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Abstract

We consider applying stochastic approximation (SA) methods to solve nonsmooth variational
inclusion problems. Existing studies have shown that the averaged iterates of SA methods exhibit
asymptotic normality, with an optimal limiting covariance matrix in the local minimax sense of
Hajek and Le Cam. However, no methods have been proposed to estimate this covariance matrix in
a nonsmooth and potentially non-monotone (nonconvex) setting. In this paper, we study an online
batch-means covariance matrix estimator introduced in Zhu et al. (2023). The estimator groups
the SA iterates appropriately and computes the sample covariance among batches as an estimate
of the limiting covariance. Its construction does not require prior knowledge of the total sample
size, and updates can be performed recursively as new data arrives. We establish that, as long as
the batch size sequence is properly specified (depending on the stepsize sequence), the estimator
achieves a convergence rate of order O(v/dn~'/8%¢) for any ¢ > 0, where d and n denote the
problem dimensionality and the number of iterations (or samples) used. Although the problem
is nonsmooth and potentially non-monotone (nonconvex), our convergence rate matches the best-
known rate for covariance estimation methods using only first-order information in smooth and
strongly-convex settings. The consistency of this covariance estimator enables asymptotically valid
statistical inference, including constructing confidence intervals and performing hypothesis testing.

Keywords: Stochastic approximation, nonsmoothness, asymptotic normality, covariance estimation

*. Equal Contribution

© 2025 L. Jiang, A. Roy, K. Balasubramanian, D. Davis, D. Drusvyatskiy & S. Na.



JIANG ROY BALASUBRAMANIAN DAVIS DRUSVYATSKIY NA

1. Introduction

A landmark result by Polyak and Juditsky (1992) shows that for smooth and strongly convex opti-
mization, Stochastic Gradient Descent (SGD) exhibits a central limit theorem: the averaged SGD
iterates with a proper scaling factor converge to a normal distribution; see Toulis and Airoldi (2017);
Duchi and Ruan (2021) for extensions and Anastasiou et al. (2019); Shao and Zhang (2022); Sam-
sonov et al. (2024) for quantitative non-asymptotic bounds. Recently, Davis et al. (2024) extended
this result to nonsmooth problems, showing that when solutions vary smoothly with respect to
perturbations, the averaged generic stochastic approximation (SA) iterates remain asymptotically
normal. This limiting distribution paves the way for constructing confidence intervals and statistical
tests, critical tools for uncertainty quantification in machine learning and optimization. However,
to perform (asymptotically) valid statistical inference, we need to estimate the covariance matrix
of the limiting distribution. While efficient online estimators are well understood in the smooth
setting, estimation in the nonsmooth setting has remained completely open. In this paper, we de-
velop an online estimator with computation and memory scaling quadratically in dimension, and
establish its rate of convergence in expectation (matching the smooth setting).

The theory encompasses many important problems in machine learning and operations research.
Consider a two-player zero-sum game. To find the Nash equilibrium, the two players aim to solve:
A0 2 B el
where f(x1,z2,v) is a random payoff function and X}, X» are strategy sets. Players update their
strategies based on noisy observations, projecting onto their respective strategy sets. Another example

is stochastic nonlinear programming; we solve:
mxin Ep[f(:c, v)] subjectto gi(z) <0, i=1,...,m, (1.1)
e
where the objective depends on random data. Both settings, along with many others, can be unified
through stochastic variational inequalities of the form:
0€ F(x):= EP[A(:U, V)] + Nx(x), (1.2)
e
where A(+, v) is a smooth operator for each v, and Ny denotes the normal cone to the constraint set X’.
Throughout, we fix a solution z* of this inclusion.
To solve the above problems in an online fashion, we consider SA algorithms based on a general-
ized gradient mapping, G : R, x R? x R? — RY, of F. Given x, the algorithm iterates as

Thg1 = Tk — M1 Gy (Thos Vit 1), (1.3)

where 711 > 0 is a stepsize sequence and v, is stochastic noise. As we show in Section 5, this frame-
work unifies many online algorithms — in games it captures simultaneous gradient play; in constrained
optimization it yields projected gradient methods; and more generally, it encompasses stochastic
forward-backward splitting.

Davis et al. (2024) showed that when solutions to the perturbed system vary smoothly — that is,
when the graph of the solution map S(v) = {x : v € F/(z)} locally coincides with the graph of some
smooth function o (-) — the averaged iterates of (1.3) are asymptotically normal:

VE(z), — %) 2 N(0,3),
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where T = Ele z;/k and ¥ = Vo (0) - Cov(A(z*, 2)) - Va(0)T. For example, in stochastic
nonlinear programming (1.1), A(z*,v) = V f(z*,v) and Vo (0) takes a particularly elegant form

Vo (0) = (PrV3i,L(z* y")Pr),

where (z*, y*) is the primal-dual solution of (1.1), £(z,y) = f(x)+>.1"" yigi(z) is the Lagrangian
function, and Pr projects onto the tangent space of active constraints at the solution z*.

In order to leverage the aforementioned result in practice to construct confidence sets, it is required
to estimate the asymptotic covariance matrix Y. The batch-means estimator (Lahiri, 2003; Flegal and
Jones, 2010) from the larger Markov chain literature has been recently adapted in the literature for
developing online estimators of J; see, for example, Zhu et al. (2023) and Roy and Balasubramanian
(2023). The key idea is to divide the iterates into blocks of increasing size, with each block providing
an approximately independent estimate of the covariance matrix. The block sizes are carefully chosen
to balance the bias-variance tradeoff while maintaining the desirable convergence rate. Specifically,
let {a,}m be a strictly increasing sequence of integers with a; = 1. Forany k£ = 1,2,...,
we construct a block By, consisting of the iterates {xy,, z¢, +1, ..., Tt} Where t = ap, for k €
[@m, am+1)- Let I = |Bg| denote the size of the block By. After n iterations, the batch-means
covariance estimator is given by:

4 ) T
o _ T (Shon e~ o) (Thoy, 0 — i) \
= . 1.

! Z?:l li (4
Zhu et al. (2023) showed that for SGD with i.i.d. data stream, f)n (asymptotically) consistently esti-
mates > with a convergence rate of order O(n_l/ 8). Subsequently, Roy and Balasubramanian (2023)
extended this result to Markovian data. However, these limited existing works on online covariance
estimation for first-order methods apply only to smooth and strongly convex problems, and their
analyses do not apply to generic iterations as in (1.3).

Main Contribution. Our main contribution is to show that, despite significant complexity intro-
duced by nonsmooth geometry, we can achieve the same convergence rate as in the smooth case using
the same covariance estimator (1.4). In particular, we establish that under reasonable conditions and
with a properly chosen batch size control sequence {a, }m, the online batch-means estimator 3, in
(1.4) with generic SA iterates (1.3) satisfies

E||2, — |2 = O(VdnY/3+%)  forany e > 0.

We also emphasize that when applying our result to stochastic optimization problems, the objective
does not need to be strongly convex or even convex. This is in contrast with all existing works that
heavily rely on global strong convexity (Chen et al., 2020; Zhu et al., 2023; Roy and Balasubramanian,
2023). Our analysis addresses the following main challenges:

1. Due to the nonsmooth nature of problem (1.2), Taylor’s theorem — on which all existing meth-
ods (Chen et al., 2020; Zhu et al., 2023; Roy and Balasubramanian, 2023) are based — is no
longer applicable. Our key insight is that, despite the problem being nonsmooth, typical in-
stances exhibit partial smoothness near the solution. In other words, there exists a distinctive
manifold containing the solution and capturing the hidden smoothness of the map F'. In a local
neighborhood around the solution, we project all iterates onto this manifold, forming what we
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call the shadow sequence. We then prove that the shadow sequence behaves almost as if it
were generated by a smooth dynamic.

2. Our analysis of the shadow sequence builds on prior work on nonsmooth asymptotic normal-
ity (Davis et al., 2024); however, their asymptotic guarantees are insufficient for our non-
asymptotic study. In this work, we provide a more refined analysis and establish a tighter bound
on the distance between the original iterates and their shadows. Our results show that the hypo-
thetical batch-means estimator constructed from the shadow sequence converges to the same
limit — and at the same rate — as the estimator based on the original sequence (1.4). Conse-
quently, the problem reduces to analyzing the estimator derived from smooth dynamics.

3. Due to the local nature of both the manifold and the shadow sequence, the above argument holds
only when the iterates remain within a local neighborhood of the solution. To address this, we
introduce a stopping time. Under light-tailed noise, we apply a martingale concentration in-
equality to show that, with high probability, the original iterates stay within the local neighbor-
hood after a certain number of iterations. Consequently, the shadow sequence always exists,
and the stopping time can finally be dropped in the convergence guarantee.

We should mention that our above techniques extend beyond the covariance estimation problem, offer-
ing a template for analyzing other nonsmooth SA algorithms whose dynamics are implicitly governed
by an underlying local smooth structure.

Paper organization. In Section 2, we introduce the notations and preliminaries, including smooth
manifold and nonsmooth analysis. In Section 3, we present the assumptions and main results. In
Section 4, we address the issue of the stopping time involved in our main results by providing a high-
probability guarantee. In Section 5, we present specific examples of SA algorithms for nonsmooth
problems, and we conclude and discuss future work in Section 6. Concrete examples of nonsmooth
variational inclusion problems satisfying our assumptions, as well as the proofs of theoretical results,
are deferred to the appendix.

2. Notations and preliminaries

Notations. Throughout the paper, the symbol R? denotes a Euclidean space with inner product
(-,-) and the induced norm ||z||2 = +/(z, x). The symbol B denotes the closed unit ball in R, while
B, (x) denotes the closed ball of radius r around a point z. When A € R™*" is a matrix, ||A[|2
denotes the spectral norm of A. For any function f: RY — R U {+o0}, its domain is defined as
dom f := {x € R?: f(x) < co}. We say f is closed if its epigraph is a closed set, or equivalently
if f is lower-semicontinuous. The proximal map of f with parameter o > 0 is given by

) 1
proxaf(a:) := argmin {f(y) + Z*H?J - x\%} :
) «

The distance and the projection of a point z € R? onto a set Q C R are, respectively,

d(z,Q) = ;gcg ly — 2 and  Py(x) = argergin ly — 2.
y

The indicator function of (), denoted by ¢ (-), is defined to be zero on @ and +o0 off it. The symbol
o(h) stands for any function o(-) satisfying o(h)/h — 0 as h 0.
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Smooth manifold. To be self-contained, we make a few definitions for smooth manifold; we refer
the reader to Lee (2013); Boumal (2020) for details. Throughout the paper, all smooth manifolds M
are assumed to be embedded in R?, and we consider the tangent and normal spaces to M as subspaces
of RY. In particular, for any € M, we denote the tangent and normal spaces of M at x by T(x)
and N(z), respectively. A map F': M — R™ is called C? (p > 1) smooth near a point z if there
exists a CP-smooth map F: U — R defined on some neighborhood U C R? of x that agrees with
F on M near z. In this case, we define the covariant Jacobian NV pF (z): Tpq(x) — R™ by the
expression V u F(z)(u) = VE(z)u for all u € Ty(x).

Nonsmooth analysis. Next, we introduce a few terminologies used in nonsmooth and variational
analysis. The introduction follows Rockafellar and Wets (2009). Consider a function f: R? - RU
{400} and a point x € dom f. The Fréchet subdifferential of f at =, denoted d f(z), consists of all
vectors v € RY satisfying the approximation property:

f)> flx)+wy—z)+o(ly—=z|) as y— x.

The limiting subdifferential of f at x, denoted O f (x), consists of all vectors v € R? such that there ex-
ist sequences x; € R and Fréchet subgradients v; € O f (x;) satisfying (z;, f(z;), vi) = (z, f(z),v)
as i — 0o. A point x satisfying 0 € df(x) is called critical for f. For any set Q and = € @, the
Fréchet normal cone of Q at x is defined by Ng(x) := 55@ (x), where d) is the indicator function
of Q). Similarly, the limiting normal cone of Q) at x is defined by Ng(z) := 0dg(x).

