
‘We can relax the lower bound and obtain
2 1 /A Lo oL
| = — _ < {(__—_-=
1 N <7
< — 11 — -
= 3L *(2) +O(polyw))
3D
oL ~ 1
—  0: )< _ for j #£ 1. 2
and < aW(()O(),')’O‘7>_O(poly(d)> or j # (32)

We assume that the number of samples in a batch N = poly(d).



Suppose the initialization is
Wo (i, (0) = 6104 4 620 +--- 4+ dq04, 05 ~ N(O, ) j=1,2,---,d. (33)

Then, after one gradient descent step, we have
N nc'? 1 N 1202
"TaymL |2 T\ 2

A 1 T @
— - ) <{ WA,
o <p01y(d)) = < O(i,-) ’0+>

1 ALT (34)
<
<o+ 2\FL 1+ ( > ]
~ 1
+0 ()
poly(d)
T @ ~ 1 .
) ) < _ f 1.
and <WO(z,~) 7oj> <O (poly(d)) or j # (35)
By applying Lemma 3, for any lucky neuron i € /(0), we obtain
6/2 1 1 AL -2
02 + 2 mL — T (2)
A1 T W
— < -
© (POl}’(d)) < (W 0-)
_ (36)
. 1\ AL
< 1 -
<+ NG + (2)
~ 1
20 ()
poly(d)
1) 3 1 .
d i <O ——=] f 2. 7
an <WO(%,) ,o]> <O <p01y(d)> orj # (37)
For any unlucky neuron ¢ € K_ \ ¢(0), Lemma 4 gives
T <d 1 .
, ; —_— f .
(Wi o) <0 (poly<d>) or Vj (38)

Now consider the gradient update for wa . Define:

“_‘51+2:]CFL 1 +(;>AL+_T _6(1)01;(61))
b:51+2\ﬁL 1+ <1>AL+] +6<p01j/@l)>

Applying Lemma 5 with p; = 0, ¢1 = 0, 7§ = a, s = b, and pg = [W(0)|, we get

oL 12 L, vm] ~( 1
< D +>28[m")° 7|~ (Gava) <

10




‘We can relax this lower bound and obtain

L 12 L m ~ 1 N
<aw<> > =5 [ -5 0 () = “

Since pf{ ~ ‘5 under random initialization, when m is sufficiently large, the above gradient update is
positive.
Let §; = m. Since a =~ b,
oz G20 m Vmbl 50 1
4 |ym 2 2 poly(d)
d ma ~ 1
-5 [ -5 -9 (o)
_ g/ ,r]C/2 i 1 ALT—2 B 6 1
4 4L |c? 2 poly(d)
ALT—2
nc® | 1 1 ~ 1
= — - -0 0 41
16L lc’Q + (2 poly(d) ~ “D
From Lemma 6, we also obtain
oL —a [\ 1\2F
——— _0,)< - - pa - - py 42

where we apply the lemma with the values

p1=0, 1=0, ¢2=0, and rj=a.

We can relax this upper bound and obtain

oL —ac’ 1 ALY 1\
7" o V< - .ot - ol | =
< Bw(AO)7OJ> ~ 4ym KQ) Po + <2) Po v )

~ m

Taking pg = py ~ %,
_—ac m 1 ALY 1\2F
"“avmoz|\z) T2
o 1 ALT 1 AL~
= Ymey [(2) +(3)
1 1 ALt -2 1 ALt 1 AL~ _ 1
=+ (3) ) @) |oGam) @
Let (w(Al),o+> =a* > q, (w(Al), o_)=p*>p,and (w(Al), 0j) =" <, where
1 ) >0 45)
poly(d)
AL~ —2
S e ol 1
AN 17 l ’ (2) ] © (polyw))
AL~
1 ~ 1
<2) ] o (poly(d)>

11

we can simplify and write

—776/3
~ 16L

(26 ]




Following the same approach as in (41), we can simplify and obtain

1 1 AL -2 _ 1
cﬂ(z) ‘O(polyw)) >0 (30)

For any lucky neuron ¢ € WW(1) at iteration 2, we have

n C/3

ﬁ_16L

C/2

- ola) LlQ (1 a(v*))AﬁQ} -0 <p01;(d))

- < oL >
> - o +
8WO(¢,‘)

1 . )2 WALT—2] | 1
< . _ 1—
< e ole) [1+ (1= 0(0) (1= o)) }+o(poly(d)> @7)
y - 1
—aiﬁlpj <0<) for j # 1 (48)
WS poly(d)
* 1 * 1 : _ AL _ oL
Note that, o(a*) > 5 and o(y*) < 5. This ensures < WOl ,o+> < < W ),o+>.

Thus, we obtain the following bound after the second gradient descent step.

51 + j;; 2;,2 + (;)ALM +o(a®) (1/e2 + (1 - a('y*))AIj_Q)]
~ 1 .
- <p01y(d)) -

o) | o)A 6 ()
oL
: <‘aw&z,.;°>

- ﬁ (8 [1+ (1= a(8) (1= o)™ 7?4+ 0 <p01;1/(d)> 0

oL ~ 1
- 0;)< _ for j # 2 51
< ow i) ’OJ> =0 <poly(d)) o7 eb
O('Ls')
Applying Lemma 5 with p; = o, ¢1 = a*, r] = u, and s] = v, we obtain

12



v
2
Q
*
ke
| — |
)
E
=+
|
[N
B
S
—_
|
¢
N
—_
~——
I
>

(o)
Since u ~ v, we have x > 0.
By applying Lemma 6 with

pr=a" (=), q=a"(=8%), ¢ =+v"and r]=u,wehave

<;U§Aﬂ,oj> < 25/1%0(01*) (=0 pf + A=a N o] =0 63

Note that here we assumed the distribution of AL™ is identical to AL~ to have a* = 3*.

