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Abstract

We consider applying stochastic approximation (SA) methods to solve nonsmooth variational

inclusion problems. Existing studies have shown that the averaged iterates of SA methods exhibit

asymptotic normality, with an optimal limiting covariance matrix in the local minimax sense of

Hájek and Le Cam. However, no methods have been proposed to estimate this covariance matrix in

a nonsmooth and potentially non-monotone (nonconvex) setting. In this paper, we study an online

batch-means covariance matrix estimator introduced in Zhu et al. (2023). The estimator groups

the SA iterates appropriately and computes the sample covariance among batches as an estimate

of the limiting covariance. Its construction does not require prior knowledge of the total sample

size, and updates can be performed recursively as new data arrives. We establish that, as long as

the batch size sequence is properly specified (depending on the stepsize sequence), the estimator

achieves a convergence rate of order O(
√
dn−1/8+ε) for any ε > 0, where d and n denote the

problem dimensionality and the number of iterations (or samples) used. Although the problem

is nonsmooth and potentially non-monotone (nonconvex), our convergence rate matches the best-

known rate for covariance estimation methods using only first-order information in smooth and

strongly-convex settings. The consistency of this covariance estimator enables asymptotically valid

statistical inference, including constructing confidence intervals and performing hypothesis testing.
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1. Introduction

A landmark result by Polyak and Juditsky (1992) shows that for smooth and strongly convex opti-

mization, Stochastic Gradient Descent (SGD) exhibits a central limit theorem: the averaged SGD

iterates with a proper scaling factor converge to a normal distribution; see Toulis and Airoldi (2017);

Duchi and Ruan (2021) for extensions and Anastasiou et al. (2019); Shao and Zhang (2022); Sam-

sonov et al. (2024) for quantitative non-asymptotic bounds. Recently, Davis et al. (2024) extended

this result to nonsmooth problems, showing that when solutions vary smoothly with respect to

perturbations, the averaged generic stochastic approximation (SA) iterates remain asymptotically

normal. This limiting distribution paves the way for constructing confidence intervals and statistical

tests, critical tools for uncertainty quantification in machine learning and optimization. However,

to perform (asymptotically) valid statistical inference, we need to estimate the covariance matrix

of the limiting distribution. While efficient online estimators are well understood in the smooth

setting, estimation in the nonsmooth setting has remained completely open. In this paper, we de-

velop an online estimator with computation and memory scaling quadratically in dimension, and

establish its rate of convergence in expectation (matching the smooth setting).

The theory encompasses many important problems in machine learning and operations research.

Consider a two-player zero-sum game. To find the Nash equilibrium, the two players aim to solve:

min
x1∈X1

max
x2∈X2

E
ν∼P

[f(x1, x2, ν)],

where f(x1, x2, ν) is a random payoff function and X1,X2 are strategy sets. Players update their

strategies based on noisy observations, projecting onto their respective strategy sets. Another example

is stochastic nonlinear programming; we solve:

min
x

E
ν∼P

[f(x, ν)] subject to gi(x) ≤ 0, i = 1, . . . ,m, (1.1)

where the objective depends on random data. Both settings, along with many others, can be unified

through stochastic variational inequalities of the form:

0 ∈ F (x) := E
ν∼P

[A(x, ν)] +NX (x), (1.2)

whereA(·, ν) is a smooth operator for each ν, andNX denotes the normal cone to the constraint set X .

Throughout, we fix a solution x⋆ of this inclusion.

To solve the above problems in an online fashion, we consider SA algorithms based on a general-

ized gradient mapping, G : R++ × R
d × R

d 7→ R
d, of F . Given x0, the algorithm iterates as

xk+1 = xk − ηk+1Gηk+1
(xk, νk+1), (1.3)

where ηk+1 > 0 is a stepsize sequence and νk is stochastic noise. As we show in Section 5, this frame-

work unifies many online algorithms – in games it captures simultaneous gradient play; in constrained

optimization it yields projected gradient methods; and more generally, it encompasses stochastic

forward-backward splitting.

Davis et al. (2024) showed that when solutions to the perturbed system vary smoothly – that is,

when the graph of the solution map S(v) = {x : v ∈ F (x)} locally coincides with the graph of some

smooth function σ(·) – the averaged iterates of (1.3) are asymptotically normal:

√
k(x̄k − x⋆)

D−→ N(0,Σ),
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where x̄k =
∑k

i=1 xi/k and Σ = ∇σ(0) · Cov(A(x⋆, z)) · ∇σ(0)⊤. For example, in stochastic

nonlinear programming (1.1), A(x⋆, ν) = ∇f(x⋆, ν) and ∇σ(0) takes a particularly elegant form

∇σ(0) = (PT∇2
xxL(x⋆, y⋆)PT )

†,

where (x⋆, y⋆) is the primal-dual solution of (1.1), L(x, y) = f(x)+
∑n+m

i=1 yigi(x) is the Lagrangian

function, and PT projects onto the tangent space of active constraints at the solution x⋆.

In order to leverage the aforementioned result in practice to construct confidence sets, it is required

to estimate the asymptotic covariance matrix Σ. The batch-means estimator (Lahiri, 2003; Flegal and

Jones, 2010) from the larger Markov chain literature has been recently adapted in the literature for

developing online estimators of Σ; see, for example, Zhu et al. (2023) and Roy and Balasubramanian

(2023). The key idea is to divide the iterates into blocks of increasing size, with each block providing

an approximately independent estimate of the covariance matrix. The block sizes are carefully chosen

to balance the bias-variance tradeoff while maintaining the desirable convergence rate. Specifically,

let {am}m be a strictly increasing sequence of integers with a1 = 1. For any k = 1, 2, . . .,
we construct a block Bk consisting of the iterates {xtk , xtk+1, . . . , xk} where tk = am for k ∈
[am, am+1). Let lk = |Bk| denote the size of the block Bk. After n iterations, the batch-means

covariance estimator is given by:

Σ̂n =

∑n
i=1

(
∑i

k=ti
xk − lix̄n

)(
∑i

k=ti
xk − lix̄n

)⊤

∑n
i=1 li

. (1.4)

Zhu et al. (2023) showed that for SGD with i.i.d. data stream, Σ̂n (asymptotically) consistently esti-

mates Σ with a convergence rate of order O(n−1/8). Subsequently, Roy and Balasubramanian (2023)

extended this result to Markovian data. However, these limited existing works on online covariance

estimation for first-order methods apply only to smooth and strongly convex problems, and their

analyses do not apply to generic iterations as in (1.3).

Main Contribution. Our main contribution is to show that, despite significant complexity intro-

duced by nonsmooth geometry, we can achieve the same convergence rate as in the smooth case using

the same covariance estimator (1.4). In particular, we establish that under reasonable conditions and

with a properly chosen batch size control sequence {am}m, the online batch-means estimator Σ̂n in

(1.4) with generic SA iterates (1.3) satisfies

E∥Σ̂n − Σ∥2 = O(
√
dn−1/8+ε) for any ε > 0.

We also emphasize that when applying our result to stochastic optimization problems, the objective

does not need to be strongly convex or even convex. This is in contrast with all existing works that

heavily rely on global strong convexity (Chen et al., 2020; Zhu et al., 2023; Roy and Balasubramanian,

2023). Our analysis addresses the following main challenges:

1. Due to the nonsmooth nature of problem (1.2), Taylor’s theorem – on which all existing meth-

ods (Chen et al., 2020; Zhu et al., 2023; Roy and Balasubramanian, 2023) are based – is no

longer applicable. Our key insight is that, despite the problem being nonsmooth, typical in-

stances exhibit partial smoothness near the solution. In other words, there exists a distinctive

manifold containing the solution and capturing the hidden smoothness of the map F . In a local

neighborhood around the solution, we project all iterates onto this manifold, forming what we
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call the shadow sequence. We then prove that the shadow sequence behaves almost as if it

were generated by a smooth dynamic.

2. Our analysis of the shadow sequence builds on prior work on nonsmooth asymptotic normal-

ity (Davis et al., 2024); however, their asymptotic guarantees are insufficient for our non-

asymptotic study. In this work, we provide a more refined analysis and establish a tighter bound

on the distance between the original iterates and their shadows. Our results show that the hypo-

thetical batch-means estimator constructed from the shadow sequence converges to the same

limit – and at the same rate – as the estimator based on the original sequence (1.4). Conse-

quently, the problem reduces to analyzing the estimator derived from smooth dynamics.

3. Due to the local nature of both the manifold and the shadow sequence, the above argument holds

only when the iterates remain within a local neighborhood of the solution. To address this, we

introduce a stopping time. Under light-tailed noise, we apply a martingale concentration in-

equality to show that, with high probability, the original iterates stay within the local neighbor-

hood after a certain number of iterations. Consequently, the shadow sequence always exists,

and the stopping time can finally be dropped in the convergence guarantee.

We should mention that our above techniques extend beyond the covariance estimation problem, offer-

ing a template for analyzing other nonsmooth SA algorithms whose dynamics are implicitly governed

by an underlying local smooth structure.

Paper organization. In Section 2, we introduce the notations and preliminaries, including smooth

manifold and nonsmooth analysis. In Section 3, we present the assumptions and main results. In

Section 4, we address the issue of the stopping time involved in our main results by providing a high-

probability guarantee. In Section 5, we present specific examples of SA algorithms for nonsmooth

problems, and we conclude and discuss future work in Section 6. Concrete examples of nonsmooth

variational inclusion problems satisfying our assumptions, as well as the proofs of theoretical results,

are deferred to the appendix.

2. Notations and preliminaries

Notations. Throughout the paper, the symbol Rd denotes a Euclidean space with inner product

⟨·, ·⟩ and the induced norm ∥x∥2 =
√

⟨x, x⟩. The symbol B denotes the closed unit ball in R
d, while

Br(x) denotes the closed ball of radius r around a point x. When A ∈ R
m×n is a matrix, ∥A∥2

denotes the spectral norm of A. For any function f : Rd → R ∪ {+∞}, its domain is defined as

dom f := {x ∈ R
d : f(x) <∞}. We say f is closed if its epigraph is a closed set, or equivalently

if f is lower-semicontinuous. The proximal map of f with parameter α > 0 is given by

proxαf (x) := argmin
y

{

f(y) +
1

2α
∥y − x∥22

}

.

The distance and the projection of a point x ∈ R
d onto a set Q ⊂ R

d are, respectively,

d(x,Q) := inf
y∈Q

∥y − x∥2 and PQ(x) := argmin
y∈Q

∥y − x∥2.

The indicator function of Q, denoted by δQ(·), is defined to be zero on Q and +∞ off it. The symbol

o(h) stands for any function o(·) satisfying o(h)/h→ 0 as h↘ 0.
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Smooth manifold. To be self-contained, we make a few definitions for smooth manifold; we refer

the reader to Lee (2013); Boumal (2020) for details. Throughout the paper, all smooth manifolds M
are assumed to be embedded in R

d, and we consider the tangent and normal spaces to M as subspaces

of Rd. In particular, for any x ∈ M, we denote the tangent and normal spaces of M at x by TM(x)
and NM(x), respectively. A map F : M → R

m is called Cp (p ≥ 1) smooth near a point x if there

exists a Cp-smooth map F̂ : U → R
d defined on some neighborhood U ⊂ R

d of x that agrees with

F on M near x. In this case, we define the covariant Jacobian ∇MF (x) : TM(x) → R
m by the

expression ∇MF (x)(u) = ∇F̂ (x)u for all u ∈ TM(x).

Nonsmooth analysis. Next, we introduce a few terminologies used in nonsmooth and variational

analysis. The introduction follows Rockafellar and Wets (2009). Consider a function f : Rd → R ∪
{+∞} and a point x ∈ dom f . The Fréchet subdifferential of f at x, denoted ∂̂f(x), consists of all

vectors v ∈ R
d satisfying the approximation property:

f(y) ≥ f(x) + ⟨v, y − x⟩+ o(∥y − x∥) as y → x.

The limiting subdifferential of f at x, denoted ∂f(x), consists of all vectors v ∈ R
d such that there ex-

ist sequences xi ∈ R
d and Fréchet subgradients vi ∈ ∂̂f(xi) satisfying (xi, f(xi), vi) → (x, f(x), v)

as i → ∞. A point x satisfying 0 ∈ ∂f(x) is called critical for f . For any set Q and x ∈ Q, the

Fréchet normal cone of Q at x is defined by N̂Q(x) := ∂̂δQ(x), where δQ is the indicator function

of Q. Similarly, the limiting normal cone of Q at x is defined by NQ(x) := ∂δQ(x).

3. Assumptions and main results

Setting the stage, our goal is to find a point x satisfying the inclusion

0 ∈ F (x), (3.1)

where F : Rd ⇒ R
d is a set-valued map. Throughout, we fix one such solution x⋆ of (3.1). We as-

sume the existence of a distinctive manifold M that contains x⋆ and satisfies the property that the

map x 7→ PTM(x)F (x) is single-valued and Cp-smooth on M near x⋆. The following assumption

provides a precise statement of this assumption.

Assumption 1 (Smooth structure) Suppose that there exists aCp (p ≥ 1) manifold M ⊂ R
d such

that the map FM : M → R
d defined by FM(x) := PTM(x)F (x) is single-valued and Cp smooth

on some neighborhood V of x⋆ in M. Moreover, there exists γ > 0 and LM > 0 such that FM is

LM-Lipschitz in V ∩M, and for any x ∈ V ∩M,

⟨FM(x), x− x⋆⟩ ≥ γ∥x− x⋆∥2. (3.2)

Note that in the case when F = ∇f for some smooth function f , the manifold M is simply R
d,

and the condition (3.2) is equivalent to the local quadratic growth condition (Davis and Jiang, 2022).

To illustrate the role of manifold M for nonsmooth map F , we consider the following two examples:

ℓ1-regularization problems and nonlinear programming. A detailed discussion of these and more

examples can be found in Appendix A.
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Example 1 (ℓ1-regularization) Consider the stochastic optimization problem with ℓ1 regularization

min
x

g(x) = f(x) + λ∥x∥1,

where f(x) = Eν∈P [f(x, ν)] is a Cp-smooth function in R
d. Consider now x⋆ ∈ R

d, a critical point

of the function g, and define the index set I = {i : x⋆i = 0}. Then, the set M = {x : xi = 0, ∀i ∈ I}
is an affine space, hence a smooth manifold. It is easy to show that when ∇2f(x⋆) is positive definite

restricted onto TM(x⋆), the map F = ∂g satisfies Assumption 1 with manifold M.

Example 2 (Nonlinear programming) Consider the problem of nonlinear programming

min
x
f(x),

s.t. gi(x) ≤ 0 for i = 1, . . . ,m,

gi(x) = 0 for i = m+ 1, . . . , n,

where f and gi are Cp-smooth functions on R
d. Let X denote the set of all feasible points to the

problem. Consider now a point x⋆ ∈ X that is critical for the function f + δX , and define the active

index set I = {i : gi(x⋆) = 0}. Suppose the Linear Independence Constraint Qualification (LICQ)

condition holds, i.e., the gradients {∇gi(x⋆)}i∈I are linearly independent. Then, the set M =
{x : gi(x) = 0 ∀i ∈ I} is a Cp smooth manifold locally around x⋆. In the literature on nonlinear

programming, the manifold M is also referred to as the active set (Nocedal and Wright, 2006). Define

the Lagrangian function

L(x, y) := f(x) +
n+m∑

i=1

yigi(x).

