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Abstract

Determining and verifying product provenance remains a
critical challenge in global supply chains, particularly as
geopolitical conflicts and shifting borders create new incen-
tives for misrepresentation of commodities, such as hiding
the origin of illegally harvested timber or stolen agricul-
tural products. Stable Isotope Ratio Analysis (SIRA), com-
bined with Gaussian process regression-based isoscapes, has
emerged as a powerful tool for geographic origin verifica-
tion. While these models are now deployed in operational
settings to support regulators, certification bodies, and com-
panies in evaluating sourcing claims, they remain constrained
by data scarcity and suboptimal dataset selection. In this
work, we introduce a novel data valuation framework de-
signed to enhance the selection and utilization of training data
for machine learning models applied in SIRA. By quantify-
ing the marginal utility of individual samples using Shapley
values, our method guides strategic, cost-effective, and ro-
bust sampling campaigns within active monitoring programs.
By prioritizing high-informative samples, our approach im-
proves model robustness and predictive accuracy across di-
verse datasets and geographies. We validate our methodology
with extensive experiments and deployment in a live prove-
nance verification system, demonstrating its potential to sig-
nificantly enhance provenance verification, mitigate fraudu-
lent trade practices, and strengthen regulatory enforcement
of global supply chains.

1 Introduction

Global natural resource supply chains are opaque, especially
since natural resources are often transformed from raw ma-
terials (e.g., timber) into finished consumer-facing products
(e.g., furniture). These complex supply chains often involve
multiple countries, with intermediate outputs being traded
internationally and being used as inputs into further manu-
facturing processes. In addition to business-commerce deci-
sions driving supply chain sourcing, the economics of natu-
ral resource trade are often closely linked with geopolitics.
Determining and verifying product provenance is a chal-
lenge in global supply chains, as geopolitics and the lure
of “don’t ask, don’t tell” creates incentives for misrepresen-
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tation of commodities, such as hiding the origin of illegally
harvested timber or stolen agricultural products.

Illegal logging, in particular, is the most profitable natural
resource crime, valued at US$52 billion to US$157 billion
per year (May 2017). Illegally obtained timber accounts for
10-30% of the total global trade in timber products, and in
regions such as Southeast Asia, Central Africa, and South
America, it is estimated that 50-90% of timber is harvested
illegally (May 2017). These figures underscore the scale and
urgency of developing robust provenance verification tools,
especially for forest products.

Product identification and provenance verification of
traded natural resources have emerged as promising research
areas, with various combinations of methods used depend-
ing on the resource sector and the granularity required for
species identification and origin determination; for exam-
ple, species and geographic harvest provenance for wood
and forest products often requires multiple forensic tools and
testing methods (woo 2021; Schmitz et al. 2020; Dormontt
et al. 2015). For geographic origin verification in particular,
Stable Isotope Ratio Analysis (SIRA), combined with Gaus-
sian process regression-based isoscapes, has proven highly
effective (Truszkowski et al. 2025; Mortier et al. 2024).
SIRA leverages the natural variation in stable isotope ra-
tios—measured via mass spectrometry—to determine the
enrichment of non-radioactive elemental isotopes in a sam-
ple (Barrie and Prosser 1996), with enrichment patterns
driven by environmental, atmospheric, soil, metabolic, and
species-specific factors (Siegwolf et al. 2022; Wang et al.
2021; Vystavna, Matiatos, and Wassenaar 2021). It has been
successfully used to trace the origin of timber, seafood, agri-
cultural products, and fiber such as cotton (Truszkowski
et al. 2025; Mortier et al. 2024; Watkinson et al. 2022;
Cusa et al. 2022; Wang et al. 2020; Meier-Augenstein et al.
2014); however, its effectiveness is often constrained by data
scarcity and suboptimal dataset selection, as reference sam-
pling campaigns are costly and typically favor convenient
sampling locations over those that maximize model perfor-
mance, highlighting the need to optimize and ‘value’ refer-
ence sample collection efforts (Gasson et al. 2021).

Efforts such as World Forest ID (WFID) (world-
forestid.org) have operationalized geographic origin mod-
els to address this problem, particularly in the timber trade.