Finally, for any lucky neuron i € W(T'), we obtain

<W0T(i’.)(T), 0+> >aT 54
T (T A 1 ;
, < -
<WO(2’_) ,oj> <0 (poly(d)> for j # 1 (55)
For any lucky neuron ¢ € U(T"), we obtain
(Wi "0 ) > ar (56)
T (D) ~ 1 .
, N < -
<WO(27_) ,oj> <0 (poly(d)> for j # 2 (57)
<'w(AT), o+> > aT (58)
<ng), o,> > 8T (59)
<w(AT), oj> <AT (60)
X — [wgm MO

Consider z(™) = +1 as an example. The sequence X (") has two o, and one o_ at locations L,
L;r, and L.

" e 1= iek— =1
1 3 " L S (n)
" Vil o (Wouw™) = 7o 6 (Woiy
vm iGW(O)E ( o ) vmlL 7;61/1(0); ( O )
1 L §
2 2¢(W0(i")y§ | (61)

13



The Mamba output yl(") is defined as

yl(") = 2 <Tﬁ1 (1 -0 (wA:vl(n)r>)> .o (wgml(ﬁl) (:cl(ﬁ)::cl(n))a:l(ﬁl (62)

Equivalently, letting s = [ — 7, we write

1 I
yl(") = Z H (1 — J(wlmgn))) ~0(w2-’ﬂgn)) : (wg”)Tml("))ﬂcgn)- (63)

s=1 \j=s+1

We now derive a lower bound for
L
Z Z O(Woi.u)-
ew(o) I=1

To that end, consider the aggregated projection

d
Z ZWO Z ZZ WO(z )7OJ <y1,0j>- (64)

iEW(0) =1 1EW(0) I=1 j=1

~

For any i € W(0), we know that
(W5, 04) > aT. (65)
Hence, let’s obtain a lower bound for (y;, 04)

We only need to consider the cases where s = o4 for some s in the range 1 < s < [. In particular,
we will focus on the following instances:

s=Liandl e {LT LT}, s=Ljandl=Lj.

After T iterations, we know

<wA7O+> > oT, <wA7O—> > ﬂTa <wAaoj> < 7T fOI'j 7é 1,2. (66)
Therefore,
(yps.04) =0 ((wa,04)) = o(al). (67)
We have,
<wA) O+> S W1T7 <wA7 07> S WQTa
where
ALT4+1
n |1 (1 N 1
Wi=—|= - @ 68
T APRAY: * (poly(d)) ’ (68)
AL™+1
n |1 (1 N 1
Wo=—|= — O . 69
st () o Gaa) @

Then we obtain the following:
(yig.04) 2 0(aT) + (1= o(WAT)) (1= (W) (1 = o TN % (o)
= o(aT) {1 +(1—o(WT)) (1 — a(WaT)) (1 — a(yT))A“‘ﬂ . (70)

We now lower bound the objective
L

> > d(Woiw)-

iEeW(0) =1

14



We begin with

> Z¢ (Wogyu) > > {¢ WoyLs) + o(Wog, )yL+)} :

i€EW(0) I=1 ZEW(O)

Note that
d

T
Wo(i,.)yq = Z <WO(Z—7.), Oj> <yL1+70j> )
j=1
and y Lt has only o, component.

Therefore,
Wo(iyry = <W0T(i,.)a0+> <yL1+a0+> > aT -o(aT) > 0.

Similarly, we can write

Woi s = aT - o(aT) [1+ (1= o(WiT)) (1 - o(WoT)) (1 - o(4T))>" 7] > 0.

Applying ¢(z) = z for positive z, we obtain
¢(Wo(iyr+) = aT - o(aT),

oWoiyp;) = ol - o(aT) [1 + (1 = o(WAT)) (1 — o(WaT)) (1 - U(VT))AL+_2} :

Hence,
> Z¢’ Woiy) = Y aT-o(aT)
iew(0) I=1 zEW(O)

x [24 (L= oW T)) (1= o(WaT)) (1 = (7)) 2]

Next, we derive an upper bound for

Z i¢> (WO(i,.)yl(")) :

i€U(0) I=1

For any i € U(0), we know that

(71)

(72)

We now derive an upper bound for (y;, 0_). We only need to consider the cases where x5 = o_

suchthat 1 < s <.
s=L andl=L".

(yr-,0-) = 0 ((wa,0-)) < o(WT).

L
Z Woi, yt < 0T - a(W,T).
=1

> EL:¢<WO<1 o ) > T o(WaT).

i€U(0) I=1 i€U(0)

In addition, we have

- (n) 3 1
2 29 (Wo(i")yln ) =0 (p01Y(d)> '

i€k~ \U(0) I=1

15
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(76)



By (61), we can write

FX™) > ﬁ { 2T o(aT) 2+ (1= (WA T))(1 - o(WaT))(1 = o (7T))A" 2
m ~ 1
—5 b o(WoT) = O (poly(d)> } (77
with
o 1 o (1 ALT—1 _ 1
o=z 3+ (3) (i) 7
o 1 1 ALT+1 _ 1
a~b. (80)
|1 1AL 2 ~ 1
“T 6L | (2> -9 (poly(d)>
ALT—2
o oty ol A 1
“we ()]0 )

The last step assumes the distribution of AL is identical to AL~ .

Therefore, we conclude that

1
P(X™) > —— {% -aT - o(aT) {1 + (1= (W T))(1 — o(WLT))(1 — U(WT))AL+_2}}
~ 1
-0 ——
(poly(d))
(82)
F(X (")) > C, where C is some positive constant. (83)

E.1 Convergence Rate

Let’s find the number of iterations 7" required such that F'(X (")) > 1, since the label is +1. We
require

1
m-%-aTZl—i—e. (84)
+
Substituting the value of a ~ b = —L- {% + (D)2 H} , the condition becomes
vimal _ w1 S
2L 2L /mL |2 2
ALT+1
T |1 1
== 2+(2) >1+4e (85)
Solving for T', we obtain
2I2(1 41%(1 412
T> +e¢ (+e . (86)

n[i+ @] i+ Y] [+ ()]

16



Now, we additionally require that the sigmoid activation o (aT') be sufficiently large, i.e.,

o(@l)>1—e.

When 2 is sufficiently large we can approximate
1

o2) = 1+e 2

Substituting z = T, condition (87) becomes:

87

~
~

1—e %

olal)~1—e T >1—¢

efaT < €

oT > —1In(e)

In(e
a

T>—

)AL++1}

- 1 (1 )
Substituting a = - [5 + (3 , we get:

T > —In(e) -

) .

