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Abstract

Test-time compute has emerged as a promis-
ing paradigm that enables small language mod-
els (SLMs) to achieve large language model
(LLM)-level capabilities by allocating addi-
tional compute for explicit reasoning during
inference. Two common approaches are beam
search and Best-of-N sampling. Beam search
improves reasoning quality by scoring and op-
timizing token sequences using Process Re-
ward Models (PRMs), but can incur non-trivial
computational overhead and latency. In con-
trast, Best-of-N executes all reasoning tra-
jectories without PRM guidance, often wast-
ing compute on low-quality trajectories that
may have gone astray early in the generation
process. To address both inefficiencies, we
propose THROW (THink haRd Only When
needed)—a hybrid inference pipeline that com-
bines the diversity of Best-of-N with the rea-
soning trajectory optimization of beam search.
THROW introduces a selective branch trunca-
tion and expansion mechanism: it generates
shorter initial trajectories than Best-of-N and
evaluates them using PRMs to classify each
query as “easy” or “hard”. Based on this
classification, THROW applies branch trunca-
tion for easy queries, mimicking Best-of-N,
and PRM-guided branch expansion for hard
ones, similar to beam search. Evaluations on
MATHS500, AMC23, and AIME24 demonstrate
that THROW achieves 1.54x and 14.38x la-
tency speedups and 35.7% and 80.4% token
reductions on average while preserving high
reasoning accuracy compared to Best-of-N and
Beam Search, respectively.

1 Introduction

Large language models (LLMs) exhibit remark-
able reasoning and planning capabilities (Wei
et al., 2022), yet their substantial inference-time
cost significantly impedes deployment in resource-
constrained applications such as mobile assistants,
embedded robotics, and real-time augmented and
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Figure 1: (a) Our proposed THROW is a hybrid infer-
ence pipeline that combines the diversity of Best-of-N
with the targeted trajectory refinement of beam search.
(b) As a result, our THROW achieves high efficiency,
high branch diversity, and high accuracy.

virtual reality (AR/VR) systems (Chen et al., 2024).
An emerging solution to this challenge is the fes?-
time compute (TTC) paradigm—also known as
inference-time scaling—in which a smaller lan-
guage model (SLM) is allocated additional com-
putation during inference to iteratively refine its
outputs, rather than relying solely on pre-trained
knowledge (Wu et al., 2024; Liu et al., 2025). Anal-
ogous to human cognition, where investing more
time and effort improves performance on difficult
tasks, SLMs granted additional computational itera-
tions can substantially enhance reasoning accuracy
on complex queries (Damani et al., 2025). Recent
work has shown that strategically allocating TTC
enables small models to approach or even surpass
the performance of significantly larger models on
challenging reasoning tasks (Wu et al., 2024; Liu
et al., 2025). This form of TTC inference is particu-
larly critical in resource-constrained settings where



storing or running full-scale LL.Ms is impractical,
yet high-quality language reasoning remains essen-
tial (Chen et al., 2024).

Two dominant strategies have emerged in
the TTC paradigm: Best-of-N sampling and
beam search guided by Process Reward Models
(PRMs) (Snell et al., 2025; Wu et al., 2024). Best-
of-N sampling generates N independent comple-
tions and selects the best output via external eval-
uation or majority voting (Wu et al., 2024; Manvi
etal., 2024). Conversely, PRM-guided beam search
incrementally expands only the most promising
partial sequences, pruning less likely candidates,
and yields notable accuracy improvements (Snell
et al., 2025). However, beam search incurs sig-
nificant computational overhead due to iterative
decoding and sequential scoring, and struggles to
exploit batch parallelism, resulting in higher la-
tency compared to sampling-based methods (Snell
et al., 2025). Practitioners thus face a fundamen-
tal trade-off: Best-of-N sampling is parallel but
compute-inefficient; beam search improves accu-
racy at the expense of latency and throughput. Nei-
ther paradigm alone fully exploits variability in
query complexity, highlighting the need for hybrid,
adaptive TTC methods.

A promising yet underexplored approach to ad-
dressing this trade-off is the dynamic integration
of Best-of-N sampling and PRM-guided beam
search within a unified, hybrid inference pipeline.
To achieve the aforementioned goal, we propose
THROW (THink haRd Only When needed). As
shown in Fig. 1, THROW is a new TTC infer-
ence framework explicitly designed for streaming,
batch-1 scenarios. THROW combines the diver-
sity of Best-of-N sampling with the targeted refine-
ment of PRM-guided beam search. For each query,
THROW first generates shorter reasoning trajec-
tories and evaluates intermediate outputs using a
PRM to classify the query as “easy” or “hard.” It
then truncates low-utility branches early for easy
queries to save computation and expands promis-
ing ones for hard queries to improve reasoning
quality. This adaptive compute allocation not only
minimizes unnecessary computation but also im-
proves throughput and parallelism, enabling earlier
processing of subsequent streaming inputs and re-
ducing average latency.

Our contributions are as follows:

* A Hybrid TTC Pipeline Unifying Best-of-
N and Beam Search: We propose THROW,

a hybrid inference framework uniquely inte-
grating Best-of-N sampling and PRM-guided
beam search to leverage their complemen-
tary strengths, diversity and targeted refine-
ment, thereby bridging previously disjoint
TTC paradigms.

* Adaptive Branch Truncation and Expan-
sion: THROW integrates an effective indica-
tor by first generating shorter initial reason-
ing trajectories and using PRM-guided scor-
ing to classify queries as “easy" or “hard". It
then adaptively truncates or expands branches
based on this classification to allocate the com-
putation more effectively.