3. Assumptions and main results

Setting the stage, our goal is to find a point x satisfying the inclusion
0€ F(x), (3.1

where F : RY = R? is a set-valued map. Throughout, we fix one such solution z* of (3.1). We as-
sume the existence of a distinctive manifold M that contains =* and satisfies the property that the
map z — Pr, ;) F(z) is single-valued and C?-smooth on M near x*. The following assumption
provides a precise statement of this assumption.

Assumption 1 (Smooth structure) Suppose that there exists a C? (p > 1) manifold M C R? such
that the map F: M — R? defined by Fi\((z) = Pr () F (x) is single-valued and C” smooth
on some neighborhood V' of z* in M. Moreover, there exists v > 0 and L > 0 such that Fyq is
L aq-Lipschitzin V N M, and for any z € V N M,

(Fpm(z),z — 2*) > ~[lz — 2| (3.2)

Note that in the case when F' = V f for some smooth function f, the manifold M is simply R¢,
and the condition (3.2) is equivalent to the local quadratic growth condition (Davis and Jiang, 2022).
To illustrate the role of manifold M for nonsmooth map F', we consider the following two examples:
£1-regularization problems and nonlinear programming. A detailed discussion of these and more
examples can be found in Appendix A.
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Example 1 (¢;-regularization) Consider the stochastic optimization problem with ¢; regularization
min g(z) = f(x) + A,

where f(x) = E,ep[f(z,v)] is a CP-smooth function in R%. Consider now z* € R, a critical point
of the function ¢, and define the index setZ = {i: 2} = 0}. Then, theset M = {z: z; =0, Vi € T}
is an affine space, hence a smooth manifold. It is easy to show that when V2 f(x*) is positive definite
restricted onto T'a¢(z*), the map F' = Jg satisfies Assumption 1 with manifold M.

Example 2 (Nonlinear programming) Consider the problem of nonlinear programming

min f(z),
x
s.t. gi(z) <0 fori=1,...,m,
=0

gi(x) fori=m+1,...,n,

where f and g; are CP-smooth functions on R%. Let X' denote the set of all feasible points to the
problem. Consider now a point z* € X’ that is critical for the function f + 0, and define the active
index set Z = {i : g;(x*) = 0}. Suppose the Linear Independence Constraint Qualification (LICQ)
condition holds, i.e., the gradients {Vg;(2*)};ez are linearly independent. Then, the set M =
{z : gi(x) = 0Vi € I} is a CP smooth manifold locally around z*. In the literature on nonlinear
programming, the manifold M is also referred to as the active set (Nocedal and Wright, 2006). Define

the Lagrangian function
n+m

L(z,y) = f(z)+ Z vigi(z).
i=1

The criticality of * and LICQ ensure that there exists a (unique) Lagrange multiplier vector y* €
R xR" satisfying V£ (z*,y*) = 0 and y} = 0 foralli ¢ Z. Assume in addition that V2_L(z*, y*)
is positive definite when restricted onto 7'y (z*), often called the Second-Order Sufficient Condition
(SOSC); we can then show that F' = V f + Ny satisfies Assumption 1 with the manifold M.

The stochastic approximation (SA) algorithms we consider in this work assume access to a gener-
alized gradient mapping G : Ry, x R x R? — R?. As stated in Section 1, given x¢, our generic SA
algorithm iterates as

Trp1 = T — M1 Gy (Th, Vig1),  VE >0, (3.3)

where 11 > 0 is a stepsize sequence and v, is stochastic noise. We now state two assumptions on
( that are required in Davis et al. (2024) for establishing the asymptotic normality of the averaged
iterates of (3.3). The first assumption is similar to classical Lipschitz assumptions and ensures that the
stepsize length can only scale linearly in ||v||.

Assumption 2 (Steplength) We suppose there exist a constant C' > 0 and a neighborhood I/ of z*
such that the map G satisfies sup,,. |Gy (2, v)|| < C(1 + ||v||) for any v € R? and > 0, where
we set Uy := U NdomF.

The second assumption precisely characterizes the relationship between two mappings, G and
F\. For simplicity, we abuse the notation C' to denote a general upper bound.
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Assumption 3 We suppose that there exist constants C', 4 > 0, a manifold M containing z*, and a
neighborhood U/ of x* such that the following hold for any v € R? and 5 > 0, where we set Uy =
UNdomkF:

1. (Tangent comparison) For any x € UE, we have
1Pry(Pra(a)) (G, v) = F(Pra(@)) = v)|| < C(L+ |[v])?(dist(z, M) + ).
2. (Proximal Aiming) For any « € Up, we have

(Gy(2,v) — v, 2 — Pp()) > - dist(z, M) — (1+ ||v|)?(o(dist(z, M)) + Cn).

In the above assumption, Item 1 asserts that in the tangent directions of M, the gradient map G
accurately approximates the map F'; while Item 2 asserts that in the normal directions, the gradient
map G points outward from M. In the context of stochastic optimization, Assumptions 1-3 neither
imply global strong convexity nor global convexity. See Example 4 in Appendix A for a concrete
example. These broader and weaker assumptions extend the scope of existing online inference works,
which have focused solely on strongly convex problems (Chen et al., 2020; Zhu et al., 2023; Roy and
Balasubramanian, 2023).

In the next two assumptions, we consider the choice of stepsize and the conditions on stochastic
noise for online covariance estimation.

Assumption 4 We assume the following conditions hold.

1. The map G/, is measurable.

2. The stepsize np = nk~“ for some > 0 and o € (%, 1).

3. {vk41} is a martingale difference sequence w.r.t. to the increasing sequence of o-fields Fj, =
o(xo.k, 1. ). Furthermore, there exists a function q: RY — R that is bounded on bounded
sets satisfying Ex[||vr11]1%] < q(zx), where B[] = E[- | Fi].

4. The inclusion z;, € domF holds for all £ > 0.

Assumption 4 on the stepsize and noise is almost identical to (Davis et al., 2024, Assumption I)
for establishing asymptotic normality guarantees. The only difference is the requirement of the eighth
moment of || ||, whereas Davis et al. (2024) requires only the fourth moment. A stricter noise mo-
ment condition appears to be natural for the covariance estimation problem. For example, the noise
moment condition for covariance estimation of simple SGD method is also stricter than the moment
condition needed for asymptotic normality; see Polyak and Juditsky (1992) and Chen et al. (2020);
Zhu et al. (2023) for comparisons.

We next impose an additional assumption concerning the covariance of the stochastic noise vy.
Similar assumptions also widely appear in the literature on both first-order methods (Duchi and Ruan,
2021; Davis et al., 2024; Chen et al., 2020; Zhu et al., 2023; Roy and Balasubramanian, 2023) and
second-order methods (Bercu et al., 2020; Na and Mahoney, 2022).

Assumption 5 Fix 2* € domF at which Assumption 1 holds and let U be a matrix whose columns
form an orthogonal basis of T'y((z*). We assume the gradient noise can be decomposed as v =

u,gl + 1/,(521 (x), where V]Efgl : domF — R? is a random function satisfying for some C > 0,

Ek[”V;gl(fU)HQ] < Cllz — 2*|? for all x € domF’,
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and Ek[l/,gr)l(x)] = Eg [I/]Szl] = 0. In addition, we assume the following covariance matrix is con-
stant for all £ > 1:
T
S =By UV 0], (3.4)
Note that all the previous assumptions regulate only the local behavior of the maps F' and G.
To control the behavior of the iterates far from x*, we impose the following mild assumption and
rigorously show that it holds for a variety of nonsmooth SA methods in Appendix E.

Assumption 6 (Bounded sequence in expectation) There exists a constant Cyp, > 0 such that
E[[lzx — 2*[*] < Cu.

Let U be a matrix whose columns form an orthonormal basis of 7 (x*). We recall that the limit-
ing covariance matrix in the nonsmooth asymptotic normality result takes the following form (Davis
et al., 2024, Theorem 5.1):

Y= UU "V MFMm()U) LS(U TV (g Faq (a9 U)TU T, (3.5)

where V y(Faq(2*) is the covariant Jacobian of F)rq, and S is defined in (3.4).

We are now ready to state our main result on the convergence of the online batch-means covariance
estimator (1.4). The formal statement of our result crucially relies on local arguments and frequently
refers to the following stopping time: given an index & > 0 and a constant 0 € (0, 1), we define

Tk, = inf{l > k: €Ty ¢ Bg(ib‘*)},

which is the first time after k that the iterate leaves Bs(z*). The following is our main convergence
theorem, with its proof provided in Appendix B.

Theorem 1 Under Assumptions 16, let us set a,, = |CmP| for some constant C > 1 and
8> ﬁ Then, for the iteration scheme (3.3) and any ky < n, we have'

(a—=1)+B (a=D)+B

+Vdn P+ \/gnfﬁ).

E(|[Sn — Slaln, s>n] S k3(dn

Remark 2 Choosing 3 = —2-, we have

1—-a’

< k3 (dn 2" +Vdn 1),

~

E[”in - EHQILMS,Pn]
Further choosing oo = % + 4e for some arbitrarily small € > 0, we have

B[S0 — ol son] S k2 (dn 3% 4 Vdn~5+9), (3.6)

A comparison of Theorem 1 with related settings is in order. In particular, (3.6) shows that as long
as ks is a constant, we recover the convergence rate in the smooth case with an i.i.d data stream (Zhu
etal., 2023). In Section 4, we show that under mild assumptions, the probability that the iterates leave
the local neighborhood after ks decays exponentially in k. Moreover, by allowing ks =< log? n, we
recover the best-known convergence rate O(n_l/ 8) in the smooth case up to logarithmic factors. More
interestingly, this rate also matches the rate obtained in the smooth case for exponentially mixing
Markovian data streams (Roy and Balasubramanian, 2023).

1. In the rest of the paper, we use a,, < by, to denote a,, < Cb,, for some constant C' independent of &, (if applicable), d

~

and n, and a,, < b, to denote a,, < by, and b, < ay,.
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Proofideas. Our key insight is that, by Item 2 of Assumption 3, the iteration sequence x, generated
by the dynamics (3.3) can be locally but closely approximated by its projection onto M, namely, the
“shadow sequence” defined as

Y = Pr(z).

By carefully quantifying the distance between x and yj, we show that this error decays sufficiently
fast so that the hypothetical batch-means estimator constructed with the shadow sequence y, similar
to (1.4), converges to the same limit — and at the same rate — as the estimator constructed with xy.
Consequently, it suffices to analyze the convergence of the batch-means estimator applied to yy.

Another crucial implication of Assumption 3 is that the update rule of y; can be interpreted as
an inexact Riemannian SA algorithm operating on the restriction of F’ to the manifold M. More
precisely, we show that the shadow sequence exhibits the recursion

Ykt1 = Yk — M1 ErM(Uk) — M1 Prog(ye) (Vi) + Errorg.

For the sake of illustration, let us first assume that Errory, = 0. Due to Assumption 1, the dynamics of
yx, are smooth, allowing us to adapt the analysis of batch-means estimators developed in the context of
stochastic smooth optimization (Chen et al., 2020; Zhu et al., 2023). In the more general setting, we
derive sharp upper bounds on the error terms and demonstrate that their contribution to the covariance
estimation error is dominated by the convergence rate established in the smooth case.

Note that our main result is local and relies on the stopping time 7% s. In this regard, we show in
the following section that, under sub-Gaussian noise conditions, the iterates remain near the solution
with high probability. Our analysis leverages martingale concentration inequalities applied to (3.3).

4. High probability guarantee

So far, we have only made assumptions on F' and G locally near z*, except for assuming the sequence
x, is bounded in expectation (as proved in Appendix E). To establish global convergence guarantees,
we require the following assumption.

Assumption 7 We assume that there are constants v, C' > 0 such that:

1. (Aiming towards solution) For any = € R?, we have (G, (z,v) — v,z — 2*) > 7|z —a*||3 -
Cn(1 + [lz — 2|5 + [[V[13)-

2. (Global steplength) For any € R%, we have ||G,(z,v)[|3 < C(1 + ||z — 2*|13 + |v]|3).

Assumption 7 extends the standard strong convexity and Lipschitz gradient conditions commonly
assumed in stochastic smooth optimization. In particular, we have G, (x,v) = V f(x) + v in the case
of minimizing a y-strongly convex function f. Therefore, Item 1 is ensured by the y-strong convexity,
since (Gy(z,v) — v, x — 2*) = (Vf(z), x — 2*) > 7|lz — 2*||3. Moreover, the Lipschitz gradient
condition implies Item 2, as we observe that |Gy (z, v)|2 = ||V f(z)+v| < ||lz—2*|+]/v|. Beyond
the smooth case, we show in Appendix E that Assumption 7 holds for various nonsmooth SA methods.

