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Abstract

Working Memory (WM) is a necessary component for mod-
els of human cognition and human-inspired robot cognitive
architectures. Different theories explain how the limited ca-
pacity of WM should be maintained, including theories of for-
getting through decay and interference. Yet, it is unclear how
WM models informed by these theories might be used to in-
form robot cognition, and how they might shape robots’ abil-
ity to engage in natural, situated, language-based interactions.
To resolve this tension, in this work we consider entity-level,
feature-based WM systems that can be integrated into robot
cognitive architectures to reflect both decay- and interference-
based dynamics. We demonstrate how different parameteriza-
tions of these WM strategies have fundamentally different er-
ror modes in different interaction contexts. We formulate rules
that inform the selection of decay and interference parameters
to be used in contexts with different factors that are important
for language-based interaction.
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decay; interference; referring expression generation

Introduction and Motivation

Robots are increasingly being deployed into situated task
contexts in domains like education, healthcare, and space ex-
ploration (Gordon et al., 2016; Johanson et al., 2021; Roy
et al., 2023), in which robots will need to communicate ef-
fectively with humans through natural language. A key en-
abler of human cognition is Working Memory (WM): a lim-
ited capacity storage cache and set of accompanying pro-
cesses, which informs processes like reasoning (Kyllonen &
Christal, 1990; Siif} et al., 2002), comprehension (Halford et
al., 1998), and learning (Baddeley, 2010), and linguistic pro-
cesses like language generation (Gundel et al., 1993), under-
standing (Ronnberg et al., 2010), and acquisition (Baddeley
et al., 1998; Denhovska et al., 2016). For robots to demon-
strate these same capabilities, they too may need WM sys-
tems, whose design poses three key questions: (1) What is
stored in WM? (2) What is the architecture of WM? (3) What
are the dynamics of WM?

To answer the first key question, roboticists must determine
what types of representations are stored in WM. While clas-
sic models of WM assumed that WM held a limited number
of entities, more recent research has instead suggested that
WM holds a limited number of features of those entities (Ma
et al., 2014). While robots” WM systems do not necessarily
need to directly match human WM systems in design, we ar-
gue that robotic WM systems should be feature-based, main-
taining a cache of relevant features for relevant entities. This

feature-based approach well aligns with the commitments of
architectures like DIARC (Scheutz et al., 2019), where these
features serve as the “common currency” for exchanging in-
formation between architectural components. Moreover, the
feature-based approach may best allow WM to influence lan-
guage generation, by influencing which features (rather than
merely which entities) are referenced in robots’ utterances.

To answer the second question, roboticists must determine
how WM is coordinated across the robot architecture. Robots
might use a global approach where a single pool of features
is maintained in a centralized location. Second, robots might
use a component-level approach where each robotic memory
system (vision, mapping, etc.) maintains its own pool of fea-
tures. Third, robots might use an entity-level approach where
each robotic memory system maintains a distinct pool of fea-
tures for each task-relevant entity. While this third option de-
viates from what is known about ~uman cognition, it is a com-
mon approach for robot cognition as it leverages the unique
properties of robotic architectures (Williams et al., 2018).

In this paper, we thus assume a feature-based, entity-level
robotic WM system, and seek to answer the third question:
How should the dynamics of such a system be designed and
parameterized? As the defining feature of WM is its limited
capacity, it is important to understand how long information
should remain in WM and how WM contents affect natural-
language-based robot cognitive processes. Thus, we focus
our analysis on two key theories of forgetting from cogni-
tive psychology (Reiter & Dale, 1997; Muter, 1980; Oberauer
& Lewandowsky, 2014; Jonides et al., 2008; Lewandowsky
et al., 2009). First, the theory of decay asserts that WM
items are forgotten over time, if not rehearsed (Ebbinghaus,
1885; Brown, 1958). Second, the theory of interference as-
serts that the least recent unrehearsed information is removed
when space is needed for new information (Waugh & Nor-
man, 1965; Dewar et al., 2007).