WFID identifies high-risk species and geographies (Nor-
man 2023), collects chain-of-custody reference samples, and
uses laboratory analysis (Fera Science 2025) to generate the
chemical data needed for stable isotope modeling. These
models support global supply chain transparency and are
made accessible via the World Forest ID Evaluation Plat-
form (World Forest ID 2024b), which allows regulators, cer-
tification bodies, and companies to evaluate sourcing claims.

Here, we introduce our deployed data valuation frame-
work that enhances the selection and utilization of train-
ing data for machine learning models applied to SIRA.
Field sample collections, central to any scientific traceabil-
ity method, are logistically difficult and expensive due to re-
mote locations, specialized equipment, and labor-intensive
workflows. By using Shapley values to quantify the marginal
utility of individual samples, our framework enables more
strategic, cost-effective, and robust sampling campaigns, im-
proving both model accuracy and enforcement capabilities
in global forest product supply chains. Our key contributions
are:

1. We bring the growing literature on data valuation in ma-
chine learning to bear upon the pressing problem of op-
timizing product provenance verification. By prioritiz-
ing highly informative samples, our approach improves
model robustness and predictive accuracy across diverse
datasets and geographies.

2. We have deployed our approach of optimizing the selec-
tion of training samples which improves our model accu-
racy. These new models are being used by European en-
forcement agencies to stem the trade in sanctioned Rus-
sian timber by demonstrating that a claimed harvest lo-
cation other than Russia is not viable. See coverage of
our work from the New York Times (Nazaryan 2024)).
Due to confidentiality reasons, we use a global dataset
of Oak (Quercus spp.) reference samples to illustrate our
methodology.

3. We validate our methodology with extensive experi-
ments, demonstrating its potential to significantly en-
hance valuation of data, improve the configuration of
models, and in this manner strengthen regulatory en-
forcement of global supply chains.

2 Related Work

SIRA has been widely employed as a geographical discrim-
inator for various plant and animal-based products in global
supply chains, such as garlic (Pianezze et al. 2019), Chi-
nese tea (Liu et al. 2020), olive oil (Bontempo et al. 2019),
cheese (Camin et al. 2004), and timber (Mortier et al. 2024;
Truszkowski et al. 2025). By bringing data valuation meth-
ods to bear upon SIRA pipelines we aim to improve the ver-
ification of product provenance.

Prior work in data valuation is typically seen in the con-
text of explainable machine learning and enhancing model
performance (Wu, Zhu, and Li 2024; Covert et al. 2024).
Existing methods primarily rely on leave-one-out retraining
and influence functions (Koh and Liang 2017), Shapley val-
ues (Jia et al. 2019; Ghorbani and Zou 2019; Wang and Jia
2023), Least Cores (Yan and Procaccia 2021), the Banzhaf

value (Wang and Jia 2022), Beta Shapley (Kwon and Zou
2021), and reinforcement learning (Yoon, Arik, and Pfister
2020). Furthermore, data valuation has been applied across
various domains to enhance model development and inter-
pretability, including health data (Pandl et al. 2021), medical
imaging (Tang et al. 2021), and the Internet of Things (Shi
and Duan 2024). This paper is the first to formally apply data
valuation techniques to SIRA.

3 Methods

Let X be a set of locations where data is collected; x € X
typically is specified by a longitude and latitude. Let ) be
the set of measurements made over X, here denoting stable
isotope ratio values (e.g. 3'3C, §2H, §'°N, §'30, §349),
or trace element values (e.g. Si, Cu, S, Ba, Rb). We de-
note f and g as functions of interest (defined below). For
evaluation purposes, we split our data into training and test
datasets, where D = {2;} , represents the training dataset
with N data points and z; = (z;,y;) € X x ). Similarly,
T = {2}, denotes the test dataset with M data points.
We let v(h, A, B) denote the performance of the model h
trained on a dataset A and evaluated on the dataset B, where
v would return a numerical value, v(h, A, B) € R. In cases
when the function and the test dataset are known, we drop
the dependence in the notation to simply say v(A).

3.1 Forward and Backward Models

Forward Models. For the forward model, the task is to
predict the stable isotope values for a given location, i.e.,
f & = Y. The motivation is to verify whether the char-
acteristics of the location (denoting specified harvest origin)
would align with general isotopic values associated with the
specified location. Such models can be based on approa-
hes like decision trees, random forests, or XGBoost. Re-
cent works have proposed using Gaussian process regression
models with high performance (Truszkowski et al. 2025;
Mortier et al. 2024).