* Experiments and ablation studies consis-
tently validate the effectiveness of THROW:
For example, on MATH500, AMC23, and
AIME24, THROW achieves 1.54x and 14.38x
average wall-clock latency speedups and re-
duces the number of generated tokens by
35.7% and 80.4% compared to Best-of-N
and beam search, respectively. These gains
come with only 0.9% accuracy reduction rel-
ative to beam search for the Qwen2.5-1.5b-
Instruct model, establishing a new state-of-
the-art (SOTA) efficiency—quality trade-off for
streaming, batch-1 TTC.

2 Prior Work

Process Reward Models in Test Time Compute.
Process Reward Models (PRMs) enhance SLM rea-
soning by evaluating intermediate reasoning steps
rather than only final outputs. Early work by (Light-
man et al., 2024) showed that step-level verification
substantially improves reasoning accuracy. Sub-
sequent research refined data-construction meth-
ods to better capture meaningful intermediate sig-
nals (Wang et al., 2024) and improves training re-
liability using human-preference feedback (Dong
et al., 2024). Data quality was shown to be critical
for PRM effectiveness (He et al., 2024). Recent
advances integrated Monte Carlo estimation with
LLM-as-a-Judge evaluations, reducing optimiza-
tion bias and achieving SOTA results on challeng-
ing reasoning benchmarks (Zhang et al., 2025).

Search Strategies in Test Time Compute. Ef-
fective search is key to generating reasoning tra-
jectories for PRM evaluation. Best-of-N sam-
pling is widely used for its simplicity, paralleliza-
tion, and strong performance when combined with
PRM verification (Snell et al., 2025; Zhang et al.,



2025). Beam search offers a more targeted ap-
proach, expanding promising partial solutions iter-
atively (Snell et al., 2025). Extensions like Diverse
Verifier Tree Search (DVTS) improve diversity and
accuracy by maintaining multiple exploration paths
without major computational cost (Beeching et al.).
However, no single search method consistently
dominates, motivating adaptive approaches that dy-
namically allocate compute based on query com-
plexity (Liu et al., 2025).

Efficient and Adaptive Test Time Compute.
While TTC improves reasoning, it also increases
latency and compute cost. Adaptive methods aim
to optimize resource use via techniques such as
early stopping based on confidence signals (Yang
et al., 2025; Huang et al., 2025), confidence-based
truncation (Fu et al., 2025), and self-truncating sam-
pling (Wang et al., 2025). Other strategies boost
compute for harder queries based on inferred dif-
ficulty (Damani et al., 2025; Manvi et al., 2024).
Yet, most methods adjust compute in a single di-
rection, limiting flexibility. Addressing this, our
THROW framework introduces a hybrid, bidirec-
tional approach that reduces compute for simple
queries while expanding it for complex ones, en-
abling more fine-grained and efficient inference.

3 The Proposed THROW Framework
3.1 THROW: Overview

Motivated by the complementary strengths and lim-
itations of existing TTC inference pipelines—Best-
of-N sampling and PRM-guided beam search—our
proposed THROW framework explicitly combines
their respective advantages into an unified ap-
proach. As shown in Fig. 2, traditional Best-of-
N sampling generates multiple reasoning trajecto-
ries independently without PRM-based guidance.
While highly parallelizable and capable of produc-
ing diverse trajectories, this approach often leads
to large computational waste due to the exploration
of low-quality reasoning paths. Conversely, PRM-
guided beam search incrementally evaluates and ex-
pands only the most promising reasoning branches,
achieving higher reasoning accuracy. However, the
iterative decoding and frequent PRM evaluations
required by beam search introduce substantial com-
putational overhead and latency.

Our proposed THROW framework resolves
these limitations through a two-stage adaptive TTC
inference pipeline. Initially, THROW rapidly gener-
ates short and diverse reasoning trajectories, akin to

Best-of-N sampling. Subsequently, THROW lever-
ages PRM evaluations on intermediate results to
explicitly classify queries as either “easy” or “hard”.
For easy queries, THROW adaptively truncates
less-promising branches early, conserving compu-
tational resources. For hard queries, THROW se-
lectively expands promising reasoning trajectories
through beam search refinement. This adaptive,
hybrid pipeline thus enables precise, bidirectional
computational budget allocation, improving the
achievable trade-off between accuracy and infer-
ence efficiency (e.g., latency and throughput).

By coherently integrating these mainstream TTC
inference paradigms, THROW improves inference
efficiency, latency, and overall hardware utilization,
making it particularly suited for real-time, resource-
constrained applications where high reasoning ac-
curacy and responsiveness are critical.

3.2 THROW: Motivation for Combining
Best-of-N Sampling and Beam Search

Before diving into the details of our hybrid pipeline
design in the THROW framework, we first explain
why combining the strengths of Best-of-N sam-
pling and beam search leads to a more efficient
reasoning pipeline. Specifically, Best-of-N sam-
pling defers PRM scoring until the final selection,
proceeding through the entire reasoning process
without intermediate guidance from PRM. This
represents an extreme design that favors high effi-
ciency and diversity but often suffers from lower
accuracy due to a lack of targeted refinement. In
contrast, beam search frequently consults PRM
feedback during generation, guiding the reasoning
process toward more promising directions. While
this approach achieves higher accuracy, it comes
at the cost of reduced efficiency and diversity due
to repeated PRM evaluations and narrower explo-
ration. These two extremes, each excelling in dif-
ferent aspects, present an opportunity to strike a
balance.

By building a hybrid pipeline that leverages the
efficient and diverse trajectory generation of Best-
of-N in the first stage and incorporates PRM-guided
pruning and refinement in the second stage based
on query difficulty, THROW effectively marries
the best of both approaches.