The criticality of x⋆ and LICQ ensure that there exists a (unique) Lagrange multiplier vector y⋆ ∈
R
m
+×R

n satisfying ∇xL(x⋆, y⋆) = 0 and y⋆i = 0 for all i /∈ I . Assume in addition that ∇2
xxL(x⋆, y⋆)

is positive definite when restricted onto TM(x⋆), often called the Second-Order Sufficient Condition

(SOSC); we can then show that F = ∇f +NX satisfies Assumption 1 with the manifold M.

The stochastic approximation (SA) algorithms we consider in this work assume access to a gener-

alized gradient mappingG : R++×R
d×R

d 7→ R
d. As stated in Section 1, given x0, our generic SA

algorithm iterates as

xk+1 = xk − ηk+1Gηk+1
(xk, νk+1), ∀k ≥ 0, (3.3)

where ηk+1 > 0 is a stepsize sequence and νk is stochastic noise. We now state two assumptions on

G that are required in Davis et al. (2024) for establishing the asymptotic normality of the averaged

iterates of (3.3). The first assumption is similar to classical Lipschitz assumptions and ensures that the

stepsize length can only scale linearly in ∥ν∥.

Assumption 2 (Steplength) We suppose there exist a constant C > 0 and a neighborhood U of x⋆

such that the map G satisfies supx∈UF
∥Gη(x, ν)∥ ≤ C(1 + ∥ν∥) for any ν ∈ R

d and η > 0, where

we set UF := U ∩ domF .

The second assumption precisely characterizes the relationship between two mappings, G and

FM. For simplicity, we abuse the notation C to denote a general upper bound.
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Assumption 3 We suppose that there exist constants C, µ > 0, a manifold M containing x⋆, and a

neighborhood U of x⋆ such that the following hold for any ν ∈ R
d and η > 0, where we set UF :=

U ∩ domF :

1. (Tangent comparison) For any x ∈ UF , we have

∥PTM(PM(x))(Gη(x, ν)− F (PM(x))− ν)∥ ≤ C(1 + ∥ν∥)2(dist(x,M) + η).

2. (Proximal Aiming) For any x ∈ UF , we have

⟨Gη(x, ν)− ν, x− PM(x)⟩ ≥ µ · dist(x,M)− (1 + ∥ν∥)2(o(dist(x,M)) + Cη).

In the above assumption, Item 1 asserts that in the tangent directions of M, the gradient map G
accurately approximates the map F ; while Item 2 asserts that in the normal directions, the gradient

map G points outward from M. In the context of stochastic optimization, Assumptions 1–3 neither

imply global strong convexity nor global convexity. See Example 4 in Appendix A for a concrete

example. These broader and weaker assumptions extend the scope of existing online inference works,

which have focused solely on strongly convex problems (Chen et al., 2020; Zhu et al., 2023; Roy and

Balasubramanian, 2023).

In the next two assumptions, we consider the choice of stepsize and the conditions on stochastic

noise for online covariance estimation.

Assumption 4 We assume the following conditions hold.

1. The map Gη is measurable.

2. The stepsize ηk = ηk−α for some η > 0 and α ∈ (12 , 1).
3. {νk+1} is a martingale difference sequence w.r.t. to the increasing sequence of σ-fields Fk =
σ(x0:k, ν1:k). Furthermore, there exists a function q : Rd → R+ that is bounded on bounded

sets satisfying Ek[∥νk+1∥8] ≤ q(xk), where Ek[·] = E[· | Fk].
4. The inclusion xk ∈ domF holds for all k ≥ 0.

Assumption 4 on the stepsize and noise is almost identical to (Davis et al., 2024, Assumption I)

for establishing asymptotic normality guarantees. The only difference is the requirement of the eighth

moment of ∥νk∥, whereas Davis et al. (2024) requires only the fourth moment. A stricter noise mo-

ment condition appears to be natural for the covariance estimation problem. For example, the noise

moment condition for covariance estimation of simple SGD method is also stricter than the moment

condition needed for asymptotic normality; see Polyak and Juditsky (1992) and Chen et al. (2020);

Zhu et al. (2023) for comparisons.

We next impose an additional assumption concerning the covariance of the stochastic noise νk.

Similar assumptions also widely appear in the literature on both first-order methods (Duchi and Ruan,

2021; Davis et al., 2024; Chen et al., 2020; Zhu et al., 2023; Roy and Balasubramanian, 2023) and

second-order methods (Bercu et al., 2020; Na and Mahoney, 2022).

Assumption 5 Fix x⋆ ∈ domF at which Assumption 1 holds and let U be a matrix whose columns

form an orthogonal basis of TM(x⋆). We assume the gradient noise can be decomposed as νk+1 =

ν
(1)
k+1 + ν

(2)
k+1(xk), where ν

(2)
k+1 : domF → R

d is a random function satisfying for some C > 0,

Ek[∥ν(2)k+1(x)∥2] ≤ C∥x− x⋆∥2 for all x ∈ domF ,

7
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and Ek[ν
(2)
k+1(x)] = Ek[ν

(1)
k+1] = 0. In addition, we assume the following covariance matrix is con-

stant for all k ≥ 1:

S := Ek[U
⊤ν(1)k ν

(1)
k

⊤
U ]. (3.4)

Note that all the previous assumptions regulate only the local behavior of the maps F and G.

To control the behavior of the iterates far from x⋆, we impose the following mild assumption and

rigorously show that it holds for a variety of nonsmooth SA methods in Appendix E.

Assumption 6 (Bounded sequence in expectation) There exists a constant Cub > 0 such that

E[∥xk − x⋆∥2] ≤ Cub.

Let U be a matrix whose columns form an orthonormal basis of TM(x⋆). We recall that the limit-

ing covariance matrix in the nonsmooth asymptotic normality result takes the following form (Davis

et al., 2024, Theorem 5.1):

Σ := U(U⊤∇MFM(x⋆)U)−1S(U⊤∇MFM(x⋆)U)−⊤U⊤, (3.5)

where ∇MFM(x⋆) is the covariant Jacobian of FM, and S is defined in (3.4).

We are now ready to state our main result on the convergence of the online batch-means covariance

estimator (1.4). The formal statement of our result crucially relies on local arguments and frequently

refers to the following stopping time: given an index k ≥ 0 and a constant δ ∈ (0, 1), we define

τk,δ := inf{l ≥ k : xl /∈ Bδ(x
⋆)},

which is the first time after k that the iterate leaves Bδ(x
⋆). The following is our main convergence

theorem, with its proof provided in Appendix B.

Theorem 1 Under Assumptions 1–6, let us set am = ⌊Cmβ⌋ for some constant C ≥ 1 and

β > 1
1−α . Then, for the iteration scheme (3.3) and any ks ≤ n, we have1

E[∥Σ̂n − Σ∥21τks,δ>n] ≲ k3s(dn
(α−1)+β

β +
√
dn

(α−1)+β

2β +
√
dn

− 1
2β ).

Remark 2 Choosing β = 2
1−α , we have

E[∥Σ̂n − Σ∥21τks,δ>n] ≲ k3s(dn
− 1−α

2 +
√
dn

1−α
4 ).

Further choosing α = 1
2 + 4ε for some arbitrarily small ε > 0, we have

E[∥Σ̂n − Σ∥21τks,δ>n] ≲ k3s(dn
− 1

4
+2ε +

√
dn−

1
8
+ε). (3.6)

A comparison of Theorem 1 with related settings is in order. In particular, (3.6) shows that as long

as ks is a constant, we recover the convergence rate in the smooth case with an i.i.d data stream (Zhu

et al., 2023). In Section 4, we show that under mild assumptions, the probability that the iterates leave

the local neighborhood after ks decays exponentially in ks. Moreover, by allowing ks ≍ log2 n, we

recover the best-known convergence rateO(n−1/8) in the smooth case up to logarithmic factors. More

interestingly, this rate also matches the rate obtained in the smooth case for exponentially mixing

Markovian data streams (Roy and Balasubramanian, 2023).

1. In the rest of the paper, we use an ≲ bn to denote an ≤ Cbn for some constant C independent of ks (if applicable), d

and n, and an ≍ bn to denote an ≲ bn and bn ≲ an.

8
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Proof ideas. Our key insight is that, by Item 2 of Assumption 3, the iteration sequence xk generated

by the dynamics (3.3) can be locally but closely approximated by its projection onto M, namely, the

“shadow sequence” defined as

yk = PM(xk).

By carefully quantifying the distance between xk and yk, we show that this error decays sufficiently

fast so that the hypothetical batch-means estimator constructed with the shadow sequence yk, similar

to (1.4), converges to the same limit – and at the same rate – as the estimator constructed with xk.

Consequently, it suffices to analyze the convergence of the batch-means estimator applied to yk.

Another crucial implication of Assumption 3 is that the update rule of yk can be interpreted as

an inexact Riemannian SA algorithm operating on the restriction of F to the manifold M. More

precisely, we show that the shadow sequence exhibits the recursion

yk+1 = yk − ηk+1FM(yk)− ηk+1PTM(yk)(νk) + Errork.

For the sake of illustration, let us first assume that Errork = 0. Due to Assumption 1, the dynamics of

yk are smooth, allowing us to adapt the analysis of batch-means estimators developed in the context of

stochastic smooth optimization (Chen et al., 2020; Zhu et al., 2023). In the more general setting, we

derive sharp upper bounds on the error terms and demonstrate that their contribution to the covariance

estimation error is dominated by the convergence rate established in the smooth case.

Note that our main result is local and relies on the stopping time τks,δ. In this regard, we show in

the following section that, under sub-Gaussian noise conditions, the iterates remain near the solution

with high probability. Our analysis leverages martingale concentration inequalities applied to (3.3).

4. High probability guarantee

So far, we have only made assumptions on F andG locally near x⋆, except for assuming the sequence

xk is bounded in expectation (as proved in Appendix E). To establish global convergence guarantees,

we require the following assumption.

Assumption 7 We assume that there are constants γ, C > 0 such that:

1. (Aiming towards solution) For any x ∈ R
d, we have ⟨Gη(x, ν)− ν, x− x⋆⟩ ≥ γ∥x−x⋆∥22−

Cη(1 + ∥x− x⋆∥22 + ∥ν∥22).

2. (Global steplength) For any x ∈ R
d, we have ∥Gη(x, ν)∥22 ≤ C(1 + ∥x− x⋆∥22 + ∥ν∥22).

Assumption 7 extends the standard strong convexity and Lipschitz gradient conditions commonly

assumed in stochastic smooth optimization. In particular, we have Gη(x, ν) = ∇f(x)+ν in the case

of minimizing a γ-strongly convex function f . Therefore, Item 1 is ensured by the γ-strong convexity,

since ⟨Gη(x, ν)− ν, x− x⋆⟩ = ⟨∇f(x), x− x⋆⟩ ≥ γ∥x− x⋆∥22. Moreover, the Lipschitz gradient

condition implies Item 2, as we observe that ∥Gη(x, ν)∥2 = ∥∇f(x)+ν∥ ≲ ∥x−x⋆∥+∥ν∥. Beyond

the smooth case, we show in Appendix E that Assumption 7 holds for various nonsmooth SA methods.

We additionally impose the following light-tail assumption on the noise.

Assumption 8 (Light tail) The noise νk+1 is mean-zero norm sub-Gaussian conditioned on Fk

with parameter σ/2, i.e., Ek[νk+1] = 0 and Pk{∥νk+1∥ ≥ τ} ≤ 2exp(−2τ2/σ2) for all τ > 0.

9
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By standard results in high-dimensional statistics (Jin et al., 2019, Lemma 3), we know that ∥νk+1∥2
is sub-exponential with parameter cσ2 conditioned on Fk, where c is some absolute constant. Below

is a high-probability guarantee demonstrating that xk stays within Bδ(x
⋆) for all sufficiently large k.

We present its proof in Appendix C.

Proposition 3 Suppose Assumptions 7 and 8 hold. Let c be the universal constant defined above.

Suppose also η ≤ min
{

γ
3C ,

1
3cγC

}

. Then, for any radius δ and any k such that

k ≥ max







(
log(4∥x0−x⋆∥2/δ)

Cαγη

)1/(1−α)
,




log

(

16C̃αη2

(2α−1)δ

)

Cαγη





1/(1−α)

,
(
22α+2C̃η2

(2α−1)δ

)1/(2α−1)







,

where C̃ = 3cCσ2 + 3C and Cα = 1−0.51−α

2(1−α) , we have

P(∥xi − x⋆∥ < δ, ∀i ≥ k) ≥ 1−
32η2σ4exp

(

− γδ
√
k

4ησ2

)

γ2δ2
−

8ηδ
√
kexp

(

− γδ
√
k

4ησ2

)

γ .

With the above high-probability guarantee, we strengthen the local result in Theorem 1 to a global

result by suppressing the stopping time involved in the theorem statement. Our global result is stated

in Theorem 4. The proof can be found in Appendix D.

Theorem 4 Under the assumptions of Theorem 1 along with Assumptions 7 and 8, for the SA update

of (3.3), for aM ≤ n ≤ aM+1, we have

E[∥Σ̂n − Σ∥op] ≲log

√
dM− 1

2 +
√
dM

(α−1)β+1
2 ≲

√
dn

− 1
2β +

√
dn

− (α−1)β+1
2β ,

where ∥ · ∥op is the operator norm, and “≲log" hides logarithmic terms of n.

Taking β = 2
1−α in Theorem 4, we have E[∥Σ̂n−Σ∥op] ≲log

√
dn−

1−α
4 . Ignoring the logarithmic

factors, this matches the best-known rate in the smooth case (Chen et al., 2020; Zhu et al., 2023).

5. Examples of stochastic approximation algorithms

In this section, we illustrate the broad applicability of our generic SA update in (3.3) and the mildness

of our required assumptions. In particular, we consider solving nonsmooth problems using different

SA algorithms and provide sufficient conditions for Assumptions 1–3 to hold. More concretely, let us

consider the variational inclusion problem:

0 ∈ A(x) + ∂g(x) + ∂f(x), (5.1)

where A : Rd → R
d is any single-valued continuous map, g : Rd → R∪ {+∞} is a closed function,

and f : Rd → R ∪ {+∞} is a closed function that is bounded from below2. The problem (5.1) is a

special case of (3.1) since one can take F (x) := A(x)+∂g(x)+∂f(x). First, the local boundedness

condition ofG in Assumption 2 is widely used in the literature, with a variety of known sufficient con-

ditions. The following lemma describes several such conditions, which we will use in what follows.

2. In particular, proxαf (x) is nonempty for all x ∈ R
d and all α > 0.

10
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Lemma 5 (Lemma 4.2 in Davis et al. (2024)) Suppose A(·) and sg(·) are locally bounded around

x⋆. Then Assumption 2 holds in any of the following settings.

1. f is the indicator function of a closed set X .

2. f is convex and the function x 7→ dist(0, ∂f(x)) is bounded on domf near x⋆.

3. f is Lipschitz continuous on domg ∩ domf .

Then, we investigate Assumptions 1 and 3. Recall that both assumptions require the existence of

a distinctive manifold M that captures the hidden smoothness of the problem. One candidate of such

a manifold is the active manifold, which has been modeled in various ways, including identifiable

surfaces (Wright, 1993), partial smoothness (Lewis, 2002), UV-structures (Lemaréchal et al., 2000;

Mifflin and Sagastizábal, 2005), g ◦ F decomposable functions (Shapiro, 2003), and minimal

identifiable sets (Drusvyatskiy and Lewis, 2014). In this work, we adopt the characterization of active

manifold used in Drusvyatskiy and Lewis (2014).

Figure 1: f(x1, x2) = |x1|+ x22 with x2-axis as an active manifold.

