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Abstract— In this work, we study the limits of the number 
of capacitors and read history dependence in a 2T-nC 
ferroelectric random-access memory (FeRAM) cell, paving 
the way for its high-density integration toward hundreds 
of stacked layers. Through a comprehensive experimental 
and simulation study on the scaling behavior of the 2T-nC 
FeRAM architecture, we demonstrate: (i) successful 
fabrication of 2T-64C cells with robust memory operation 
and clearly distinguishable ‘0’ and ‘1’ states, even in 64-
capacitor configurations; (ii) that the parasitic capacitance 
of the floating node originates predominantly from the 
linear component of the ferroelectric capacitor, and its 
impact on n-scaling—due to degraded sense margin—can 
be mitigated by floating unselected capacitors with enough 
TΩ isolation; (iii) that sharing write and read transistors 
among n capacitors introduces a read history dependence 
issue due to fluctuating floating node voltage (VFN); and (iv) 
that a proposed FN discharge scheme can effectively 
eliminate read-sequence dependence, at the cost of reduced 
read endurance.  

I. INTRODUCTION 
The growing demand for high-performance computing 

has intensified the memory wall—the bottleneck caused by the 
speed and energy gap between fast volatile memory (SRAM, 
DRAM) and slower nonvolatile storage (NAND). Bridging 
this gap requires a memory solution that offers speed, 
nonvolatility, scalability, and endurance. Ferroelectric 
capacitor-based memories, particularly those using doped 
HfO2, show strong potential due to their fast switching, low-
voltage operation, and inherent nonvolatility. As shown in Fig. 
1(a), they can effectively span the performance-density gap 
between DRAM and NAND. To exploit ferroelectric behavior, 
several architectures have been proposed, including sequential 
1T-1C, parallel 1T-1C, and 1T-nC cells [1]. Among them, the 
parallel 2T-nC structure stands out for offering the highest 
density, as it shares multiple ferroelectric capacitors across 
write and read transistors (TW&TR), while retaining 
independent control of write and read paths (Fig. 1(b)). 

The 2T-nC memory cell operates by decoupling the write 
and read paths to for excellent write reliability and read 
performance [2]. A TW helps program the ferroelectric 
capacitor while a separate TR is responsible for charge 
amplification during readout. After each write, the internal 
node (i.e., FN) is reset to 0 V (VFN=0) (Fig. 1(c)) to maintain 
excellent reliability. During read, the difference in ferroelectric 
switching behavior between logic states ‘0’ and ‘1’ leads to 
different amounts of polarization switching (ΔQ0 and ΔQ1), 
which is then translated into a distinguishable current by the 

read transistor. This charge-to-current amplification 
mechanism enhances signal margin and enables excellent 
scalability, making the 2T-nC cell a strong candidate for dense, 
low-power, and high-speed nonvolatile memory applications. 

II. THE LIMIT OF N IN THE 2T-NC CELL 
To increase the density of the 2T-nC FeRAM, one cell 

should include as much multiple Metal-Ferroelectric-Metal 
(MFM) capacitors as possible, i.e., highest n. (Fig.2(a)). 
However, it is unclear what is the limit of n and how it limits 
the sense margin and how it is related with the parasitics. 
TCAD models of 9-string 2T-nC arrays with n up to 256 are 
built to extract the parasitic capacitance on the FN, including 
the CX, CY, the diagonal CXY, and also that from linear 
dielectric of FE, CFE, as shown in Fig.2(b). The parameters 
used for the vertical 2TnC FeRAM simulation is also shown in 
Fig.2(b). Decomposition of the total FN capacitance, CFN, to 
different components, shown in Fig.2(c), indicate that the 
majority parasitic capacitances are from CFE. In fact, which. 
total CFN grows linearly with the number of MFM capacitors. 
Other components are negligible due to screening.  

To evaluate the scalability of the 2T-nC FeRAM 
architecture, we analyze the sensing margin as a function of n 
under two biasing conditions for unselected cells: grounded 
and floating. As shown in Fig. 3(a)–(c), when unselected MFM 
capacitors are grounded, the sensing margin (ΔVFN or ΔIRBL 
between logic states ‘0’ and ‘1, and sensed IRBL) degrades 
noticeably with increasing n. This degradation is primarily 
attributed to charge sharing between the selected and 
unselected capacitors, which effectively reduces the voltage 
differential across the sense node. Such behavior imposes a 
scalability limit on array size unless mitigation techniques—
such as hierarchical bitline segmentation or biasing schemes—
are implemented. In contrast, Fig. 3(d)–(f) presents the ideal 
case where unselected capacitors are electrically floating. 
Here, the sense margin remains stable across all values of n, 
indicating that in the absence of charge leakage or parasitic 
coupling, the 2T-nC cell is inherently scalable as other caps do 
not participate in the charge sharing. This comparison 
highlights the critical role of cell isolation and array biasing 
strategy in achieving reliable sensing performance in large-
scale 2T-nC FeRAM arrays.  

