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Abstract— In this work, we study the limits of the number
of capacitors and read history dependence in a 2T-nC
ferroelectric random-access memory (FeRAM) cell, paving
the way for its high-density integration toward hundreds
of stacked layers. Through a comprehensive experimental
and simulation study on the scaling behavior of the 2T-nC
FeRAM architecture, we demonstrate: (i) successful
fabrication of 2T-64C cells with robust memory operation
and clearly distinguishable ‘0’ and ‘1’ states, even in 64-
capacitor configurations; (ii) that the parasitic capacitance
of the floating node originates predominantly from the
linear component of the ferroelectric capacitor, and its
impact on n-scaling—due to degraded sense margin—can
be mitigated by floating unselected capacitors with enough
TQ isolation; (iii) that sharing write and read transistors
among n capacitors introduces a read history dependence
issue due to fluctuating floating node voltage (Vrn); and (iv)
that a proposed FN discharge scheme can effectively
eliminate read-sequence dependence, at the cost of reduced
read endurance.

I. INTRODUCTION

The growing demand for high-performance computing
has intensified the memory wall—the bottleneck caused by the
speed and energy gap between fast volatile memory (SRAM,
DRAM) and slower nonvolatile storage (NAND). Bridging
this gap requires a memory solution that offers speed,
nonvolatility, scalability, and endurance. Ferroelectric
capacitor-based memories, particularly those using doped
HfO,, show strong potential due to their fast switching, low-
voltage operation, and inherent nonvolatility. As shown in Fig.
1(a), they can effectively span the performance-density gap
between DRAM and NAND. To exploit ferroelectric behavior,
several architectures have been proposed, including sequential
1T-1C, parallel 1T-1C, and 1T-nC cells [1]. Among them, the
parallel 2T-nC structure stands out for offering the highest
density, as it shares multiple ferroelectric capacitors across
write and read transistors (7w&7Tk), while retaining
independent control of write and read paths (Fig. 1(b)).

The 2T-nC memory cell operates by decoupling the write
and read paths to for excellent write reliability and read
performance [2]. A Tw helps program the ferroelectric
capacitor while a separate 7 is responsible for charge
amplification during readout. After each write, the internal
node (i.e., FN) is reset to 0 V (Ven=0) (Fig. 1(c)) to maintain
excellent reliability. During read, the difference in ferroelectric
switching behavior between logic states ‘0’ and ‘1’ leads to
different amounts of polarization switching (AQy and AQ)),
which is then translated into a distinguishable current by the

read transistor. This charge-to-current amplification

mechanism enhances signal margin and enables excellent

scalability, making the 2T-nC cell a strong candidate for dense,

low-power, and high-speed nonvolatile memory applications.
II. THE LIMIT OF N IN THE 2T-NC CELL

To increase the density of the 2T-nC FeRAM, one cell
should include as much multiple Metal-Ferroelectric-Metal
(MFM) capacitors as possible, i.e., highest n. (Fig.2(a)).
However, it is unclear what is the limit of » and how it limits
the sense margin and how it is related with the parasitics.
TCAD models of 9-string 2T-nC arrays with » up to 256 are
built to extract the parasitic capacitance on the FN, including
the Cx, Cy, the diagonal Cxy, and also that from linear
dielectric of FE, Crg, as shown in Fig.2(b). The parameters
used for the vertical 2TnC FeRAM simulation is also shown in
Fig.2(b). Decomposition of the total FN capacitance, Crn, to
different components, shown in Fig.2(c), indicate that the
majority parasitic capacitances are from Cpg. In fact, which.
total Cen grows linearly with the number of MFM capacitors.
Other components are negligible due to screening.

To evaluate the scalability of the 2T-nC FeRAM
architecture, we analyze the sensing margin as a function of n
under two biasing conditions for unselected cells: grounded
and floating. As shown in Fig. 3(a)—(c), when unselected MFM
capacitors are grounded, the sensing margin (AVen or Alrsr
between logic states ‘0’ and ‘1, and sensed Irpr) degrades
noticeably with increasing n. This degradation is primarily
attributed to charge sharing between the selected and
unselected capacitors, which effectively reduces the voltage
differential across the sense node. Such behavior imposes a
scalability limit on array size unless mitigation techniques—
such as hierarchical bitline segmentation or biasing schemes—
are implemented. In contrast, Fig. 3(d)—(f) presents the ideal
case where unselected capacitors are electrically floating.
Here, the sense margin remains stable across all values of #,
indicating that in the absence of charge leakage or parasitic
coupling, the 2T-nC cell is inherently scalable as other caps do
not participate in the charge sharing. This comparison
highlights the critical role of cell isolation and array biasing
strategy in achieving reliable sensing performance in large-
scale 2T-nC FeRAM arrays.