Definition 6 (Active manifold) Consider a function f : Rd → R∪{+∞} and fix a set M ⊂ domf
that contains a critical point x⋆ with 0 ∈ ∂f(x⋆). Then M is called an active Cp-manifold around

x⋆ if there exists a constant χ > 0 satisfying the following conditions.

• (smoothness) Near x⋆, the set M is a Cp manifold and the restriction of f to M is Cp-smooth.

• (sharpness) The lower bound holds:

inf{∥v∥ : v ∈ ∂f(x), x ∈ U \M} > 0

where U = {x ∈ Bχ(x
⋆) : |f(x)− f(x⋆)| < χ}.

More generally, we say M is an active manifold for f at x⋆ for v̄ ∈ ∂f(x⋆) if M is an active manifold

for the tilted function fv̄(x) = f(x)− ⟨v̄, x⟩ at x⋆.

The sharpness condition simply means that the subgradients of f remain uniformly bounded away

from zero at points off the manifold that are sufficiently close to x⋆ in both distance and function value.

The localization in function value can be omitted, for example, if f is weakly convex or if f is contin-

uous on its domain; see Drusvyatskiy and Lewis (2014) for details. Figure 1 is an example of active

manifold of a nonsmooth function.

To proceed, we introduce two extra conditions along the active manifold that tightly couple the

subgradients of f on and off the manifold. These two conditions were first introduced in (Davis et al.,

2025, Section 3) to prove saddle point avoidance in nonsmooth optimization. They are very mild con-

ditions and hold for a wide range of examples. We verify these regularity conditions in detail for the

cases of ℓ1-regularization, nonlinear programming, and two-player game in Appendix A.

11



JIANG ROY BALASUBRAMANIAN DAVIS DRUSVYATSKIY NA

Definition 7 ((b≤)-regularity and strong (a)-regularity) Consider a function f : Rd → R∪{+∞}
that is locally Lipschitz continuous on its domain. Fix a set M ⊂ domf that is a C1 manifold around

x⋆ and such that the restriction of f to M is C1-smooth near x⋆. We say that f is (b≤)-regular along

M at x⋆ if there exists χ > 0 such that

f(y) ≥ f(x) + ⟨v, y − x⟩+ (1 + ∥v∥) · o(∥y − x∥)

holds for all x ∈ domf ∩Bχ(x
⋆), y ∈ M∩Bχ(x

⋆), and v ∈ ∂f(x). Additionally, we say that f is

strongly (a)-regular along M near x⋆ if there exist constants C,χ > 0 satisfying

∥PTM(y)(v −∇Mf(y))∥ ≤ C(1 + ∥v∥)∥x− y∥

for all x ∈ domf ∩Bχ(x
⋆), y ∈ M∩Bχ(x

⋆), and v ∈ ∂f(x).

Roughly speaking, (b≤)-regularity condition is a weakening of Taylor’s theorem for nonsmooth

functions; strong (a)-regularity condition is a weakening of Lipschitz continuity of the gradient. We

next provide sufficient conditions of Assumptions 1 and 3 in several popular settings, including pro-

jected SGD (hence Subgradient Descent) and projected Stochastic Gradient Descent Ascent methods.

5.1. Stochastic (projected) forward algorithm (f = δX )

First, we focus on the particular instance of (5.1) where f is an indicator function of a closed set X .

In this case, the iteration (3.3) reduces to a stochastic projected forward algorithm:

xk+1 ∈ PX (xk − ηk+1(A(xk) + sg(xk) + νk+1)).

The map G takes the form Gη(x, ν) := (x− sX (x− η(A(x) + sg(x) + ν)))/η, where sX (x) is any

selection of the projection map PX (x).
The following proposition shows that Assumptions 1 and 3 hold when g + f admits an active

manifold at x⋆ with certain regularity conditions. Its proof is a combination of Corollary 4.7 and

Lemma 10.3 in Davis et al. (2024).

Proposition 8 Suppose f is the indicator function of a closed set X and both g(·) and A(·) are

Lipschitz continuous around x⋆. Moreover, suppose the inclusion −A(x⋆) ∈ ∂̂(g + f)(x⋆) holds,

g+ f admits a C2 active manifold around x⋆ for the vector v̄ = −A(x⋆), and both g and f are (b≤)-
regular and strongly (a)-regular along M at x⋆. Then Assumption 3 holds. Furthermore, if there

exists γ > 0 such that ⟨∇M(A+ ∂g)(x⋆)v, v⟩ ≥ γ∥v∥22, for all v ∈ TM(x⋆), then Assumption 1

holds with manifold M.

5.2. Stochastic forward-backward method (g = 0)

Second, we focus on the particular instance of (5.1) where g = 0. In this case, the iteration (3.3)

reduces to a stochastic forward-backward algorithm:

xk+1 ∈ proxηk+1f
(xk − ηk+1(A(xk) + νk+1)).

The map G becomes Gη(x, ν) := (x− sf (x− η(A(x) + ν))/η), where sf is any selection of the

proximal map proxηf (x) (cf. Section 2).

The following proposition shows that Assumptions 1 and 3 hold when f admits an active manifold

at x⋆ with certain regularity conditions. Its proof is a combination of Corollary 4.9 and Lemma 10.3

in Davis et al. (2024).
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Proposition 9 Suppose g = 0 and both f and A(·) are Lipschitz continuous on domf near x⋆.

Moreover, suppose the inclusion −A(x⋆) ∈ ∂̂f(x⋆) holds, f admits a C2 active manifold around x⋆

for v̄ = −A(x⋆), and f is both (b)≤-regular and strongly (a)-regular along M at x⋆. Then Assump-

tion 3 holds. Furthermore, if there exists γ > 0 such that

⟨∇M(A+ ∂f)(x⋆)v, v⟩ ≥ γ∥v∥22, for all v ∈ TM(x⋆),

then Assumption 1 holds with manifold M.

6. Conclusion and future work

In this paper, we studied covariance estimation for nonsmooth stochastic approximation (SA) meth-

ods. The estimator was initially proposed for SGD in Zhu et al. (2023) for smooth, strongly convex

optimization problems. The key idea is to group iterates into blocks of increasing size, with each

block providing an approximately independent estimate of the covariance matrix. This estimator can

be computed fully online, with both computation and memory scaling quadratically in dimension.

Our work demonstrated that, with a properly chosen batch size control sequence, the same estimator

achieves the expected convergence rate of order O(
√
dn−1/8+ε) for any ε > 0 in nonsmooth and

potentially non-monotone (nonconvex) setting. Our analysis involves highly nontrivial extensions of

Zhu et al. (2023), where we developed a localization technique and constructed a shadow sequence

to address the challenges arising from the lack of smoothness. Additionally, we established high-

probability guarantees on the stopping time at which iterates leave the local neighborhood. The con-

sistency of our covariance estimator enables asymptotically valid statistical inference for stochastic

nonsmooth variational inclusion problems, covering numerous examples as provided in Appendix A.

One future research direction is studying covariance estimation for nonsmooth SA methods under

Markovian noise, inspired by reinforcement learning applications. In addition, an open and challeng-

ing question is establishing the lower bound of covariance estimation and investigating whether the

estimator (1.4) for first-order methods is minimax optimal. Finally, designing non-asymptotically

optimal (nonsmooth) SA methods along with suitable covariance estimators is also a promising topic

for future research.
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Appendix A. Concrete Examples

In this section, we expand on the discussion in Section 3 and provide some concrete examples that

satisfy Assumptions 1–3.

Example 1 (ℓ1-regularization) Consider the stochastic optimization problem with ℓ1 regularization

min
x

g(x) = f(x) + λ∥x∥1,

where f(x) = Eν∈P [f(x, ν)] is a Cp-smooth function in R
d. Consider now a point x⋆ ∈ R

d that is

critical for the function g and define the index set I = {i : x⋆i = 0}. Then, the set

M = {x : xi = 0, ∀i ∈ I}

is an affine space, hence a smooth manifold. Note that the definition of criticality ensures that 0 ∈
∂g(x⋆), so we always have

−(∇f(x⋆))i ∈ [−λ, λ], ∀i ∈ I.

Suppose the following condition is true:

• (Strict complementarity) −(∇f(x⋆))i ∈ (−λ, λ) for all i ∈ I.

Then M is indeed an active Cp manifold of g at x⋆. Moreover, (b≤)-regularity and strong (a)-

regularity hold trivially for g along M at x⋆. If, in addition, ∇2f(x⋆) is positive definite when

restricted to the tangent space of M, then Proposition 8 and Lemma 5 imply that Assumptions 1–3

hold for the stochastic subgradient method; similarly, Proposition 5.2 and Lemma 5 imply that these

assumptions also hold for the stochastic proximal gradient method. We mention that there is typically

a bias between the center of the asymptotic normality, x⋆, and the minimizer of f due to the presence

of the regularization term.

Example 2 (Nonlinear programming) Consider the problem of nonlinear programming

min
x
f(x),

s.t. gi(x) ≤ 0 for i = 1, . . . ,m,

gi(x) = 0 for i = m+ 1, . . . , n,

where f and gi are Cp-smooth functions on R
d. Let us denote the set of all feasible points to the

problem as

X = {x : gi(x) ≤ 0 for 1 ≤ i ≤ m and gi(x) = 0 for m+ 1 ≤ i ≤ n}.

Consider now a point x⋆ ∈ X that is critical for the function f + δX and define the active index set

I = {i : gi(x⋆) = 0}.

Suppose the following is true:

• (LICQ) the gradients {∇gi(x⋆)}i∈I are linearly independent.
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Then the set

M = {x : gi(x) = 0, ∀i ∈ I}
is a Cp smooth manifold locally around x⋆. Moreover, all three functions f , δX , and f + δX are

(b≤)-regular and strongly (a)-regular along M near x⋆. To ensure that M is an active manifold of

f + δX , an extra condition is required. Define the Lagrangian function

L(x, y) := f(x) +
∑n+m

i=1 yigi(x).

The criticality of x⋆ and LICQ ensure that there exists a (unique) Lagrange multiplier vector y⋆ ∈
R
m
+ × R

n satisfying ∇xL(x⋆, y⋆) = 0 and y⋆i = 0 for all i /∈ I. Suppose the following standard

assumption is true:

• (Strict complementarity) y⋆i > 0 for all i ∈ I ∩ {1, . . . ,m}.

Then M is indeed an active Cp manifold for f + δX at x⋆. Assume in addition that ∇2
xxL(x⋆, y⋆) is

positive definite when restricted onto TM(x⋆), often called the Second-Order Sufficient Condition

(SOSC) in nonlinear programming literature (Nocedal and Wright, 2006); Proposition 8 and Lemma 5

imply that Assumptions 1–3 hold for stochastic projected gradient method.

Example 3 (Entropy-regularized zero-sum two-player matrix game) Consider the following op-

timization problem that arises in an zero-sum two-player matrix game (Cen et al., 2021; Li et al.,

2022)

argmin
z∈∆d−1

argmax
w∈∆d−1

f(z, w) := z⊤E [Aξ]w + λH(z)− λH(w), (A.1)

where ∆d−1 is the d-dimensional probability simplex, λ is the regularization parameter, and H(µ) =
−∑d

i=1 µi logµi is the entropy regularization. The regularization is often imposed to account for

the imperfect knowledge about the payoff matrix A = E [Aξ] (Mertikopoulos and Sandholm, 2016).

The solution of the above problem is known as the Quantal Response Equilibrium (QRE) in game

theory (McKelvey and Palfrey, 1995). In particular, the solution of (A.1) turns out to be the solution

of the following fixed point equation:

z⋆i ∝ exp([Aw∗]i/λ) w⋆
i ∝ exp(−[Az⋆]i/λ) ∀1 ≤ i ≤ d.

Let X = ∆d−1 ×∆d−1 ⊂ R
2d, then problem (A.1) can be reformulated as the following variational

inclusion problem:

0 ∈
[

∇zf(z, w)
−∇wf(z, w)

]

+NX (z, w).

Observe that (z⋆, w⋆) lies in the relative interior of ∆d−1 ×∆d−1. Consequently,

M :=
{

(z, w) :
∑d

i=1 zi = 1,
∑d

i=1wi = 1
}

is an active manifold of δX at (z⋆, w⋆) for −
[

∇zf(z, w)
−∇wf(z, w)

]

. Also, it is trivial to show that δX is

both (b≤)-regular and strong (a)-regular along M at (z⋆, w⋆). Moreover, Cen et al. (2021) showed

that f is strongly-convex strongly-concave locally near (z⋆, w⋆), so a combination of Proposition 8

and Lemma 5 implies that Assumptions 1–3 hold for stochastic projected forward method.
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The following is a nonconvex and nonsmooth function satisfying Assumptions 1–3 for the

stochastic subgradient method.

Example 4 (Nonconvex example) Consider the function with the origin as the minimizer:

f(x, y) = |x− y2|+ x2 + y2

2
.

Note that for any 0 < t < 1, we have

f(t2, t) + f(t2,−t) = (t4 + t2) < 2t2 + t4 = 2f(t2, 0),

which implies that f is not convex in any local neighborhood of the origin. Meanwhile, one can

easily check that M = {(x, y) : x = y2} is an active manifold of f at the origin, and f is both

(b≤)-regularity and strong (a)-regularity along M at the origin. Moreover, ∇Mf(0, 0) is positive

definite on the y-axis. A combination of Proposition 8 and Lemma 5 implies that Assumptions 1–3

hold for stochastic subgradient method.

Appendix B. Proof of Theorem 1

We introduce some more notations for the rest of this section. First, by our choice that am = ⌊Cmβ⌋,

we have nm ≍ mβ−1. LetM be an integer such that aM ≤ n < aM+1. LetH := U⊤∇MFM(x⋆)U .

Note that H is not necessarily a symmetric matrix Davis et al. (2024). Define

W j
i :=

∏j
k=i+1(I−ηkH) for j > i with W i

i := I,

Sj
i :=

∑j
k=i+1W

k
i for j > i with Si

i := 0.

Let δ > 0 be small enough so that Assumption 1 – 3 hold inside Bδ(x
⋆). We consider the shadow

sequence

yk =

{

PM(xk) if xk ∈ B2δ(x
⋆)

x⋆ otherwise.

By Proposition 6.3 in Davis et al. (2024), there exists Fk+1-measurable random vectors Ek ∈ R
d

such that the shadow sequence satisfies yk ∈ B4δ(x
⋆) ∩M for all k and the recursion holds:

yk+1 = yk − ηk+1FM(yk)− ηk+1PTM(yk)(νk+1) + ηk+1Ek for all k ≥ 1.

Define an auxiliary sequence zk = x⋆ + U∆k where ∆k := U⊤(yk − x⋆). Consider the following

two estimators defined in terms of zk and ∆k respectively.

Σ′
n =

∑n
i=1

(
∑i

k=ti
(zk − x⋆)− li(z̄n − x⋆)

)(
∑i

k=ti
(zk − x⋆)− li(z̄n − x⋆)

)⊤

∑n
i=1 li

.

Σ̃n =

∑n
i=1

(
∑i

k=ti
∆k − li∆̄n

)(
∑i

k=ti
∆k − li∆̄n

)⊤

∑n
i=1 li

. (B.2)
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Observing that Σ′
n = U Σ̃nU

⊤ and recalling from (3.5) that Σ = UH−1SH−⊤U⊤, we have,

E[∥Σ′
n − Σ∥21τks,δ>n] = E[∥U(Σ̃n −H−1SH−⊤)U⊤∥21τks,δ>n]

≤ E[∥Σ̃n −H−1SH−⊤∥21τks,δ>n]. (B.3)

Using triangle inequality and (B.3), we have

E[∥Σ̂n − Σ∥21τks,δ>n] ≤ E[∥Σ′
n − Σ∥21τks,δ>n] + E[∥Σ̂n − Σ′

n∥21τks,δ>n]

≤ E[∥Σ̃n −H−1SH−⊤∥21τks,δ>n]

Lemma 10

+ E[∥Σ̂n − Σ′
n∥21τks,δ>n]

Lemma 11

.