To answer this third question, it is thus critical to under-
stand how the values parameterizing decay- and interference-
based robot cognitive models of WM should be selected. As
we show in this work, the performance of these decay- and
interference-based models are critically sensitive to the way
those models are parameterized, and the relationship between
those parameterizations and key dimensions of the contexts in
which interaction unfolds.



WM Systems in Robot Cognitive Architectures

To identify how the parameterizations of robotic models of
WM impact natural language interactions, we must first clar-
ify the set of assumptions we make about the fundamental
nature of those WM models and how they might be imple-
mented in robotics. In this section, we will thus explain the
types of WM frameworks and WM forgetting models that can
be used in robot cognitive architectures. Throughout this sec-
tion, we will use the DIARC cognitive architecture (Scheutz
et al., 2019) as an example to help clarify our ideas. DIARC
implements key theories from cognitive psychology and lin-
guistics to enable better language-capable robots, proving to
be a good fit for the purposes of this paper.

Feature-Level Information

Within a robot cognitive architecture, WM knowledge can be
represented with different levels of abstraction. A feature-
based approach aims to prioritize the quality over the quan-
tity of WM representations (Ma et al., 2014) by storing only
the set of activated features that apply to entities (e.g., the pre-
dominant color of an entity, the entity’s size and shape, etc).
For the purposes of this paper, we consider only the features
of entities that become activated through dialogue (cf. Higger
& Williams (2024)). In DIARC, for example, information
about entities is represented in first-order logic. In an interac-
tion where a human asks a robot to hand them “the red mug
on the counter,” at a feature level the property counter (Y)
becomes activated for the mentioned counter and the proper-
ties red (X), mug (X), and on (X, Y) become activated for the
mentioned mug.

Entity-Level Dynamics

The distribution of WM buffers across a robot’s architec-
ture can also be implemented at different levels. For in-
stance, some architectures may implement a single, global
WM buffer of activated information. On the other hand, one
WM buffer could be assigned to each different entity type or
knowledge domain (e.g. people, locations, objects). In con-
trast, in an entity-level WM model each individual known en-
tity has a dedicated WM buffer that stores activated content
recently known to apply to that entity. We note that this is not
necessarily a cognitively plausible account of WM, but it is a
model that is well-tailored to robotics domains.

In DIARC, information about known entities is distributed
across multiple knowledge bases rather than stored in a sin-
gle database. This reduces the number of architectural bottle-
necks and allows for information about different knowledge
domains (e.g., objects, people, locations, etc) to be stored in
different formats (Williams & Scheutz, 2016). At an entity
level, each known entity inside the architecture will have an
independent WM buffer storing activated content. If we con-
sider again the interaction where a human asks a robot to hand
them “the red mug on the counter,” then in a knowledge base
responsible for storing information about objects, the WM
buffer for the counter will have counter (Y) in it while the

buffer for the mug will separately store the features red (X),
mug (X), and on (X, Y).

Forgetting Strategies

Finally, while there are different ways in which temporal de-
cay and interference can be designed in cognitive architec-
tures, in this work we assume that temporal decay is imple-
mented in a way such that the least recent (lowest activation)
feature is removed from a WM buffer every 8 seconds, ensur-
ing the progressive removal of unrehearsed information from
WM. Similarly, for interference, we assume that WM buffers
can hold a maximum number of items, «, at any given time.
When newly activated features need to be stored in WM, they
replace the least recent (lowest activation) features in storage
if space is needed.

DIARC’s WM system is configured to reflect both decay-
and interference-based dynamics. Its WM Manager compo-
nent (Sousa Silva & Williams, 2024) manages a set of rele-
vant WM buffers distributed across the entities known within
the architecture. Features are added to an entity’s WM buffer
whenever that entity is mentioned in conversation, either by a
human or by the robot itself, and features are removed from
WM buffers according to the forgetting strategy in use.