In real circuit, isolation is never perfect, so we also
evaluate the impact of the isolation resistance on the sense
margin. Fig. 4 illustrates the impact of this non-ideal isolation:
as the number of connected capacitors increases, a low
isolation resistance leads to a noticeable reduction in the final
Ven (Fig. 4(a)) and the corresponding sensed Irsr (Fig. 4(b)).



Consequently, the differential sensing margins—AVen or
Alrpr between logic states ‘0’ and ‘1’ diminish with n, as
shown in Fig. 4(c) and (d). This degradation stems from
increased leakage and charge redistribution through the
resistive path, which blurs the distinction between stored logic
states. To ensure robust sensing across large arrays, it is
therefore critical to maintain a sufficiently high isolation
resistance—on the order of teraohms (7Q) or greater.
III. FARBICATION OF 2T-NC FERAM

For experimental demonstration, we fabricated the
proposed 2T-nC structure on a p-type silicon wafer (Fig. 5a))
[3]. After ion implantation and activation of the source and
drain regions, the isolation oxide in the gate area was etched,
and a 10 nm HfO, layer was deposited via atomic layer
deposition (ALD) as the gate dielectric. Tungsten electrodes
were then sputtered onto the source, drain, and gate regions
after via formation using both dry and wet etching processes.
Subsequently, a 10 nm HfysZrysO, layer was deposited by
ALD, followed by sputtering of the top tungsten electrode and
dry etching to open the contact vias. Finally, the device
underwent rapid thermal annealing in a N> and H, ambient. A
top-view SEM image of 2T-3C is shown in Fig.5(b). Fig.5(c)
presents the Irpi—VwpL curve, demonstrating the correct
operation of the 7w and Tr. In Fig.5(d), the DC Ip -V
characteristics of the MFM capacitor combined with the Tx
exhibit the expected hysteresis window. Fig.5(e) shows the
PUND response of the MFM capacitor; both results validating
its ferroelectric nature. Finally, Fig.5(f) displays the
experimental waveforms for write and read operations in a 27T-
3C cell, along with the corresponding Irgr for data states ‘1’
and ‘0’, showing a clear and distinguishable margin.

To evaluate the scalability of the 2T-nC cell in terms of
capacitor stacking, 2T-16C and 2T-64C structures were also
fabricated. In Fig. 6(a), the pulse I-V characteristics of the 2T-
16C cell with a capacitor and Tr combination exhibit uniform
FeFET-like switching behavior, indicating consistent device
operation. For comparison, Fig. 6(b) shows the corresponding
measurement from a configuration with separated write and
read paths. The ‘0’ and ‘1’ states Irpr distribution of the 2T-
16C cell, shown in Fig.6(c), further confirms clearly
distinguishable states. Fig.6(d) and Fig.6(e) present top view
SEM overview and zoom-in images of the fabricated 2T-64C
cells, demonstrating the feasibility of high-density integration.
The Qre-VweL characteristics of the 2T-64C, shown in Fig.
6(f), validate the expected ferroelectric switching behavior.
The DC Ip-Vs curves from 64 MFM capacitors and 1 Tr
combinations in Fig. 6(g) (displayed 32 devices) show
consistent hysteresis windows, highlighting reliable memory
operation across multiple cells. In Fig.6(h), clearly
distinguishable ‘0’ and ‘1’ states are observed in all 64 devices,
indicating excellent readout margins. Finally, Fig.6(i) shows
the /g, distribution of the 2T-64C cell, further demonstrating
the robustness and scalability of the proposed architecture.

IV. DEPENDENCE OF SENSE MARGIN ON READ HISTORY

In multi-capacitor 2T-nC architectures, the sensing results
of each ferroelectric capacitor can be influenced by the read
history, primarily due to the shared floating node. As
illustrated in Fig. 7(a), the voltage on Vey after sensing one
capacitor can impact the readout of subsequent capacitors.

Simulation results in Fig. 7(b)—(c) show that for a two-
capacitor cell storing ‘00’ and ‘10’, the sensed Ven and Irpr of
the second capacitor (C2) after sensing C1 vary depending on
what C1 stores. The C2 read current is raised if C1 stores ‘0.
This indicates a read-sequence dependency that can affect
sensing accuracy. Experimental data in Fig.7(d) further
confirms this behavior, while Fig.7(e) isolates the effect to be
solely due to the read order, independent of swapping of MFM.