3.3 THROW: The Proposed Hybrid TTC
Pipeline

Stage I: Difficulty Categorization. As visualized
in Fig. 2(c), when new queries are streamed into
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Figure 2: Comparing the reasoning processes of (a) Best-of-N sampling, which completes all reasoning trajectories
without PRM guidance; (b) beam search, which selects the most promising trajectories based on PRM scores at
each step; and (c) our proposed method, THROW, which begins by mimicking Best-of-N sampling with shorter
reasoning trajectories to leverage its diversity, and then classifies queries into “easy” and “hard” categories based
on an indicator guided by PRM scores. The “easy” and “hard” queries undergo branch truncation and expansion,
respectively, benefiting from the targeted trajectory refinement of beam search.

our proposed THROW framework, Stage I gener-
ates initial incomplete trajectories that are shorter
than those in standard Best-of-N sampling. These
intermediate trajectories serve as partial reasoning
results and are used to assess the difficulty of the
input queries. Specifically, we employ a PRM to
evaluate each trajectory and obtain a PRM score
s; for the i-th branch of a given input query. The
difficulty of the input query is then quantified as:
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where vy, s a pre-defined threshold and 1, ~,,1
is an indicator function that returns 1 if the condi-
tion s; > vy, is true, and O otherwise. A higher
value of I suggests that fewer branches are above
the threshold, implying a more difficult input query.
If I > t;, where t, is another threshold, the query
18 classified as “hard”’; otherwise, it is classified as
“easy”.

Stage II: Branch Truncation and Expansion.
Thanks to the hybrid design that combines both
Best-of-N sampling and beam search, we are able
to dynamically adjust the reasoning budget for
queries classified as “easy” or “hard” in Stage .
Specifically, for “easy” queries, we reduce the rea-
soning budget by performing branch truncation,
where only the top- Ke,sy branches with the highest
PRM scores are retained, and the less promising

branches are pruned. In contrast, for “hard” queries,
we increase the reasoning budget by performing
branch expansion, where additional branches are
expanded from the top- Kprg most promising tra-
jectories identified in Stage I.

3.4 THROW: Theoretical Savings in TTC
Inference

To understand under what conditions our proposed
THROW is more computationally efficient than
baseline methods, we analytically formulate its
adaptive theoretical computation cost required to
solve a single query as follows:

Ls
CTHROW = Cpolicy%e_l]v + Cprmu N

(@)

L Stage_II

+ Cpolicy L

(Keasy + thard)
where Cpolicy is the computation cost of exe-
cuting the policy model for one branch with to-
tal trajectory length L. Lguge 1 and Lsgge 11 are
the length of reasoning steps in Stage I and Stage
IT of THROW, respectively, satisfying Lsge 1 +
Lswage 1 = L. Cpry is the computation cost of
running the PRM model once Keysy and Khparq are
the numbers of branches continued in Stage II for
“easy” and “hard” queries, respectively. Finally, b is
the ratio of branch expansion in Stage II for “hard”
queries. Unlike the baselines, THROW adapts its



compute based on query difficulty. Specifically, the
parameters in Eq. 2 take the following values:

(Keasy,0,0) if easy

(0,b, Khara)  if hard 3)

(Keasy7 b, Khard) - {

In contrast, the theoretical computation cost for

the baseline Best-of-N (BoN) and beam search (BS)
in TTC is:

CBoN = Cpolicy - N + Cprm - N 4)

Cgs = Cpolicy -N+S-Cprm - N 5)

where S is the number of times the PRM model
is invoked during the beam search reasoning pro-
cess. The resulting computation saved by our pro-
posed THROW is:

Cgs — Crurow = (S — 1)Cprm IV

Lstage (6)
+ Cpolicy Stlij - (N - (Keasy + thard))
CBoN — CtHROW

L (7)
= policyM <N —_ (Keasy + thard))

To ensure a fair comparison in terms of total rea-
soning steps, if we assume Lsgge 1 = Lstage 11 =
%, under this setting, as long as (Keasy +b- Khard) <
N, our method requires fewer policy model infer-
ences than both baselines. In the case of beam
search, this advantage is further amplified by the
additional savings associated with reduced PRM
invocations, captured by the term (S—1)-Cprym- V.

Furthermore, in our experimental configuration
we adopt the constraints Kepsy < % and b- Kpaq <
%. These conditions imply (Keasy + b - Khara) <
3 which allows us to derive lower bounds on
the expected computational savings achieved by
THROW:

L N
CBs — Ctarow = Cholicy - Stzge_n T ®
+(S—1)'CPRM-N
L N
CBoN — CtHROW = Cholicy - StaLge’H iy 9

These results provide a formal theoretical guar-
antee for the computational efficiency of THROW.

4 Experiments

4.1 Experiment Setup

Dataset and Models We utilize a selection of
representative mathematical datasets, including
MATHS500 (Lightman et al., 2024), AMC23 (math-
ai, 2025) and AIME24 (AI-MO, 2024), to com-
prehensively evaluate our approach. For the PRM,

we employ the Qwen2.5-Math-PRM-7B, a SOTA
open-source PRM, alongside instruction-tuned
variants Qwen2.5-1.5B-Instruct and Qwen2.5-3B-
Instruct (Qwen et al., 2025) as policy models.
Baselines and Implementation We conduct all
main experiments on a single NVIDIA A100-
SXM4-40GB GPU (hereafter referred to as the
A100 GPU) to enable an apples-to-apples compar-
ison of THROW, PRM-guided beam search, and
Best-of-N sampling under identical conditions. To
further evaluate our approach in a more resource-
constrained environment, we additionally report
results on an NVIDIA RTX A5000 GPU (hereafter
referred to as the A5000 GPU) in Appendix C.
We tune the hyperparameters of each policy
model via grid search over ¢, Keasy, Khard» and b.
The first-stage generation length Lggge 1 18 fixed
at 350 tokens across all datasets and policy mod-
els. Because dataset difficulty varies substantially,
we use different hyperparameter configurations for
the general-purpose MATHS500 dataset and for the
more challenging AMC23 and AIME24 bench-
marks. All generations use a maximum output
length of 2048 tokens and a temperature of 0.7.
Full hyperparameter settings and additional imple-
mentation details are provided in Appendix A.