DIARC’s WM system is then used to facilitate tasks like
Referring Expression Generation (REG) (cf. Van Deemter,
2016): when determining the features to use to refer to a tar-
get, those stored in WM are considered before querying Long
Term Memory (LTM) for other features that might be used.

In this work we ask how a WM system’s parameterization
in terms of decay parameter & or interference parameter o
might be determined to best facilitate this REG process. To
do so, we consider the distinct error modes that determine the
success of REG under these forgetting strategies.

Decay Error Modes

We start by considering the error modes that would be associ-
ated with the decay forgetting strategy. That is, we must con-
sider the distinct problems that can arise from using different
d values during an interaction. Since the implementation of
WM decay that we consider is based on the intervals of time
during which entity features remain in WM storage, we must
identify the problems that can occur in interactive scenarios
where information will remain in WM storage for too long,
as well as scenarios in which information will leave WM too
quickly. First, if 8 is too high, then features will remain ac-
tivated in WM storage for long time intervals, which can be-
come a problem in dialogue if the features of the referred
entities change. In these scenarios, robots may be prone to
generating referring expressions containing outdated and in-
valid information. Second, if & is too low, then the activated
features of referred entities will not remain in WM for long
enough to be useful, which can be problematic in interactions
where a robot needs to refer to entities with sufficient fre-
quency and leverage WM contents. As such, to choose an
appropriate d value for WM models that implement temporal
decay, we need to take into account how fast the environment



is changing and how often an entity needs to be referred to in
conversation.

Environmental Dynamics

Let us first consider interactions in which the features of tar-
get referents dynamically change. When a robot is engaged
in an interaction, the environment in which that interaction is
taking place may change at different rates, and a feature that
used to hold for an entity (or a relationship that used to hold
between two entities) might not hold anymore. For exam-
ple, the position of an object might change if someone moves
it from its original location during dialogue. Consequently,
robots may be prone to generating referring expressions con-
taining outdated and invalid information if temporal decay is
slower than the interval of environmental change, as the stale
information will not leave buffers in time.

Naturally, the risk of using an outdated feature to describe
an entity becomes higher as time goes on, suggesting it could
be governed by an exponential process. For the purposes of
this paper, we define this probability of using stale features,
P, as a function of the decay time (8) and the rate at which
features are expected to go stale (Ay), where higher A, € RT
values will be seen in contexts where features go stale more
quickly:

1—e™d if§>0
P (8; M) = - 1
5(0:2s) {O otherwise M

This formulation allows us to specify the following rule for
establishing an upper bound on d:
Rule 1 Given As and a risk threshold P € [0,1] specifying
the maximum tolerable probability of a feature in WM go-
ing stale, we can then solve for an upper bound & such that
Py(8;)y) is guaranteed to stay below P, so long as 8 < 8.

This relationship can be seen in Figure 1 for different val-
ues of Ag.
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Figure 1: Environmental change example. If we let P, = 0.8,
then the point where P, and P; intersect can be used to find 8.

Dialogue Dynamics

Remembering and reusing features that humans use to refer
to specific entities can be helpful for language-capable robots,
as their utterances may sound more natural, consistent, and
familiar to their interlocutors. In addition, aggressive rates of
decay may prevent the benefits of WM-facilitated REG. Af-
ter all, & = 0 seconds would certainly avoid the use of stale
features, but would do so by not keeping anything in WM.
Thus, to promote the generation of natural and familiar refer-
ring expressions, we must find a lower bound on decay.