We additionally impose the following light-tail assumption on the noise.

Assumption 8 (Light tail) The noise vk is mean-zero norm sub-Gaussian conditioned on Fj
with parameter o /2, i.e., Ex[vg 1] = 0 and Pp{||vgs1]| > 7} < 2exp(—272/0?) for all 7 > 0.
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By standard results in high-dimensional statistics (Jin et al., 2019, Lemma 3), we know that ||y 1 |?
is sub-exponential with parameter co? conditioned on Fy, where c is some absolute constant. Below
is a high-probability guarantee demonstrating that x, stays within Bs(z*) for all sufficiently large k.
We present its proof in Appendix C.

Proposition 3 Suppose Assumptions 7 and 8 hold. Let c be the universal constant defined above.
Suppose also n < min {%, ﬁ } Then, for any radius § and any k such that

1/(1—«)

16Can?
k > 10g(4HJ30—1‘*”2/5) 1/(1—04) log((m_ln)(; 220‘+2é7]2 1/(204—1)
= MaX N\ o o e \ e s

)

where C' = 3¢Co? + 3C and C,, = 295" \ve have

2(1—a)
32 WVEY gpav/Fexp (— 20VE
Mmrww<&wzmz1_’”%$ ) o ”§4W>

With the above high-probability guarantee, we strengthen the local result in Theorem 1 to a global
result by suppressing the stopping time involved in the theorem statement. Our global result is stated
in Theorem 4. The proof can be found in Appendix D.

Theorem 4 Under the assumptions of Theorem I along with Assumptions 7 and 8, for the SA update
of (3.3), for apy < n < apsy1, we have

)/a+1 (a—1)B+1 1),8+1
B[S — Sllop] Stog VAM ™3 + VAM "2 Vdn % +Vdn~
where || - ||op is the operator norm, and “S\og " hides logarithmic terms of n.
Taking 3 = = in Theorem 4, we have E[|Zn—%op] < Slog Nz Ignoring the logarithmic

factors, this matches the best-known rate in the smooth case (Chen et al., 2020; Zhu et al., 2023).

5. Examples of stochastic approximation algorithms

In this section, we illustrate the broad applicability of our generic SA update in (3.3) and the mildness
of our required assumptions. In particular, we consider solving nonsmooth problems using different
SA algorithms and provide sufficient conditions for Assumptions 1-3 to hold. More concretely, let us
consider the variational inclusion problem:

0€ A(z) + 9g(z) + Of (), (5.1

where A : R? — R? is any single-valued continuous map, g : R? — R U {400} is a closed function,
and f : R — R U {+o0} is a closed function that is bounded from below?. The problem (5.1) is a
special case of (3.1) since one can take F'(z) := A(x)+0g(x)+ 0 f(x). First, the local boundedness
condition of GG in Assumption 2 is widely used in the literature, with a variety of known sufficient con-
ditions. The following lemma describes several such conditions, which we will use in what follows.

2. In particular, prox,, ; (z) is nonempty for all = € R¢ and all o« > 0.

10
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Lemma 5 (Lemma 4.2 in Davis et al. (2024)) Suppose A(-) and s4(-) are locally bounded around
x*. Then Assumption 2 holds in any of the following settings.

1. f is the indicator function of a closed set X.
2. f is convex and the function x — dist(0,0f(x)) is bounded on dom f near z*.
3. f is Lipschitz continuous on domg N dom f.

Then, we investigate Assumptions 1 and 3. Recall that both assumptions require the existence of
a distinctive manifold M that captures the hidden smoothness of the problem. One candidate of such
a manifold is the active manifold, which has been modeled in various ways, including identifiable
surfaces (Wright, 1993), partial smoothness (Lewis, 2002), U/ V-structures (Lemaréchal et al., 2000;
Mifflin and Sagastizabal, 2005), g o F' decomposable functions (Shapiro, 2003), and minimal
identifiable sets (Drusvyatskiy and Lewis, 2014). In this work, we adopt the characterization of active
manifold used in Drusvyatskiy and Lewis (2014).

Figure 1: f(z1,72) = |21| + 23 with x5-axis as an active manifold.

Definition 6 (Active manifold) Consider a function f: RY — RU {400} and fix a set M C dom f
that contains a critical point 2* with 0 € 9f(z*). Then M is called an active CP-manifold around
x* if there exists a constant x > 0 satisfying the following conditions.

* (smoothness) Near x*, the set M is a C? manifold and the restriction of f to M is CP-smooth.
* (sharpness) The lower bound holds:

inf{|jv]| ;v € df(z), x e U\ M} >0
where U = {z € B, (2*) : |f(z) — f(z*)| < x}

More generally, we say M is an active manifold for f at x* for v € 0 f (x*) if M is an active manifold
for the tilted function fz(x) = f(x) — (v, x) at z*.

The sharpness condition simply means that the subgradients of f remain uniformly bounded away
from zero at points off the manifold that are sufficiently close to z* in both distance and function value.
The localization in function value can be omitted, for example, if f is weakly convex or if f is contin-
uous on its domain; see Drusvyatskiy and Lewis (2014) for details. Figure 1 is an example of active
manifold of a nonsmooth function.

To proceed, we introduce two extra conditions along the active manifold that tightly couple the
subgradients of f on and off the manifold. These two conditions were first introduced in (Davis et al.,
2025, Section 3) to prove saddle point avoidance in nonsmooth optimization. They are very mild con-
ditions and hold for a wide range of examples. We verify these regularity conditions in detail for the
cases of ¢;-regularization, nonlinear programming, and two-player game in Appendix A.

11
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Definition 7 ((b<)-regularity and strong (a)-regularity) Consider a function f: R? — RU{+o0}
that is locally Lipschitz continuous on its domain. Fix a set M C domf that is a C'! manifold around
x* and such that the restriction of f to M is C''-smooth near z*. We say that f is (b<)-regular along
M at x* if there exists x > 0 such that

fy) = @)+ v,y =) + (1 +[lo]]) - o(lly — «])

holds for all z € domf N By (z*), y € M N B, (z*),and v € f(x). Additionally, we say that f is
strongly (a)-regular along M near x* if there exist constants C, xy > 0 satisfying

1Prp ) (0 = VS W)l < CA+ [[vlD]lz =yl
forall x € domf N By (z*), y € M N By(z*),and v € Of(x).

Roughly speaking, (b<)-regularity condition is a weakening of Taylor’s theorem for nonsmooth
functions; strong (a)-regularity condition is a weakening of Lipschitz continuity of the gradient. We
next provide sufficient conditions of Assumptions 1 and 3 in several popular settings, including pro-
jected SGD (hence Subgradient Descent) and projected Stochastic Gradient Descent Ascent methods.

5.1. Stochastic (projected) forward algorithm (f = 0y)

First, we focus on the particular instance of (5.1) where f is an indicator function of a closed set X'.
In this case, the iteration (3.3) reduces to a stochastic projected forward algorithm:

Trt1 € Pr(@p — M1 (A(@r) + s¢(2k) + Viet1)).

The map G takes the form G, (z,v) == (z — sx(x — n(A(x) + sq(x) +v)))/n, where sy (x) is any
selection of the projection map Py (x).

The following proposition shows that Assumptions 1 and 3 hold when g + f admits an active
manifold at z* with certain regularity conditions. Its proof is a combination of Corollary 4.7 and
Lemma 10.3 in Davis et al. (2024).

Proposition 8 Suppose f is the indicator function of a closed set X and both ¢(-) and A(-) are
Lipschitz continuous around x*. Moreover, suppose the inclusion —A(z*) € (g + f)(x*) holds,
g+ f admits a C? active manifold around x* for the vector v = — A(x*), and both g and f are (b<)-
regular and strongly (a)-regular along M at x*. Then Assumption 3 holds. Furthermore, if there
exists 7y > 0 such that (V p(A + 0g)(x*)v,v) > ~||v||3, for all v € T (z*), then Assumption 1
holds with manifold M.

5.2. Stochastic forward-backward method (g = 0)

Second, we focus on the particular instance of (5.1) where g = 0. In this case, the iteration (3.3)
reduces to a stochastic forward-backward algorithm:

Tt € prox,, , ¢(zk — M1 (A(Tk) + Vit1)).-

The map G becomes G (x,v) := (v — sg(x — n(A(x) + v))/n), where s is any selection of the
proximal map prox, ¢(z) (cf. Section 2).

The following proposition shows that Assumptions 1 and 3 hold when f admits an active manifold
at z* with certain regularity conditions. Its proof is a combination of Corollary 4.9 and Lemma 10.3
in Davis et al. (2024).

12
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Proposition 9 Suppose g = 0 and both f and A(-) are Lipschitz continuous on domf near x*.
Moreover, suppose the inclusion —A(z*) € d f(x*) holds, f admits a C? active manifold around x*
for v = —A(x*), and f is both (b)<-regular and strongly (a)-regular along M at x*. Then Assump-
tion 3 holds. Furthermore, if there exists vy > 0 such that

(Vm(A+0f)(@*)v,v) 2 7llvl3,  forallv € Ta(a*),

then Assumption 1 holds with manifold M.

6. Conclusion and future work

In this paper, we studied covariance estimation for nonsmooth stochastic approximation (SA) meth-
ods. The estimator was initially proposed for SGD in Zhu et al. (2023) for smooth, strongly convex
optimization problems. The key idea is to group iterates into blocks of increasing size, with each
block providing an approximately independent estimate of the covariance matrix. This estimator can
be computed fully online, with both computation and memory scaling quadratically in dimension.
Our work demonstrated that, with a properly chosen batch size control sequence, the same estimator
achieves the expected convergence rate of order O(v/dn~1/8+¢) for any £ > 0 in nonsmooth and
potentially non-monotone (nonconvex) setting. Our analysis involves highly nontrivial extensions of
Zhu et al. (2023), where we developed a localization technique and constructed a shadow sequence
to address the challenges arising from the lack of smoothness. Additionally, we established high-
probability guarantees on the stopping time at which iterates leave the local neighborhood. The con-
sistency of our covariance estimator enables asymptotically valid statistical inference for stochastic
nonsmooth variational inclusion problems, covering numerous examples as provided in Appendix A.

One future research direction is studying covariance estimation for nonsmooth SA methods under
Markovian noise, inspired by reinforcement learning applications. In addition, an open and challeng-
ing question is establishing the lower bound of covariance estimation and investigating whether the
estimator (1.4) for first-order methods is minimax optimal. Finally, designing non-asymptotically
optimal (nonsmooth) SA methods along with suitable covariance estimators is also a promising topic
for future research.

13
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Appendix A. Concrete Examples

In this section, we expand on the discussion in Section 3 and provide some concrete examples that
satisfy Assumptions 1-3.

Example 1 (/;-regularization) Consider the stochastic optimization problem with ¢; regularization

min g(z) = f(x) + Az,

T

where f(z) = E,ep[f(x,v)] is a CP-smooth function in RY. Consider now a point z* € R? that is
critical for the function ¢ and define the index set Z = {i: 2} = 0}. Then, the set

M=A{x:2;=0, Vi e I}

is an affine space, hence a smooth manifold. Note that the definition of criticality ensures that 0 €
dg(x*), so we always have

_(Vf(x*»l € [_A7 )‘]7 Vi e 1.
Suppose the following condition is true:
* (Strict complementarity) —(V f(2*)); € (—A,A) forall ¢ € 7.

Then M is indeed an active CP manifold of g at z*. Moreover, (b<)-regularity and strong (a)-
regularity hold trivially for g along M at x*. If, in addition, V2 f(z*) is positive definite when
restricted to the tangent space of M, then Proposition 8 and Lemma 5 imply that Assumptions 1-3
hold for the stochastic subgradient method; similarly, Proposition 5.2 and Lemma 5 imply that these
assumptions also hold for the stochastic proximal gradient method. We mention that there is typically
a bias between the center of the asymptotic normality, x*, and the minimizer of f due to the presence
of the regularization term.