On the one hand, by Lemma 10 and the assumption that β > 1
1−α ,

E[∥Σ̃n −H−1SH−⊤∥21τks,δ>n]

≲ dkαsM
(α−1)β+1 +

√
dk2sM

− 1
2 +

√
dk

α
2
s M

(α−1)β+1
2 + k

α+ 1
2

s M− 1
2 + k2α+1

s M−1

≲ k3s(dM
(α−1)β+1 +

√
dM

(α−1)β+1
2 +

√
dM− 1

2 ) (B.4)

On the other hand, by Lemma 11 and the assumption that β > 1
1−α ,

E[∥Σ̂n − Σ′
n∥21τks,δ>n]

≲
√
dk

3
2
+α

2
s M

(α−1)β
2 + d

1
4k

5
2
s M

− 3
4 + d

1
4k

α
4
+ 3

2
s M

(α−1)β−1
4 + k

3
2
s M

− 1
2 + k3sM

−1

≲ k3s
√
dM− 1

2 (B.5)

Combining (B.4), and (B.5) and using the fact that n ≍Mβ , we conclude the proof of Theorem 1.

Lemma 10 Let the conditions of Theorem 1 be true. We have,

E[∥Σ̃n −H−1SH−⊤∥21τks,δ>n]

≲ dkαsM
(α−1)β+1 +

√
dk2sM

− 1
2 +

√
dk

α
2
s M

(α−1)β+1
2 + k

α+ 1
2

s M− 1
2 + k2α+1

s M−1.

Proof Following the proof of Lemma 10.7 in Davis et al. (2024), we have

∆k+1 = (I − ηk+1H)∆k − ηk+1

(

U⊤
(
ν
(1)
k+1 + ν

(2)
k+1(xk)

))

− ηk+1

(

R(yk) + ζk+1 − U⊤Ek

)

, (B.7)

where ζk+1 = U⊤PTM(yk)(νk+1)− U⊤PTM(x⋆)(νk+1), and

R(y) = U⊤FM(y)− U⊤∇MFM(x⋆)UU⊤(y − x⋆).

Summing both sides of (B.7) from k = i to j, we get

∑j
k=i∆k =Sj

i−1∆i−1 +
∑j

k=i(I+S
j
k)ηk

(

U⊤(ν(1)k+1 + ν
(2)
k+1(xk)) +R(yk)− U⊤Ek + ζk+1

)

=λji + eji , (B.8)
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where we define

λji := Sj
i−1∆i−1 +

∑j
k=i(I+S

j
k)ηk

(

U⊤(ν(1)k+1 + ν
(2)
k+1(xk))

)

,

eji :=
∑j

k=i(I+S
j
k)ηk

(
R(yk)− U⊤Ek + ζk+1

)
.

Plugging (B.8) into the definition of Σ̃n in (B.2), we write and divide Σ̃n into four parts.

Σ̃n = (
∑n

i=1 li)
−1[
∑n

i=1(λ
i
ti − n−1liλ

n
1 )(λ

i
ti − n−1liλ

n
1 )

⊤

︸ ︷︷ ︸

I

+
∑n

i=1(e
i
ti − n−1lie

n
1 )(λ

i
ti − n−1liλ

n
1 )

⊤

︸ ︷︷ ︸

II

]

+ (
∑n

i=1 li)
−1[
∑n

i=1(λ
i
ti − n−1liλ

n
1 )(e

i
ti − n−1lie

n
1 )

⊤

︸ ︷︷ ︸

III

+
∑n

i=1(e
i
ti − n−1lie

n
1 )(e

i
ti − n−1lie

n
1 )

⊤

︸ ︷︷ ︸

IV

].

In what follows, we will provide upper bounds on E[∥(
∑n

i=1 li)
−1I − H−1SH−⊤∥21τks,δ>n],

E[∥(
∑n

i=1 li)
−1II∥21τks,δ>n], E[(

∑n
i=1 li)

−1III∥21τks,δ>n], and E[(
∑n

i=1 li)
−1IV∥21τks,δ>n] sepa-

rately. The lemma then follows from the triangle inequality.

Analysis of term I: Note that the goal is to bound

E[∥(
∑n

i=1 li)
−1I −H−1SH−⊤∥21τks,δ>n]

= E[∥(
∑n

i=1 li)
−1
∑n

i=1 λ
i
tiλ

i
ti

⊤ −H−1SH−⊤∥21τks,δ>n] + E[(
∑n

i=1 li)
−1n−1∥

∑n
i=1 liλ

i
tiλ

n
1
⊤∥21τks,δ>n]

+ E[(
∑n

i=1 li)
−1n−1∥

∑n
i=1 liλ

n
1λ

i
ti

⊤∥21τks,δ>n] + E[(
∑n

i=1 li)
−1n−2

∑n
i=1 l

2
i ∥λn1λn1⊤∥21τks,δ>n].

We bound terms on the RHS one by one.

• The first term E[∥(
∑n

i=1 li)
−1
∑n

i=1 λ
i
tiλ

i
ti

⊤−H−1SH−⊤∥21τks,δ>n]. To this end, we rewrite

∑n
i=1 λ

i
tiλ

i
ti

⊤
=
∑n

i=1(υi + ωi)(υi + ωi)
⊤,

where

υi := Si
ti−1∆ti−1 +

i∑

k=ti

(ηk I+ηkS
i
k −H−1)(U⊤(ν(1)k+1 + ν

(2)
k+1(xk)))

and

ωi :=
i∑

k=ti

H−1U⊤(ν(1)k+1 + ν
(2)
k+1(xk))).

Note that

E[∥υiυ⊤i ∥21τks,δ>n] ≤ tr
(

E[υiυ
⊤
i 1τks,δ>n]

)

≤ d∥E[υiυ⊤i ]1τks,δ>n∥2. (B.10)

On the other hand, direct calculation shows

∥E[υiυ⊤i 1τks,δ>n]∥2
≤ ∥E[υiυ⊤i 1τks,δ>ti−1]∥2
≤ ∥Si

ti−1∥22∥E[∆ti−1∆
⊤
ti−11τks,δ>ti−1]∥2 (B.11)
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+
∑i

k=ti
∥ηk I+ηkSi

k −H−1∥22∥U⊤
E[(ν

(1)
k+1 + ν

(2)
k+1(xk))(ν

(1)
k+1 + ν

(2)
k+1(xk))

⊤]U∥2,

where the first inequality follows from the definition of the stopping time, and the second

inequality follows from Assumption 5 that {ν(1)k+1} and {ν(2)k+1(xk)} are martingale difference

sequences. We then bound the RHS of (B.11). For the first term in (B.11), we consider two

cases:

1. ti − 1 ≥ ks. Using Lemma 19 and Lemma 25, we have,

∥Si
ti−1∥22∥E[∆ti−1∆

⊤

ti−11τks,δ>ti−1]∥2 ≤ ∥Si
ti−1∥22E[∥∆ti−1∥221τks,δ>ti−1]

≲ kαs t
α
i . (B.12)

2. ti−1 < ks. By the definition of yi, we always have ∥∆ti−1∥ ≤ 4δ. Applying Lemma 25,

we have

∥Si
ti−1∥22∥E[∆ti−1∆

⊤
ti−11τks,δ>ti−1]∥2 ≲ t2αi ≲ k2αs .

Next, we consider the second term on the RHS of (B.11). By Assumption 5 and 6, we have

∥U⊤
E[(ν

(1)
k+1 + ν

(2)
k+1(xk))(ν

(1)
k+1 + ν

(2)
k+1(xk))

⊤]U∥2 ≲ E[∥ν(1)k+1∥22] + E[∥ν(2)k+1(xk)∥22]
≲ E[∥xk − x⋆∥22]
≲ Cub.

In addition, following the same proof of (Zhu et al., 2023, Lemma B.3) we obtain,

∑i
k=ti

∥ηk I+ηkSi
k −H−1∥22 ≲ lit

2α−2
i + iα.

Combining, we have

i∑

k=ti

∥ηk I+ηkSi
k −H−1∥22∥U⊤

E[(ν
(1)
k+1 + ν

(2)
k+1(xk))(ν

(1)
k+1 + ν

(2)
k+1(xk))

⊤]U∥2

≲ lit
2α−2
i + iα. (B.14)

By basic calculus and our choice of am and nm, we can easily verify the following three

inequalities:

∑n
i=1 li ≍

∑M
m=1 n

2
m ≍∑M

m=1m
2β−2 ≍M2β−1; (B.15)

∑n
i=1 l

2
i ≍

∑M
m=1 n

3
m ≍

∑M
m=1m

3β−3 ≍M3β−2; (B.16)

∑M
m=1 a

−2α
m n3m ≍

∑M
m=1m

3β−2αβ−3 ≍M3β−2αβ−2. (B.17)

Combining (B.10), (B.11), (B.14), (B.12), and (B.15), we have

∑n
i=1 E[∥υiυ⊤i ∥21τks,δ>n] ≲ d

[∑n
i=1(lit

2α−2
i + iα + kαs t

α
i + k2αs )

]
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=d
[
∑M

m=1

∑am+1−1
i=am

(lia
2α−2
m + iα + kαs a

α
m + k2αs )

]

≲d
[

M2αβ−1 +Mβ(1+α) + kαsM
β(1+α) + k2αs Mβ

]

.

Then, by (B.15) and the assumption that n ≥ ks,

(
∑n

i=1 li)
−1
∑n

i=1 E[∥υiυ⊤i ∥21τks,δ>n] ≲ dkαsM
(α−1)β+1 + dk2αs M1−β

≲ dkαsM
(α−1)β+1. (B.18)

Define ω̂i =
∑i

k=ti
H−1U⊤ν(1)k+1. Using the same proof of Step 1 of (Zhu et al., 2023,

Lemma B.2), we have,

E[∥(∑n
i=1 li)

−1
∑n

i=1 ω̂iω̂
⊤
i −H−1SH−⊤∥2] ≲

√
dM− 1

2 . (B.19)

Following the proof of Step 2 of (Zhu et al., 2023, Lemma B.2), we have

E[∥(
∑n

i=1 li)
−1
∑n

i=1 ω̂iω̂
⊤
i − (

∑n
i=1 li)

−1
∑n

i=1 ωiω
⊤
i ∥21τks,δ>n]

≤ 2 · E[∥(
∑n

i=1 li)
−1
∑n

i=1H
−1U⊤

(
∑i

k=ti
ν
(1)
k+1

)(
∑i

k=ti
ν
(2)
k+1(xk)

)⊤
UH−⊤∥21τks,δ>n]

︸ ︷︷ ︸

(i)

+ E[∥(
∑n

i=1 li)
−1
∑n

i=1H
−1U⊤

(
∑i

k=ti
ν
(2)
k+1(xk)

)(
∑i

k=ti
ν
(2)
k+1(xk)

)⊤
UH−⊤∥21τks,δ>n]

︸ ︷︷ ︸

(ii)

(B.20)

By Cauchy-Schwarz inequality,

(i) ≤
√

E[∥(
∑n

i=1 li)
−1
∑n

i=1 ω̂iω̂
⊤
i ∥2] ·

√

(ii). (B.21)

By (B.19), we have

E[∥(
∑n

i=1 li)
−1
∑n

i=1 ω̂iω̂
⊤
i ∥2] ≲ 1.

Therefore, it suffices to bound (ii). By triangle inequality and the inequality that ∥C∥2 ≤
tr (C), for any positive semi-definite matrix C,

(ii) ≤ (
∑n

i=1 li)
−1

E

[

tr

(
∑n

i=1H
−1U⊤

(
∑i

k=ti
ν
(2)
k+1(xk)

)(
∑i

k=ti
ν
(2)
k+1(xk)

)⊤
UH−⊤

)

1τks,δ>n

]

= (
∑n

i=1 li)
−1
∑n

i=1 E[∥
∑i

k=ti
H−1U⊤ν(2)k+1(xk)∥221τks,δ>n]. (B.22)

Since ν
(2)
k is a martingale difference sequence and τks,δ is a stopping time, for any i ≤ n, we

have

E[∥
∑i

k=ti
H−1U⊤ν(2)k+1(xk)∥221τks,δ>n]

≤ E[∥∑i
k=ti

H−1U⊤ν(2)k+1(xk)∥221τks,δ>i]

= E[∥
∑i−1

k=ti
H−1U⊤ν(2)k+1(xk)∥221τks,δ>i] + E[∥H−1U⊤ν(2)i+1(xi)∥221τks,δ>i]

...
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≤∑i
k=ti

E[∥H−1U⊤ν(2)k+1(xk)∥221τks,δ>k].

When k ≥ ks, by Lemma 17 and Lemma 19, we have E[∥xk − x⋆∥221τks,δ>k] ≲ kαs k
−α; on

the other hand, when k < ks, by Assumption 6, we always have E[∥xk−x⋆∥221τks,δ>k] ≤ Cub.

Combining, we have

E[∥
∑i

k=ti
H−1U⊤ν(2)k+1(xk)∥221τks,δ>n] ≲

{∑i
k=ti

kαs k
−α ti ≥ ks

liCub ti < ks.

By (B.15), (B.22), and β > 1
1−α , we have

(ii) ≲ (
∑n

i=1 li)
−1
(
∑n

i=1

∑i
k=ti

kαs k
−α + k2sCub

)

≲ kαsM
−αβ + k2sM

1−2β

≲ k2sM
−αβ . (B.23)

Combining (B.19), (B.20), (B.21), and (B.23), we have

E[∥(
∑n

i=1 li)
−1
∑n

i=1 ωiω
⊤
i −H−1SH−⊤∥21τks,δ>n]

≲
√
dM− 1

2 + ((d/M)
1
4 + 1)ksM

−αβ/2 + k2sM
−αβ

≲
√
dM− 1

2 + k2sM
−αβ

2 . (B.24)

Then by triangle inequality,

E[∥(
∑n

i=1 li)
−1
∑n

i=1 ωiω
⊤
i ∥21τks,δ>n] ≲

√
dM− 1

2 + k2sM
−αβ + 1. (B.25)

Combining (B.18), and (B.25), and using Cauchy-Schwarz inequality, we have,

(
∑n

i=1 li)
−1
∑n

i=1 E[∥υiω⊤

i ∥21τks,δ>n] ≲
√
dk

α
2
s M

(α−1)β+1
2 (d

1
4M−

1
4 + ksM

−
αβ
2 + 1). (B.26)

Similarly,

(
∑n

i=1 li)
−1
∑n

i=1 E[∥ωiυ
⊤

i ∥21τks,δ>n] ≲
√
dk

α
2
s M

(α−1)β+1
2 (d

1
4M−

1
4 + ksM

−
αβ
2 + 1). (B.27)

Then, combining (B.18), (B.24), (B.26), and (B.27), we have

E[∥(
∑n

i=1 li)
−1
∑n

i=1 λ
i
tiλ

i
ti

⊤ −H−1SH−⊤∥21τks>n]

≲ dkαsM
(α−1)β+1 +

√
dM− 1

2 + k2sM
−αβ

2 +
√
dk

α
2
s M

(α−1)β+1
2 (d

1
4M− 1

4 + ksM
−αβ

2 + 1)

≲ dkαsM
(α−1)β+1 +

√
dM− 1

2 + k2sM
−αβ

2 +
√
dk

α
2
s M

(α−1)β+1
2 . (B.28)

• The fourth term E[(
∑n

i=1 li)
−1n−2

∑n
i=1 l

2
i ∥λn1λn1⊤∥21τks,δ>n]. We have

E[∥λn1λn1⊤∥21τks,δ>n]

≤ E[∥λn1∥221τks,δ>n]

= E[∥Sn
0∆0 +

∑n
k=1(I+S

n
k )ηk(U

⊤(ν(1)k+1 + ν
(2)
k+1(xk)))∥221τks,δ>n]
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≤ E[∥Sn
0∆0∥22] +

∑n
k=1∥I+Sn

k ∥22η2kE[∥U⊤(ν(1)k+1 + ν
(2)
k+1(xk))∥221τks,δ>k] (B.29)

≲ 1 +
∑n

k=1 E[∥U⊤(ν(1)k+1 + ν
(2)
k+1(xk))∥22] (B.30)

≲ n. (B.31)

where the estimate (B.29) follows from the martingale difference property of ν
(1)
k and ν

(2)
k , the

estimate (B.30) follows from Lemma 25, and the estimate (B.31) follows from Assumption 5

and 6.