4.2 Benchmark with SOTA pipelines

We benchmark THROW against SOTA pipelines on
Qwen2.5-1.5B-Instruct and Qwen2.5-3B-Instruct
policy models shown in Table 1 and Table 2, respec-
tively. We present the main results with N = 16
in the main text and include the full results of
N = 8,16, 32 values in Appendix B. We observe
that THROW achieves 1.54x and 14.38x average
latency speedups, along with 35.7% and 80.4%
average token reductions compared to Best-of-N
and beam search, respectively, across multiple tra-
jectory counts (N = 8,16, 32) for the Qwen2.5-
1.5B-Instruct model. These efficiency gains are
attained while delivering a 1.1% accuracy improve-
ment over Best-of-N and incurring only a 0.9% ac-
curacy reduction relative to the compute-intensive
beam search baseline. Similarly, for the Qwen2.5-
3B-Instruct model, THROW achieves 1.51x and
11.86x latency speedups and reduces token genera-
tion by 37.1% and 79.3% compared to Best-of-N
and beam search, respectively. Moreover, THROW
improves accuracy by an average 2.4% over Best-
of-N while remaining within 2.2% of beam search,
demonstrating a consistently favorable efficiency-
quality trade-off across model scales. By truncating



Table 1: Comparison of THROW with beam search and Best-of-N baselines on the Qwen2.5-1.5B-Instruct model
with N = 16. The final row shows THROW’s relative improvements over each baseline, with higher values
indicating greater token savings and faster inference speedups, reported as Beam Search / Best-of-N.

Method MATHS500 AMC23 AIME24
Lat. Tok. Acc. Lat. Tok. Acc. Lat. Tok. Acc.
Beam Search 52.02 25469 0.73 84.55 44228 0.52 112.17 57973 0.06
Best-of-N 7.08 9574 0.73 9.30 12419 0.46 10.78 14916 0.09
5.33 7405 0.73 5.94 7577 0.50 7.31 8881 0.13
THROW § y
(x9.8/x1.33) (70.9% 1 22.7%) - (x14.2 / x1.56) (82.9% / 38.9%) - (x15.3/x1.47) (84.7% 1 40.5%) -

Table 2: Comparison of THROW with beam search and Best-of-N baselines on the Qwen2.5-3B-Instruct model with
N = 16. The final row shows THROW?'s relative improvements over each baseline, with higher values indicating
greater token savings and faster inference speedups, reported as Beam Search / Best-of-N.

Method MATHS500 AMC23 AIME24
Lat. Tok. Acc. Lat. Tok. Acc. Lat. Tok. Acc.
Beam Search 54.58 29849 0.79 97.75 41275 0.65 136.71 56290 0.20
Best-of-N 8.86 9557 0.79 12.67 13170 0.49 14.99 15323 0.16
7.08 7606 0.79 7.67 7467 0.53 8.48 8014 0.17
THROW i . .
(x7.71x1.25) (74.5% 1 20.4%) - (x12.7 / x1.65) (81.9% / 43.3%) - (x16.1/x1.77) (85.8% 1 47.7%) -

Table 3: Token usage and latency breakdown on the
MATHS00 dataset using the Qwen2.5-1.5B-Instruct
model. Results compare the THROW framework
against the Best-of-N baseline, illustrating differences
in computational cost and inference time.

Method THROW Best-of-N
Avg. tokens 6728 9541
Avg. latency (s) 8.33 (100.0%) 10.77 (100.0%)
Policy Model 6.19 (74.3%) 8.31 (77.1%)
PRM 2.14 (25.7%) 2.46 (22.9%)

the second-stage generation to N/2 for both easy
and hard queries, THROW reuses idle GPU mem-
ory to start processing subsequent queries earlier,
thereby improving resource utilization and overall
latency. Meanwhile, selective branch expansion on
hard queries preserves accuracy by focusing com-
pute on the most promising reasoning paths. These
gains are especially pronounced on challenging
AMC23 and AIME24 benchmarks, where policy
models otherwise struggle to reason effectively.

These results highlight THROW’s strong gener-
alization across both Qwen2.5-1.5B-Instruct and
Qwen?2.5-3B-Instruct models, consistently achiev-
ing comparable or superior accuracy to baselines
with significantly lower token usage and latency.
Notably, these efficiency gains align with our the-
oretical predictions in Sec. 3.4. By reallocating
computation adaptively, THROW remains robust
even on challenging benchmarks like AMC23 and
AIME?24, underscoring its effectiveness across di-
verse task difficulties and model capacities.

4.3 Analysis

Decomposing Latency and Token Savings. To
further understand where these improvements
come from, Table 3 break down the sources of
efficiency gains. Token savings primarily arise
from trial pruning based on the query difficulty in-
dicator, which filters out unpromising trajectories
early. On the latency side, Best-of-N is dominated
by policy generation time, whereas THROW re-
duces this cost by pruning low-value trajectories
and streaming inputs to better reuse model states.
The indicator-based pruning accounts for the major-
ity of token savings across all settings, particularly
on harder queries.