Example 2 (Nonlinear programming) Consider the problem of nonlinear programming
min f(z),
x

s.t. gi(z) <0 fori=1,...,m,
=0

gi(x) fori=m-+1,...,n,

where f and g; are CP-smooth functions on R¢. Let us denote the set of all feasible points to the
problem as

X={x:g9i(x) <0 for 1<i<m and gi(z)=0 for m+1<i<n}.
Consider now a point z* € X that is critical for the function f 4 dy and define the active index set
Z={i:gi(z") =0}

Suppose the following is true:

* (LICQ) the gradients {Vg;(x*)};cz are linearly independent.
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Then the set
M=A{x:gi(x)=0, Vi e I}

is a CP smooth manifold locally around x*. Moreover, all three functions f, §x, and f + dx are
(b<)-regular and strongly (a)-regular along M near x*. To ensure that M is an active manifold of
f -+ dx, an extra condition is required. Define the Lagrangian function

L(z,y) = (@) + 10" igi(2).

The criticality of * and LICQ ensure that there exists a (unique) Lagrange multiplier vector y* &
R x R™ satisfying V,L(z*,y*) = 0 and y} = 0 for all i ¢ Z. Suppose the following standard
assumption is true:

* (Strict complementarity) y7 > 0 forall: € ZN{1,...,m}.

Then M is indeed an active CP manifold for f + 6 at x*. Assume in addition that V2L (z*, y*) is
positive definite when restricted onto Ty (z*), often called the Second-Order Sufficient Condition
(SOSC) in nonlinear programming literature (Nocedal and Wright, 2006); Proposition 8 and Lemma 5
imply that Assumptions 1-3 hold for stochastic projected gradient method.

Example 3 (Entropy-regularized zero-sum two-player matrix game) Consider the following op-
timization problem that arises in an zero-sum two-player matrix game (Cen et al., 2021; Li et al.,
2022)

argmin argmax f(z,w) = 2z E[A¢] w + AH(2) — AH(w), (A1)

z€Ad=L weAd—1
where A%~ is the d-dimensional probability simplex, ) is the regularization parameter, and H (1) =
— Zle w; log ; is the entropy regularization. The regularization is often imposed to account for
the imperfect knowledge about the payoff matrix A = E [A¢] (Mertikopoulos and Sandholm, 2016).
The solution of the above problem is known as the Quantal Response Equilibrium (QRE) in game
theory (McKelvey and Palfrey, 1995). In particular, the solution of (A.1) turns out to be the solution
of the following fixed point equation:

27 oc exp([Aw*];/N) w; o< exp(—[Az*];/N) V1<i<d.

Let X = A%"1 x A9~ ¢ R%, then problem (A.1) can be reformulated as the following variational
inclusion problem:

0¢c [_Vvi{ }“’Ezng)] + Na(z,w).

Observe that (z*, w*) lies in the relative interior of A%~ x A9~!. Consequently,
M = {(z,w) : Z?Zl z; = 1,2?:1 w; = 1}

VZf(z7 w)
—wa(27 'LU)
both (b<)-regular and strong (a)-regular along M at (z*, w*). Moreover, Cen et al. (2021) showed
that f is strongly-convex strongly-concave locally near (z*, w*), so a combination of Proposition 8
and Lemma 5 implies that Assumptions 1-3 hold for stochastic projected forward method.

is an active manifold of 0y at (2*, w*) for — [ ] . Also, it is trivial to show that J y is
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The following is a nonconvex and nonsmooth function satisfying Assumptions 1-3 for the
stochastic subgradient method.

Example 4 (Nonconvex example) Consider the function with the origin as the minimizer:

£2 4 2
fa,y) = o =2+ =5
Note that for any 0 < ¢ < 1, we have
FE0) + f(£2,—t) = (t* + %) < 262 + 1 = 2f(+%,0),

which implies that f is not convex in any local neighborhood of the origin. Meanwhile, one can
easily check that M = {(x,y): x = y?} is an active manifold of f at the origin, and f is both
(b<)-regularity and strong (a)-regularity along M at the origin. Moreover, V o f(0, 0) is positive
definite on the y-axis. A combination of Proposition 8 and Lemma 5 implies that Assumptions 1-3
hold for stochastic subgradient method.

Appendix B. Proof of Theorem 1

We introduce some more notations for the rest of this section. First, by our choice that a,,, = |Cm? ]|,
we have n,,, < mP~!. Let M be an integer such that ap; < n < apry1. Let H := U TV Fay(2*)U.
Note that H is not necessarily a symmetric matrix Davis et al. (2024). Define

Wz] = Hi:iﬂ(l —meH) for j>i with W/ :=1,

Sl=301_,  WF for j>i with S!:=0.

7

Let 6 > 0 be small enough so that Assumption 1 — 3 hold inside Bs(z*). We consider the shadow
sequence

fE*

{PM (zk) if 7y € Bas(z™)
Yk = .
otherwise.

By Proposition 6.3 in Davis et al. (2024), there exists Fj_1-measurable random vectors Ej, € R?
such that the shadow sequence satisfies y; € Bys(x*) N M for all k and the recursion holds:

Yet1 = Yk — M1 Faa(Ye) — Mot 1 Pryy ) Wat1) + k1 By forallk > 1.

Define an auxiliary sequence zj, = z* + UA, where Ay := U " (yp — 2*). Consider the following
two estimators defined in terms of z; and Ay, respectively.

T

Sy (S, (or = %) = 1z = 2%)) (Shcy, (36— %) = L0 — 7))
a Z?:l Li

Z,

~ Z?:l (Zﬁ;zti A — liAn) (Zi:ti Ay — liAn)T
Yn = =
Zz‘zl li

19
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Observing that ), = US,U" and recalling from (3.5) that ¥ = UH'SH~TU T, we have,

E[[|Z), — Sloly, s5n] = E[|U(En — H'SH™ DU [la1g son]
<E[|Zn - H'SH™ " |215,, s5n). (B.3)

Using triangle inequality and (B.3), we have

E[Hin - EHQJLTkS,(On] < E[HE; - E||2:H‘Tks,5>n} + E[Hin - Z;L||2:H‘Tks,5>n]

< Ewin - H_ISH_T||2]lTk5,5>n] + E[Hi}n - 2;7,||2:H'Tk5,5>n] .

Lemma 10 Lemma 11

On the one hand, by Lemma 10 and the assumption that § > ﬁ,

E[|S, — HLSH™T||21r, 0]
< dkOM@VBH L RN+ VakE MO ST g2ty

(a—1)B+1

<K (dMODB L VaAM T 4 VAM T ?) (B.4)

On the other hand, by Lemma 11 and the assumption that 5 > ﬁ

E[Hin - Z;L||2:H‘Tks,5>n]

34a (a—1)8 5 a3 (a—1)8— 3
VAR I M L ATk M L ik T M kM KM

< kVAM 2 (B.5)

Combining (B.4), and (B.5) and using the fact that n < M?, we conclude the proof of Theorem 1.

Lemma 10 Let the conditions of Theorem 1 be true. We have,

E[”in - H_lsH_T||2]lTk5,5>n]

(a=1)p+1

a 1
<Ak MO DI L a2 VARG M ke T EM e 4 k2t

Proof Following the proof of Lemma 10.7 in Davis et al. (2024), we have
App1 = = M1 H)Ag — M1 (UT(V;(C& + v;ﬁ?l(wk))) — Mh+1 (R(yk) + Chr1 — UTEk)7 (B.7)
where (oi1 = U Pry (g Wkt1) — U Pry(or)(Vk41), and
R(y) =U" Fpu(y) = U'VmFm)UU T (y — ).
Summing both sides of (B.7) from k = i to j, we get
s D =S Ay + (0 SDme (UT 0 + 3 @) + Rlu) = UT B+ G )

:)\g + ez, (B.8)
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where we define
. . , , 1 2
A =8 A+ 30 (TS e (UT(VI(ch)l + V;gﬁl(l'k)w ’
el =50 (T+SDmk (R(yx) — UT By + ) -

Plugging (B.8) into the definition of 3, in (B.2), we write and divide %, into four parts.

Sn= (00 )TN (X, = T AL (AL, — T A T+ (e, — n T e (AL, — n T A T

i=1

| i
+ (i ) TSI (N, = T A (e, — M et) T+ 3T (ef, — T et (e, — T et) T
f v

In what follows, we will provide upper bounds on E[||(3-7; ;)1 — H™'SH™Tlo17,_ s>l
B2 1)~ ll2Lry, son]s BIGZE 1)~ 2 1n, snl, and E[(322 1)~ IV[l21r, ;5] sepa-
rately. The lemma then follows from the triangle inequality.

Analysis of term I: Note that the goal is to bound

E[|(Cis b)) "= H ' SH™ T 21ry 550l
n - n SV - - n —-1,,— n i\n
= E[|(XiL L) i ML — HESH T T lony son] + EITIL, 1) 7 0y LALAT T oLy, 5o
n -1, — n nyi | n -1, — n ny\n
+E[(Zi:1 lz') n 1”21‘:1 li)‘l)‘ti ||2]17ks,6>n]+E[(Zi=l li) n 221':1 li2||)\1)\1T||2]lTks,6>n]'

We bound terms on the RHS one by one.

* The firstterm E[[| (320, 1)~ S0, AL /\éiT—HilsH*THg]lTks’Pn]. To this end, we rewrite

S AL =2 (i wi) (v wi) T

where
vi = Sty Ay + immnks,i —H YU + 12 @)
k=t;
and .
wj = Z H_IUT(u,Szl + V](jgl(l'k)))
Note that -

E[[[viv; [l21ny, 5>n] < tr (E[Uw;ﬂms,pn]) < d||E[vivy |1 snll2  (B.10)
On the other hand, direct calculation shows

|IE[viv 1r,, s>nlll2
< |[Efvv; 1r,, s>t-1]l2
<18 1 IBIE[AL 1AL 1 1ry st (B.11)
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i ‘ _ 1 2 1 2
Sl TS, — H Y BIUTE ) + v (@) i + o) @) TIU o,

where the first inequality follows from the definition of the stopping time, and the second

inequality follows from Assumption 5 that {1/,(621} and {I/](j_)l ()} are martingale difference

sequences. We then bound the RHS of (B.11). For the first term in (B.11), we consider two
cases:

1. t; — 1 > ks. Using Lemma 19 and Lemma 25, we have,

15t L BIE[AG 1A 1 Lr ssti—1llz < ISE 1 IBENAr -1 [151r,, 5> ,-1]
< K2 (B.12)

2. t;—1 < k. By the definition of y;, we always have || A, ;|| < 4§. Applying Lemma 25,
we have

HSZZle%H]E[At@—lA ,1:[].7%3 5>t1—1”|2 < t2o‘ < kZOl
Next, we consider the second term on the RHS of (B.11). By Assumption 5 and 6, we have

1
WUTE[Y, + v, @), + o2, () 102 S Bl 13+ Ellv ), (2)113)
S E[flag — 23]
< Cup.

In addition, following the same proof of (Zhu et al., 2023, Lemma B.3) we obtain,
St e TSy — HYI3 < 187972 + e,
Combining, we have
i
i - 1 2 1 2
>l TSt — HBIUTENw ) + v @) @i + 12 @) TTU 2
k=t;
S Lt e (B.14)

By basic calculus and our choice of a,, and n,,, we can easily verify the following three
inequalities:

S L= SM 2 = M 282 < 26t (B.15)
Zz 1lz2’\2m 1Tl va 1m _3XM3/3_2; (B16)
Z'n]\{ ) T—n2a 3~ Z m3B8—2aB—-3 — pr3B—2ap-2 (B.17)

Combining (B.10), (B.11), (B.14), (B.12), and (B.15), we have

i1 Elllviv] lale, sonl S d [30 (1t727% + 6% + kgtg + k2)]
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—d [Zm . lem+1 l(l a2a 2 4 4 kaaa + k20¢)}
<d [M%cﬁ—l + MPOF+a) 4 popBi+a) 4 k?o‘Mﬁ] _
Then, by (B.15) and the assumption that n > kg,

(Z? 1 ) Zz 1E[||UU ||2]]‘Tk 5>n} <dkaM(a 1)B+1 +dk2aM1 B
< dkS MDA+ (B.18)

Define w; = Zzzti H_IUTVIE%. Using the same proof of Step 1 of (Zhu et al., 2023,
Lemma B.2), we have,

E(I(C, 1)~ Sy @] — HTUSHTT o] S VM2, (B.19)
Following the proof of Step 2 of (Zhu et al., 2023, Lemma B.2), we have
E[(7 )7 i @] — (i 1) 7 Xy wi] ol 5]
<2 B 1) S BT (S, ) (S A2 @) UH ot o0l
@
B, 1) Sy BT (S 2 00)) (Shor, 2 0)) UH Tl ol
(i)

(B.20)
By Cauchy-Schwarz inequality,

) < VEIS, 1)~ S @] ] - (@), (B.21)

By (B.19), we have
E[|(307 1)~ 20 @iy 2] S

Therefore, it suffices to bound (i7). By triangle inequality and the inequality that ||C||s <
tr (C), for any positive semi-definite matrix C,

. T
(i) < Qi1 i)™ 'E [tr <Zz 1 H™ Ut (Zk t; Vk+)1(xk)> (ZLZQ szi)l(xk)) UH_T> L@,»n}
= (00 L) T Bl S, H U o) (20) 3L, o). (B.22)

(2)

Since v, is a martingale difference sequence and 7y s is a stopping time, for any i < n, we
have

El| S, H U T (@) |30, o)
i _ 2
<E[| iy, H U (@) 31r,, i)

El| i H U (@) |3n, s5i) + ENH U0 (2)|1315,, ;4]
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7 _ 2
< i EIH U (@) 310, ).