(88)

16L 89)

7 [1 + (%)A“H] |

Multiplying both the numerator and the denominator of the second term by 2, we obtain the final

bound:
T > —1n(e) -

Hence, by combining (86) and (90), we obtain
412
n |1+ (5]
By combining (84) and (87) with the expression for
F(X™M) > (1+¢)-
> (1+¢)?

T > max

32L
e B (90)
n {1 + (%)ALT
—lnfe) . —— 32k o1

ALY
n [+ (5]
the model output F (X (™)) in (82), we obtain
(I1—¢)-(1+¢)
(1—¢)

>(1+2+€*)-(1—¢)

>14e—0(?)

92)

Hence, for sufficiently small e > 0, the model output satisfies F'(X (™) > 1 +e.

E.2 Sample Complexity

Previously, we used N = poly(d) to obtain the asymptotic term O (

—L__). We now derive a
poly(d)

sample-complexity bound that guarantees zero generalization error.

Assume that, for sufficiently small A < 1,

of JHeNY [ (1 ©3)
mN |~ 2ymL 2 ’
From this, we can derive a lower bound on the required sample size as
4I72
NZQ A~ dAL+ 2
1 ()]
94)
2
>0 4L dA —
1+ (3)%"]

17



F Proof of Lemmas

F.1 Proof of Lemma 1

Proof. The loss function for the n' sample is defined as

(XM 2y = max{0,1 — 2™ . F(X(”))}

(95)
:max{ 0,1 — 2 ZZ% (Wo(l )yl( )>}
l 14i=1
The empirical loss is denoted by £ and is given by
1
A (n) ,(n)
LfN;E(X ,2(M), (96)
The population loss is denoted by £ and is defined as
L=Ex )~plX,z). o7

We know that the gradient of the loss function for the n'" sample is

oo ol OF(X (™)
6W0(i,.) B 8F( (”)) 8W0(i))

(n)
. sz ( " )) y. 98)

If we consider the gradient for the population loss,

oL 2 & MY . (n)
WG(L-):_E lezlvz ¢ (WO(z Y, ) Y 99)
= _]Ez +1 [Z —V; - (Wo(z,)yl(n)) yl(n)‘|
- 1 Y ., (n)
+E1 [ 70 (Woou™) - ui™ |- (100)
=1

We are given that

m<(wlon)<a, p<(wlo)<a ad p<(wl o) <a forj#1,2

(101)
The Mamba output can be written as
l
+
v => | I] (1 — o(w a;j)> o(w) @) - (2] @), (102)
s=1 \j=s+1
We have to consider 4 cases.
Casel: | =s= L]
s =T = 04 (103)
E oM ! 104
< yL;r’O+>_U(wA o) = o(p1) = Trem (104)

18



Casell: | =s= L]
-
<EyL;L;,o+> = a(wg) o) (105)

Caselll: | = L] ,s =L}
-
<EyL;LT,o+> = (1 - U(w(A) o+)> (1 - U(wg) o)>

T Li-Lf—2 T
: <1 — a(wg) oj)> -a(wx) oy) (106)
Combining (105) and (106), we obtain
— D
<]EyL2+70+> =o(wy’ o4)
+ <1 - U(wg) o+)> <1 - U(wg) o_ )> (107)

o7 )" b "7
(10wl o) w0,

Case IV: Others
For the other token positions, ; # o.. Since we assume orthogonality among the features, y; = 0.

From our initialization, for the lucky neuron i € W(0), v; = —I—ﬁ. Fori € W(0),and (") = +1,

we have
L
< R Z (WO(Z (n)) 'yz(")] ,o+>
1 T OH OH
= Jnl o(wy” o04) |2+ (1—-o(wy o4) ) (1—o(wy o-)
+_rt+_
. B ©T Li-Lf—2
1-o(wy o) . (108)
For z = —1,whenl = s = L", , = ¢; = o,. Therefore, we obtain

)T

(Byp+,04) = o(wh) o1) > o(p) (109)

L N 1 T
< =1 [Z o (Wouu™) -l ’]70+>=\/m o(wy o)) (110)

Therfore, combining (108) and (110),
oL - () . 4y(™)
< 8W§(l »0+> —< z=+1 lg ( i, Y ) Y » O+
- ( )
—< 2=—1 Z (Wo(z 0y )> l(n] ,0+>

-1 ow?® oy [1+(1—o(wX>To+>) (1- 0wl o))

L;—Lj—2]

h \

O

. (1 — a(wAt Oj))
(111)

19



We aim to bound the deviation between the gradient of the population loss and that of the empirical

loss. Specifically, W(% ; — au%:) = H% ZQ’=1 Yn — Evn . where
o(i, o(i,) |2
2(m) L , (n) (n)
Yo = =0 (Wouu™) v (112)
=1

Consider a fixed vector « with ||a||z = 1. We will show that o, is a sub-Gaussian random
variable.

Ty, | < llelz - vallz = [1alle- (113)

By the problem setup, we know that

1 n
ol = =1 |6 (Wou™)| <1 (114)
Recall the Mamba output,
! ! T oT
v => | II (1awg> :cj)> oWV z,) - (@] )z, (115)
s=1 \j=s+1

Since ||zs||2 = 1, we get

Hyl(n)

l
<>t (@l @) - 2
s=1

< . -1-1=4d' (where a' denotes a constant). (116)
—a
—1

Therefore, the norm of +,, satisfies

|

L
1
Ivally < 7 S loil+ |6/ (Wowi™)| - [|ui™
=1

11 &
N "
=17 Ym ; Hyl 2
L
1 1 a
<—-—-) d= : (117)
A DN
Hence,
!
laTy,| < \“ﬁ (bounded). (118)
m
This implies that o ", is sub-Gaussian with variance proxy
:_o(L
c°=0 . (119)
m
Now consider the independent sub-Gaussian variables o " v1, . .., a " vy, each bounded as
1 < < L (120)
Of n =" —
Tvm ST e