The risk of generating inconsistent referring expressions
(i.e., referring expressions that fail to demonstrate entrain-
ment to humans’ lexical choices) decreases as decay time in-
creases, suggesting it could be governed by a negative expo-
nential process. In this paper, we define this probability of
generating inconsistent referring expressions, P,, as a func-
tion of decay time (8) and the rate at which features are ex-
pected to be reused in dialogue (A,), where higher A, € R™
values will be seen in contexts where features must be reused
more quickly:

A
P& = {e if6=0 @)

1 otherwise

Given this model, we can then find a boundary, §, for the
time that features should remain stored in an entity’s WM
buffer so that they can be reused. To do so, we specify the

following rule for establishing a lower bound on &:

Rule 2 Given A, and a risk threshold P, € [0,1] specifying
the maximum tolerable probability of generating inconsistent
referring expressions, we can solve for a lower bound & such
that P,(8;\,) is guaranteed to stay below P,, so long as § < .

This formulation can be visualized in Figure 2 for different
values of A,..
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Figure 2: Dialogue dynamics example. If we let P, = 0.8,
then the point where P, and P, intersect can be used to find 8.



Prioritization over Decay Rules

In certain situations when the chosen risk probability thresh-
olds P; and P, are set to low values, the recommended upper
bound & will be below §, as shown in Figure 3. We argue that
preventing the use of outdated, invalid features in dialogue is
more important than preventing the use of inconsistent, yet
valid features. As such, we specify the following metarule
for decay:

Metarule 1 In interaction contexts where 8 > 8, an appro-
priate WM decay rate (8) must be determined by satisfy-
ing only Rule 1. Otherwise, in interaction contexts where
& <&, an appropriate 8 must be determined by satisfying both
Rule 1 and Rule 2.

& [S]

Figure 3: Example scenario where § > S. If weletPy =P, =
0.3 then no d value can satisfy both Rule 1 and Rule 2.

Interference Error Modes

Let us now consider the error modes that would be associated
with the interference forgetting strategy. To do so, we must
identify the problems that can arise from situations where the
maximum storage capacity of WM (o) is either too low or too
high during interaction. On one hand, enough features must
be stored in WM to facilitate the generation of unique re-
ferring expressions that discriminate the target referent from
distractors and minimize the number of cache misses within
WM. On the other hand, a higher WM buffer capacity in-
creases the chances of storing stale features, and decreases
the value of having an WM system to begin with, as WM
comes to approximate the contents of LTM. Therefore, we
argue that the appropriate choice of WM buffer size should
depend on the minimum number or features typically needed
to describe entities while ruling out all distractors in a given
domain. In addition, we argue that the choice of maximum
WM buffer size should account for the risk of stale features
being stored in WM.

Minimizing Cache Misses

In Human-Robot Interaction (HRI) scenarios, when agents
need to refer to specific entities they must minimize ambigu-
ity. Ambiguous referring expressions can be problematic, as
listeners may not be able to correctly identify the target refer-
ent, or may misinterpret speaker’s utterances. We assume that
when an entity e must be referred to, the contents of the WM
buffer associated with e will be considered first during REG,
and that LTM will only be consulted if those features stored
in WM are insufficient to disambiguate e from its distrac-
tors (Williams et al., 2018; Sousa Silva et al., 2023). There-
fore, if we define a boundary for the minimum WM buffer
capacity (o) that depends on the minimum number of fea-
tures typically needed to uniquely describe entities, we can
minimize the number of LTM queries that are needed overall.

This minimum number of features needed for REG ulti-
mately depends on the complexity of the domain to which
target referents belong. First, specific types of attributes may
be used more often than others to describe different types of
entities. For example, color and shape may be used more
frequently to describe objects than to describe people or loca-
tions. Second, the number of distractors in the domain affects
the number of features that must be used to uniquely describe
a target referent. Given this dependence on domain complex-
ity, we argue that the lower bound for WM buffer capacity
(o) should be tailored to each specific domain through data-
driven estimation of how many descriptors, on average, are
needed to describe an entity in that domain.

In previous work, for example, Piwek (2007) characterized
the number of features used in observed referring expressions
within the context of a common reference game in which one
speaker delivers monologues to enable a listener to construct
a desired shape from colored blocks (cp. Han et al., 2022).
The authors observe that in their domain, the average num-
ber of features included in purely verbal referring expressions
was 1.7, and that this number of features followed a distribu-
tion in which 90% of purely verbal referring expressions in-
volved only one or two features. With this example in mind,
we can formalize our first interference rule:

Rule 3 Given the average number of features needed to
uniquely describe entities in a given domain (&), we can de-
fine a lower bound for WM buffer capacity as o = [&].