Token Inefficiency in Baseline Methods. An ad-
ditional source of THROW’s efficiency gains lies
in the large amount of redundant token genera-
tion in existing decoding pipelines. As shown in
Table 1 and Table 2, PRM-guided beam search
generates many unnecessary tokens at each decod-
ing step, especially on more difficult tasks such
as AMC23 and AIME24, where longer reasoning
chains exacerbate this inefficiency. Although Best-
of-N sampling avoids generating wasteful tokens
like THROW, its trajectory quality is limited due to
the lack of PRM evaluation. As a result, it achieves
1.1% and 2.4% lower average accuracy compared
to THROW for the Qwen2.5-1.5B-Instruct and
Qwen2.5-3B-Instruct models, respectively.



Table 4: Results on math benchmarks using the Llama3.1-8B-PRM-Deepseek-Data model (N = 16). Token
reduction, latency speedup, and accuracy difference are reported for THROW relative to Best-of-N and Beam
Search.

THROW vs. Best-of-N THROW vs. Beam Search

Benchmark

Tok. Red. 1 (%) Lat. Speedup 1 (x) Acc. Diff T Tok. Red. T (%) Lat. Speedup T (x) Acc. Diff T
MATH 39.3 1.53 +0.010 79.5 14.10 +0.018
AMC23 51.0 1.88 +0.125 84.5 18.75 +0.125
AIME24 54.5 1.93 +0.067 86.7 2421 +0.000
Avg 48.3 1.78 +0.067 83.6 19.02 +0.048

Table 5: Results on math benchmarks using the LLaMA3.2-3B-Instruct model (N = 16). Token reduction, latency
speedup, and accuracy difference are reported for THROW relative to Best-of-N and Beam Search.

THROW vs. Best-of-N

THROW vs. Beam Search

Benchmark

Tok. Red. T (%) Lat. Speedup 7 (x) Acc. Diff 1 Tok. Red. 1 (%) Lat. Speedup T (x) Acc. Diff 1
MATH 33.7 1.48 —0.006 83.1 11.82 —0.024
AMC23 354 1.37 +0.000 84.1 11.84 —0.075
AIME24 35.5 1.37 +0.000 86.7 15.11 +0.067
Avg 349 141 —0.002 84.6 12.92 —0.011

4.4 Ablation Studies

4.4.1 Generalization Across PRMs and Policy
Models

To examine the robustness and versatility of
THROW, we evaluate its performance using al-
ternative PRMs and policy models across N =
8,16, 32, with the complete results provided in
Appendix D. First, we substitute the PRM with
LLaMA3.1-8B-PRM-DeepSeek-Data (Xiong et al.,
2024) with the Qwen2.5-1.5B-Instruct as the pol-
icy model to further test THROW?’s robustness
to reward model choice. Despite this PRM being
weaker than the Qwen-based one, THROW still
achieves 1.78x and 19.02x speedups, along with
6.7% and 4.8% accuracy improvements over Best-
of-N and beam search, respectively, as shown in Ta-
ble 4. Across all N, THROW maintains an average
of 1.77x and 19.62 x speedups with 4.3% and 2.2%
average accuracy improvements. These results
highlights that THROW remains effective even
when the trajectory evaluation signal is noisier, and
can even enhance accuracy, indicating that its im-
provements stem from the underlying algorithmic
design rather than dependence on a specific model
family. Next, we replace the original Qwen pol-
icy with LLaMA3.2-3B-Instruct (Grattafiori et al.,
2024) and observe that THROW continues to de-
liver substantial efficiency gains, achieving 1.39 x

and 12.67 x latency speedups over Best-of-N and
beam search, respectively, while maintaining com-
parable accuracy, as shown in Table 5.

Indicator and pass@1 Correlation: MATH500

Benchmark Pearson |r|

: MATH500 0.801
Eos AMC23 0.804
AIME24 0.679
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Figure 3: Correlation between the proposed indicator
I and pass@ ] accuracy on the MATHS500 dataset us-
ing Qwen2.5-1.5B (N = 32) (left), along with Pearson
correlation coefficients across benchmarks (right), indi-
cating strong predictive power of the indicator.

4.4.2 Ablation Studies of the Proposed Hybrid
TTC Pipeline

We conduct a series of ablation experiments to bet-
ter understand the design choices and key compo-
nents of THROW. All experiments are performed
using the Qwen2.5-1.5B-Instruct model on the
MATHS500 benchmark, which serves as a represen-
tative setting for the overall trends observed across
models and tasks. This choice enables us to isolate
the contribution of each component while keeping
the analysis clear and computationally efficient.

Stage I: Evaluating the Query Difficulty Indi-
cator. We first assess the effectiveness of the pro-
posed query difficulty indicator I (Eq. 1) in cap-
turing true problem difficulty. As shown in Fig. 3,
the indicator exhibits a strong linear correlation
with the oracle difficulty signal, measured by the
pass@]1 accuracy. Interestingly, problems associ-



Table 6: Accuracy comparison on the MATHS500
dataset for random selection versus THROW using the
Qwen?2.5-1.5B-Instruct model. Numbers in parentheses
indicate absolute accuracy improvements over random
selection.