Backward Models. In the backward case, we aim to iden-
tify the location given measured stable isotope values. We
model this relation as g : Y — X. The fitted model g
would help identify whether the declared harvest location
of a species sample aligns with the predicted location from
g. Similarly, here, one can use a range of machine learning
models to fit this function. For instance, Mortier et al. (2024)
reversed a fitted Gaussian process regression model using
the Bayes’ rule to predict locations from measured isotope
ratios.

Atmospheric Variables. In addition, to support either for-
ward or backward models, we often have available a range of
atmospheric variables associated with locations. Such vari-
ables can be used as either additional inputs to a forward
model or auxiliary information in a backward model.

Gaussian Process Regression Models. Gaussian process
regression (GPR) models, as explored by (Truszkowski et al.
2025; Mortier et al. 2024), offer a powerful approach for
both forward and backward modeling settings. For the for-
ward model f : A — ), GPR can be used to predict



isotope ratios y € ) at a given location x € X. We can
construct “isoscapes” by fitting independent GP regression
models to each feature in ). C0n51der1ng our training dataset

= {z:}¥, = {(wi,yi)}Y,, for each feature y; € ), a
GP model is trained to predict isotope values at a new loca-
tion z* € &". The predicted distribution for the feature 3, at
location x* is Gaussian, with a mean and variance given by:

Elyjla®, X] =p; +k(7)T(K(J)+021) Hyj = ng)

V(y;2*, X) = k9 (x7,x*) +
~kOT(K <a>+0]2,1)71k<j>

Here, X = {x1,...,xy } represents the training locations
and y; = [y, ... ,yNj}T are the values of the j-th feature
in the training set. y; is the baseline mean for feature y;,
K () is the covariance matrix evaluated at all pairs of train-
ing locations, k(7) is the covariance vector between the test
location z* and the training locations, k() (z*, z*) is the co-
variance of z* with itself, and 032- is the noise variance for
feature ;. For the backward model g : YV — X, we lever-
age Bayesian inference to reverse the prediction. Given a set
of features y* € ) from a location of unknown origin, the
posterior probability of its origin being location x* € X is
calculated using Bayes’ theorem:

ply*|a*, D)p(z*)
[ocxp(y*|z, D)p(x)da

The likelihood p(y*|z*, D) is derived from the forward GP
model, assuming independence of features and using the
predicted Gaussian distributions:

Py 12", D) =[]

Jjey
woxp [ W~ Bl | a*, D])?
QV(y] | x*, D )
The prior p(x*) can incorporate prior knowledge about the
distribution of tree harvest locations. This Bayesian ap-
proach provides a posterior probability map over X, indicat-
ing the most likely origin locations for an observation with
features y*. The performance of both forward and backward

GPR models can be assessed using the metric v(h, D, T),
where h is the GPR model (f or g).

p(z*y", D) =

27V (y; | «*, D)

Performance Metrics. The primary metric we will em-
ploy is:

RMSE = \//EA (d(xt,x))Qp(x|y*’ D) dx,

where d(x;,x) is the great circle distance. Comparing
RMSE across different GP models helps identify which
model minimizes large prediction errors and provides over-
all reliable estimates.

3.2 Data Valuation

The Shapley value, introduced by (Shapley 1953), offers a
principled approach to quantify data value, identifying both
highly informative and potentially detrimental data points.
The Shapley value ¢; for a data point ¢ is computed as the
weighted average of its marginal contribution to model per-
formance across all possible subsets of the training data:

o=y PRI s 0 ) - o(s)
SCD\{z:} '

Here, D is the full training set, S is a subset excluding ¢, and
v(S) is the model performance (e.g., negative mean abso-
lute error) when trained on subset S. High positive Shapley
values indicate highly valuable data points that significantly
improve performance, while low or negative values suggest
redundancy or detrimental effects, possibly due to outliers,
measurement errors, or model misspecification. The Shapley
value is not an arbitrary metric; it is uniquely characterized
as that satisfying a set of desirable axioms, ensuring fairness
and consistency in data valuation:

1. Efficiency: The sum of the Shapley values for all data
points equals the difference in performance between the
model trained on the full dataset and the model trained on
an empty dataset: ) ., ¢; = v(D) — v((). This means
the total value is fully distributed among the data points.