20



Applying Hoeffding’s inequality, for any ¢ > 0,
1N
T T
P(NZa Yo~ Ea Ty,

n=1
Observe that this can be written as

n=1 n=1

Therefore, by Hoeffding’s inequality (cf. (121)),

P <|aTC| 2 q:gN) <N

To bound ||¢||,, we use the dual norm identity

IS, = sup a'¢.

l|exll2=1
We apply an e-cover argument to obtain
sup a' ¢ < max o' ¢
oo =1 1 —¢acc

<2 max a'(.
a€Cy/o

We have shown that for any fixed «,

P <|aTC| 2\ qing> <N

Therefore, for all fixed & € Cy /o,

qlog N

-
|a C| R mN

Then,

log N
max ‘aTC‘ > 1/& with probability at most |C; /5| N 1.
a€Cy )z mN

Recall that the covering number satisfies
d
3B
ICe| < () :
€

C1 2] < 67,

For B=1and e = 1, we have

‘We can therefore write

qlog N d e
P > == ] <6 N4
<||C|2N\/ o )6

We want this probability to be sufficiently small. Set ¢ = d, so that

dlog N N\ ¢
P > 9 <(Z) .
(IICIIQN N >_ <6)

21

n) =a'(.

1 1 &
T T _ T
Nza PYn_Ea Tn = & <N27n_E7

with probability at most N 9.

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)



Hence, the deviation is bounded with high probability:

dlog N
I<]l, > O ( n(jﬁV ) with probability at most O(N~%). (133)

Or equivalently, with probability at most O(N~9),

N
1 dlog N
an::lv | > ( 7 ) (134)
That is, with high probability 1 — O(N~4), we have
N
1 dlog N
— — < .
N2 T~ Ema|| <O ( — ) (135)
n=1 2
Using the identities
4 N
oL oL
— = Z — 5 =Em, (136)
a‘/‘/O(z n=1 aWOU
we conclude that, with high probability,
oL oL oL oL [dlog N
“owe ) T\ aw )| T law T aw | < ( o ) Y
O(i,) O(i,) 2 O(i,") O(iy) |9
Using the Cauchy—Schwarz inequality, we have
< oL oL > |l oL ol
O aw® T/ 0] i
8W0(i,~) 8W0(i7,) BWO(l 3WO(1 )
oL oL ,
= @ (since ||o4]l2 = 1)
BWO(Z N BWO(Z )
dlog N
< . 1
<0 ( N > (138)

Therefore, we obtain

< oL o > O( dlogN><< oL o >
— 0 0+ )— S\~ o+
3Wc()()i,-) mN 8Wé()i,-)

oL dlog N
< _ —_— .
- < aVV(()t()1 +> v ( mN )

By pairing (111) with the given the conditions on wa in (101), we can write

(139)

o(p1) [1+ (1= o(@))- (1= o(@) - (1 —olg))™ 72| < <‘av§§g,,)"’*>

1
vmL
(140)

and < Waf() o+> < () [1+ (1= o) - (1 = 0(p) - (1 = o)™~ 7).

(141)

22



Therefore, we can obtain the lower bound and the upper bound of <— 5 3(% o+>
)

o,

\/%L cop1) |1+ —o(q1)) - 1 —0o(ge)) - (1 — O—(q3))L2+—LT—2} _0 <\/W>
. (142)
R
>~ aWOt()Z » Y+
oL 1 +_ 1+ o
and <WC%,O+> < m ~o(q1) {1 +(1—0o(p))-1=0(p) -1 - 0(p3))L2 L} }
+0<‘ﬁ§&)

(143)
This concludes the proof of (9) and (10) in Lemma 1

%&“), o_>, we have to consider E,_ _; {Zle %vi - (Wo(l (n )) (")].

VY
it w 0 >0,
L
ZZ (WO(L )yl )) ' y;n)] ,O—>

O(i,-
< z=—1
Ol

ol o |2+ (1= 0w o) (1- ot o))

: (1 — o(w oj)>L2_Ll_2] .

To obtain <

(144)
W) o <0
O(i,") -
- (n) (n)
< =1 [ZL ¢ (Wouu™) v ”] ,o_> =0. (145)
From (100), We know that
L
oL LY (M) . 4™
<_6VV@’O> = <]Ez+1 [; Z“i Y (WO(i»-)yz ) Y ) O—
o) - (146)
1 (M . g™
- <Ez——1 ; E ¢ (WO( )Y ) Y ,0— ).
Hence, combining both cases, we conclude
1 T T
NG U(lUX) o_) [2—&— (1 —U(wg) o)) (1 — O'(’UJX) o+))
Ly —Ly—2
. (1 - J(w(A) o])> ]
< <5’§),O_> <. (147)
8W0(¢,-)
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From (137), similar to (139), we can write
oL dlog N
w0 ) O\ T
GWO@
- < oL >
= - (t) y Y—
GWO(M

log N
< a,(f: o Vrof/HeN) (148)
8WO(Z mN

Hence,

- \/%L g(wg) o_) [2—}— (1 - U(wX)To)> . (1 —U(wx) o+))
T\ R 2 dlog N
.(1_0(wg> oj)> 1 —0( N
(o) <o (V) s
w), m
(27')

This concludes the proof of (11) and (12) in Lemma 1.

Now consider <—(WV%, oj> forj #1,2.

0(i,")

oL
8W0t() 105 ) =\ Be=nn

Because o; forj # 1,2 is identical in both I; and I, (I1,0;) — (I2,0;) = 0. Hence,

< L, oj> = 0. From (137), similar to (139), we can write

ow i),
oL dlog N
“owo %) "9\ TN
0(7’5)

o(i,

oL dlog N
<<—(t),oj>+0< mf]gV ) (151)
oW, |
Therefore,
aﬁt 0, ) <O dlog N\ ¢ i 21,9, (152)
W), mN

This concludes the proof of (13) in Lemma 1.
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F.2 Proof of Lemma 2

Proof. By definition, for any unlucky neuron i € K. \ W(0), we have
WO(i,-)O-i- <O0. (153)

We first consider the alignment with o . That is,

oL
GWO(i,)

The gradient is given in (99). We only need to consider the cases where <yl(”), o+> > 0. However,
since Wo(;,.yo+ < 0, we have

¢/ (Wouf)yl(")) = 0. (155)

oL
—W70+ =(E:=11

0(17)
_<Ez——1

L
Z %'Ui ¢ (WO(i,-)yl(n)) yz(n)] 70+>

=1

L
> %’Uz’ ¢’ (WO(i,»)yl(n)) : yl(n)] ,0+>
=1

—0. (156)
We know by (139),
oL oL dlog N
<—(t),o+> < <—(t),o+> +O ( :5\[ ) : (157)
aWO(i,~) aVVO(M
Hence,
A log N
9 S V<o ) Hee N (158)
ow * mN
O(Za)
We now analyze the alignment with o_. To obtain the bound on <— av§£> ,0_ >, we consider the
O (i,-)

expectation E,—_; [Zlel +v; - ¢/ (WO(L,)yl(n)) . yl(")] .