When k > kg, by Lemma 17 and Lemma 19, we have E[||z) — x*||§]lms’5>k] S ESE™ on
the other hand, when k < ks, by Assumption 6, we always have E[||z), — z*||31y,_;>k] < Cup.
Combining, we have

Sy KSETY b > Ky

i _ 2
E| Y, H U T (@0)|3Ln, son] S {z-c ) bk

By (B.15), (B.22), and 8 > 1, we have

(i1) S (X0 1)~ (00 iy, ke k™ + K2Cu)
SkEM™ 4 M
< k2MOP, (B.23)
Combining (B.19), (B.20), (B.21), and (B.23), we have

E[l|(3C5 1)~ i wiw] — HWSH™ 21y o]
SVAM ™2 + ((d/M)7 + 1)k, M2 4 2N —oP

<VAM™3 + KM~ (B.24)

Then by triangle inequality,

E(I(0, 1) iy wied] ll2lny, yon] S VAM ™2 + K2M™P 1. (B.25)

Combining (B.18), and (B.25), and using Cauchy-Schwarz inequality, we have,

(e=D)p+1

(Cr, L) S Eloiw] lloey, o] S VkE M (d3M~% + kM™% +1). (B.26)

Similarly,

(a=1)B+1 1)B+1

(Cr ) S Blwiv] (oL, son] S VARE M2 (@3 M~5 4 k,M~% +1). (B27)

Then, combining (B.18), (B.24), (B.26), and (B.27), we have
n _ n i vi 1 _ _
E[H(Zz:l li) ! Zi:l )‘ti)‘ti —H'SH THQJ]‘Tks>n]
< koM DBH | \/g M—% FRMY 1 Vak: M
< Ao MOV L aM s 4 2 M 4 VakE M (B.28)

Lo 1 _ap
(diM~1 4+ kM™ 2 +1)

e The fourth term E[(3°0, 1;) " *n =230, 1||)\”)\”T\|21L.rk s>n]- We have

E[NEA 217, 55
E[H)\?”%lﬂcs,6>n]
n n n 1 2
= E[|lS500 + S A4S0 (UT (), + v (@) I35y, 5n)
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n n n 1 2
< E[IS5Aol3] + S IT+SPIZRENUT WY + v (e) 315, so4] (B29)
ST+ EBUT Y, + 02, (@)12) (B.30)
<n. (B.31)

where the estimate (B.29) follows from the martingale difference property of 1/,21) and 1/,52), the

estimate (B.30) follows from Lemma 25, and the estimate (B.31) follows from Assumption 5
and 6.

Then, by (B.15) and (B.16), we have
E[(X7i 1) 70 2 S BIAAL 2L, son] < (20, 1) 7 ‘222 L BEIATAL l2Lry, 55n]

Z -1 ZZQ <M. (B.32)

i=1
» The second term E[(37; ;) *n | S50 LAL AT T2 14, >n]. Note that

B[Sy ) n ISy LN AT l2Tny, ]

SEW@& DS ML Lo /(S 1) 02, XY 2o

<A ) EISIy Mo, o] /(S 1)~ 2Bl ZAPAL s, 50
_1 (e—1)B 1 _1
5\/dk:§*M(O‘—1)5+1+\/8M 2k M—0B/2 4/ dM =z T2 41-M"2
)8 1.3 L _aB_1 1« )B—1 _1
+diIM™ 1T+ kZM™ 272 +dik; + M2, (B.33)

where the first inequality follows from Cauchy-Schwarz, the second inequality follows from
Holder’s inequality, and the third inequality follows from (B.28) and (B.32).

e The third term E[(>"1, ;) "=t |>00 liA?A%iTHQHTkS’5>n]. By the same calculation as the
second term, we have

E[(Z? 11) ' ‘1IIZZ 1”"% Hzllrkspn]

Sb 4 dikd

1

“i4+ M2 (B34)

Combining (B.28), (B.32), (B.33), and (B.34), we have,

E[H(Z?ZI li)_ll - H_lsH_T||21lTks,5>n}
< dke MDA+ \/3/‘@3]\4_% VRS e

B+1

(B.35)

Next, we bound term |V. We then bound terms I, and 1l using Cauchy-Schwarz inequality and
the bounds on term |, and term IV.
Bound on term IV: Note that

E[|[WVll2Lr,, s>n] <3753 Elllef, — n™ e} |[31r,, 5>n]
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<230 (B[llef 131r,, 5>n] + E[n 72031, s5n]).  (B.36)

First, we bound the first term in the RHS of (B.36). Note that for any j > ¢ > k;, using Lemma 18,
we have

!B El3Ln, on] < S B[ Eol3Ln, o)
S k2T k. (B.37)
We also have, by Claim 2 in the proof of Lemma D.5 of Davis et al. (2024) and Lemma 19,
E[|Rye)31n, 5>n] < ElIRYR)131n,, 5>8] < Elllye — 2*[315,, ;5] S k205 (B.38)

Direct calculation shows

E[IS)_, (T +S)mCr1ll315,, 55n]

=E[|(1+8)m;Ga1 + it A+ mCer[31r,, 5>5]

= E[|T+8)m;¢j1l31r,, 555 + BN 12 A+SDmeChs [31r,, 5]
+ 2E[(I +S§)77j L S T+ S mer1Goa Ly s>

= E[I(1+5)m;G+1131n,, 555 + EISI T +S)mCrs1l31r,, 5>5]

= S EIA+S)meCrr1l3Lr,, 5]

St E G130, o] (B.39)
S EBlllye — 21310, s>k] (B.40)
Sk ot (B.41)
< (J—i+ ST, (B.42)

where the first several equalities follows from the fact that {(j} is a martingale-difference se-
quence, and we have E[CZT Cj+1] = 0 for i # j, the estimate (B.39) follows from Lemma 25, the
estimate (B.40) follows from the definition of (;, and Lipschitz continuity of Pr, (), and the esti-
mate (B.41) follows from Lemma 19. Combining (B.37), (B.38), and (B.42), and using Lemma 25,
for 7 such that ¢; > kg, we have

E[Heiingﬂms,Pn] Sl ZZ:ti E[H(I“‘S/i)nk (R(yk) - UTEk) ”glms,pn] + kg Zizti UL

Sli Yt (ElIR W) 3 1r,, s5n] + EIUT ERl3Lr, s5n]) + ikt
SURS® Plomg, M + Lkt
SIZRZO4T™ + RSt

where the third inequality follows from || R(yx)|l2 < |lyx — 2*||3, Lemma 19, and Lemma 18. On

the other hand, for ¢ such that ¢; < ks, we have

Ellle} I13Lr, 5>n] < U X iy, ENT+SP)m0 (R(yk) = UT Egy + 1) [131r,, ]
S i Yot (B[ R(yw) 1] + El ZelI3] + E[Cres111])
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S lz‘ Zzzti(l + k2a>
<K,

where the first inequality follows from Lemma 25, the third inequality follows from Lemma 18, and
the last inequality follows from I; < i < kg. As aresult, for 3 > (1 — )71,

Yt Blllet 13Lr, 5on] S ey 2ilan 1 (PR a2 + ik a®) + k3o
M — —
S Do (kS0 g + ni kG an®) + k30T

,S k?aM3,8—2a6—2 + k?MZB—a,B—l + k§a+3
S k§a+3M3ﬂ—2a,B—2. (B.43)

Combining (B.43) and (B.15), we have
(i 1) S Elllef, 131 n,, 55n] S RO TEM 72051, (B.44)
Next, we look at the second term in the RHS of (B.36). Note that

Elle}31r,, ;5n]
=E[|| Xk (I + Sp)me(R(yr) — U Eg + Gep1) 517, 55n]
SnED o 1T+ Sp)nk(R(yk) — U T E) 1317, s>n) + Bl Y opey (I + Sp)0eCrr1 131, 55n]
<n Yoy 1+ SOHIBMER(yr) — U Exli31r, son] + Bl Y fey (I + S mkChs1 317, 55n)
sn (22:1 E[l|R(yx) — UTEnglms,Pn]) +n
Sn(py k2Omg + k) +n
< b

where the first inequality follows from Young’s inequality and Cauchy-Schwarz, the second inequality
follows from Jensen’s inequality, the third inequality follows by Lemma 25, and the same calculation
as (B.42), and the fourth inequality follows from Lemma 25, Lemma 19, and Lemma 18. By (B.16),
we have

N2 PE[|[er]31,, 0] S KLY 12 S R20H 302,

i=1% ~ P~
Using the fact n =< MPB, and (B.15), we get,
n (0 L) N BE] €03 1n, son] S REHIML (B.45)
Combining (B.44), and (B.45), we have
E[(32i L) THHV lla1ny, son] S kZOFME (B.46)

Bound on term Il: Combining (B.35), and (B.44), and using Cauchy-Schwarz inequality, we obtain,

E[(X0, 1) T [laTry, son]
n _ 1/2 n _ 1/2
< (B 1) M 2Ly, s5n]) 7 (BISE, 1)~V 21y, yon])
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<ks *M~z. (B.47)

Bound on term lll: Similar to term Il we have,

atdl 1
E[(X0 L) 2 1ry yon] S ks M (B.48)
Combining (B.35), (B.46), (B.47), and (B.48), we have
E[|S — H'SH™ |21y, s5n]

3 a+L
< dkeM@=DBHL 4 /ak2 M2 + /dks Tz

e + ks M_% + k?oﬂrlM*l'

Lemma 11 Let the conditions of Theorem 1 be true. Then,

7&%(&1)/31

~ 3o
E[Hzn - E;’L”2]]‘7_k’5,6>n] 5 \/ﬁ s

Proof Define p;, := x; — 2. We have the following expansion:

: Sy (S ot~ i) (S i~ tion) Sy (S, o6~ i) (S, 2~

En - E;L = n + n
Zz‘:l li Zi:l li
v M
) . T
+ ) .
Zi:l li
VIl

In what follows, we bound them separately.
Bound on Term V: First, we calculate

) T
BN (Sher, o = litn) (i, k= lipn) ll2ey, 550l

. T
< Z?:l E[] (Z;c:ti Pk — zpn) (Zk t; Pk — zpn) H2ﬂﬂes,5>n]
=3 B 5, (Pk — ) 31r, 550
SOt i e, Elll I3 1ny, s5n) + Elllpnll3ln, s5nl), (B.50)

where the last inequality follows from the Cauchy-Schwarz inequality. Using Equation 10.6 in Davis
et al. (2024), we have

lokllz < llzk — yellz + lye — zell2 S I1Dkll2 + llye — 2*113-
Applying Lemma 16 and Lemma 19, for ¢ such that ¢; > k,, we have
>i—t, Bllokl3Lr,, s5n] S Xjmy, BUIDENZ L, s>1] + Ellyr — 2% (1315, 5>4])
< k3 Zizti 77/3
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< K22 (B.52)
On the other hand, for 7 such that [; < t; < ks, we have

Y et Elloel31r,, s5n] S Shmy, BUIDRIZ L, s5k] + Ellys — 2*[1315,, 554)
S ks, (B.53)

where the second inequality follows from Assumption 6 and the definition of y. Similar to (B.52)
and (B.53), we have

Elllpnl3Lr,, 5>n]) < 07t 32y Elllorl3n,, s5k] S 07 (2 4oy, nii + ks) < kan™".(B.54)

Combining (B.50), (B.52), (B.53), and (B.54), and using the fact that ¢; < ¢, we have

. T
B[S0y (Shar, o = litn) (Sict, 6= litn) laTry, son]
< Zl IZZQ(kQat 200 +k n—l) +k3
= > St R a2 kn T 3T I kD
<K2SM an2end 4 ken U 124 K3 (B.55)

mlm

Combining (B.55), (B.16), and (B.17), and observing n =< M?B, we obtain,

E[”Z?:l (Z’Ii):ti Pk — zpn> (Zk =t; Pk — an) HQ]lTk 5>n] S k2aM3B 20p-2 + k’ MQﬂ 2 + k’3.