Environmental Dynamics

Finally, just as high decay time values present risk of stale
feature use, Ps, so too do high WM buffer capacity limits.
With higher WM buffer capacities, not only does the risk of
holding stale features in WM increase, but also WM becomes
closer to functioning as a second LTM storage. We must then
find a boundary, &, for the maximum WM buffer capacity
without risking an unacceptable chance of storing stale de-
scriptors.

We can then define this interference-based probability of
storing stale features in WM, P;, as a function of the average
amount of time that features are expected to remain in WM



storage (8) and the rate at which features are expected to go
stale (Ay).

R [
Pi(&}hs){l e ifO<o<N 3

0 otherwise

Here, & is calculated as & = k%’ where o is the WM buffer

capacity for each entity, Ay is the rate at which individual fea-
tures are expected to leave WM, and N is the maximum num-
ber of features that might ever need to be used, as described
below.

Ar may in turn be calculated as Ay = APy, where A, is the
rate at which features are expected to be reused in dialogue,
and Py is the probability that a feature will be removed from
WM storage to make room for a new feature upon each refer-
ence.

Finally, Py is calculated by assuming that all types of fea-
tures are equally likely to be used, and that a feature is re-
moved from WM when a new feature of a type not already
in WM storage needs to be inserted yet no free WM slots are
available.

Calculating the probability that a feature of a type not al-
ready appearing in WM will be used requires knowledge of
the total number of feature types N that might be used. While
hypothetically in highly complex environments a large num-
ber of features and spatial relations could in theory be needed,
it may also be reasonable to assume a tractable value of N.
For example, a value such as seven could be justified by anal-
ysis of the Referlt dataset, which suggests that when describ-
ing visible objects in natural scenes, humans essentially use
only seven key types of attributes (Kazemzadeh et al., 2014).

Given N, Py can be calculated as

1—) PR, =WM,[n]),

o
n=1
That is, the probability that, upon feature R, being used to
refer to entity e, none of the features in entity e’s WM buffer
are of the same type as R,. Under the assumption of uniform
feature use, P(R, = WM,[n]) = +. This equation can be ap-
proximated as Py = 1 — .

Therefore, the exponent from Equation 3 can be simplified
as follows:

A0 —Ao A0 —Ag., ON

~Ad= A AP A(1-9) =5 3.

)

We can thus define the interference-based probability of
using stale features, P;, as a function of the WM buffer ca-
pacity (o), the rate at which features are expected to go stale
(As), the rate at which features are expected to be reused in
dialogue (A,), and N:

1= TS jfo<a<n
Pi(0sAs; A N) = 0 -7 =

otherwise

“

We thus arrive at our final interference rule:

Rule 4 Given Ay, A, N, and a risk threshold P; € [0, 1] spec-
ifying the maximum tolerable probability of a feature in WM
going stale, we can solve for an upper bound O. such that
Pi(o; As; A3 N) is guaranteed to stay below P, so long as
a<fal.

This relationship can be visualized in Figure 4 for different
values of A.
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Figure 4: Interference environmental dynamics example. If
we let P, = 0.6, A, = 0.2, and N = 7, then the point where P;
and P; intersect can be used to find &.