If W(()t()i )0 > 0, the inner product satisfies
“q
<Ez——1 Z TV ¢ (Wo(i,~)yl(n)) : yl(n)] ,0_>
=1

(oo ) o (1ot o) (- tald o)

- Ly —Lj —2
: (1 — a(wg) oj)> ] . (159)

fwY)

(1,70 < 0, then

L
1 n n
<Ez_1 lz Zvi-9' (Wouwl™) - >] 7o> = 0. (160)

=1
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From (100), We know that
oL > < l L 1 / (n) (n)
———,0_ )=(E,_ —v; - @ (Wou. Yy -y o_
® +1 Z ( O(i,) I ) 1 )
< avVou,) =1 L
=1 Y o
- <Ez—1 L_Zl Z'Ui : ¢/ (WO(z’,-)yz ) Y ] 70> . (161)
Hence, combining both cases, we conclude
1 T T T
~ 7l ‘O’(U)X) o_) {2 + (1 - J(wg) o)> (1 — O’(UJX) o+)>
Ly —Ly -2
T 2 1
: (1 —~ o(wf 0j)> ]

< <_3(’;),o_> <0. (162)
8WO(Z.,_)

From (137), similar to (139), we can write
oL dlog N
“ow® 0-) 79 mN
6WO(M
(o)
8W0(i’_)

- 85) o V+0o [dlog N . (163)
oW, m

O(lv)

Hence,
1 T T T
~ L -U(wg) o_) [2 + <1 - a(wx) o)> . (1 - U(wg) o+))
Ly—Ly—2
7T 2 dlog N
1= . _
( o(wy oj)> ] (@) ( N
< <5(f),o_> go( ‘“Ova) (164)
W5 m
Now consider { ——22— o > for 1,2.
< Wiy 7

Z %%‘ ¢ (WO(i,-)yl(n)) yl(n)] 70j>
L
Z TV ¢’ (WO(i,~)yl(n)) : yl(n)] a0j>

= <Il,0j>—<12,0j>. (165)




Because o; forj # 1,2 is identical in both I; and I, (I1,0;) — (I2,0;) = 0. Hence,

. oL ) _ . .
< 79“’3()1',.) , o]> 0. From (137), similar to (139), we can write

oL dlog N
owo %) "9\ TN
O(la)

oL dlog N
<<_ 0; +(’)< ;jv ) (166)
8WO(M
Therefore,
A log N
9L o N <o N 1,0 (167)
ow) mN
0(7’1‘)
O
F.3 Proof of Lemma 3
Proof. We know that the gradient of the loss function for the n'" sample is
oo ol OF(X (™)
6W0(i,,) n 8F(X(”)) BWO(i).)
(n) L
__Z (n) (n)
= (Woiul™) ™. (168)
If we consider the gradient for the population loss,
oL SRR M ™
_ e o (Wogy™ ) ™ 169
aWO(z ) I lz:;vz @ ( 0(i,) Y Y; ( )
-1 () (™)
= _]Ez:+1 |J§_; Zvi . ¢/ <WO(1',~)yln ) . yln ]
Sk (M) . 4™
+E.- ZZ; Evi ¢ (WO(z‘,-)yln ) 'yln ‘| . (170)

We are given that

p1 < <wx),o_> <q, p2< <wX)70+> <g2, and p3 < <wg),oj> <gq3 forj#1,2.
171)
The Mamba output can be written as

u®)=>_ | I (“a(ﬁ”wﬂ) o) @) - (@] ), (172)

‘We have to consider 4 cases.
Casel: | =s= L7

Ty =] = O_ (173)

®7 1

<]EyL1+70—> =o(wy o-)2o(p) = [P (174)
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Casell: [ =s =L,

.
<EyL2_7L2—7o,> = J(wg) o_) (175)

Caselll: [ = L, ,s= L7

T T
<]EyL;,L;vO—> = (1 - U(wg) 0—)) <1 - a(wg) 0+)>
T Ly —L7 -2 T
: <1 —o(w oj)> co(w) o) (176)

Combining (175) and (176), we obtain

<EyL;,o,> = U(wg)To,) (177)
+ <1 - a(wX)To_)) <1 - a(wX)To+)>
Ly —Ly—2
. (1 - U(wg)—roj)> . a(wx)—ro,). (178)

Case IV: Others
For the other token positions, x; # o_. Since we assume orthogonality among the features, y; = 0.

From our initialization, for the lucky neuron ¢ € U(0), v; = —\/—%. Fori € U(0),and 2™ = —1,

we have
o1 W ™\ ., (1)
<]Ez_—1 lgl zvi : ¢/( O(iw)yln ) 'yln ] ,0—>

= ol o) |24 (1ol o)) (1= 0w o)

T Ly —L7 -2
: (1 —o(w? oj)> ] : (179)

For z = +1,when! = s = L™, s, = x; = o_. Therefore, we obtain

(Eyy-,0-) = J(wg)—ro,) > o(p1) (180)

L
1 ™Y () 1 O
; 7V ¢ (WO(ir)yl ) Y 00— )= m co(wy 0-) (181)

<Ez_+1

Therfore, combining (179) and (181),
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(o - ]
e

(WO(Z )yl )> 'yl(n)] ,o_>
1

= 7= o(w? o ){H(la( <

wy' 0- )) <1 (WX)TOH)
(oot ™)