In real circuit, isolation is never perfect, so we also 
evaluate the impact of the isolation resistance on the sense 
margin. Fig. 4 illustrates the impact of this non-ideal isolation: 
as the number of connected capacitors increases, a low 
isolation resistance leads to a noticeable reduction in the final 
VFN (Fig. 4(a)) and the corresponding sensed IRBL (Fig. 4(b)). 



Consequently, the differential sensing margins—ΔVFN or 
ΔIRBL between logic states ‘0’ and ‘1’ diminish with n, as 
shown in Fig. 4(c) and (d). This degradation stems from 
increased leakage and charge redistribution through the 
resistive path, which blurs the distinction between stored logic 
states. To ensure robust sensing across large arrays, it is 
therefore critical to maintain a sufficiently high isolation 
resistance—on the order of teraohms (TΩ) or greater. 

III. FARBICATION OF 2T-NC FERAM 
For experimental demonstration, we fabricated the 

proposed 2T-nC structure on a p-type silicon wafer (Fig. 5a)) 
[3]. After ion implantation and activation of the source and 
drain regions, the isolation oxide in the gate area was etched, 
and a 10 nm HfO2 layer was deposited via atomic layer 
deposition (ALD) as the gate dielectric. Tungsten electrodes 
were then sputtered onto the source, drain, and gate regions 
after via formation using both dry and wet etching processes. 
Subsequently, a 10 nm Hf0.5Zr0.5O2 layer was deposited by 
ALD, followed by sputtering of the top tungsten electrode and 
dry etching to open the contact vias. Finally, the device 
underwent rapid thermal annealing in a N2 and H2 ambient. A 
top-view SEM image of 2T-3C is shown in Fig.5(b). Fig.5(c) 
presents the IRBL–VWPL curve, demonstrating the correct 
operation of the TW and TR. In Fig.5(d), the DC ID –VG 
characteristics of the MFM capacitor combined with the TR 
exhibit the expected hysteresis window. Fig.5(e) shows the 
PUND response of the MFM capacitor; both results validating 
its ferroelectric nature. Finally, Fig.5(f) displays the 
experimental waveforms for write and read operations in a 2T-
3C cell, along with the corresponding IRBL for data states ‘1’ 
and ‘0’, showing a clear and distinguishable margin.  

To evaluate the scalability of the 2T-nC cell in terms of 
capacitor stacking, 2T-16C and 2T-64C structures were also 
fabricated. In Fig. 6(a), the pulse I–V characteristics of the 2T-
16C cell with a capacitor and TR combination exhibit uniform 
FeFET-like switching behavior, indicating consistent device 
operation. For comparison, Fig. 6(b) shows the corresponding 
measurement from a configuration with separated write and 
read paths. The ‘0’ and ‘1’ states IRBL distribution of the 2T-
16C cell, shown in Fig.6(c), further confirms clearly 
distinguishable states. Fig.6(d) and Fig.6(e) present top view 
SEM overview and zoom-in images of the fabricated 2T-64C 
cells, demonstrating the feasibility of high-density integration. 
The QFE-VWPL characteristics of the 2T-64C, shown in Fig. 
6(f), validate the expected ferroelectric switching behavior. 
The DC ID-VG curves from 64 MFM capacitors and 1 TR 
combinations in Fig. 6(g) (displayed 32 devices) show 
consistent hysteresis windows, highlighting reliable memory 
operation across multiple cells. In Fig.6(h), clearly 
distinguishable ‘0’ and ‘1’ states are observed in all 64 devices, 
indicating excellent readout margins. Finally, Fig.6(i) shows 
the IRBL distribution of the 2T-64C cell, further demonstrating 
the robustness and scalability of the proposed architecture. 

IV. DEPENDENCE OF SENSE MARGIN ON READ HISTORY 
In multi-capacitor 2T-nC architectures, the sensing results 

of each ferroelectric capacitor can be influenced by the read 
history, primarily due to the shared floating node. As 
illustrated in Fig. 7(a), the voltage on VFN after sensing one 
capacitor can impact the readout of subsequent capacitors. 