Then, by (B.15) and (B.16), we have

E[(
∑n

i=1 li)
−1n−2

∑n
i=1 l

2
i ∥λn1λn1⊤∥21τks,δ>n] ≤ (

∑n
i=1 li)

−1n−2
∑n

i=1 l
2
iE[∥λn1λn1⊤∥21τks,δ>n]

≲ n−1(

n∑

i=1

li)
−1

n∑

i=1

l2i ≲M−1. (B.32)

• The second term E[(
∑n

i=1 li)
−1n−1∥

∑n
i=1 liλ

i
tiλ

n
1
⊤∥21τks,δ>n]. Note that

E[(
∑n

i=1 li)
−1n−1∥

∑n
i=1 liλ

i
tiλ

n
1
⊤∥21τks,δ>n]

≤ E

[√

(
∑n

i=1 li)
−1∥∑n

i=1 λ
i
ti
λiti

⊤∥21τks,δ>n ·
√

(
∑n

i=1 li)
−1n−2∥∑n

i=1 l
2
i λ

n
1λ

n
1
⊤∥21τks,δ>n

]

≤
√

(
∑n

i=1 li)
−1E[∥

∑n
i=1 λ

i
ti
λiti

⊤∥21τks,δ>n] ·
√

(
∑n

i=1 li)
−1n−2E[∥

∑n
i=1 l

2
i λ

n
1λ

n
1
⊤∥21τks,δ>n]

≲

√

dkαsM
(α−1)β+1 +

√
dM− 1

2 + ksM−αβ/2 +
√
dM

(α−1)β
2

+ 1
2 + 1 ·M− 1

2

≲ d
1
2k

α
2
s M

(α−1)β
2 + d

1
4M− 3

4 + k
1
2
s M

−αβ
2
− 1

2 + d
1
4k

α
4
s M

(α−1)β−1
4 +M− 1

2 , (B.33)

where the first inequality follows from Cauchy-Schwarz, the second inequality follows from

Holder’s inequality, and the third inequality follows from (B.28) and (B.32).

• The third term E[(
∑n

i=1 li)
−1n−1∥

∑n
i=1 liλ

n
1λ

i
ti

⊤∥21τks,δ>n]. By the same calculation as the

second term, we have

E[(
∑n

i=1 li)
−1n−1∥

∑n
i=1 liλ

n
1λ

i
ti

⊤∥21τks,δ>n]

≲ d
1
2k

α
2
s M

(α−1)β
2 + d

1
4M− 3

4 + k
1
2
s M

−αβ
2
− 1

2 + d
1
4k

α
4
s M

(α−1)β
4

− 1
4 +M− 1

2 (B.34)

Combining (B.28), (B.32), (B.33), and (B.34), we have,

E[∥(
∑n

i=1 li)
−1I −H−1SH−⊤∥21τks,δ>n]

≲ dkαsM
(α−1)β+1 +

√
dk2sM

− 1
2 +

√
dk

α
2
s M

(α−1)β+1
2 . (B.35)

Next, we bound term IV. We then bound terms II, and III using Cauchy-Schwarz inequality and

the bounds on term I, and term IV.

Bound on term IV: Note that

E[∥IV∥21τks,δ>n] ≤
∑n

i=1 E[∥enti − n−1lie
n
1∥221τks,δ>n]
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≤2
∑n

i=1(E[∥enti∥221τks,δ>n] + E[n−2l2i ∥en1∥221τks,δ>n]). (B.36)

First, we bound the first term in the RHS of (B.36). Note that for any j > i ≥ ks, using Lemma 18,

we have

∑j
k=i E[∥Ek∥221τks,δ>n] ≤

∑j
k=i E[∥Ek∥221τks,δ>k]

≲ k2αs
∑j

k=i η
2
k. (B.37)

We also have, by Claim 2 in the proof of Lemma D.5 of Davis et al. (2024) and Lemma 19,

E[∥R(yk)∥221τks,δ>n] ≤ E[∥R(yk)∥221τks,δ>k] ≤ E[∥yk − x⋆∥421τks,δ>k] ≲ k2αs η2k. (B.38)

Direct calculation shows

E[∥
∑j

k=i(I+S
j
k)ηkζk+1∥221τks,δ>n]

= E[∥(I+Sj
j )ηjζj+1 +

∑j−1
k=i(I+S

j
k)ηkζk+1∥221τks,δ>j ]

= E[∥(I+Sj
j )ηjζj+1∥221τks,δ>j ] + E[∥

∑j−1
k=i(I+S

j
k)ηkζk+1∥221τks,δ>j ]

+ 2E[(I+Sj
j )ηjζ

⊤
j+1

∑j−1
k=i(I+S

j
k)ηk+1ζk+11τks,δ>j ]

= E[∥(I+Sj
j )ηjζj+1∥221τks,δ>j ] + E[∥∑j−1

k=i(I+S
j
k)ηkζk+1∥221τks,δ>j ]

...

=
∑j

k=i E[∥(I+S
j
k)ηkζk+1∥221τks,δ>k]

≲
∑j

k=i E[∥ζk+1∥221τks,δ>k] (B.39)

≲
∑j

k=i E[∥yk − x⋆∥221τks,δ>k] (B.40)

≲ kαs
∑j

k=i ηk (B.41)

≤ (j − i+ 1)kαs i
−α, (B.42)

where the first several equalities follows from the fact that {ζk}k is a martingale-difference se-

quence, and we have E[ζ⊤i ζj+1] = 0 for i ̸= j, the estimate (B.39) follows from Lemma 25, the

estimate (B.40) follows from the definition of ζk and Lipschitz continuity of PTM(·), and the esti-

mate (B.41) follows from Lemma 19. Combining (B.37), (B.38), and (B.42), and using Lemma 25,

for i such that ti ≥ ks, we have

E[∥eiti∥
2
21τks,δ>n] ≲li

∑i
k=ti

E[∥(I+Si
k)ηk

(
R(yk)− U⊤Ek

)
∥221τks,δ>n] + kαs

∑i
k=ti

ηk

≲li
∑i

k=ti
(E[∥R(yk)∥221τks,δ>n] + E[∥U⊤Ek∥221τks,δ>n]) + lik

α
s t

−α
i

≲lik
2α
s

∑i
k=ti

η2k + lik
α
s t

−α
i

≤l2i k2αs t−2α
i + lik

α
s t

−α
i ,

where the third inequality follows from ∥R(yk)∥2 ≲ ∥yk − x⋆∥22, Lemma 19, and Lemma 18. On

the other hand, for i such that ti < ks, we have

E[∥eiti∥221τks,δ>n] ≤ li
∑i

k=ti
E[∥(I+Si

k)ηk
(
R(yk)− U⊤Ek + ζk+1

)
∥221τks,δ>n]

≲ li
∑i

k=ti
(E[∥R(yk)∥22] + E[∥Ek∥22] + E[∥ζk+1∥2])
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≤ li
∑i

k=ti
(1 + k2α)

≲ k2α+2
s ,

where the first inequality follows from Lemma 25, the third inequality follows from Lemma 18, and

the last inequality follows from li ≤ i ≲ ks. As a result, for β > (1− α)−1,

∑n
i=1 E[∥eiti∥221τks,δ>n] ≲

∑M
m=1

∑am+1

i=am+1(l
2
i k

2α
s a−2α

m + lik
α
s a

−α
m ) + k2α+3

s

≲
∑M

m=1(n
3
mk

2α
s a−2α

m + n2mk
α
s a

−α
m ) + k2α+3

s

≲ k2αs M3β−2αβ−2 + kαsM
2β−αβ−1 + k2α+3

s

≲ k2α+3
s M3β−2αβ−2. (B.43)

Combining (B.43) and (B.15), we have

(
∑n

i=1 li)
−1
∑n

i=1 E[∥eiti∥221τks,δ>n] ≲ k2α+3
s M (1−2a)β−1. (B.44)

Next, we look at the second term in the RHS of (B.36). Note that

E[∥en1∥221τks,δ>n]

= E[∥∑n
k=1(I + Si

k)ηk(R(yk)− U⊤Ek + ζk+1)∥221τks,δ>n]

≲ nE[
∑n

k=1 ∥(I + Si
k)ηk(R(yk)− U⊤Ek)∥221τks,δ>n] + E[∥

∑n
k=1(I + Si

k)ηkζk+1∥221τks,δ>n]

≤ n
∑n

k=1 ∥(I + Si
k)∥22η2kE[∥R(yk)− U⊤Ek∥221τks,δ>n] + E[∥

∑n
k=1(I + Si

k)ηkζk+1∥221τks,δ>n]

≲ n
(∑n

k=1 E[∥R(yk)− U⊤Ek∥221τks,δ>n]
)
+ n

≲ n(
∑n

k=1 k
2α
s η2k + k1+2α

s ) + n

≲ nk1+2α
s ,

where the first inequality follows from Young’s inequality and Cauchy-Schwarz, the second inequality

follows from Jensen’s inequality, the third inequality follows by Lemma 25, and the same calculation

as (B.42), and the fourth inequality follows from Lemma 25, Lemma 19, and Lemma 18. By (B.16),

we have

n−2
∑n

i=1 l
2
iE[∥en1∥221τks,δ>n] ≲ k2α+1

s n−1
∑n

i=1 l
2
i ≲ k2α+1

s n−1M3β−2.

Using the fact n ≍Mβ , and (B.15), we get,

n−2(
∑n

i=1 li)
−1
∑n

i=1 l
2
iE[∥en1∥221τks,δ>n] ≲ k2α+1

s M−1. (B.45)

Combining (B.44), and (B.45), we have

E[(
∑n

i=1 li)
−1∥IV ∥21τks,δ>n] ≲ k2α+1

s M−1. (B.46)

Bound on term II: Combining (B.35), and (B.44), and using Cauchy-Schwarz inequality, we obtain,

E[(
∑n

i=1 li)
−1∥II∥21τks,δ>n]

≤
(
E[(
∑n

i=1 li)
−1∥I∥21τks,δ>n]

)1/2 (
E[(
∑n

i=1 li)
−1∥IV ∥21τks,δ>n]

)1/2
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≲ k
α+ 1

2
s M− 1

2 . (B.47)

Bound on term III: Similar to term II we have,

E[(
∑n

i=1 li)
−1∥III∥21τks,δ>n] ≲ k

α+ 1
2

s M− 1
2 . (B.48)

Combining (B.35), (B.46), (B.47), and (B.48), we have

E[∥Σ̃−H−1SH−⊤∥21τks,δ>n]

≲ dkαsM
(α−1)β+1 +

√
dk2sM

− 1
2 +

√
dk

α
2
s M

(α−1)β+1
2 + k

α+ 1
2

s M− 1
2 + k2α+1

s M−1.

Lemma 11 Let the conditions of Theorem 1 be true. Then,

E[∥Σ̂n − Σ′
n∥21τks,δ>n] ≲

√
dk

3
2
+α

2
s M

(α−1)β
2 + d

1
4k

5
2
s M

− 3
4 + d

1
4k

α
4
+ 3

2
s M

(α−1)β−1
4 + k

3
2
s M

− 1
2 + k3sM

−1.

Proof Define ρk := xk − zk. We have the following expansion:

Σ̂n − Σ′
n =

∑n
i=1

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤

∑n
i=1 li

︸ ︷︷ ︸

V

+

∑n
i=1

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
zk − liz̄n

)⊤

∑n
i=1 li

︸ ︷︷ ︸

VI

+

∑n
i=1

(
∑i

k=ti
zk − liz̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤

∑n
i=1 li

︸ ︷︷ ︸

VII

.

In what follows, we bound them separately.

Bound on Term V: First, we calculate

E[∥
∑n

i=1

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤
∥21τks,δ>n]

≤∑n
i=1 E[∥

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤
∥21τks,δ>n]

=
∑n

i=1 E[∥
∑i

k=ti
(ρk − ρ̄n)∥221τks,δ>n]

≲
∑n

i=1 li
∑i

k=ti
(E[∥ρk∥221τks,δ>n] + E[∥ρ̄n∥221τks,δ>n]), (B.50)

where the last inequality follows from the Cauchy-Schwarz inequality. Using Equation 10.6 in Davis

et al. (2024), we have

∥ρk∥2 ≤ ∥xk − yk∥2 + ∥yk − zk∥2 ≲ ∥Dk∥2 + ∥yk − x⋆∥22.

Applying Lemma 16 and Lemma 19, for i such that ti ≥ ks, we have

∑i
k=ti

E[∥ρk∥221τks,δ>n] ≲
∑i

k=ti
(E[∥Dk∥221τks,δ>k] + E[∥yk − x⋆∥421τks,δ>k])

≲ k2αs
∑i

k=ti
η2k
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≲ k2αs lit
−2α
i . (B.52)

On the other hand, for i such that li < ti < ks, we have

∑i
k=ti

E[∥ρk∥221τks,δ>n] ≲
∑i

k=ti
(E[∥Dk∥221τks,δ>k] + E[∥yk − x⋆∥421τks,δ>k])

≲ ks, , (B.53)

where the second inequality follows from Assumption 6 and the definition of yk. Similar to (B.52)

and (B.53), we have

E[∥ρ̄n∥221τks,δ>n] ≤ n−1
∑n

k=1 E[∥ρk∥221τks,δ>k] ≲ n−1(k2αs
∑n

k=ks
η2k + ks) ≲ ksn

−1.(B.54)

Combining (B.50), (B.52), (B.53), and (B.54), and using the fact that ti ≍ i, we have

E[∥
∑n

i=1

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤
∥21τks,δ>n]

≲
∑n

i=1 l
2
i (k

2α
s t−2α

i + ksn
−1) + k3s

=
∑M

m=1

∑am+1

i=am+1 l
2
i k

2α
s a−2α

m + ksn
−1
∑n

i=1 l
2
i + k3s

≤ k2αs
∑M

m=1 a
−2α
m n3m + ksn

−1
∑n

i=1 l
2
i + k3s (B.55)

Combining (B.55), (B.16), and (B.17), and observing n ≍Mβ , we obtain,

E[∥∑n
i=1

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤
∥21τks,δ>n] ≲ k2αs M3β−2αβ−2 + ksM

2β−2 + k3s .