Method N=8 N=16 N=32
Random 0.604 0.672 0.706
THROW  0.674(0.07) 0.722(10.05) 0.742(10.04)

ated with false-positive or false-negative indicator
values tend to be misclassified by the baseline Best-
of-N approach as well. This observation suggests
that deviations from the linear trend do not sig-
nificantly impact the overall performance of our
pipeline, underscoring its robustness even under in-
dicator noise. Also, Fig. 3 reports the Pearson cor-
relation between [ and the oracle pass@1 accuracy
across benchmarks. We observe strong absolute
correlations ranging from 0.679 to 0.801, demon-
strating that [ reliably estimates query difficulty
without requiring full trajectory generation. This
enables the system to adaptively allocate compu-
tation based on problem complexity. The slightly
lower correlation on AIME?24 is primarily due to its
challenging nature, as many queries are unsolvable
(pass@1 = 0) but still receive non-zero I scores.
Regardless, I remains a useful signal for guiding
downstream decisions.

Effect of Stage I Reasoning Length. We next
investigate the effect of reasoning length Lsgage 1,
a key hyperparameter that governs the trade-
off between accuracy and computational cost.
Fig. 4 shows results for five settings (Lsage 1 €
{150, 250, 350, 450, 550}, labeled [1-5]), where
shorter reasoning windows reduce token usage but
may slightly degrade accuracy. Conversely, longer
reasoning windows improve or stabilize accuracy
at the cost of higher token consumption. This trade-
off is more pronounced when partial trajectories are
limited, as difficulty estimates become less reliable.
Overall, a moderate reasoning length offers the
best balance between efficiency and performance,
guiding our default choice in all main experiments.
Stage II: Effectiveness of Adaptive Branch Selec-
tion. Finally, we investigate the impact of our pro-
posed trajectory selection mechanism in Stage II
(Sec. 3.3) by comparing THROW against a random
selection baseline. As shown in Table 6, THROW
achieves substantially higher accuracy, outperform-
ing random selection by 5.2% on Qwen2.5-1.5B-
Instruct for the MATHS500 benchmark. This per-

Qwen2.5-1.5B-Instruct on MATH-500
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Figure 4: Accuracy versus average token usage per
query on the MATHS500 dataset under different Stage I
trajectory lengths (Lsge_1)-

formance gap highlights the effectiveness of our
selective refinement strategy, which focuses com-
putation on the most promising reasoning paths and
plays a critical role in maintaining accuracy while
reducing overall computational cost.

5 Conclusion

In this work, we present THROW, a novel hybrid in-
ference framework explicitly designed for efficient
and adaptive TTC in streaming, batch-1 scenarios.
THROW uniquely integrates the complementary
strengths of Best-of-N sampling and PRM-guided
beam search, enabling nuanced bidirectional adap-
tivity by dynamically reducing computation for
simpler queries and selectively increasing it for
more challenging ones. Through a novel query-
classification mechanism leveraging intermediate
PRM evaluations, THROW effectively allocates
computational resources tailored explicitly to query
complexity. Extensive evaluations and ablation
studies on representative reasoning benchmarks, in-
cluding MATHS500, AMC23, and AIME24, demon-
strate that THROW achieves 1.54x and 14.38x la-
tency speedups compared to Best-of-N and beam
search baselines respectively, all while maintaining
comparable reasoning accuracy. By bridging two
previously disjoint TTC paradigms, THROW sets
a new SOTA in balancing efficiency and reason-
ing quality, underscoring the substantial promise of
hybrid adaptive approaches for real-time, resource-
constrained TTC inference tasks.

6 Limitations

While the proposed THROW inference pipeline en-
ables adaptive reasoning based on input query dif-
ficulty and achieves a superior accuracy—efficiency
trade-off compared to Best-of-N and beam search
(as shown in Sec. 4.2), it has several limitations, as
outlined below:



* Verifier-Specific Design: THROW is specif-
ically designed for the verifier-based TTC
framework (i.e., those relying on PRMs). Its
effectiveness in non-verifier settings remains
an open question and a potential direction for
future work.

* Dependence on PRM Signals: Although
THROW demonstrates strong robustness even
under weaker reward models (Appendix D),
its decision-making pipeline still relies on
step-wise PRM scores to estimate query dif-
ficulty and guide branch truncation or expan-
sion. Consequently, systematic PRM biases or
severely miscalibrated scores may affect the
quality of difficulty estimation, particularly in
domains where reliable process supervision is
unavailable.

Despite these limitations, THROW demonstrates
strong practical benefits in verifier-based TTC set-
tings, particularly in low-memory environments.
Future work may explore extensions to non-verifier
inference paradigms and improved methods for
uncertainty-aware or calibration-robust difficulty
estimation.
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A Implementation Details and
Hyperparameter Settings of THROW

Following the state-of-the-art implementation (Liu
et al., 2025), we employ the vLLM library for policy
model inference (decoding) and the transformers
library for PRM inference (prefilling), all on a sin-
gle GPU (A100 or A5000). To avoid redundant
PRM scoring of intermediate results in THROW,
we reuse the PRM KV cache for previously com-
puted results. For all methods, step-wise PRM
scores are aggregated by taking their product, and
the trajectory with the highest aggregate score is
selected as the final prediction. The threshold hy-
perparameter vy, = 0.9 is fixed based on the score
distribution of the Qwen2.5-Math-PRM-7B model.
We report the average over 3 runs.

For hyperparameter tuning, we perform a grid
search and select the configuration that minimizes
computation while maintaining accuracy compara-
ble to or better than the baselines. Specifically, we
search over the following candidate values: t;;, €
{0.5, 0.75, 0.875, 1.0}, Keasy € {5, 4, &, 1},
Knaa € {5, &, &, 1}, and b € {1, 2, 4}. Ta-
ble A-1 lists the searched optimal hyperparameter
values for each benchmark setting. Here, t;;, = 1
implies that a query is categorized as “hard” if
all trajectories receive low PRM scores (I > t;3).
Specifically, the grid search indicates that the se-
lected Kparg values for AMC23 and AIME24 are
generally smaller than those chosen for MATHS500
(e.g., % ~ % vs. % ~ %). We conjecture that this
is because most queries in AMC-2023 and AIME-
2024 are more challenging, often yielding low-
scoring partial trajectories. As a result, THROW al-
locates computation to only a few promising candi-
dates, rather than spreading resources across many
unpromising ones.