(182)
We want to bound the deviation between the population loss gradient and the empirical loss gradient
That is ‘95) oL
oW,

(t)
O(i,") 5)‘4/k)(1

N
_H’N§n71 In E)n
2

, Where
2

(n) L
= Zvi ¢ (WO(i,-)yl(n)) yl(n)~
=1

(183)
That is, w.h.p. 1 — O(N~9), we have H % D one1 Yo — By

<0 <\/‘“°%VN). Hence, we can
2 m
write

®
0, oW,

< oL oL . >
“owo | T O
oW, o)
B ac aﬁ 0
ow') -

0(i, ) 8W

O(i,)
dlog N
<O .
Therefore, we obtain

(184)
< 8(£t ,0_>—(’)< dloi]N> . <_ oL ’0_>
ows) | m

(185)
dlog N
<(- ag,o>+o( ).
8WO(Z )
By pairing (182) with the given the conditions on wa in (171), we can write
1 Ly —Ly =2 oL
o(py) [T+ (1 —o(q)) - (1—0(g2) - (1 —0algs)) ™ ™ 7| <( ——75—0-
T o) | (1 - o(g2) (as) | Wi
(186)
and L o < L
8W0t() ) Y= = \/EL o(q1

(a1) [1+ (1= o(p1) - (1 = 0(p2)) - (1 = o (pa)) "=~ 7]

(187)
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Therefore, we can obtain the lower bound and the upper bound of <— aafé), o_> as
O(i,-)

o(pr) [1+ (1= (@) - (1= (@) - (1 - a(gs))™= 7] =0 ( W)

oL
< —,0_
- < 8Wét()1 >
and <af)o> < o) [L4 (1= 0(0) - (1= o(pa)) - (1 olpa)s 7]

oWy,
log N
+O< dﬁv >

This concludes the proof of (17) and (18) in Lemma 3.

1
vmL
(188)

(189)

To obtain <8W‘9£), o+>, we have to consider E,— {Zle Lo ¢f (WO(z )yl( )) (n)]

0(i,)

WS oy >0,

L
1 n n
Z TV ¢/(W0(i,~)yl( )) 'yl( )] ,0+>
-
_ 1 (wg) o) {2—1— <1 —a('w(A) o+)> (1 —a(wg) o_ ))

T Li-L{-2
: (1 —o(w oj)) ] : (190)

O-‘rSO’

W)

L
< 1 [ZL ¢ (Wou ") y(”)] ,o+>=0. (191)

From (170), We know that

Lo N\ /g il -6 (Wous™) - "
oWy T E SOV R
et ] )

(192)

Hence, combining both cases, we conclude
1 T T
NG U(wg) oy) [2 + (1 - U(wg) o+)) (1 - o(wg) o_ ))
o7 Li-L{-2
|\ 1-o(wy o)

§< o ,o+>§0. (193)
8WO(Z )

30




From (137), similar to (139), we can write

< oL O> (9( dlogN>
_Wv =+ -
WG, mN
<< oL . >
>~ - ) s U4
WS

< —%7% +of /Mo N Y (194)
WG, mN

Hence,

dlog N
—O< N > (195)

- log N
< _%70+ <O dlog .
oW, mN

This concludes the proof of (19) and (20) in Lemma 3.

Now consider <8‘/V%’ oj> forj #1,2.
oG,

oL toq / (n) (n)
05 ) = (Bemin | Y v ¢! (Wouou™ ) -y o
WS —
=1 )\, (n)
- <]Ez_—1 lgl Zvi ¢’ (WO(z‘w)yz ' ) 'yzn ] a0j>

= <I]_,Oj> — <IQ,Oj> .

(196)

Because o; forj # 1,2 is identical in both Iy and I, (I1,0;) — (I2,0;) = 0. Hence,

< L, Oj> = 0. From (137), similar to (139), we can write

ow()
oL dlog N
“owo %) O\ TN
O(lv)

o(i,")
<< oL O>
S\ T ow® %

oW, s

oL dlog N
8WO(71,~) m
Therefore,
A dlog N
—%,oj <O (/222 forj£1,2. (198)
oWy mN
O(i,)

This concludes the proof of (21) in Lemma 3. O

31



F.4 Proof of Lemma 4
Proof. By definition, for any unlucky neuron i € K_ \ ¢(0), we have

Woyo- < 0. (199)

We first consider the alignment with o_. That is,

< _oL o>. (200)
oW,

The gradient is given in (169). We only need to consider the cases where <yl(n), o_> > 0. However,
since Wy (;,.yo— < 0, we have

¢ (Woaf)yl(")) = 0. (201)

oL
<_8VV(070_> = <Ez—+1
O(i,-)

L (202)
_ LY () | (™
<]Ez=_ [; LU1 ¢ ("/VVO(l7 )yl ) Y; y O—
=0.
We know by (139),
oL oL dlog N
e (= I
aWO(i,») 8WO(1
Hence,
oL dlog N
0 V<O R (204)
Cow) mN
O(1,-)
We now analyze the alignment with o, . To obtain the bound on dvvafé)’ o+>, we consider the
0(i,)

expectation E,_ 1 {Zle Lo, - ¢/ (Wo(i,.)yl(")> yl(n)} .

If Wg() )0+ > 0, the inner product satisfies
L
< z=+1 Z (WO(Z Y ( )) yl(n)‘| a0+>

= \/%L o (wg)ToJr) [24— <1 - a(wX)ToJr)) (1 ('w(A)To ))
T Li-Lf-2
: (1 —o(w? oj)) ] : (205)

oy <0, then

L
1 n n
<Ez_+1 [Z Vi ¢’ (WO(i,~)yl( )> Y, )] 70+> =0. (206)

=1

(®)
Wil
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From (100), We know that
< oL +> < +1 [EL - (WO(z )yz( )) '?/z(”)] o+>
(t) z= )
8WO(Z.}_) — LY

—< 1 —vz (-,.>y§”>)-y§">] ,o+>. (207)
=1

Hence, combining both cases, we conclude
1 Ol Ol Ol
JmL o(wy” o04) |2+ (1—-o(wy o4) ) (1-o(wy o-)