Simulation results in Fig. 7(b)–(c) show that for a two-
capacitor cell storing ‘00’ and ‘10’, the sensed VFN and IRBL of 
the second capacitor (C2) after sensing C1 vary depending on 
what C1 stores. The C2 read current is raised if C1 stores ‘0’. 
This indicates a read-sequence dependency that can affect 
sensing accuracy. Experimental data in Fig.7(d) further 
confirms this behavior, while Fig.7(e) isolates the effect to be 
solely due to the read order, independent of swapping of MFM.  

To eliminate the read-sequence dependence observed in 
2T-nC cells, we propose an effective mitigation technique: 
actively discharging the shared VFN node before each read 
operation. As shown in Fig.8(a), this approach resets the VFN 
potential to a known state, preventing charge accumulation 
from prior reads. Fig. 8(b)–(c) compares the standard delay-
based read scheme with the proposed discharge method. 
Fig.8(d)–(g) demonstrate that, while VFN and the read current 
of C3 remain data-dependent under the delay-only approach, 
the discharge method fully removes such dependence. 
Measurements in Fig. 8(h)–(k) confirm that even after a 1 ms 
delay, C3 read current under the delay-only scheme still 
reflects C1&C2 data patterns, whereas the discharge scheme 
ensures correct and consistent sensing with as little as 1 μs 
discharge time. Similar results are observed in two-capacitor 
measurements (Fig. 8(l)–(o)), where C2 read current is 
strongly data-dependent with delay but remains unaffected 
when preceded by a VFN discharge. Fig. 8(p)–(q) summarizes 
the C2 current across varying delay/discharge times, 
highlighting the robustness of the discharge technique in 
restoring sequence-independent readout. This method is both 
circuit-compatible and scalable, offering a practical solution to 
enhance read reliability in dense 2T-nC memory arrays. 

While VFN before each read effectively eliminates read-
sequence dependence, it introduces a trade-off in terms of read 
endurance. As shown in Fig.9(a)–(b), the read current degrades 
more rapidly over cycles in the discharge scheme compared to 
the delay-only case. This behavior stems from the fact that 
discharging VFN removes the ferroelectric switching induced 
charge on the FN, causing permanent loss of the charge, 
especially under repeated cycling. Consequently, although the 
discharge method enhances read accuracy and consistency, it 
reduces the number of reliable read cycles. This highlights a 
fundamental trade-off between sensing fidelity and device 
endurance, which must be balanced through circuit-level 
optimization or adaptive read schemes depending on the 
application’s retention and reliability requirements. 

V. CONCLUSION 
A comprehensive experimental and modeling study is 

conducted on 2T-nC FeRAM architecture to push towards 
hundreds of layer stacking. We validated the architecture’s 
feasibility and sensing behavior on 64 capacitors. And we 
addressed the issue of read-sequence dependence in multi-
capacitor by introducing a simple VFN discharge that ensures 
reliable sensing.  
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2T-nC FeRAM Hybrid Cell for High Density, Performance, and Reliability Memory

Question 1: What is the Limit of the Number of Capacitors (i.e., n) in a 2T-nC FeRAM Cell? 

Experimental Demonstration of 2T-nC FeRAM Operation (n from 3 to 64)

Ferroelectric capacitor memory to fill 
the gap between DRAM and NAND 

Scenario 1: ground all the unselected 
capacitors, which participates in charge 
sharing and degrade margin

Scenario 2: isolate unselected capacitors 
so that they do not participate in charge 
sharing and thus maintain margin
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Fig.2. (a) A critical issue is the limit of n in a 2T-nC FeRAM cell. (b)
To answer that, TCAD models of varying n are built to extract (c)
parasitic caps. on the FN, which can degrade sense margin and limit
scalability. (d) The CFN is dominated by coupling to WBL (i.e., CFE).

Fig.4. Practical isolation has a finite resistance, when
small can cause reduction in (a) VFN, (b) sensed IRBL,
(c) ΔVFN margin, and (d) ΔIRBL margin between ‘0’
and ‘1’ with increasing n. A good enough isolation
(e.g., TΩ) is needed to maintain sense margin with n.

Fig.5. (a) Process integration flow and (b) SEM top view of integrated 2T-nC cell. (c) IRBL-
VWPL curve shows correct function of the TW+TR structure. (d) DC ID-VG of the MFM cap + TR
structure, showing expected hysteresis window. (e) PUND responds of the MFM cap confirms
the ferroelectricity of the MFM cap. (f) Experimental waveforms of write and read operation
of a 2T-3C cell and the RBL current for data ‘1’ and ‘0’, which shows a large margin.
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