2. Symmetry (or Null Player): If a data point ¢ has zero
marginal contribution to every possible subset (i.e., v(SU
{i}) = v(S) for all S), then its Shapley value is zero:
¢; = 0. Useless data points receive zero value.

3. Linearity: If the performance metric v is a linear combi-
nation of two other performance metrics, v = a-v1+b-vo,
then the Shapley values for v are the same linear combi-
nation of the Shapley values for vy and v,. This ensures
consistency across different performance measures.

4. Dummy: if two data points ¢ and j always have the same
marginal contribution to every subset of D then their
shapely value must be equal. ¢; = ¢;.

These axioms provide a strong theoretical justification for
using the Shapley value. Furthermore, the Shapley value can
be equivalently expressed as a sum over permutations of the
dataset (Shapley 1953):

bi = Z [w(PTUz) —o(P])],

m~II(D)

where II(D) is the set of all permutations of data points in
D, 7 is a permutation sampled uniformly at random from
II(D), and P is the set of data points preceding instance z;
in permutation 7.

Truncated Monte Carlo Shapley Value. Because the ex-
act computation of Shapley values is computationally pro-
hibitive, (Ghorbani and Zou 2019) propose their approxima-
tion by randomly sampling a limited number of subsets in-
stead of exhaustively considering all possibilities (see Algo-
rithm 1 in the Appendix). The key idea is that each random
permutation provides an unbiased estimate of the marginal
contribution of each data point, convergence achievable in



practice in O(n) permutations (typically around 3n) for an
n-point dataset. Generally, Monte Carlo estimators exhibit
variance that decreases proportional to 1//m as the num-
ber of samples m increases. However, in SIRA settings, each
marginal evaluation entails retraining a Gaussian process
with O(N?) time complexity, creating a pronounced trade-
off between computational feasibility and valuation preci-
sion. This tension motivates careful calibration of the permu-
tation budget to balance estimator fidelity against real-world
processing constraints.

Iterative Data Selection with Shapley Values. To strate-
gically select a subset D’ C D from the original training
data D that maximizes model accuracy for both forward and
backward prediction tasks, we propose to leverage Shapley
values computed once on the full dataset to identify data
point importance. We hypothesize that by using these ini-
tial global valuations, we can efficiently identify and se-
quentially remove less valuable samples. Our data selec-
tion methodology consists of three distinct steps. Initially,
we compute data values for all points in D using the entire
dataset. Subsequently, we sort the data points and remove
the least valuable one according to these pre-calculated val-
ues. Finally, we evaluate the model’s performance using the
test dataset. This sequential removal process continues as
long as model performance improves, relying on the initial
single valuation (see Algorithm 2 in the Appendix).

Beta Shapley. Building upon the foundational principles
of the Shapley value, Beta Shapley offers a flexible gen-
eralization for data valuation by recognizing that the stan-
dard Shapley value’s uniform weighting of a data point’s
marginal contribution across all subset sizes is not always
optimal. In many data valuation tasks, the primary objec-
tive is to rank data points rather than precisely distribute the
total model performance gain, which makes the strict effi-
ciency axiom less critical. Beta Shapley therefore relaxes
this axiom and introduces a weighted-average framework
in which weights are governed by a Beta distribution. This
enables a more fine-grained valuation by assigning differ-
ent levels of importance to a data point’s marginal contribu-
tion depending on the cardinality of the subset it is added
to. For instance, by selecting appropriate parameters for the
Beta distribution, one can prioritize the contributions made
to smaller subsets (see Algorithm 3 in the Appendix).

4 Experiments

We utilized data from two datasets of the genus Quer-
cus, collected from various regions worldwide. Two broad
datasets were combined in this study with the first dataset
comprising tree samples distributed globally, while the sec-
ond dataset was focuses specifically on European countries.
Stable isotope ratio measurements were performed follow-
ing the protocols outlined in (Watkinson et al. 2020; Boner
et al. 2007). Our experiments are aimed at answering the be-
low questions:

1. RQI1: What is the role of data Shapley values in the do-
main of SIRA? (Section 4.1)

2. RQ2: How does model architecture influence data Shap-
ley values and the performance of the proposed data val-

uation framework? (Section 4.2)

3. RQ3: How does Shapley-based data selection compare
against naive or exhaustive baselines? (Section 4.3)

4. RQ4: Can the proposed data valuation framework en-
hance outcomes in cases involving data imputation for
missing or noisy data? (Section 4.4)