To eliminate the read-sequence dependence observed in
2T-nC cells, we propose an effective mitigation technique:
actively discharging the shared Vpny node before each read
operation. As shown in Fig.8(a), this approach resets the Vex
potential to a known state, preventing charge accumulation
from prior reads. Fig. 8(b)—(c) compares the standard delay-
based read scheme with the proposed discharge method.
Fig.8(d)—(g) demonstrate that, while ey and the read current
of C3 remain data-dependent under the delay-only approach,
the discharge method fully removes such dependence.
Measurements in Fig. 8(h)—(k) confirm that even after a 1 ms
delay, C3 read current under the delay-only scheme still
reflects C1&C2 data patterns, whereas the discharge scheme
ensures correct and consistent sensing with as little as 1 us
discharge time. Similar results are observed in two-capacitor
measurements (Fig. 8(1)—(o0)), where C2 read current is
strongly data-dependent with delay but remains unaffected
when preceded by a Ven discharge. Fig. 8(p)—(q) summarizes
the C2 current across varying delay/discharge times,
highlighting the robustness of the discharge technique in
restoring sequence-independent readout. This method is both
circuit-compatible and scalable, offering a practical solution to
enhance read reliability in dense 2T-nC memory arrays.

While Ven before each read effectively eliminates read-
sequence dependence, it introduces a trade-off in terms of read
endurance. As shown in Fig.9(a)—(b), the read current degrades
more rapidly over cycles in the discharge scheme compared to
the delay-only case. This behavior stems from the fact that
discharging Ven removes the ferroelectric switching induced
charge on the FN, causing permanent loss of the charge,
especially under repeated cycling. Consequently, although the
discharge method enhances read accuracy and consistency, it
reduces the number of reliable read cycles. This highlights a
fundamental trade-off between sensing fidelity and device
endurance, which must be balanced through circuit-level
optimization or adaptive read schemes depending on the
application’s retention and reliability requirements.

V. CONCLUSION

A comprehensive experimental and modeling study is
conducted on 2T-nC FeRAM architecture to push towards
hundreds of layer stacking. We validated the architecture’s
feasibility and sensing behavior on 64 capacitors. And we
addressed the issue of read-sequence dependence in multi-
capacitor by introducing a simple Vry discharge that ensures

reliable sensing.
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Fig.1. (a) Ferroelectric capacitor memory can fill the gap between DRAM and NAND, by offering fast read/write and nonvolatility. (b) Ferroelectric
capacitors can be integrated into memory cells in various configurations, among which the vertically stacked 2T-nC structure offers the highest density.
(c) The separate write & read paths of 2T-nC cell ensure Vpy =0 after write, leading to 1T-1C FeRAM like reliability. During the read, different
memory states causes difference in AQ, and AQ,, which is amplified by 7} action, thus ensuring excellent scalability of the cell for high density.
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Fig.2. (a) A critical issue is the limit of » in a 2T-nC FeRAM cell. (b) Fig.3. Comparison of sensing margin in a 2T-nC cell with unselected MFM
To answer that, TCAD models of varying n are built to extract (c) capacitors either grounded or floating. (a)-(c) the sense margin degrades with
parasitic caps. on the FN, which can degrade sense margin and limit increasing n due to charge sharing from unselected caps in grounded case, (d)-
scalability. (d) The Cyy is dominated by coupling to WBL (i.e., Ci).  (f) while the margin remains constant regardless of n in ideal floating case.
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Fig.4. Practical isolation has a finite resistance, when Fig.5. (a) Process integration flow and (b) SEM top view of integrated 2T-nC cell. (¢) Ipp -
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Experimental Demonstration of 2T-16C and 2T-64C Devices

Demonstration of 2T-16C single cell characteristics and evaluation of sense margin
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Fig.6. (a) Pulse I~V of the 2T-16C with cap+7; combo shows uniform FeFET

switching. (b) the separated paths one. (d)&(e) SEM images and (f) Qpg-Vypr of

the 2T-64C cells. (g) I~V curves of 64 cap+T, combo. (h) Distinguishable 0’

and ‘1 states in 64 devices. Iy, dist. of the (¢) 2T-16C and (i) 2T-64C cell.

Fig.7. (a) Sensing of one cap depends on the sensing history due to
Ven- Simulated (b) Vpy and (c) Izg, of 2 caps storing ‘00’ and ‘10’
show that sensing C2 depends on C1. (d) Experiments verifies such
behavior and (e) confirms its only dependence on read sequence.

Further Demonstration of the Dependence of Sense Margin on the Past Read Sequence and Solution
Solution to issue 2: discharge FN before
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Fig.8. (a) The data dependence can be removed by dlscharglng FN before each read. Waveforms of (b) simple delay vs. Fig.9. Read current vs. cycle
(c) discharge are used to compare their effect. Simulated (d)/(e) Vi and (£)/(g) C3 read current after C1 & C2 read and for (a) delay and (b)
measured C3 read current after (h)/(i) lus and (j)/(k) 1ms for simple delay/discharge, respectively. It clearly shows with discharge cases. As|

simple delay, up to 1ms, C3 read current still strongly depends on the data pattern in C1 and C2, while 1us discharge can
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discharge removes the Vpy,
causing more charge loss
and hence less read cycles.