Then, by (B.15),

. T
E[|[VllsLn, s5n) = (S &) BN, (Shar, 6 =) (Shes, 6 = i) ll2Ln, 5]
5 kgocMﬁ—Qaﬁ—l + ksM_l + kng—Zﬁ
<EEMTL (B.56)

Bound on Term VI: By Lemma 10, we have,

E[IZ7 — Zll2Lr,, 5>n]

S dk?M(a—l),@-i—l + \/&k? ]{OH_QM 2+ k2a+1M—

Then, by Cauchy-Schwarz inequality, we have

E[[IVlll21r,, 5>n]

. X T 1/2
< (E[IVIl21ry, s5n]) ((2?1 )TN Sy (The, 26— i) (The, 20— i) ||2Lks,s>n])

(a=Dp+1

< k;%M_W\/dk?M(“—UBH + VARZM = + VdkE M + RTINS 2R 4 1B.5T)

~

Bound on Term VII: Similar to Term VI, we have,
E[‘|V||H2]]‘Tks,6>n]

29



JIANG ROY BALASUBRAMANIAN DAVIS DRUSVYATSKIY NA

< Sah a)fla—1)B+1 2 2 1)ﬁ+ aty -l 2041
< k2M™2y\/dkeM +Vdk2M 2 VAR MU L 0T N5 4 20 MBS

Combining (B.56), (B.57), and (B.58), we obtain,

E[|%, — E%Hz]lm 5>n]

S B kEME kT

3 — —
5 (x Zﬂil

3
+R2M I+ KM

Appendix C. Proof of Proposition 3

The basic probabilistic tool we use to achieve high probability bound was originally developed by
Harvey et al. Harvey et al. (2019) and then generalized by Cutler et al. (2023).

Proposition 12 (Proposition 29 in Cutler et al. (2023)) Consider scalar stochastic processes (Vy,),
(Dy), and (X}) on a probability space with Filtration (H},) such that Vj, is nonnegative and H;,
measurable and the inequality

Vk+1 < apVi + D/ Vi + X + kg

holds for for some deterministic constants oy, € (—o0, 1] and ki, € R. Suppose that the moment
generating functions of Dy, and X}, conditioned on Hy, satisfy the following inequalities for some
deterministic constants oy, vy > 0:

« Elexp(ADy) | Hi] < exp(A202/2) for all X > 0. (e.g., Dy, is mean-zero sub-Gaussian
conditioned on Hy, with parameter o).

* Elexp(AXk) | Hi] < exp(Avg) forall 0 < X < ;- (e.g., X}, is nonnegative and subexponen-
tial conditioned on H;, with parameter vy).

Then, the inequality

Elexp(AVis1)] < exp(A(v + ) B [exp (A (1 5 V’“m

holds for all 0 < X\ < min { 1oy i}

202 ? 2
Now we prove Proposition 3. Recall that we let vy = Gy, (zk, Vk+1). We have
[ [ [P —g

|17 = 20k (ks ke — &) + it on?

= 2yl — 2|7 + 2008 1 (1 + o — 217 + llvesa 1)

= ||z —x
< g — a*|?
— 21 Wagr, ok — &) + Oy (1 + [lae — 2% + vria 1)
< (1= ymg) ok — %) = 2001 (g1, g — 27)
+ 3077134—1 Ve l)® + 307713-4—17
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where the first inequality follows from Assumption 7 and the second inequality follows from the
upper bound on 7). Define
Tp—a* *
o= { T TRFT
0 otherwise

Note that 21,11 Vg1, Yk) is mean-zero sub-Gaussian conditioned on Fy, with parameter 7410,
and 3Cn}.||vk+1]]? is sub-exponential with parameter 3¢cCn7, ;0. We can apply Proposition 12
with
Vi = ok — 2™, ox=1—79mt1, Dk = —2nk41 Vi1, ¥r)
and
Xk = 3CT]1%+1HVk+1||27 Kk = 3C771%+1-

Recalling C' = 3¢Co? + 3C we have from Proposition 12 that

Elexp(Alzps1 — 2*%)] < exp(ACn1)Elexp(A(L = vikg1/2) |k — 2*[)] (€1

forall 0 < A\ < min { 7 1 } =1 Define

k1027 6CE 0% [T 2npyao”

o [T =) i<
i 1 i=j+1.

Applying (C.1) recursively, we deduce

Elexp(Max — 2° )] < exp (Apfllo — 2*2 + AC (S, b)) (€2)
_1-(1/2)t~e .
Recall that C,, = —{-a By Lemma 20, for 1 <i < [k/2],

pF < exp(—Coyn(k +1)'79). (€C3)
Consequently, we have
~ k 5 k/2 k
AC (Zz‘:1 pfﬂﬁ?) =AC (ZZL:Q : p?ﬂ??? + Zz‘:Lk/QJH P§+177¢2)
< AC (exp (=Caynlk + 1)) 2 72 + S5 oy 1)

< ACn? <<1+ .

> exp (—Ca’yn(k -+ 1)1—04) + Wkl_2a>,

=Hy,

200 — 1

where the first inequality follows from (C.3) and the fact that p¥, ; < 1, and the second inequality
follows from Lemma 21. By (C.2), we have

Elexp(A||zx — 2*]|)] < exp (AeXp(—Cawkl_“)llxo —*|* + ACUQHk>

By our assumption on k, we have

(=9

exp(—Coynk'™®)||zo — 2*||* < and On’Hy < —.

0
1

W
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Then, by Markov’s inequality, we have

P(llzx — 2™ = 6) < exp(—Ad)E[exp(Al|zy — 2|])]
< exp(—Ad/2)

Note that by taking A = m, we have
v(k+1)%6
P —z¥| > < SEASLEE e C4
(o =] 2 9) < exp (<250, 4
which is summable. Combining, we have
P(llei — a*|| < 6,Vi > k) > 1= 322, P([lai — 2*|] > 9)
“5
>1- 32 exp (—24E07)

32n%ctexp <—M) 8162V kexp (—MNE)

4no? 4no?
>1

where the first inequality follows from the union bound, the second inequality follows from (C.4),
and the last inequality follows from Lemma 23.

Appendix D. Proofs of Theorem 4

Lemma 13 Let 3, be defined as in (1.4). Suppose that Assumption 6 holds. Then we have
E[Hinuop] S 4Cu;,n.

Proof Note that

. : T
$ > ic1 (Zkzti Tk — lijn) (ZZ:ti Tk — liin)

" Z?:l li
Sy (S (o~ %) ~ i — 7)) (S, o — %) — b — 27))
>ic li ’

we can without loss of generality assume that z* = 0 and E[||zx|3] < Cub for all & > 0. Note that
by Jensen’s inequality, E[||2% 2] < Cup. We have

S Bl ey, i — L 3]
Z?:1 li
_ 2z li Xy, Elllok = Za]
B Dol
n 2
G 1

E[l[Snllop] <

i=1"
T Yk

< 4:C'ubn7
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where the first inequality follows from triangle inequality, the second inequality follows from Jensen’s
inequality, the third inequality follows from E[||x% 3] < Cub, and the last inequality follows from
l; <1 < n. The conclusion then follows. |
Now we prove Theorem 4. By Proposition 3, for any ks = 1 and n > ks, we have

32n%ctexp (—anva’gs) 8ndvksexp (—angs)
+
7202 gl

P(ri, 6 <n) <

For n 2 1, taking ks =< log?n so that P(7;_ s < n) < n™2, we have

E[|2n = Zllop] = E[l|Xn — Zllopley, s>n] + E[|2n — Zllopla,, s<nl]
(a—1)B
Siog VAM ™3 + VM 277 4 nP(r 5 < n)
<VAM™3 4 VA

fe-pyp1

< Vdn~ % 4 Vdn~ ,

where the first inequality follows from Theorem 1 and Lemma 13, the second inequality follows
from P(7, s < n) < n~2, and the last inequality follows from n ~ M.

Appendix E. Extra assumption verification for stochastic approximation

The following proposition shows that under convexity (monotonicity), Assumption 6 holds for all the
stochastic approximation algorithms in Section 5.

Proposition 14 Suppose that the variational inclusion problem takes the form of (5.1), and Assump-
tion 4 and 5 holds. Moreover, suppose that A is a Lipschitz and monotone map and we are in one of
the following scenarios:

1. One applies the stochastic forward algorithm to the case f = 0 and g is Lipschitz and convex.

2. One applies the stochastic projected forward algorithm to the case f is the indicator function
of a closed convex set X and g is Lipschitz and convex.

3. One applies the stochastic forward-backward algorithm to the case f is Lipschitz in its domain
and g = 0.

Then Assumption 6 holds.

Proof Note that the first scenario is a special case of the second one, we only prove it for the second
and third cases.

Stochastic projected forward algorithm. By the definition of z*, there exists v* € dg(z*) and
w* € Ny (z*) such that
0=A(z") + v* 4+ w*.

By monotonicity of A and convexity of g, for any z, and s, (z) € Og(z), we have

(A(zg) + sq(zk) + 0™, 2 — %) = (A(zg) + sg(xk) — A(z™) —v*, 2 — 2%) > 0.

33



JIANG ROY BALASUBRAMANIAN DAVIS DRUSVYATSKIY NA

Note also that w* € Ny (z*), we have
(A(zg) + sq(zk), o — %) > — (W*, 2 — %) > 0. (E.1)
As a result, there exists some constant C' > 0 such that
E[|| P (xx — 1 (Azx) + sg(@x) + viyr)) — 23]
< Efl|zr, — mer1 (Alwr) + sg(zx) + virr) — 3]
<E

[l = 2*[1*) = 2 B[ A(r) + sg(xk) + Vi1, 2 — )] + Onj g (1 + Efl|zy, — 2*(13])
(1 + Cng ) Elllzy, — 2] + Cni s,

Efl 2k — a*|3]

IN

where the first inequality follows from the fact that Py is 1-Lipschitz, and the last inequality follows
from (E.1). The results then follow from Lemma 26.