5. RQ5: Can data selection methods based on data valuation
improve the performance of both directions in SIRA?
(Section 4.5)

6. RQG6: Given a specific model and data valuation frame-
work, what level of granularity is optimal for effective
data selection? (Section 4.6)

7. RQ7: Do different genera and species within the dataset
exhibit varying data Shapley values? Can we identify the
most and least important genera or species within the
dataset? (Section 4.7)
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Figure 1: Distribution of data Shapley values (top: backward
model, bottom: forward model) (Section 4.1)

4.1 RQ1: Role of Data Shapley Values in SIRA

For this experiment, we explore the relevance and applica-
tion of data Shapley values in the context of SIRA. Fig. 1
presents distribution plots for one subset of the dataset, eval-
uated in both directions of SIRA analysis, i.e., forward and
backward, as described in Section 3. This analysis highlights
a significant variation in data Shapley values depending on
the dataset and the machine learning model utilized. These
results indicate that subsets with Shapley values exhibiting
greater extremities will correspond to larger performance
gains following the data selection process.
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4.2 RQ2: Influence of Model Architecture

We conducted two types of experiments, removing both
high value and low value data points. We present the er-
ror plots showing the effect of removing these two types of
data points for Gaussian process regression and random for-
est models. In both architectures, the RMSE increases (in-
dicating performance degradation) when data points with
high Shapley values are removed. Conversely, the RMSE
decreases (indicating performance improvement) or remains
stable when data points with low Shapley values are re-
moved (Figure 2a and Figure 2b). Figure 2c illustrates one
such case, where performance improves by removing spe-
cific data points (marked as red x on the map). Beyond ac-
curacy, we should point out that random forests, while lack-
ing the theoretically principled uncertainty quantifications of

GPR, are much more scalable.

We further investigate whether the Shapley values from
the two architectures agree with each other. Figures 2(d-f)
present three types of rank comparison plots, all of which
demonstrate a high degree of agreement between the two
models. This result suggests that data value ranks remain
consistent across architectures, reinforcing the robustness
of our valuation framework even when computational con-
straints necessitate different modeling choices.

4.3 RQ3: How does Shapley-based data selection
compare against naive or exhaustive
baselines?

To contextualize the effectiveness of our Shapley-based
data valuation framework, we compare it against two nat-
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ural baselines—random removal of data points and leave-
one-out (LOO) removal. Using USA-only data (which al-
ready captures the main performance trends observed across
our study), Table 1 shows that our Truncated Monte Carlo
(TMC) Shapley approach delivers the largest improvement
in predictive accuracy, reducing RMSE by 0.8459 compared
to the initial model, nearly four times greater than the im-
provement achieved with random removal and significantly
outperforming LOO.

4.4 RQ4: Data Valuation to support Missing Data
Imputation

A critical but often underappreciated issue is that imputation
strategies implicitly encode assumptions about isotopic sta-
tionarity, e.g., median imputation presumes that the condi-
tional distribution of missing values is homogeneous across
all spatial and taxonomic contexts (an assumption that may
be violated under latitudinal gradients or localized environ-
mental variation). Similarly, listwise deletion assumes that
missingness is independent of the isotopic signal (which
is rarely true in practice, as remote sites are both more
difficult to sample and may exhibit distinct isotopic pat-
terns). These hidden assumptions complicate the interpreta-
tion of downstream model performance and underscore the
need for principled data valuation frameworks to mitigate
imputation-induced biases. To explore this, we conduct ex-
periments with two common approaches for handling miss-
ing data: (i) median imputation, replacing missing values
with the dataset median, and (ii) listwise deletion, excluding

data points containing missing values from training; in ad-
dition, we perform data selection experiments by removing
both high-value and low-value data points and examining
the resulting performance rankings.

We conducted experiments involving the removal of both
high-value and low-value data points. The error plots (Fig-
ures 3a and 3b) illustrate the effects of removing these
data points under both missing data handling strategies. For
both strategies, the RMSE increases (indicating performance
degradation) when data points with high Shapley values are
removed. Conversely, the RMSE decreases (indicating per-
formance improvement) or remains stable when data points
with low Shapley values are removed. We observe signifi-
cant performance improvements when low-value data points
are removed from both strategies, with the improvement be-
ing more pronounced for median imputation (26.66%) com-
pared to listwise deletion (5.88%). This result demonstrates
the effectiveness of data valuation as a strategy for improv-
ing missing data handling. Moreover, the Shapley values for
the median imputation strategy exhibit higher magnitudes
compared to listwise deletion (Figures 3c and 3d), which
aligns with the greater performance improvements observed
for median imputation.