Then, by (B.15),

E[∥V ∥21τks,δ>n] = (
∑n

i=1 li)
−1

E[∥
∑n

i=1

(
∑i

k=ti
ρk − liρ̄n

)(
∑i

k=ti
ρk − liρ̄n

)⊤
∥21τks,δ>n]

≲ k2αs Mβ−2αβ−1 + ksM
−1 + k3sM

1−2β

≲ k3sM
−1. (B.56)

Bound on Term VI: By Lemma 10, we have,

E[∥Σ′
n − Σ∥21τks,δ>n]

≲ dkαsM
(α−1)β+1 +

√
dk2sM

− 1
2 +

√
dk

α
2
s M

(α−1)β+1
2 + k

α+ 1
2

s M− 1
2 + k2α+1

s M−1.

Then, by Cauchy-Schwarz inequality, we have

E[∥VI∥21τks,δ>n]

≤
(
E[∥V ∥21τks,δ>n]

)1/2
(

(
∑n

i=1 li)
−1

E[∥∑n
i=1

(
∑i

k=ti
zk − liz̄n

)(
∑i

k=ti
zk − liz̄n

)⊤

∥21τks,δ>n]

)1/2

≲ k
3
2
s M−1/2

√

dkαsM
(α−1)β+1 +

√
dk2sM

−
1
2 +

√
dk

α
2
s M

(α−1)β+1
2 + k

α+ 1
2

s M−
1
2 + k2α+1

s M−1 + 1.(B.57)

Bound on Term VII: Similar to Term VI, we have,

E[∥VII∥21τks,δ>n]
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≲ k
3
2
s M

− 1
2

√

dkαsM
(α−1)β+1 +

√
dk2sM

− 1
2 +

√
dk

α
2
s M

(α−1)β+1
2 + k

α+ 1
2

s M− 1
2 + k2α+1

s M−1 + 1.(B.58)

Combining (B.56), (B.57), and (B.58), we obtain,

E[∥Σ̂n − Σ′
n∥21τks,δ>n]

≲
√
dk

3
2
+α

2
s M

(α−1)β
2 + d

1
4k

5
2
s M

− 3
4 + d

1
4k

α
4
+ 3

2
s M

(α−1)β−1
4 + k

3
2
s M

− 1
2 + k3sM

−1.

Appendix C. Proof of Proposition 3

The basic probabilistic tool we use to achieve high probability bound was originally developed by

Harvey et al. Harvey et al. (2019) and then generalized by Cutler et al. (2023).

Proposition 12 (Proposition 29 in Cutler et al. (2023)) Consider scalar stochastic processes (Vk),
(Dk), and (Xk) on a probability space with Filtration (Hk) such that Vk is nonnegative and Hk

measurable and the inequality

Vk+1 ≤ αkVk +Dk

√

Vk +Xk + κk

holds for for some deterministic constants αk ∈ (−∞, 1] and κk ∈ R. Suppose that the moment

generating functions of Dk and Xk conditioned on Hk satisfy the following inequalities for some

deterministic constants σk, νk > 0:

• E[exp(λDk) | Hk] ≤ exp(λ2σ2k/2) for all λ ≥ 0. (e.g., Dk is mean-zero sub-Gaussian

conditioned on Hk with parameter σk).

• E[exp(λXk) | Hk] ≤ exp(λνk) for all 0 ≤ λ ≤ 1
νk

. (e.g., Xk is nonnegative and subexponen-

tial conditioned on Hk with parameter νk).

Then, the inequality

E[exp(λVk+1)] ≤ exp(λ(νk + κk))E

[

exp

(

λ

(
1 + αk

2
Vk

))]

holds for all 0 ≤ λ ≤ min
{

1−αk

2σ2
k

, 1
2νk

}

.

Now we prove Proposition 3. Recall that we let vk = Gηk+1
(xk, νk+1). We have

∥xk+1 − x⋆∥2 = ∥xk − ηk+1vk − x⋆∥2

= ∥xk − x⋆∥2 − 2ηk+1 ⟨vk, xk − x⋆⟩+ η2k+1∥vk∥2

≤ ∥xk − x⋆∥2 − 2γηk+1∥xk − x⋆∥2 + 2Cη2k+1(1 + ∥xk − x⋆∥2 + ∥νk+1∥2)
− 2ηk+1 ⟨νk+1, xk − x⋆⟩+ Cη2k+1(1 + ∥xk − x⋆∥2 + ∥νk+1∥2)

≤ (1− γηk+1)∥xk − x⋆∥2 − 2ηk+1 ⟨νk+1, xk − x⋆⟩
+ 3Cη2k+1∥νk+1∥2 + 3Cη2k+1,
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where the first inequality follows from Assumption 7 and the second inequality follows from the

upper bound on η. Define

ψk =

{
xk−x⋆

∥xk−x⋆∥ xk ̸= x⋆

0 otherwise
.

Note that 2ηk+1 ⟨νk+1, ψk⟩ is mean-zero sub-Gaussian conditioned on Fk with parameter ηk+1σ,

and 3Cη2k+1∥νk+1∥2 is sub-exponential with parameter 3cCη2k+1σ
2. We can apply Proposition 12

with

Vk = ∥xk − x⋆∥, αk = 1− γηk+1, Dk = −2ηk+1 ⟨νk+1, ψk⟩
and

Xk = 3Cη2k+1∥νk+1∥2, κk = 3Cη2k+1.

Recalling C̃ = 3cCσ2 + 3C we have from Proposition 12 that

E[exp(λ∥xk+1 − x⋆∥2)] ≤ exp(λC̃η2k+1)E[exp(λ(1− γηk+1/2)∥xk − x⋆∥)] (C.1)

for all 0 ≤ λ ≤ min

{

γ
2ηk+1σ2 ,

1
6Cη2

k+1σ
2

}

= γ
2ηk+1σ2 . Define

pji :=

{∏j
k=i

(
1− γηi

2

)
i ≤ j

1 i = j + 1.

Applying (C.1) recursively, we deduce

E[exp(λ∥xk − x⋆∥)] ≤ exp
(

λpk1∥x0 − x⋆∥2 + λC̃
(
∑k

i=1 p
k
i+1η

2
i

))

(C.2)

Recall that Cα = 1−(1/2)1−α

2(1−α) . By Lemma 20, for 1 ≤ i ≤ ⌊k/2⌋,

pki ≤ exp(−Cαγη(k + 1)1−α). (C.3)

Consequently, we have

λC̃
(
∑k

i=1 p
k
i+1η

2
i

)

= λC̃
(
∑⌊k/2⌋

i=1 pki+1η
2
i +

∑k
i=⌊k/2⌋+1 p

k
i+1η

2
i

)

≤ λC̃
(

exp
(
−Cαγη(k + 1)1−α

)∑∞
i=1 η

2
i +

∑k
i=⌊k/2⌋+1 η

2
i

)

≤ λC̃η2
((

1 +
1

2α− 1

)

exp
(
−Cαγη(k + 1)1−α

)
+

1

(2α− 1)21−2α
k1−2α

)

︸ ︷︷ ︸

:=Hk

,

where the first inequality follows from (C.3) and the fact that pki+1 ≤ 1, and the second inequality

follows from Lemma 21. By (C.2), we have

E[exp(λ∥xk − x⋆∥)] ≤ exp
(

λexp(−Cαγηk
1−α)∥x0 − x⋆∥2 + λC̃η2Hk

)

By our assumption on k, we have

exp(−Cαγηk
1−α)∥x0 − x⋆∥2 ≤ δ

4
and C̃η2Hk ≤ δ

4
.
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Then, by Markov’s inequality, we have

P(∥xk − x⋆∥ ≥ δ) ≤ exp(−λδ)E[exp(λ∥xk − x⋆∥)]
≤ exp(−λδ/2)

Note that by taking λ = γ
2ηk+1σ2 , we have

P(∥xk − x⋆∥ ≥ δ) ≤ exp

(

−γ(k + 1)αδ

4ησ2

)

, (C.4)

which is summable. Combining, we have

P(∥xi − x⋆∥ < δ, ∀i ≥ k) ≥ 1−
∑∞

i=k P(∥xi − x⋆∥ ≥ δ)

≥ 1−
∑∞

i=k exp
(

−γ(k+1)αδ
4ησ2

)

≥ 1−
32η2σ4exp

(

−γδ
√
k

4ησ2

)

γ2δ2
−

8ηδ2
√
kexp

(

−γδ
√
k

4ησ2

)

γδ
,

where the first inequality follows from the union bound, the second inequality follows from (C.4),

and the last inequality follows from Lemma 23.

Appendix D. Proofs of Theorem 4

Lemma 13 Let Σ̂n be defined as in (1.4). Suppose that Assumption 6 holds. Then we have

E[∥Σ̂n∥op] ≤ 4Cubn.

Proof Note that

Σ̂n =

∑n
i=1

(
∑i

k=ti
xk − lix̄n

)(
∑i

k=ti
xk − lix̄n

)⊤

∑n
i=1 li

=

∑n
i=1

(
∑i

k=ti
(xk − x⋆)− li(x̄n − x⋆)

)(
∑i

k=ti
(xk − x⋆)− li(x̄n − x⋆)

)⊤

∑n
i=1 li

,

we can without loss of generality assume that x⋆ = 0 and E[∥xk∥22] ≤ Cub for all k ≥ 0. Note that

by Jensen’s inequality, E[∥x⋆n∥22] ≤ Cub. We have

E[∥Σ̂n∥op] ≤
∑n

i=1 E[∥
∑i

k=ti
xk − lix̄n∥22]

∑n
i=1 li

≤
∑n

i=1 li
∑i

k=ti
E[∥xk − x̄n∥22]

∑n
i=1 li

≤ 4Cub

∑n
i=1 l

2
i

∑n
i=1 li

≤ 4Cubn,
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where the first inequality follows from triangle inequality, the second inequality follows from Jensen’s

inequality, the third inequality follows from E[∥x⋆n∥22] ≤ Cub, and the last inequality follows from

li ≤ i ≤ n. The conclusion then follows.

Now we prove Theorem 4. By Proposition 3, for any ks ≳ 1 and n ≥ ks, we have

P (τks,δ ≤ n) ≤
32η2σ4exp

(

−γδ
√
ks

4ησ2

)

γ2δ2
+

8ηδ
√
ksexp

(

−γδ
√
ks

4ησ2

)

γ

For n ≳ 1, taking ks ≍ log2 n so that P (τks,δ ≤ n) ≲ n−2, we have

E[∥Σ̂n − Σ∥op] = E[∥Σ̂n − Σ∥op1τks,δ>n] + E[∥Σ̂n − Σ∥op1τks,δ≤n]

≲log

√
dM− 1

2 +
√
dM

(α−1)β+2
2 + nP (τks,δ ≤ n)

≲
√
dM− 1

2 +
√
dM

(α−1)β+2
2

≲
√
dn

− 1
2β +

√
dn

− (α−1)β+1
2β ,

where the first inequality follows from Theorem 1 and Lemma 13, the second inequality follows

from P (τks,δ ≤ n) ≲ n−2, and the last inequality follows from n ≈Mβ .

Appendix E. Extra assumption verification for stochastic approximation

The following proposition shows that under convexity (monotonicity), Assumption 6 holds for all the

stochastic approximation algorithms in Section 5.

Proposition 14 Suppose that the variational inclusion problem takes the form of (5.1), and Assump-

tion 4 and 5 holds. Moreover, suppose that A is a Lipschitz and monotone map and we are in one of

the following scenarios:

1. One applies the stochastic forward algorithm to the case f = 0 and g is Lipschitz and convex.

2. One applies the stochastic projected forward algorithm to the case f is the indicator function

of a closed convex set X and g is Lipschitz and convex.

3. One applies the stochastic forward-backward algorithm to the case f is Lipschitz in its domain

and g = 0.

Then Assumption 6 holds.

Proof Note that the first scenario is a special case of the second one, we only prove it for the second

and third cases.

Stochastic projected forward algorithm. By the definition of x⋆, there exists v⋆ ∈ ∂g(x⋆) and

w⋆ ∈ NX (x∗) such that

0 = A(x⋆) + v⋆ + w⋆.

By monotonicity of A and convexity of g, for any xk and sg(xk) ∈ ∂g(xk), we have

⟨A(xk) + sg(xk) + w⋆, xk − x⋆⟩ = ⟨A(xk) + sg(xk)−A(x⋆)− v⋆, xk − x⋆⟩ ≥ 0.
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Note also that w⋆ ∈ NX (x⋆), we have

⟨A(xk) + sg(xk), xk − x⋆⟩ ≥ − ⟨w⋆, xk − x⋆⟩ ≥ 0. (E.1)

As a result, there exists some constant C > 0 such that

E[∥xk+1 − x⋆∥22] = E[∥PX (xk − ηk+1(A(xk) + sg(xk) + νk+1))− x⋆∥22]
≤ E[∥xk − ηk+1(A(xk) + sg(xk) + νk+1)− x⋆∥22]
≤ E[∥xk − x⋆∥2]− 2ηk+1E[⟨A(xk) + sg(xk) + νk+1, xk − x∗⟩] + Cη2k+1(1 + E[∥xk − x⋆∥22])
≤ (1 + Cη2k+1)E[∥xk − x⋆∥2] + Cη2k+1,

where the first inequality follows from the fact that PX is 1-Lipschitz, and the last inequality follows

from (E.1). The results then follow from Lemma 26.

Stochastic forward-backward algorithm. By definition of x⋆, there exists w ∈ ∂f(x⋆) such that

0 = A(x⋆) + w⋆.

For any xk, we denote xk − ηk+1(A(xk) + νk+1) by x+k and
x+
k
−proxηk+1f

(x+
k
)

ηk+1
by w+

k . By the

property of the proximal operator, we have w+
k ∈ ∂f(x+k ). Moreover, by monotonicity of A and

convexity of f , we have

〈
A(x+k ) + w+

k , x
+
k − x∗

〉
=
〈
A(x+k ) + w+

k −A(x⋆)− w⋆, x+k − x∗
〉
≥ 0. (E.2)

Next, we bound ∥xk+1 − xk∥. By definition of xk+1 and Lipschitz property of f and A, there exists

some constant C > 0 (may change from line to line) such that

1

2ηk+1
∥xk+1 − xk∥22 ≤ f(xk)− f(xk+1)− ⟨A(xk) + νk+1, xk+1 − xk⟩

≤ C(1 + ∥xk − x⋆∥2 + ∥νk+1∥2)∥xk+1 − xk∥2.

As a consequence, there exists a constant C > 0 such that

∥xk+1 − xk∥2 ≤ Cηk+1(1 + ∥xk − x⋆∥2 + ∥νk+1∥2). (E.3)

In addition, by Lipschitz continuity of A and f , there exists some constant C > 0 ) such that

∥xk − x+k ∥2 ≤ Cηk+1(1 + ∥xk − x⋆∥2 + ∥νk+1∥2). (E.4)

As a result of (E.3) and (E.4), there exists a constant C > 0 such that

∥w+
k ∥2 ≤

1

ηk+1
(∥xk − x+k ∥2 + ∥xk+1 − xk∥2) ≤ C(1 + ∥xk − x⋆∥2 + ∥νk+1∥2)

Consequently, there exists a constant C > 0 such that

E[∥xk+1 − x⋆∥22] = E[∥xk − x⋆ − ηk+1(A(xk) + νk+1 + w+
k )∥22]

= E[∥xk − x⋆∥22]− 2ηk+1E[
〈
xk − x⋆, A(xk) + w+

k

〉
] + Cη2k+1(1 + E[∥xk − x⋆∥22]).
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Next, we show that 2ηk+1E[
〈
xk − x⋆, A(xk) + w+

k

〉
] is lower bound. By (E.2), we have

2ηk+1E[
〈
xk − x⋆, A(xk) + w+

k

〉
]

= 2ηk+1(E[
〈
xk − x+k , A(xk) + w+

k

〉
] + E[

〈
x+k − x⋆, A(xk)−A(x+k )

〉
] + E[

〈
x+k − x⋆, A(x+k ) + w+

k

〉
])

≥ −2ηk+1(E[∥xk − x+k ∥2∥A(xk) + w+
k ∥2]

︸ ︷︷ ︸

(I)

+E[∥x+k − x⋆∥2∥A(xk)−A(x+k )∥2]
︸ ︷︷ ︸

(II)

).