Li-Lf-2
(10wl o) ]

oL
S< owl) +> =0 o

O(i,")

From (137), similar to (139), we can write
< or > o< dlogN>
0 )
8WO(7 mN
oL
< <—(t)>0+>
‘9W0(Z‘,)

oL dlog N
< <—(t),o+> +O< mi[ ) . (209)
8W0(i7,)
Hence,
1 T T
~ L a(wx) oy) [24— (1 - a(wx) o+)) . <1 - a(wx) o)>
Li—-Lf-2
4 w7 2 B dlog N
(1 a(wA oj)> ] O( N
oL dlog N
< <(t),o+> <0 ( _— ) . (210)
OWO(L.)
Now consider 9L__ o > for 1,2.
< Wiy 7

Z %%‘ ¢ (WO(i,-)yl(n)) yl(n)] 70j>
L
Z TV ¢’ (WO(i,~)yl(n)) : yl(n)] a0j>

= <Il,0j>—<12,0j>. (21])




Because o; forj # 1,2 is identical in both I; and I, (I1,0;) — (I2,0;) = 0. Hence,
< W%, oj> = 0. From (137), similar to (139), we can write

o(i,
oL dlogN
8WO(1 ]
< < t) 0 > ( dng) (212)
W),
<a§),oj> go(,/d;‘;iN> for j #1,2. 213)
W),

F.5 Proof of Lemma 5

Therefore,

Proof. The gradient of the loss with respect to w for the n sample is given by

ST ! (Wo”) X (W) (Waal?) (Wog et

=1 =1
l
o (wgmgn)) . H (1 -0 (wlm&”)))
r=s+1
l
(1 -0 (wlwé”») z(") — Z (1 -0 (wAw(n))) a:; ")
j=s+1
2 & / @\ = 1)
= I : Z Zvi o (WO(z, Ui ) ZIl,s : (214)
i=1 I=1 s=1

We define the gradient summand I l(z) as

l
0 =g - 3 e, (215)

Jj=s+1

where the coefficients 3, , and 3, ; are given by

Bos = (WEalT (Wl a™)(Wo 2o (wiael™)

l
X l I1 (1 —o(wgwgn)))] (1 - o(wlz™)). (216)

r=s+1

and
Bej = (WEal) T (Wl a!")(Wog,)z()o(wiaz(™)

l
X [ I1 (1 - o(wgm,@)))] (1 - o(wial™)). 217)

r=s+1
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If we consider the gradient of the empirical loss,

oL 1 z(" . l .

Jwa > Z v (Woey™) - D117, (218)
wa =1 =1 s=1

We are given that

.
p < (wl o) <q, and 7} < (WS op) <si. (219)

From our initialization, for all i € K1, we have v; = \% This gives
m

(n) !
<_6fvi’°*>:ZL > = Woru™) X (I 0). 20

i=1 [=1 s=1

l

% P L o
_M70+ :NZT'szz¢(WO(z )yl Z< lgvo+>

n=1 i=1 =1 s—1
1 1 L 1, . i -
=5 Z i Z 7m¢ (Woa, )y, )Z <Il,s ,o+>
niz(M =41 i€y I=1 s—1
L 1
2. <_1m) ¢ (Woi, ))Z<IZ(Z),0+>
ek =1 s—1

@
Il
i

L l
+3 3 (—jﬁ) & Wounu™) D (I 00) . (221)

First, we focus on the contribution from the samples where 2(n) = +1, for which we seek a lower
bound. We analyze the inner terms by considering four cases.

Casel:l=L], s=L]

Since I = s and x5 = oy, it follows from (215) that

(17 01) = .. (222)
Using (216), with Wp = W = I and ) = 4 = o4, we obtain
(1.0, ) = 50 = (WS o) ol o) (1= ol 0)) . @23
Given the conditions in (219), we can write
(1 01 ) =1 - alpr) - (1= olar)). (224)

Casell: | =L, s= L]

This configuration yields the same result as in Case I. We again obtain

(17,04) 271 o(pr) - (1-ol@)). (225)
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Caselll: [ = L; , 8= Lf Comparing (216) with (217), we see that the two expressions differ only
in their last term. In this setting, x; equals o, only when j = L3 . Consequently, z, = T; =04,
which implies 35 s = s ;. Hence,

<Iz(g,0+> Bs.s = Bs,j = 0. (226)

Case IV: Others

For the other token positions, <I ) > = 0 due to orthogonality among the features.

ls7

Combining the above, the total contribution becomes
l

S (I 00 ) = 27 o(pr) - (1 - o). (227)

s=1
‘We now bound the entire sum over all tokens:

i3 Z o) Y1) Z <Il(s)7 > 2 .

—— 12 o(p) (L= o(@). (28)
s=1

h
g8

Let p;” = |W(t)| be the number of contributing neurons. Then the total contribution from the active
neurons is lower bounded as
l

Iy 2rf <o (p) - (1 - o(q1))
T 2 2wt (Woowm) Y (1) 00) 2 =0 o (229

ieky 1=1 s=1

Next, we consider z("™) = —1 fori € K. For (") = —1, the negative sample contains two o_ and
one o at positions L7, Ly , L™, respectively.

Let! = L*. Then &; = 0., and y; contains a component in the direction of o, . Since Woi,. has
an o, component for ¢ € K, this contributes to the gradient.

Let s = [, so that

LY =B (230)
We now seek an upper bound for this contribution. From the initial conditions in (219), we know
t+1) 1 x
(WL o) <st. (231)
Hence, we obtain
(Iis,04) < s7-0(q) - (1 —o(p1)). (232)

The maximum number of such contributing neurons is % Therefore, the total contribution is bounded
above by

l

s7-0(q1) - (1 —o(pm m
7221% >ylz<zs’ >§ (Q)\/(m (p)).E

ey 1=1 s=1
_ Vm-si-o(q)-(1—o(p1))
9 .

(233)

Thirdly, let us consider the contribution for 2" = 41 from i € K_. From our initialization, for
1e K, v = —\/—%. For 2(") = 41, we seek an upper bound on the contribution from such neurons.