Prioritization over Interference Rules

Similarly to decay, in scenarios with a lower risk probability
threshold, P;, our rule system fails to provide a valid range
for appropriate o values. Thus, we must adjust our inter-
ference rules to real-world scenarios with fast environmen-
tal change and consider whether minimizing ambiguity and
cache misses outweighs preventing the use of stale features
in robot referring expressions further. While the former risk
is still associated with the formulation of valid referring ex-
pressions, the latter risk is not. This reinforces the idea that
robots must prioritize avoiding the use of stale features in di-
alogue, as their utterances may lose their validity. Therefore,
our interference metarule also ensures that robot dialogue will
prioritize avoiding the use stale features:

Metarule 2 [n interaction contexts where o > O, an appro-
priate WM buffer size () must be determined by satisfy-
ing only Rule 4. Otherwise, in interaction contexts where
o < @, an appropriate o. must be determined by satisfying
both Rule 3 and Rule 4.

Discussion

Contributions — The main contribution of this paper is the in-
troduction of metarules that bound the parameters that guide
decay and interference in entity-level, feature-based resource
management strategies for the WM systems of integrated
robot architectures. The values of these bounds are based on



key identified features of interaction contexts. Our work pro-
vides roboticists with clear and justified guidance for setting
these parameters to minimize sources of risk arising from the
use of WM systems.

Furthermore, while the WM systems described in this work
are tailored to robot cognitive architectures and are not cog-
nitively plausible, the metarules presented in this paper are
nevertheless of interest from a broader cognitive science per-
spective, as our formulation of these metarules demonstrates
the relationship between the parameterization of decay and
interference based WM models and key facets of the domains
in which human interaction unfolds. Although the exact pa-
rameterization of cognitively plausible WM models would
undoubtedly differ, a similar relationship may hold between
decay and interference levels in more cognitively plausible
models and these dimensions of situated cognition and inter-
action. Our metarules thus suggest the need to investigate
similar parameterization questions in the context of computa-
tional cognitive models of human cognition.

Limitations and Future Work — One key limitation of our
approach is the assumption of stable, context-specific rates of
environmental and dialogue dynamics. While it may be rea-
sonable for these rates to be specified or learned at a context
level, these rates might well vary for different types of objects
within a single context. In an assembly task, for instance, it
might be beneficial for a robot to keep salient features of task-
relevant objects in WM for longer than other, incidental fea-
tures of the location where the task is being performed. More
natural dialogue might thus be achieved through a dynamic
decay policy that can be adjusted to handle different types of
objects with different decay rates. Alternatively, these rates
might be learned or specified at an even deeper level, by spec-
ifying or learning different rates of expected change and refer-
ence for different types of object features. A robot could, for
example, learn to maintain object type in WM for a longer du-
ration, while allowing object position to decay more rapidly.
Future work can thus investigate how different decay rates
might be specified or learned at the level of object features.

Another key limitation of this work is the lack of empir-
ical validation. While the rule derivations above formally
demonstrate the relationships between dimensions of situated
contexts, parameter settings, and the risks of resulting er-
ror modes, future work is needed to empirically validate this
model, for two key purposes. First, models parameterized
in ways that adhere to or violate our proposed rules should
be evaluated with human subjects to determine the accuracy
of predicted rates of encountering error modes, and to deter-
mine the extent to which these error modes lead to observable
problems for human participants. Second, while in this work
we are not focused on cognitively plausible models of human
cognition, assessment of the fit of the proposed models to hu-
man data would provide valuable insights both for roboticists
and cognitive scientists.

Conclusion

In this paper, we derived parameter selection rules for an
Entity-Level, Feature-Based WM framework for robotic cog-
nitive architectures applied to natural, situated, language-
based interaction scenarios with humans. Our rules are de-
signed around cognitively-inspired implementations of decay
and interference, which are forgetting dynamics that dictate
how information leaves WM buffers. In addition, our rules
consider different error modes for decay and interference that
can affect a robot’s Referring Expression Generation process.
That is, we identified situations in which using specific de-
cay and interference parameterizations might be problematic
in HRI contexts. We derived metarules based on these pa-
rameters to promote the generation of robot referring expres-
sions that will sound intuitive, natural, and easy to understand
for human interactants. We hope our rules can inform fu-
ture human-subjects experiments aimed at assessing how hu-
mans will perceive the referring expressions that are gener-
ated through this framework.
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