B Comprehensive Results of Comparison
on A100

We report the results of THROW compared to
Best-of-N and beam search baseline on A100 GPU
across all trajectory counts (N = 8, 16, 32).

Experiments with Qwen2.5-1.5B-Instruct as
the Policy Model. As shown in Table B-2,
THROW achieves average latency speedups of
1.54x and 14.38x compared to Best-of-N and
PRM-guided beam search baselines. These im-
provements are attributed to the corresponding av-
erage token reductions of 35.7% and 80.4%, re-
spectively, for processing each query.

Experiments with Qwen2.5-3B-Instruct as the
Policy Model. As shown in Table B-3, THROW
achieves average latency speedups of 1.51x and
11.86x compared to Best-of-N and PRM-guided
beam search baselines. These improvements are
attributed to the corresponding average token re-
ductions of 37.1% and 79.3%, respectively, for
processing each query.

C Comprehensive Results of Comparison
on A5000

In addition to evaluating THROW, PRM-guided
beam search, and Best-of-N sampling on the
A100 GPU, we further benchmark these methods
on an A5000 GPU to emulate a more resource-
constrained deployment setting. Because beam
search exceeds the memory capacity of the A5000,
we report results only for Best-of-N and THROW
under this configuration. Across all benchmarks,
THROW consistently delivers significant latency
speedups while maintaining accuracy comparable
to the Best-of-N baseline, even under limited GPU
memory conditions.

Experiments with Qwen2.5-1.5B-Instruct as
the Policy Model. As shown in Table C-4,
THROW achieves an average latency speedup of
1.56x with 42.2% token reduction compared to
Best-of-N, while maintaining comparable accuracy.

Experiments with Qwen2.5-3B-Instruct as the
Policy Model. As shown in Table C-4, THROW
achieves an average latency speedup of 1.28x
compared to Best-of-N with comparable accuracy.
These improvements are attributed to the corre-
sponding average token reduction of 37.9% for
processing each query.

D Comprehensive Results of LLaMA
PRM and Policy Model

We report the results of THROW compared to
Best-of-N and beam search baseline on A100 GPU
across all trajectory counts (N = 8, 16, 32) for gen-
eralization across LLaMA PRM and policy model.

Experiments with LLaMA3.1-8B-PRM-
DeepSeek-Data as the PRM. As shown in
Table D-5, THROW achieves average latency
speedups of 1.77x and 19.62x compared to
Best-of-N and PRM-guided beam search baselines.
These improvements are attributed to the corre-
sponding average token reductions of 47.2% and
82.4%, respectively, for processing each query.
Notably, the use of a weaker PRM even results



Table A-1: Hyperparameter sets (£, Kecasy, Knard, b) used for different policy models and benchmark difficulties

Qwen2.5-1.5B-Instruct Qwen2.5-3B-Instruct
Benchmark N=8 N=16 N=32 N=8 N=16 N=32

MATH-500 (0.875422)  (0.875.8472) (0.875.168.2) | (1.044,1) (1.0.88.1)  (0.75,16,4.4)
AMC-2023, AIME-2024  (0.8754,1,2)  (0.75.4,8,1) (1.0,4,4,2) 054,12)  (1.0412) (10,882

in accuracy improvements over both baselines,
highlighting THROW?’s ability to effectively
balance PRM guidance and maintain performance
even when reward signals are noisy.

Experiments with LLaMA3.2-3B-Instruct as
the Policy Model. As shown in Table D-6,
THROW achieves average latency speedups of
1.39x and 12.67x compared to Best-of-N and
PRM-guided beam search baselines. These im-
provements are attributed to the corresponding av-
erage token reductions of 34.8% and 84.0%, re-
spectively, for processing each query.



Table B-2: Results on math benchmarks using the Qwen2.5-1.5B-Instruct model on an A100 GPU. Token reduction,
latency speedup, and accuracy difference are reported for THROW relative to Best-of-N (BoN) and Beam Search
(BS) across different numbers of trajectories (N = §, 16, 32).

THROW vs. BoN THROW vs. BS
Benchmark N
Tok. Red. T (%) Lat. Speedup 1 (x) Acc. Diff t Tok. Red. T (%) Lat. Speedup 1 (x) Acc. Diff
MATH 8 21.9 1.32 -0.010 714 6.86 -0.030
16 22.7 1.33 +0.000 70.9 9.76 +0.000
32 22.1 1.23 +0.000 78.2 14.37 +0.010
AMC23 8 33.5 1.68 +0.050 79.2 9.93 +0.010
16 39.0 1.57 +0.040 82.9 14.23 -0.020
32 494 1.93 +0.030 86.3 23.18 -0.060
AIME24 8 37.1 1.46 -0.020 81.2 9.91 -0.030
16 40.5 1.47 +0.040 84.7 15.35 +0.070
32 55.0 1.82 -0.030 88.6 25.83 -0.030
Avg — 35.7 1.54 +0.011 80.4 14.38 -0.009

Table B-3: Results on math benchmarks using the Qwen2.5-3B-Instruct model on an A100 GPU. Token reduction,
latency speedup, and accuracy difference are reported for THROW relative to Best-of-N (BoN) and Beam Search
(BS) across different numbers of trajectories (N = §, 16, 32).