Stochastic forward-backward algorithm. By definition of z*, there exists w € df(x*) such that
0= A(z") + w*.

x;: —Prox,, .y (m;:)
Mk+1
property of the proximal operator, we have w,j € of (a:z) Moreover, by monotonicity of A and

convexity of f, we have

_l’_

For any xj, we denote z — M1 (A(xg) + vk11) by a:;: and by w,". By the

(A(z) +wif af — o) = (A(a) + wjf — A(a™) —w*, 2 —2*) > 0. (E.2)

Next, we bound ||z11 — z||. By definition of x4 and Lipschitz property of f and A, there exists
some constant C' > 0 (may change from line to line) such that

1

5 l@pi1 — 2ill3 < flar) — flapsr) — (A@g) + Vg1, Trgr — k)
Nk+1

< OO A [log — 2™z + vk ll2) lze 41 — zill2-
As a consequence, there exists a constant C' > 0 such that
@kt = zpllz < O (1 + Jlze — 2%l2 + [V ll2)- (E.3)
In addition, by Lipschitz continuity of A and f, there exists some constant C' > 0 ) such that
o — 2 [l2 < Cirgr (1 + o — 2|2 + g ll2)- (E4)
As aresult of (E.3) and (E.4), there exists a constant C' > 0 such that

1
Jw; |2 < m(\\wk —afll2 + |pg1 — 2xll2) < O+ ok — 2|2 + lvrgall2)
+

Consequently, there exists a constant C' > 0 such that

Elllzis1 — 2*|3] = Elllzr — 2* — ne1 (Alzr) + visr + wid)|[3]
= E[||ar — 23] — 21 E[(wr — 2%, A(zg) + wi )] + Cp 1 (1 + EfJay, — 2*|3]).
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Next, we show that 2n; 1 E[(zy — 2*, A(z) + wj )] is lower bound. By (E.2), we have

2nk+1E[< xp —x*, A(zg) + wk>
=201 (E[(zy — 2, A(zr) + 0] + Ezf — 2%, Azi) — A(2f))] + E[(z) — 2%, A(zf) + wi)])
> =241 (Elllew — o 2l Azn) + w ll2] + Elllay — 2™ 2| Alzr) — A(z)2])-
() (1)

We bound (/) and (I1) separately. By Holder’s inequality,
1 1
(1) < (Elllex — 2™ (13) 2 (Bl Axr) + 1wyl [13))2
< Ot (1 + E||zy, — 2*[|)),
where the second inequality follows from (E.4). On the other hand,
(I1) < C - E[llzyf — a*|l2llwx — 2 2]
< O(E[llzx — 2 [I5] + Elllax — *[l2llax — 27 ]|2])
1 1
< C (Ellax - 2 13) + (Ellwx — 2 |3)% Ellloy - 2F118)?)
< Cper (1 + Effleg — 2*[13)).
Combining, We have
201 E[(zy, — 2%, Alwr) +wi)] > =Cnpeyr (1 + E||zy, — 2*[[3]).

Consequently, there exists constant C' > 0 such that

Ellzesr — 23] < (1+ Cngy)Elllar — 2*[°] + Cnys.

The results then follow from Lemma 26. |
The following proposition shows that under strong convexity (monotonicity), Assumption 7
holds for all the stochastic approximation algorithms in Section 5.

Proposition 15 Suppose that the variational inclusion problem takes the form of (5.1). Assume that
A is strongly monotone and Lipschitz. Suppose we are in one of the following scenarios:

1. One applies the stochastic forward algorithm to the case f = 0 and g is Lipschitz and convex.

2. One applies the stochastic projected forward algorithm to the case f is the indicator function
of a closed set X and g is Lipschitz and convex.

3. One applies the stochastic forward-backward algorithm to the case f is Lipschitz in its domain
and g = 0.

Then Assumption 7 holds.

Proof Since the stochastic forward algorithm is a special case of the stochastic projected forward
algorithm, it suffices to prove the result for both the stochastic projected forward algorithm (case 2)
and the stochastic forward-backward algorithm (case 3.)
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Stochastic projected forward algorithm. Recall s, is a selection of Jg. There exists some
constant C' > 0 (it may change from line to line through the proof) such that

x — Py(x —n(A(z) + s¢g(x) + v))
n

< [[A(z) + sg() + 7|2

<O+ lz—a2*2),

1Gy(z, V)2 =

2

where the first inequality follows from the fact that Py is 1-Lipschitz and the second inequality
follows from the Lipschitz continuity of A and g. Item 2 follows. On the other hand, by the definition
of x*, there exists v* € dg(z*) and w* € Ny (x*) such that

0=A(z") + v* +w*.

By strong monotonicity of A and convexity of g, there exists v > 0 such that for any x and
sq(x) € Og(x), we have

(A(z) + sg(x) + w*, @ — 2*) = (A(z) + sg(x) — A(z*) — 0",z — 2*)
> |l —2*|3.
As aresult of w* € Ny(z*), we have
(A(z) + s4(x), 2 — 2*) = 7llzy, — 2*[3.

xt —Pxy(z1)

Next, we denote x — n(A(z) + sy(x) +v) by 2T and :

Gy(z,v) = w+ A(x) + s¢(x) + v, so we have

by w. Note that w € Ny (z) and

Jwll2 < CA+ |lz — 2|2 + v).
Therefore,

<G77($7V) —VT— .CU*> = <w + A($) + Sg(x)ax - ZC*>
> vz — z*|]* + (w,z — 2) + (w, 2zt — 2*)
> olle = 2P + (w,z — 2,

where the first inequality follows from E and the second inequality follows from w € Ny (z"). Note
also that

o =" lle < Cn(1+ [lz = 2712 + [[v]]2),

we have
[(w,z = 2T) | < [Jwll2llz — 242 < Cn(1+ [l — 2*[|5 + [[v]|3)-

Combining, we have

(G, v) = vz —a%) 2 yfle = 2| = On(1+ o — 2[5+ [v]2)-
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Stochastic forward-backward algorithm. First, we bound ||G,,(x, v)||2. By definition of proximal
operator and Lipschitz property of f and A, there exists some constant C' > 0 (may change from
line to line) such that

gIIGn(% V)3 < f(a) = f(z = nGy(z,v)) +1{A(@) + v, Gy(z,v))
< OnllGy(z,v)ll2(1+ llz — 2*[l2 + [[v[|2)-
As a consequence, there exists a constant C' > 0 such that
1Gy(z,)]2 < CA+ [z — 2%[2 + [[v]]2)- (E.5)
Therefore, item 2 follows. Next, by the definition of *, there exists w* € 0 f(z*) such that
0= A(x*) + w*.

+—prox, ;(z1)

For any x, we denote  — n(A(z) + v) by 2t and = by w™. By the property of the

proximal operator, we have w € df(x™). Moreover, by strong monotonicity of A and convexity of
f, we have

(A(z®) +wt, 2™ —2*) = (A@@h) + wt — A(z*) —w*, 2" — 2*)
> yllat - 2*|2 (E.6)
In addition, by Lipschitz continuity of A and f, there exists some constant C' > 0 ) such that
Jz =22 < Cn(1 + [l — 2*[|2 + [[¥]2)- (E.7)

As aresult of (E.5) and (E.7), there exists constant C' > 0 such that
1
lw ™2 < EHHJ — a2 +IGy(z, v)]l2 < C(A + [lz — 2¥|l2 + [[V]l2)

Note that G (z,v) = wt + A(z) + v, we have
(Gy(z,v) — v,z — %) = (wh + A(z),z — =)
= (A(z) — A(z™),z — ")+ (w' + A(z™h), 2" — ") + (w" + A(z™),z — a™).

(D) (I1) (I11)

We lower-bound each term separately. By Lipschitz continuity of A and (E.7), we have
I(D)ll2 < CA+ o = a* (3 + [v[I3)-
By (E.6), we have
(11) = Ala* — 2*||?

> e = 2*3 = 2]las - @ll2llz — 2*2

> llz — 23 = C(1+ |l — 23 + [[v]3)-
Moreover,

1Tz < ([w[l2 + [Az) )]z — 272
< CO+lz =23 + IIv]2),

where the last inequality follows from the Lipschitz continuity of A and (E.5). The results then
follows by combining (1), (I1), and (I11). (]
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Appendix F. Technical lemmas
Recall that for a given index k£ > 0 and a constant § € (0, 1), the stopping time is defined as
Tk = inf{l > k: x; ¢ Bs(x™)},

which is the first time after k that the iterate leaves Bs(z*). Now, define Dy := dist(xy, M),
vy := Gy yy (g, Vgy1) for all & > 0. In what follows, C' denotes constant and may change from line
to line.

Lemma 16 Suppose that Assumptions 2, 3, and 4 hold. If o € (1/2,1), then for any sufficiently
small § > 0, any ks > 0, there exists a constant C depending on 0, ks and o such that for any
l Z S Z ks,
l l
Zk:s E[Dl?zlﬂcs,é>k] < Ckga Zk:s nl%

since the cases

1/(1—a)
Proof First, we note that it suffices to show the result for all ks > (i—%)

1/(1-a)
) * can be handled by enlarging C properly. Define A, := {73, s > k} for all

when k, < (47&
un

k > ks. We require that 0 is small enough so that Bs(z*) is contained in the neighborhood where
Assumption 3 holds with probability 1. Note that we require ks (or 1) to be large enough so the
conclusions of Lemma 22 holds for all £ > k. We first prove a recurrence relation satisfied by the
sequence Dy. To that end, recall the update rule (3.3), for all £ > 0, when z, € Bs(x*), we have

Dl%+1 < zrg1 — Pu(zr)|?

= ||z — Mryrvr — Pum(r)
= [lzx = Pralan)|1? = 2041 (vr, 21 — Paa()) + mitga [lowll?
< Dj — 201Dy + 201 (1 + [[veg1 [|)*0(Dy)

— 2041 (Whs1, 2k — Pralan)) + C(L+ s ) niss s

=B 11

I

FED

where the second inequality follows from Assumption 2 and Condition 2 of Assumption 3. Note that
the bound Ey[||vk11]/*]14, < ()14, implies that there exists C' > 0 such that

Ex[Brt1]la, < C,

meaning the conditional expectation is bounded for all .. Moreover, by shrinking ¢ if necessary, we
have

Exl(1+ v )0(Di)1a,] < § Dila,
Thus, for each k£ > kg, we have
Ek[Dl%+11Ak+1] < Ek[Dlz+11Ak]
< Dila, — pmie1Dila, + Cniyy (F2)

where the first inequality follows from 14,,, < 14,, the second inequality the assumption that {v} }
is a martingale difference sequence and Ay, is F; measurable. Taking expectations on both sides, we
have

E[D} 11a,,,]) < E[D}14,] — pn1E[Dyla,] + Cniy 1. (E3)
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Summing (F.3) from k£ = s to [ and using Lemma 17, we have

! ! ! !
> s Mot 1E[Dpla, ] SE[DI14,] 4+ >, 771%+1 S kens + D p—s 771%4-1 SkS D s 771%+1(F'4)

On the other hand, when x, € Bs(z*), we have

Dy < ok — migrvr — Pz |*

= Dj — 41 (ve, 2 — Pralar)) D3+ loell* + 207 1 DE|okll3 + 404y (g, 21, — Pra(zr))”

— Ay (i, 2k — Pralar)) [|og)? (E.5)
< Dy, — A1 D + 401 DR (1 + |vis1 1) o(Dr) — 4ns1 (Vi1 @ — Pam(ar)) D+ mg [Jve|*
+ 6031 Dillvell* + 4mjt D [Joe|?, (E.6)

where the equality (F.5) follows from expanding the fourth power directly and the estimate (F.6)
follows from Conditioning 2 of Assumption 3 and Cauchy-Schwarz inequality. Thus, there exists
constant C' > 0 such that for each ¢ > 0, we have

Ek[D%+11Ak+l] < Ek[Dé+1]‘Ak]
< Dé]‘Ak - 2/“”7]€+1D]?‘1Ak + CT]I%—HDl%lAk + 0771%+1D/€1Ak + Cnl%—&-l

< (1= pnes1)Dpla, — pner Dila, + Cjppy DRl a, + Cni oy Dila, + Cnjpyy,
(F7)

where the first inequality follows from 14, b S 1y, the second inequality follows from the
assumption that {v,1} is a martingale difference sequence, our choice of d, and the bound on the
fourth moment of v;, and the third inequality follows from the assumption that § < 1. By Lemma 22,
for all £ > kg, we have
L — i1 < %
M

Taking expectation and dividing both sides of (F.7) by 77,3 41, We have

2
Me+1

E[D4 14 ] ED41A
S < | - oy 0 E[D}14,] + CE[D}14,] + CnjpiaE[Dy1a,] + CrZ(ES8)
Me+1 M Me+1

For any index | > s > kg, summing (F.8) from s to [, we have

E[D{14,]
Zi@:s nTl_'_lE[Dl?;lAk] < 2 +C (ch:s E[DlzlAk] + ch:s nk+1E[Dk1Ak] + ch:s T’I%—Q—l)

< Zi::s E[DlzlAk] + k?a ZL:S 77]%+17 (F.9)

where the second inequality follows from Lemma 17 and the estimate (F.4). Combining (F.4)
and (F.9), we have

Zic:s E[DlzlAk] < \/Zi’:s 77k+1E[Dk1Ak] ’ Zf’c:s ﬁE[DglAk]

l l l
Sk S R, + Y E[DR LA,
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where the first inequality follows from Holder’s inequality. Simple calculation yields
l !
D k—s E[DlzlAk] Sk > k=s ?7;%+17
as desired. |

Lemma 17 Suppose that Assumption 2, 3, and 4 hold. Then for any sufficiently small § > 0, there
exists a constant C' > 0 such that for any ks > 1, and any k > kg,

E[Dlzlfks,aﬂf] < Ck???k, E[Dél‘rks,aﬂf] < Ckganl%'

Proof We require that ¢ is small enough so that 6 < 1 and Bs(z*) is contained in the neighborhood
where Assumption 3 holds with probability 1. Define Ay, := {73, s > k} for all k > k. Following
the calculation in (F.1), we obtain (F.2). Consequently,

Ex[Djy11a,,,] < Dila, — pnps1Dila, + Cnjpyy
< (1 - M77k+1)D1%1Ak + 077]%—1—17

where the second inequality follows from § < 1. Taking expectations, we have
E[D 114,,,] < (1 = pey1)E[D14,] + Oty
By Lemma 24, there exists a constant C' such that for any k& > kg,
E[D{l4,] < Ck2n.
On the other hand, by the same argument of the proof of Lemma 16, we have (F.7), which reads
E[Djps1la,,] < (1= pksr) Dila, — ey Dila, + Cnity Dila, + Oy Dila, + Crjiyy.