Let 2(™ = +1. To maximize the term Wo(i’.)wgn) in (216), we consider | = L™ since Wp(; .y has
a large component in the o_ direction. Then ; = o_ = y; contains the o_ feature.

However, in this case, £ = o_ = x;, and due to orthogonality,

(17.04) =0. (234)
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Hence, we only need to consider time steps [ = L}, L5, where o, features appear.
Recall that

8€ m 1 / l
<_6w +> LZZ ' Wog,u Z< ls 0 > (235)

=1 =1 s=1

We analyze the inner contributions case by case.
Casel: | =L}, s= LT

Given that
dlog N
Wo(yor <61+ 0 (\/ mi) =:c, (236)
we obtain

<Iz(f§), 0+> <c-o(q)-(1—0o(p1)). (237)

Casell: [ = L],s=Lj

This configuration yields the same bound:
<Iz(é)a > <c-o(q) - (1=a(p)). (238)

Caselll: | = Ly, s= L]

In this case, the contribution vanishes:

l,s + O

<I(") > —0. (239)

Case IV: Others

For the other token positions, <I 1(2)7 o+> = 0 due to orthogonality among the features.

Thus, the total contribution from each ¢ € K~ satisfies

l
S(I7 01 ) <20 0(ar) - (1= (1)) (240)

s=1

The maximum number of such contributing neurons is %, so the full contribution is bounded by

2 )

l

(n) o 20'0’((]1)'(1-0’(1)1)) T
’LGXK: ZQS WO ;< l,s +> \/% 5 (241)
= vme-o(q1) - (1 —o(p1)).

Therefore, the overall contribution is

l

NP> Zas (Wouu) Y (I 01) = —vime-o(a) - (1= o(pr)).  (242)

1€K: s=1
Finally, we consider 2M = 1 fori € K_. For 2(™ = —1, we want a lower bound since
v = —\/1%.
We could consider [ = L™ = x; = o, and write
dlog N
i > 07 — . 243
(Wo(i,),04) > 61 0( N ) (243)
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However, the minimum number of such contributing neurons is not tractable. Thus, if we consider the
worst case where W ; .y fori € K™ does not learn the o feature, the obvious lower bound is zero:

l
D> Z ' (Wouw) Y (17 01 ) = 0. (244)

zEIC s=1

We now combine the bounds for the four terms identified in equation (221), corresponding to the
contributions from: (i) K, with 2" = 41 (229), (ii) K4 with 2( = —1 (233), (iii) K_ with
2 = 41 (242), and (iv) K_ with z(™ = —1 (244). We assume the batch is balanced, so the

number of positive and negative samples is equal, with each class contributing % samples. Then we
have

<_8?H£A’O+> > % [%T : U(pl\)/%_ o(q1)) p —=vVm-c-o(q) (1 —o(pr))
_Vmesio(q) (1 —a(p1))
2

.

_ o) (L—o(@))ri ol ola) L—olp)si-vim < dlogN) |

vm 2 mN
(245)
where we have used the fact \ﬁ co(qg)(1=0o(p1))-c=0 (\ / difﬁvN) since ¢ = O («/‘%%VN).
O

F.6 Proof of Lemma 6

Proof. The gradient is given in (214).

Let’s consider the alignment with oy, for k # 1, 2.

(n m 1
() S o i) o

i=1 [=1 s=1

From our initialization, for all ¢« € KT, we have v; = ﬁ

We first consider the case z(™) = +1 for i € K. Since Woi,), for i € K+ has a large o,
component, we have to consider the token features with o.. For 2(") = 41, only when [ = L;, § =
L;r we have x; = x; = o4. Therefore, Wo(i,.)ms is significant. Hence, we have

<I,(f)7 > - zl: Ba (@, or)

Jj=s+1

< —fs,s+1 (Assuming W.L.O.G. :cii)l = o) (247)
< *<Wg(t}))T,0+> (<’U’X),0+>) : (1 - 0(<w(A)a0+>)>
(1= (@ 00)) T
Using the the conditions in (219), we can write
(1,01) < =ri - o(pr) - (1= o(a) - (1= o(a2))"* . (248)
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Hence we obtain

*Z \ﬁ (Wou " ))

[ori o) - (- ota)) - (- otaa)™ ]

(249)
Let p; = |[W(t)| be the number of contributing neurons. Then the total contribution from K,
neurons is bounded as
L 1
1 / (n) (n) "
=3 > w ! (Wouu™) 3o (1 01) < ——5 - o(p1) (1 - o))
L& o = vm (250)
(1= olg)"
Similarly fori € K, for 2(™ = —1, whenl = L;, s = L] the contribution is significant.
(n) * Ly—Ly
(17 01) < =11 0(ra) - (1 = o(s2)) - (1 = o(a2)) . (251)
Hence, we obtain
L 1 L
1 1 ( 1 1
izi Wo(,b )Z<lsa k>§izi
L =1 \/E s=1 L =1 \/E
[t o) - (L= () - (1 = oa))™ 7]
(252)

Let p; = |U(t)| be the number of contributing neurons. Then the total contribution from X_ neurons
is bounded as

l *
1 ; o™ () CTEr) (1 — o(ss
ZZZ (Wouul”) (1 0n) <~ Lot (i=otea)

lG/C_ =1 s=1

Ly —L _
(T=o(g2)™ ™ - py
Putting it together, We know

oL (n) m L ol §
(2 o) = S22 S S w3 (1)

=1 s=1

<.
=

L l
1 1 1
=5 - Z 7¢/(W0(i,-)yz(n)) Z Il(?, >
N niz(M) =41 L |:zelc+ =1 \/m s=1 <
l
1 1 n

N I3 Z ¢ Wouou™) Y (I or)| @54

n:iz(M=—1 e 1=1 s=1

We now combine the bounds for the two terms identified in equation (254), corresponding to the
contributions from: (i) K with (") = +1 (250), and (ii) K_ with (") = —1 (253). We assume
the batch is balanced, so the number of positive and negative samples is equal, with each class
contributing % samples. Then we have

oL - .
<_5’w(§)70k> <“am o) (1= o)) (1 = ala2))™* " o+ s
7(r2) (1= 0(s2) (1 = o(a2)) > ™" ;|
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