THROW vs. BoN THROW vs. BS
Benchmark N
Tok. Red. T (%) Lat. Speedup 1 (x) Acc. Diff 1 Tok. Red. T (%) Lat. Speedup 1 (x) Acc. Diff 1
MATH 8 20.7 1.23 -0.010 66.5 5.23 -0.010
16 20.4 1.25 +0.000 74.5 7.71 +0.000
32 20.7 1.24 +0.000 72.6 10.18 +0.000
AMC23 8 43.5 1.65 +0.100 78.9 7.93 -0.010
16 43.3 1.65 +0.040 81.9 12.74 -0.120
32 43.0 1.58 +0.040 834 16.52 -0.030
AIME24 8 48.6 1.70 +0.010 83.6 10.25 +0.000
16 47.7 1.77 +0.010 85.8 16.12 -0.030
32 46.0 1.53 +0.030 86.5 20.04 +0.000
Avg — 37.1 1.51 +0.024 79.3 11.86 -0.022

Table C-4: Comparison of THROW vs. Best-of-N on math benchmarks using Qwen2.5-1.5B and Qwen2.5-3B
models on an A5000 GPU. Token reduction, latency speedup, and accuracy difference are reported relative to
Best-of-N across different numbers of trajectories (N = 8, 16, 32).

Qwen2.5-1.5B-Instruct Qwen2.5-3B-Instruct
Benchmark N THROW vs. BoN Benchmark N THROW vs. BoN
Tok. Red. T Spd. T Acc. Diff 1 Tok. Red. T Spd. T Acc. Diff{
MATH500 8 23.8 1.35 -0.010 MATH500 8 234 1.14 -0.010
16 24.0 1.29 +0.000 16 23.2 1.13 +0.000
32 30.5 1.26 +0.000 32 232 1.10 +0.000
AMC23 8 45.0 1.55 +0.050 AMC23 8 40.0 1.21 +0.100
16 48.6 1.57 +0.040 16 33.1 1.43 +0.040
32 45.6 2.06 +0.030 32 51.4 1.52 +0.040
AIME24 8 57.9 1.46 -0.020 AIME24 8 52.0 1.34 +0.010
16 55.4 1.59 +0.040 16 31.3 1.22 +0.010
32 48.7 1.86 -0.030 32 58.2 1.40 +0.030

Avg — 42.2 1.56 +0.011 Avg — 379 1.28 +0.025




Table D-5: Results on math benchmarks using the Qwen2.5-1.5B-Instruct model with LLaMA3.1-8B-PRM-
DeepSeek-Data. Token reduction, latency speedup, and accuracy difference are reported for THROW relative to
Best-of-N (BoN) and Beam Search (BS) across different numbers of trajectories (N = 8, 16, 32).

THROW vs. BoN THROW vs. BS
Benchmark N
Tok. Red. 1 (%) Lat. Speedup T (x) Acc. Diff T Tok. Red. 1 (%) Lat. Speedup T (x) Acc. Diff T
MATH 8 38.2 1.47 -0.008 75.8 8.66 -0.008
16 39.3 1.53 +0.010 79.5 14.10 +0.018
32 48.5 1.79 -0.016 84.2 22.74 +0.018
AMC23 8 352 1.62 +0.150 74.6 8.69 +0.050
16 51.0 1.88 +0.125 84.5 18.75 +0.125
32 55.6 2.00 +0.025 86.0 27.34 +0.000
AIME24 8 39.6 1.57 +0.033 80.6 15.23 -0.033
16 54.5 1.93 +0.067 86.7 24.21 +0.000
32 62.6 2.17 +0.000 90.1 36.86 +0.033
Avg — 47.2 1.77 +0.043 824 19.62 +0.023

Table D-6: Results on math benchmarks using the LLaMA3.2-3B-Instruct model with Qwen2.5-Math-PRM-7B.
Token reduction, latency speedup, and accuracy difference are reported for THROW relative to Best-of-N (BoN)
and Beam Search (BS) across different numbers of trajectories (/N = 8, 16, 32).

THROW vs. BoN THROW vs. BS
Benchmark N
Tok. Red. 1 (%) Lat. Speedup T (x) Acc. Diff T Tok. Red. 1 (%) Lat. Speedup T (x) Acc. Diff T
MATH 8 22.0 1.28 -0.034 76.8 7.13 -0.048
16 33.7 1.48 -0.006 83.1 11.82 -0.024
32 44.6 1.48 -0.018 87.1 16.40 -0.038
AMC23 8 40.4 1.60 +0.050 83.1 9.14 -0.100
16 354 1.37 +0.000 84.1 11.84 -0.075
32 28.9 1.27 +0.050 86.0 17.31 -0.075
AIME24 8 449 1.43 +0.033 84.2 8.60 -0.033
16 35.5 1.37 +0.000 86.7 15.11 +0.067
32 28.1 1.23 +0.033 85.3 16.67 +0.067

Avg — 34.8 1.39 +0.012 84.0 12.67 -0.029




	Introduction
	Prior Work
	The Proposed THROW Framework
	THROW: Overview
	THROW: Motivation for Combining Best-of-N Sampling and Beam Search
	THROW: The Proposed Hybrid TTC Pipeline
	THROW: Theoretical Savings in TTC Inference

	Experiments
	Experiment Setup
	Benchmark with SOTA pipelines
	Analysis
	Ablation Studies
	Generalization Across PRMs and Policy Models
	Ablation Studies of the Proposed Hybrid TTC Pipeline


	Conclusion
	Limitations
	Implementation Details and Hyperparameter Settings of THROW
	Comprehensive Results of Comparison on A100
	Comprehensive Results of Comparison on A5000
	Comprehensive Results of LLaMA PRM and Policy Model