We bound (I) and (II) separately. By Holder’s inequality,

(I) ≤ (E[∥xk − x+∥22])
1
2 (E[∥A(xk) + w+

k ∥22])
1
2

≤ Cηk+1(1 + E[∥xk − x⋆∥2]),

where the second inequality follows from (E.4). On the other hand,

(II) ≤ C · E[∥x+k − x⋆∥2∥xk − x+k ∥2]
≤ C(E[∥xk − x+k ∥22] + E[∥xk − x⋆∥2∥xk − x+k ∥2])

≤ C
(

E[∥xk − x+k ∥22] + (E[∥xk − x⋆∥22])
1
2 (E[∥xk − x+k ∥22])

1
2

)

≤ Cηk+1(1 + E[∥xk − x⋆∥22]).

Combining, We have

2ηk+1E[
〈
xk − x⋆, A(xk) + w+

k

〉
] ≥ −Cηk+1(1 + E[∥xk − x⋆∥22]).

Consequently, there exists constant C > 0 such that

E[∥xk+1 − x⋆∥22] ≤ (1 + Cη2k+1)E[∥xk − x⋆∥2] + Cη2k+1.

The results then follow from Lemma 26.

The following proposition shows that under strong convexity (monotonicity), Assumption 7

holds for all the stochastic approximation algorithms in Section 5.

Proposition 15 Suppose that the variational inclusion problem takes the form of (5.1). Assume that

A is strongly monotone and Lipschitz. Suppose we are in one of the following scenarios:

1. One applies the stochastic forward algorithm to the case f = 0 and g is Lipschitz and convex.

2. One applies the stochastic projected forward algorithm to the case f is the indicator function

of a closed set X and g is Lipschitz and convex.

3. One applies the stochastic forward-backward algorithm to the case f is Lipschitz in its domain

and g = 0.

Then Assumption 7 holds.

Proof Since the stochastic forward algorithm is a special case of the stochastic projected forward

algorithm, it suffices to prove the result for both the stochastic projected forward algorithm (case 2)

and the stochastic forward-backward algorithm (case 3.)
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Stochastic projected forward algorithm. Recall sg is a selection of ∂g. There exists some

constant C > 0 (it may change from line to line through the proof) such that

∥Gη(x, ν)∥2 =
∥
∥
∥
∥

x− PX (x− η(A(x) + sg(x) + ν))

η

∥
∥
∥
∥
2

≤ ∥A(x) + sg(x) + ν∥2
≤ C(1 + ∥x− x⋆∥2),

where the first inequality follows from the fact that PX is 1-Lipschitz and the second inequality

follows from the Lipschitz continuity of A and g. Item 2 follows. On the other hand, by the definition

of x⋆, there exists v⋆ ∈ ∂g(x⋆) and w⋆ ∈ NX (x∗) such that

0 = A(x⋆) + v⋆ + w⋆.

By strong monotonicity of A and convexity of g, there exists γ > 0 such that for any x and

sg(x) ∈ ∂g(x), we have

⟨A(x) + sg(x) + w⋆, x− x⋆⟩ = ⟨A(x) + sg(x)−A(x⋆)− v⋆, x− x⋆⟩
≥ γ∥x− x⋆∥22.

As a result of w⋆ ∈ NX (x∗), we have

⟨A(x) + sg(x), x− x⋆⟩ ≥ γ∥xk − x⋆∥22.

Next, we denote x− η(A(x) + sg(x) + ν) by x+ and
x+−PX (x+)

η by w. Note that w ∈ NX (x+) and

Gη(x, ν) = w +A(x) + sg(x) + ν, so we have

∥w∥2 ≤ C(1 + ∥x− x⋆∥2 + ν).

Therefore,

⟨Gη(x, ν)− ν, x− x⋆⟩ = ⟨w +A(x) + sg(x), x− x⋆⟩
≥ γ∥x− x⋆∥2 +

〈
w, x− x+

〉
+
〈
w, x+ − x⋆

〉

≥ γ∥x− x⋆∥2 +
〈
w, x− x+

〉
,

where the first inequality follows from E and the second inequality follows from w ∈ NX (x+). Note

also that

∥x− x+∥2 ≤ Cη(1 + ∥x− x⋆∥2 + ∥ν∥2),

we have

|
〈
w, x− x+

〉
| ≤ ∥w∥2∥x− x+∥2 ≤ Cη(1 + ∥x− x⋆∥22 + ∥ν∥22).

Combining, we have

⟨Gη(x, ν)− ν, x− x⋆⟩ ≥ γ∥x− x⋆∥2 − Cη(1 + ∥x− x⋆∥22 + ∥ν∥22).
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Stochastic forward-backward algorithm. First, we bound ∥Gη(x, ν)∥2. By definition of proximal

operator and Lipschitz property of f and A, there exists some constant C > 0 (may change from

line to line) such that

η

2
∥Gη(x, ν)∥22 ≤ f(x)− f(x− ηGη(x, ν)) + η ⟨A(x) + ν,Gη(x, ν)⟩

≤ Cη∥Gη(x, ν)∥2(1 + ∥x− x⋆∥2 + ∥ν∥2).
As a consequence, there exists a constant C > 0 such that

∥Gη(x, ν)∥2 ≤ C(1 + ∥x− x⋆∥2 + ∥ν∥2). (E.5)

Therefore, item 2 follows. Next, by the definition of x⋆, there exists w⋆ ∈ ∂f(x⋆) such that

0 = A(x⋆) + w⋆.

For any x, we denote x − η(A(x) + ν) by x+ and
x+−proxηf (x

+)

η by w+. By the property of the

proximal operator, we have w+ ∈ ∂f(x+). Moreover, by strong monotonicity of A and convexity of

f , we have
〈
A(x+) + w+, x+ − x⋆

〉
=
〈
A(x+) + w+ −A(x⋆)− w⋆, x+ − x⋆

〉

≥ γ∥x+ − x⋆∥2. (E.6)

In addition, by Lipschitz continuity of A and f , there exists some constant C > 0 ) such that

∥x− x+∥2 ≤ Cη(1 + ∥x− x⋆∥2 + ∥ν∥2). (E.7)

As a result of (E.5) and (E.7), there exists constant C > 0 such that

∥w+∥2 ≤
1

η
∥x− x+∥2 + ∥Gη(x, ν)∥2 ≤ C(1 + ∥x− x⋆∥2 + ∥ν∥2)

Note that Gη(x, ν) = w+ +A(x) + ν, we have

⟨Gη(x, ν)− ν, x− x⋆⟩ =
〈
w+ +A(x), x− x⋆

〉

=
〈
A(x)−A(x+), x− x⋆

〉

︸ ︷︷ ︸

(I)

+
〈
w+ +A(x+), x+ − x⋆

〉

︸ ︷︷ ︸

(II)

+
〈
w+ +A(x+), x− x+

〉

︸ ︷︷ ︸

(III)

.

We lower-bound each term separately. By Lipschitz continuity of A and (E.7), we have

∥(I)∥2 ≤ C(1 + ∥x− x⋆∥22 + ∥ν∥22).
By (E.6), we have

(II) ≥ γ∥x+ − x⋆∥2

≥ γ∥x− x⋆∥22 − 2∥x+ − x∥2∥x− x⋆∥2
≥ γ∥x− x⋆∥22 − C(1 + ∥x− x⋆∥22 + ∥ν∥22).

Moreover,

∥(III)∥2 ≤ (∥w+∥2 + ∥A(x+)∥2)∥x− x+∥2
≤ C(1 + ∥x− x⋆∥22 + ∥ν∥22),

where the last inequality follows from the Lipschitz continuity of A and (E.5). The results then

follows by combining (I), (II), and (III).

37



JIANG ROY BALASUBRAMANIAN DAVIS DRUSVYATSKIY NA

Appendix F. Technical lemmas

Recall that for a given index k ≥ 0 and a constant δ ∈ (0, 1), the stopping time is defined as

τk,δ := inf{l ≥ k : xl /∈ Bδ(x
⋆)},

which is the first time after k that the iterate leaves Bδ(x
⋆). Now, define Dk := dist(xk,M),

vk := Gηk+1
(xk, νk+1) for all k ≥ 0. In what follows, C denotes constant and may change from line

to line.

Lemma 16 Suppose that Assumptions 2, 3, and 4 hold. If α ∈ (1/2, 1), then for any sufficiently

small δ > 0, any ks ≥ 0, there exists a constant C depending on δ, ks and α such that for any

l ≥ s ≥ ks,
∑l

k=s E[D
2
k1τks,δ>k] ≤ Ck2αs

∑l
k=s η

2
k.

Proof First, we note that it suffices to show the result for all ks ≥
(
4α
µη

)1/(1−α)
since the cases

when ks ≤
(
4α
µη

)1/(1−α)
can be handled by enlarging C properly. Define Ak := {τks,δ > k} for all

k ≥ ks. We require that δ is small enough so that Bδ(x
⋆) is contained in the neighborhood where

Assumption 3 holds with probability 1. Note that we require ks (or η) to be large enough so the

conclusions of Lemma 22 holds for all k ≥ ks. We first prove a recurrence relation satisfied by the

sequence Dk. To that end, recall the update rule (3.3), for all k ≥ 0, when xk ∈ Bδ(x
⋆), we have

D2
k+1 ≤ ∥xk+1 − PM(xk)∥2

= ∥xk − ηk+1vk − PM(xk)∥2

= ∥xk − PM(xk)∥2 − 2ηk+1 ⟨vk, xk − PM(xk)⟩+ η2k+1∥vk∥2

≤ D2
k − 2ηk+1µDk + 2ηk+1(1 + ∥νk+1∥)2o(Dk)

− 2ηk+1 ⟨νk+1, xk − PM(xk)⟩+ C(1 + ∥νk+1∥)2
︸ ︷︷ ︸

:=Bk+1

η2k+1,

(F.1)

where the second inequality follows from Assumption 2 and Condition 2 of Assumption 3. Note that

the bound Ek[∥νk+1∥4]1Ak
≤ q(xk)1Ak

implies that there exists C > 0 such that

Ek[Bk+1]1Ak
≤ C,

meaning the conditional expectation is bounded for all i. Moreover, by shrinking δ if necessary, we

have

Ek[(1 + ∥νk+1∥)2o(Dk)1Ak
] ≤ µ

2
Dk1Ak

.

Thus, for each k ≥ ks, we have

Ek[D
2
k+11Ak+1

] ≤ Ek[D
2
k+11Ak

]

≤ D2
k1Ak

− µηk+1Dk1Ak
+ Cη2k+1 (F.2)

where the first inequality follows from 1Ak+1
≤ 1Ak

, the second inequality the assumption that {νk}
is a martingale difference sequence and Ak is Fk measurable. Taking expectations on both sides, we

have

E[D2
k+11Ak+1

] ≤ E[D2
k1Ak

]− µηk+1E[Dk1Ak
] + Cη2k+1. (F.3)

38



ONLINE COVARIANCE ESTIMATION IN NONSMOOTH SA METHODS

Summing (F.3) from k = s to l and using Lemma 17, we have

∑l
k=s ηk+1E[Dk1Ak

] ≲ E[D2
s1As ] +

∑l
k=s η

2
k+1 ≲ kαs ηs +

∑l
k=s η

2
k+1 ≲ kαs

∑l
k=s η

2
k+1.(F.4)

On the other hand, when xk ∈ Bδ(x
⋆), we have

D4
k+1 ≤ ∥xk − ηk+1vk − PM(xk)∥4

= D4
k − 4ηk+1 ⟨vk, xk − PM(xk)⟩D2

k + η4k+1∥vk∥4 + 2η2k+1D
2
k∥vk∥22 + 4η2k+1 ⟨vk, xk − PM(xk)⟩2

− 4η3k+1 ⟨vk, xk − PM(xk)⟩ ∥vk∥2 (F.5)

≤ D4
k − 4µηk+1D

3
k + 4ηk+1D

2
k(1 + ∥νk+1∥2)o(Dk)− 4ηk+1 ⟨νk+1, xk − PM(xk)⟩D2

k + η4k+1∥vk∥4

+ 6η2k+1D
2
k∥vk∥2 + 4η3k+1Dk∥vk∥3, (F.6)

where the equality (F.5) follows from expanding the fourth power directly and the estimate (F.6)

follows from Conditioning 2 of Assumption 3 and Cauchy-Schwarz inequality. Thus, there exists

constant C > 0 such that for each i ≥ 0, we have

Ek[D
4
k+11Ak+1

] ≤ Ek[D
4
k+11Ak

]

≤ D4
k1Ak

− 2µηk+1D
3
k1Ak

+ Cη2k+1D
2
k1Ak

+ Cη3k+1Dk1Ak
+ Cη4k+1

≤ (1− µηk+1)D
4
k1Ak

− µηk+1D
3
k1Ak

+ Cη2k+1D
2
k1Ak

+ Cη3k+1Dk1Ak
+ Cη4k+1,

(F.7)

where the first inequality follows from 1Ak+1
≤ 1Ak

, the second inequality follows from the

assumption that {νk+1} is a martingale difference sequence, our choice of δ, and the bound on the

fourth moment of νi, and the third inequality follows from the assumption that δ < 1. By Lemma 22,

for all k ≥ ks, we have
1− µηk+1

η2k+1

≤ 1

η2k
.

Taking expectation and dividing both sides of (F.7) by η2k+1, we have

E[D4
k+11Ak+1

]

η2k+1

≤ E[D4
k1Ak

]

η2k
− 2

µ

ηk+1
E[D3

k1Ak
] + CE[D2

k1Ak
] + Cηk+1E[Dk1Ak

] + Cη2k+1(F.8)

For any index l ≥ s ≥ ks, summing (F.8) from s to l, we have

∑l
k=s

1
ηk+1

E[D3
k1Ak

] ≤ E[D4
s1As ]

η2s
+ C

(
∑l

k=s E[D
2
k1Ak

] +
∑l

k=s ηk+1E[Dk1Ak
] +
∑l

k=s η
2
k+1

)

≲
∑l

k=s E[D
2
k1Ak

] + k3αs
∑l

k=s η
2
k+1, (F.9)

where the second inequality follows from Lemma 17 and the estimate (F.4). Combining (F.4)

and (F.9), we have

∑l
k=s E[D

2
k1Ak

] ≤
√
∑l

k=s ηk+1E[Dk1Ak
] ·
∑l

k=s
1

ηk+1
E[D3

k1Ak
]

≲

√

kαs
∑l

k=s η
2
k+1 · (k3αs

∑l
k=s η

2
k+1 +

∑l
k=s E[D

2
k1Ak

]),
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where the first inequality follows from Holder’s inequality. Simple calculation yields

∑l
k=s E[D

2
k1Ak

] ≲ k2αs
∑l

k=s η
2
k+1,

as desired.