Note that there exists a constant C depending only on p and C' such that when Dy, > C’nk+1, we
have
—;mk+1D21Ak + 077,%+1D,%1Ak + Cﬂ1§+1Dk1Ak <0.

When Dy, < C’nk+1, we have
—pk1 Dila, + Cni 1 Dila, + Cniy Dila, < (CC° 4+ CC + C)ijjyy.-
Therefore, by enlarging C' if necessary, we always have
B [Djy11a,,] < (1= prga) Dila, + Oy
Taking expectations, we have
E[Djy11a,,,) < (1= pmei1)E[Di1a,] + Cjeyy.
By Lemma 24, there exists a constant C' such that for any k& > ks,

E[Dj1a,] < Ck*n}.

We have the following lemma for the size of E}.

40



ONLINE COVARIANCE ESTIMATION IN NONSMOOTH SA METHODS

Lemma 18 Suppose that Assumption 1 — 6 hold. Let § > 0 be small enough so that Assumption 1
— 3 hold inside Bs(x*). For any k > 0, we have

5 \2
BB S (2) +8°+ Cu
Mk+1
Additionally, for any ks > 0, and j > i > ks, we have

?g:iE[”EkH%]lTks,a>k] S Zi:z k?“ni

Proof By definition, we always have

Yk+1 — Yk
T2 4 Fru(ye) + Pryy ) ()
Ne+1

2]

2
5 2

() L8+ Cup

Nk+1

where the last inequality follows from y € Bys(z*), the smoothness of Fy(, and Assumption 5
and 6. On the other hand, by (Davis et al., 2025, Proposition 6.3, item 2(a)), we have

E[|Ex|3] =E

<

)

1Exll21r,, s>k S (1 + loel®) (D + ). (F.11)
The estimate F.10 then follows from Assumption 4 and Lemma 16. ]

Lemma 19 Suppose that Assumption 1 — 6 hold. Let 6 > 0 be small enough so that Assumption 1
— 3 hold inside Bs(x*). For any ks > 0 and k > ks, we have

2
Efllye — (|51, k] S K202, p=1,2,4
Proof Note that

lYk+1 — 1‘*||311ms,5>k
= llye — Mo 1 Fr (k) — Mot Proyye) Vi) + i1 B — %1515, s>k
< lyk — 23 1ry, 55k — st Yk — 25 Fat(Wi) + Pry o) W) — Ei) lye — 2310, s>k

+ 607 1 llyk — 31 Faa(ur) + Prygo) (k) — Bill31s,, 5>k

+4nillyk — 220 Faa(yr) + Pryyye) () = Brll3le, sk + M1 |Frm(r) + Pry ) = Brll31e, sk
< lye — 21300, 5ok — 41 (Uk — 2% Fat(Uk) + Pro o) W) — Bi) llyk — 21510, 5>k

)
+ 801 lyk — 231 Fam (W) + Prosp) W) — Bill3 Ly, 55k + 30 1 1 FEM k) + Pryge) (Vk) — Exllale, s>k,

(11) (I11)

where the first inequality follows from direct expansion and Cauchy-Schwarz inequality, and the
second inequality follows from Young’s inequality. Taking expectations, we have

Elllyr+1 — 21317, s>k) < E[(D)] +E[ID)] + E[(II])].
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We bound the terms separately. By Assumption 1 and the inequality of arithmetic and geometric
means, we have

Ee[(D)] = Exlllyr — 2*15Lr, sk — 40641 (b — % Faa(ye) Lo s>k — Ex[ER]) e — 2% )13 10, s>4]
< (1= 4ymer) gk — 213 0ry_ s>k + A1 Bl Brll2llye — 2*[|3 17, 555]

81
< (U= ymes)llge = @13 Ln o+ Vil = 27150, ook + 5 ERIER] 30, 5]

81
< (1 =3yt gk — 2|5 lry, 5ok + $77k+1Ek[HEk||3117ks,5>k],

Taking expectation, using (F.11), and applying Lemma 17, there exists constant C' such that

81
E[(I)] < (1 = 3yme41)Elllye — 2* (1517, 55k + ?Uk+lE[||Ek||z21]lrks,a>k]
< (1= 3ym41)Elllyr — 2515, s5k) + CEIniy .
Similarly,

(11) < 2415 llye — 2 I3UEM @) 13 + 1 Pry ) @3 + 1ERII3) L, 551

< (24L3Vt + 12)77]%+1Hyk - x*||§ﬂTk5,5>k + 1277]%+1||Ek“%]17k5,5>k

144
+ 777k+1||yk - $*|’%1Tks,5>k + 777]%4-1HPTM(yk)(Vk)H%]lms,5>ka

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows
from Lipschitz continuity of F'yq and Young’s inequality. Taking expectation, and using (F.11), and
Lemma 17 and Assumption 5, there exists a constant C' such that

E[(I1)] < (24L% + 12)0 1 Elllye — 21315, s54] + Ok 1 + v Ellyr — 21215, s5k] + Onys.-

Moreover, using Jensen’s inequality, (F.11), and applying Lemma 17, there exists a constant C' such
that

E[(111)] < 8103 Bl Faa(yi) 13 1ry, 55k] + 810k Bl Prys ) )5 15y, s5k] + 810 B[ Bill31r, 55k]
< C'771%+1 + Ck’gaTIIZJFr

Combining and using the fact that ksn, 1 < 1, we have

Elllyesr — 2™ [31n, sore1) < (1= 20041 + (24L% + 12073 ) Ellyn — 2”131, son] + CRZ0R45.-

2 1/a
As aresult, for any & > max {k;s, (77(2&7@12)) } we have

Ellyis1 — 1215, s54) < (1= vims)Elllye — 21217, s>5] + CRZn341.-

(77(24L3\4+12)>1/04

By Lemma 24 and the fact that is a constant, there exists constant C' such that

Elllye — 2*(131r,, s>k < CK207, Yk > k.

This resolves the case when p = 4. The other two cases follow from Holder’s inequality. ]
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Appendix G. Auxiliary lemmas

Lemma 20 Define

= i (L—) i<y
! 1 =7+ 1.
Then for any j > 1,

- (G + 11— )
ot <o (M)

Proof Note that

log(p]) = >27_;log (1 — )

— 2 k=i
J+1
< _ “Ydx
2 Ji
G+ =it
2(1 — )

Lemma 21 Forany o € (%, 1) and 1 <1 < j, we have
R B e R e Al
Proof Note that

DY e D DT
o
<1 —|—/ 2y

1
=1 -1—2a‘
T o1

1/(1-a)
Lemma 22 Ifo € (L,1), then for all k > (I%;) , we have

T g
M1 M
Ifa=1andn > %, then the same inequality holds for all k > 1.

Proof Note that n, = nk~“ by Assumption 4, it suffices to show that

1—punk+1)~@ 1
< .
(k+1)"2¢ — k20
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Equivalently, we show that

(E+1)% — un(k + 1)* < k> (G.1)
Note that
1\ dau
1+-) <1+ —
(1ep) =1
pn(k +1)*
Sl‘i‘Ta

where the first inequality follows from the fact that (1 + 2)?* < 1 + 4ax for all & € (1,1] and
x € (0, 1], and the second inequality follows from our assumption on k and 7, for the cases a € (%, 1)
and o = 1, respectively. Rearranging it, we obtain (G.1). ]

Lemma 23 Leto € (%, 1) and C' > 0. Then for any k > 0, we have

dicpexp(=C(i+1)%) < 2‘3"1’(520\/%) I 2\/Eexpé—c\/é)
Proof Note that
Spexp(=C(i +1)%) < 3, exp(=C(i +1)1/?)
< /koo exp(—Cz'/?)dx
< /OO 2uexp(—Cu)du

Vi
_ 2exp(—CVk) i 2V Ekexp(—CVE)

C? C ’

where the equality follows from the standard calculus calculation using integration by parts. ]

Lemma24 Leta € (0,3), 6 > o, c; > 0, co > 0, and c3 > 0 be constants. Let {s} be a

sequence such that 0 < s, < c3 for all k > 0. Suppose that there exists kg > 0 such that

sk1 < (L—c1(k+1)")s +ea(k +1)7%, Wk > ko. (G.2)

f—a
Let C' = max {03, c3 (2(967:0‘)> e ’cl(k02+621)9‘"} . We have

sp < Clko 4+ 177k +1)"0=9) vk > k.

1
Proof We first show that the desired bound holds for all the kg < k < max { (2(970‘)) e kzo}.

Note that s, < c3, it suffices to show

20 — o)\ o
C(ko + 1)9_a (max { (oz) ,k:o} + 1) > c3,
c1
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which holds by our assumption on C. Next, we apply induction to prove the bound for all & >
1 1
M) e ko} . Suppose that the bound holds for some k& > max { (M> e k:o}.

max { ( 1 C1
By (G.2), we have

sii1 < Clho + 1)k + )70 —¢,C(ko + 1)k + 1) + ca(k +1)7°
< Clko+1)07%(k +1)~(0=) _ %(ko + 1)k +1)77

= O(ko + 1)P=%(k + 1)~0—) (1 _ %(k + 1)—0) ,

where the second inequality follows from the lower bound on C'. In addition, simple calculus shows
0—a
that for any z € [0,1/2], (1 — z)=* > 1 — 2(f — a)z. Therefore, <1 — ﬁ) >1— 2(0—a)

k+2
By the lower bound on k, we have

200 —
p_20=a) >1—%1(k+1)*a.

k+2 T
Combining, we have
i1 < Clko +1)07%(k + 2)~ (0=,
The result follows. |
Lemma 25 ((Zhu et al., 2023, Lemma A.2)) Forany j > i, we have
[EAPSE
Lemma 26 Let {1} ) be a nonnegative sequence satisfying
Tpp1 < (14 Cr(k +1)72) 2y + Co(k + 1) 72,

where C and C4 are positive constants, and o« € (1/2,1). Then, there exists a constant C' depending
on C1, Cy, a and xq such that xy, < C holds for any k > 0.

Proof We begin by unrolling the recurrence. For any k > 0, iterating the inequality gives
tran < T (L4 C1G + 1)) w0 + Sy (T (L4+ C1(G +1)72)) Cali+ 1) 72

To bound the products, we use the inequality log(1 + u) < u for all w > —1. Hence,

H?:iﬂ (1+C1(+1)72) <exp (Cl Z?zi+1(j + 1)2(1) < exp (Cl > 21 j2a> =M.

Since o > %, we have 2« > 1, and the series Z;’il J —2a converges; hence, M < oo.
Using this bound, we deduce that

Thtr1 < Mxo+ MCo Z?:o(i + 1)7204.

Setting C' = M (z¢ + Co Zfzo(i + 1)72%) concludes the proof. [
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