Lemma 17 Suppose that Assumption 2, 3, and 4 hold. Then for any sufficiently small δ > 0, there

exists a constant C > 0 such that for any ks ≥ 1, and any k ≥ ks,

E[D2
k1τks,δ>k] ≤ Ckαs ηk, E[D4

k1τks,δ>k] ≤ Ck3αs η3k.

Proof We require that δ is small enough so that δ ≤ 1 and Bδ(x
⋆) is contained in the neighborhood

where Assumption 3 holds with probability 1. Define Ak := {τks,δ > k} for all k ≥ ks. Following

the calculation in (F.1), we obtain (F.2). Consequently,

Ek[D
2
k+11Ak+1

] ≤ D2
k1Ak

− µηk+1Dk1Ak
+ Cη2k+1

≤ (1− µηk+1)D
2
k1Ak

+ Cη2k+1,

where the second inequality follows from δ ≤ 1. Taking expectations, we have

E[D2
k+11Ak+1

] ≤ (1− µηk+1)E[D
2
k1Ak

] + Cη2k+1.

By Lemma 24, there exists a constant C such that for any k ≥ ks,

E[D2
k1Ak

] ≤ Ckαs ηk.

On the other hand, by the same argument of the proof of Lemma 16, we have (F.7), which reads

Ek[D
4
k+11Ak+1

] ≤ (1− µηk+1)D
4
k1Ak

− µηk+1D
3
k1Ak

+ Cη2k+1D
2
k1Ak

+ Cη3k+1Dk1Ak
+ Cη4k+1.

Note that there exists a constant C̃ depending only on µ and C such that when Dk ≥ C̃ηk+1, we

have

−µηk+1D
3
k1Ak

+ Cη2k+1D
2
k1Ak

+ Cη3k+1Dk1Ak
≤ 0.

When Dk ≤ C̃ηk+1, we have

−µηk+1D
3
k1Ak

+ Cη2k+1D
2
k1Ak

+ Cη3k+1Dk1Ak
≤ (CC̃2 + CC̃ + C)η4k+1.

Therefore, by enlarging C if necessary, we always have

Ek[D
4
k+11Ak+1

] ≤ (1− µηk+1)D
4
k1Ak

+ Cη4k+1.

Taking expectations, we have

E[D4
k+11Ak+1

] ≤ (1− µηk+1)E[D
4
k1Ak

] + Cη4k+1.

By Lemma 24, there exists a constant C such that for any k ≥ ks,

E[D4
k1Ak

] ≤ Ck3αs η3k.

We have the following lemma for the size of Ek.
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Lemma 18 Suppose that Assumption 1 – 6 hold. Let δ > 0 be small enough so that Assumption 1

– 3 hold inside Bδ(x
⋆). For any k ≥ 0, we have

E[∥Ek∥22] ≲
(

δ

ηk+1

)2

+ δ2 + Cub

Additionally, for any ks ≥ 0, and j ≥ i ≥ ks, we have

∑j
k=i E[∥Ek∥221τks,δ>k] ≲

∑j
k=i k

2α
s η2k.

Proof By definition, we always have

E[∥Ek∥22] = E

[∥
∥
∥
∥

yk+1 − yk
ηk+1

+ FM(yk) + PTM(yk)(νk)

∥
∥
∥
∥

2

2

]

≲

[(
δ

ηk+1

)2

+ δ2 + Cub

]

,

where the last inequality follows from yk ∈ B4δ(x
⋆), the smoothness of FM, and Assumption 5

and 6. On the other hand, by (Davis et al., 2025, Proposition 6.3, item 2(a)), we have

∥Ek∥21τks,δ>k ≲ (1 + ∥νk∥2)(Dk + ηk). (F.11)

The estimate F.10 then follows from Assumption 4 and Lemma 16.

Lemma 19 Suppose that Assumption 1 – 6 hold. Let δ > 0 be small enough so that Assumption 1

– 3 hold inside Bδ(x
⋆). For any ks ≥ 0 and k ≥ ks, we have

E[∥yk − x⋆∥p21τks,δ>k] ≲ kpα/2s η
p/2
k , p = 1, 2, 4.

Proof Note that

∥yk+1 − x⋆∥421τks,δ>k

= ∥yk − ηk+1FM(yk)− ηk+1PTM(yk)(νk) + ηk+1Ek − x⋆∥421τks,δ>k

≤ ∥yk − x⋆∥421τks,δ>k − 4ηk+1

〈
yk − x⋆, FM(yk) + PTM(yk)(νk)− Ek

〉
∥yk − x⋆∥221τks,δ>k

+ 6η2k+1∥yk − x⋆∥22∥FM(yk) + PTM(yk)(νk)− Ek∥221τks,δ>k

+ 4η3k+1∥yk − x⋆∥2∥FM(yk) + PTM(yk)(νk)− Ek∥321τks,δ>k + η4k+1∥FM(yk) + PTM(yk)(νk)− Ek∥421τks,δ>k

≤ ∥yk − x⋆∥421τks,δ>k − 4ηk+1

〈
yk − x⋆, FM(yk) + PTM(yk)(νk)− Ek

〉
∥yk − x⋆∥221τks,δ>k

︸ ︷︷ ︸

(I)

+ 8η2k+1∥yk − x⋆∥22∥FM(yk) + PTM(yk)(νk)− Ek∥221τks,δ>k
︸ ︷︷ ︸

(II)

+3η4k+1∥FM(yk) + PTM(yk)(νk)− Ek∥421τks,δ>k
︸ ︷︷ ︸

(III)

,

where the first inequality follows from direct expansion and Cauchy-Schwarz inequality, and the

second inequality follows from Young’s inequality. Taking expectations, we have

E[∥yk+1 − x⋆∥421τks,δ>k] ≤ E[(I)] + E[(II)] + E[(III)].
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We bound the terms separately. By Assumption 1 and the inequality of arithmetic and geometric

means, we have

Ek[(I)] = Ek[∥yk − x⋆∥421τks,δ>k − 4ηk+1

〈
yk − x⋆, FM(yk)1τks,δ>k − Ek[Ek]

〉
∥yk − x⋆∥221τks,δ>k]

≤ (1− 4γηk+1)∥yk − x⋆∥421τks,δ>k + 4ηk+1Ek[∥Ek∥2∥yk − x⋆∥321τks,δ>k]

≤ (1− 4γηk+1)∥yk − x⋆∥421τks,δ>k + γηk+1∥yk − x⋆∥421τks,δ>k +
81

γ3
ηk+1Ek[∥Ek∥421τks,δ>k]

≤ (1− 3γηk+1)∥yk − x⋆∥421τks,δ>k +
81

γ3
ηk+1Ek[∥Ek∥421τks,δ>k],

Taking expectation, using (F.11), and applying Lemma 17, there exists constant C such that

E[(I)] ≤ (1− 3γηk+1)E[∥yk − x⋆∥421τks,δ>k] +
81

γ3
ηk+1E[∥Ek∥421τks,δ>k]

≤ (1− 3γηk+1)E[∥yk − x⋆∥421τks,δ>k] + Ck3αs η4k+1.

Similarly,

(II) ≤ 24η2k+1∥yk − x⋆∥22(∥FM(yk)∥22 + ∥PTM(yk)(νk)∥22 + ∥Ek∥22)1τks,δ>k

≤ (24L2
M + 12)η2k+1∥yk − x⋆∥421τks,δ>k + 12η2k+1∥Ek∥421τks,δ>k

+ γηk+1∥yk − x⋆∥421τks,δ>k +
144

γ
η3k+1∥PTM(yk)(νk)∥421τks,δ>k,

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows

from Lipschitz continuity of FM and Young’s inequality. Taking expectation, and using (F.11), and

Lemma 17 and Assumption 5, there exists a constant C such that

E[(II)] ≤ (24L2
M + 12)η2k+1E[∥yk − x⋆∥421τks,δ>k] + Ck3sη

5
k+1 + γηk+1E[∥yk − x⋆∥421τks,δ>k] + Cη3k+1.

Moreover, using Jensen’s inequality, (F.11), and applying Lemma 17, there exists a constant C such

that

E[(III)] ≤ 81η4k+1E[∥FM(yk)∥421τks,δ>k] + 81η4k+1E[∥PTM(yk)(νk)∥421τks,δ>k] + 81η4k+1E[∥Ek∥421τks,δ>k]

≤ Cη4k+1 + Ck3αs η7k+1.

Combining and using the fact that ksηk+1 ≲ 1, we have

E[∥yk+1 − x⋆∥421τks,δ>k+1] ≤ (1− 2γηk+1 + (24L2
M + 12)η2k+1)E[∥yk − x⋆∥421τks,δ>k] + Ck2αs η3k+1.

As a result, for any k ≥ max

{

ks,
(
η(24L2

M+12)
γ

)1/α
}

, we have

E[∥yk+1 − x⋆∥421τks,δ>k] ≤ (1− γηk+1)E[∥yk − x⋆∥421τks,δ>k] + Ck2αs η3k+1.

By Lemma 24 and the fact that
(
η(24L2

M+12)
γ

)1/α
is a constant, there exists constant C such that

E[∥yk − x⋆∥421τks,δ>k] ≤ Ck2αs η2k, ∀k ≥ ks.

This resolves the case when p = 4. The other two cases follow from Holder’s inequality.
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Appendix G. Auxiliary lemmas

Lemma 20 Define

pji =

{∏j
k=i

(
1− γηi

2

)
i ≤ j

1 i = j + 1.

Then for any j ≥ i,

pji ≤ exp

(

−γη((j + 1)1−α − i1−α)

2(1− α)

)

Proof Note that

log(pji ) =
∑j

k=i log
(
1− γηi

2

)

≤ −γη
2

∑j
k=i k

−α

≤ −γη
2

∫ j+1

i
x−αdx

= −γη((j + 1)1−α − i1−α)

2(1− α)
.

Lemma 21 For any α ∈
(
1
2 , 1
)

and 1 ≤ i ≤ j, we have

∑j
k=i k

−2α ≤∑∞
k=i k

−2α ≤ 1 + 1
2α−1 i

1−2α

Proof Note that

∑∞
k=i k

−2α ≤ 1 +
∑∞

k=i+1 k
−2α

≤ 1 +

∫ ∞

i
x−2αdx

= 1 +
1

2α− 1
i1−2α.

Lemma 22 If α ∈ (12 , 1), then for all k ≥
(
4α
µη

)1/(1−α)
, we have

1− µηk+1

η2k+1

≤ 1

η2k
.

If α = 1 and η ≥ 4
µ , then the same inequality holds for all k ≥ 1.

Proof Note that ηk = ηk−α by Assumption 4, it suffices to show that

1− µη(k + 1)−α

(k + 1)−2α
≤ 1

k−2α
.
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Equivalently, we show that

(k + 1)2α − µη(k + 1)α ≤ k2α (G.1)

Note that

(

1 +
1

k

)2α

≤ 1 +
4α

k

≤ 1 +
µη(k + 1)α

k2α
,

where the first inequality follows from the fact that (1 + x)2α ≤ 1 + 4αx for all α ∈ (12 , 1] and

x ∈ (0, 1], and the second inequality follows from our assumption on k and η, for the cases α ∈ (12 , 1)
and α = 1, respectively. Rearranging it, we obtain (G.1).

Lemma 23 Let α ∈
(
1
2 , 1
)

and C > 0. Then for any k ≥ 0, we have

∑∞
i=k exp(−C(i+ 1)α) ≤ 2exp(−C

√
k)

C2 + 2
√
kexp(−C

√
k)

C

Proof Note that

∑∞
i=k exp(−C(i+ 1)α) ≤∑∞

i=k exp(−C(i+ 1)1/2)

≤
∫ ∞

k
exp(−Cx1/2)dx

≤
∫ ∞
√
k
2uexp(−Cu)du

=
2exp(−C

√
k)

C2
+

2
√
kexp(−C

√
k)

C
,

where the equality follows from the standard calculus calculation using integration by parts.

Lemma 24 Let α ∈ (0, 12), θ > α, c1 > 0, c2 > 0, and c3 > 0 be constants. Let {sk} be a

sequence such that 0 ≤ sk ≤ c3 for all k ≥ 0. Suppose that there exists k0 ≥ 0 such that

sk+1 ≤ (1− c1(k + 1)−α)sk + c2(k + 1)−θ, ∀k ≥ k0. (G.2)

Let C = max

{

c3, c3

(
2(θ−α)

c1

) θ−α
1−α

, 2c2
c1(k0+1)θ−α

}

. We have

sk ≤ C(k0 + 1)θ−α(k + 1)−(θ−α), ∀k ≥ k0.

Proof We first show that the desired bound holds for all the k0 ≤ k ≤ max

{(
2(θ−α)

c1

) 1
1−α

, k0

}

.

Note that sk ≤ c3, it suffices to show

C(k0 + 1)θ−α

(

max

{(
2(θ − α)

c1

) 1
1−α

, k0

}

+ 1

)−(θ−α)

≥ c3,
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which holds by our assumption on C. Next, we apply induction to prove the bound for all k ≥
max

{(
2(θ−α)

c1

) 1
1−α

, k0

}

. Suppose that the bound holds for some k ≥ max

{(
2(θ−α)

c1

) 1
1−α

, k0

}

.

By (G.2), we have

sk+1 ≤ C(k0 + 1)θ−α(k + 1)−(θ−α) − c1C(k0 + 1)θ−α(k + 1)−θ + c2(k + 1)−θ

≤ C(k0 + 1)θ−α(k + 1)−(θ−α) − c1C

2
(k0 + 1)θ−α(k + 1)−θ

= C(k0 + 1)θ−α(k + 1)−(θ−α)
(

1− c1
2
(k + 1)−α

)

,

where the second inequality follows from the lower bound on C. In addition, simple calculus shows

that for any x ∈ [0, 1/2], (1 − x)θ−α ≥ 1 − 2(θ − α)x. Therefore,
(

1− 1
k+2

)θ−α
≥ 1 − 2(θ−α)

k+2 .

By the lower bound on k, we have

1− 2(θ − α)

k + 2
≥ 1− c1

2
(k + 1)−α.

Combining, we have

sk+1 ≤ C(k0 + 1)θ−α(k + 2)−(θ−α).

The result follows.

Lemma 25 ((Zhu et al., 2023, Lemma A.2)) For any j > i, we have

∥Sj
i ∥2 ≲ iα.

Lemma 26 Let {xk}∞k=0 be a nonnegative sequence satisfying

xk+1 ≤ (1 + C1(k + 1)−2α)xk + C2(k + 1)−2α,

where C1 and C2 are positive constants, and α ∈ (1/2, 1). Then, there exists a constant C depending

on C1, C2, α and x0 such that xk ≤ C holds for any k ≥ 0.

Proof We begin by unrolling the recurrence. For any k ≥ 0, iterating the inequality gives

xk+1 ≤
∏k

j=0

(
1 + C1(j + 1)−2α

)
x0 +

∑k
i=0

(
∏k

j=i+1

(
1 + C1(j + 1)−2α

))

C2(i+ 1)−2α.

To bound the products, we use the inequality log(1 + u) ≤ u for all u > −1. Hence,

∏k
j=i+1

(
1 + C1(j + 1)−2α

)
≤ exp

(

C1
∑k

j=i+1(j + 1)−2α

)

≤ exp

(

C1
∑∞

j=1 j
−2α

)

=:M.

Since α > 1
2 , we have 2α > 1, and the series

∑∞
j=1 j

−2α converges; hence, M <∞.

Using this bound, we deduce that

xk+1 ≤Mx0 +MC2
∑k

i=0(i+ 1)−2α.

Setting C =M(x0 + C2
∑k

i=0(i+ 1)−2α) concludes the proof.
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