4.5 RQS5: Data Selection Methods for Forward
and Backward directions in SIRA
In this experiment, we investigate whether selecting data

based on valuation metrics can improve performance in both
directions of SIRA. For this analysis, we present the results



Method

Initial RMSE Best RMSE Best @ Step A RMSE

Random Removal
Remove Low-Value with LOO
Remove Low-Value with TMC-Shapley (ours)

3.6101 3.4208 2 0.1893
3.6101 3.2435 24 0.3665
3.6101 2.8076 22 0.8025

Table 1: Comparison of data selection strategies. Shapley-based removal consistently outperforms random removal and achieves
greater RMSE reduction than LOO, while being more theoretically grounded and computationally efficient. (Section 4.3)

of applying the random forest model in both forward and
backward directions using two distinct datasets: USA-only
data and Europe-only data.

USA-only data: We present the error plots showing the
effect of removing high-value versus low-value data points
on the performance of the random forest model. In both
directions, the RMSE increases (indicating performance
degradation) when data points with high Shapley values,
are removed. Similarly, the RMSE either decreases (indi-
cating performance improvement) or remains stable when
data points with low Shapley values, are removed (Figures
5a and 5b). Figure 5c illustrates a specific case where per-
formance improves following the removal of certain data
points, marked as red x on the map.

We observe performance improvements when low-value
data points are removed from the dataset, with the improve-
ment being more pronounced in the backward direction
(27.13%) compared to the forward direction (0.14%). This
finding demonstrates that performance improvement can in-
deed vary depending on the direction of SIRA. Moreover,
consistent with the observations made in Section 4.4, the
Shapley values associated with the backward direction ex-
hibit higher magnitudes compared to the forward direction
(Figure 1), which aligns with the greater performance im-
provements observed for the backward direction.

We further investigate whether the Shapley values from
both directions show agreement. To this end, we present
three types of rank comparison plots in Figure 5(d-f). All
three representations indicate a high degree of agreement be-
tween the two directions, suggesting that data value ranks
remain relatively consistent across different directions of
SIRA.

Similar results for the Europe-only dataset are shown in

Fig. 6(a-f).

4.6 RQ6: Optimal Granularity in Data Selection

Here, we analyze the appropriate level of granularity for data
selection to maximize performance when using a specific
model and a data valuation framework. Instead of removing
one data point at a time, we consider clusters of fixed dis-
tances (in kilometers) and remove all data points within that
distance if a data point is selected for removal during the data
selection process. We performed this location-based data se-
lection for both high value (Figure 4b) and low value (Figure
4a) data points to understand the impact on model perfor-
mance. Consistent with the results of previous experiments,
we observe performance improvements when low-value data
points are removed. Furthermore, the cluster-based removal
approach enhances the model’s performance more effec-
tively than the one-by-one removal approach. This finding

suggests that certain regions within the dataset are not es-
sential for the best-performing model, or the improvements
may be attributed to errors in the data extraction pipelines
affecting specific regions.

4.7 RQ7: Species-Specific Data Shapley Values
and Their Implications

For this experiment, we explore the variations in data Shap-
ley values across different genera and species, aiming to
identify the most and least significant contributors within the
dataset. We present a sample distribution plot of data Shap-
ley values for individual species within one dataset (Figure
4c). The plot demonstrates that certain species exhibit sig-
nificantly higher data Shapley values compared to others,
indicating their greater contribution to the model’s perfor-
mance.

5 Deployment Details

WFID has operationalized the SIRA approach in this paper
to trace the geographic origin of forest products by guid-
ing the collection of high-risk reference samples (Norman
2023), analyzing them in certified laboratories (Fera Science
2025), and deploying trained geographic origin models via
the World Forest ID Evaluation Platform (World Forest ID
2024b), which is used by regulators, certification bodies, au-
ditors, and companies to verify sourcing claims across tim-
ber and other EU Deforestation Regulation-relevant com-
modities such as soy, cacao (World Forest ID 2024a), and
coffee. In a recent timber market study (Greenfield 2025;
World Forest ID 2025), corporate partners used the WFID
platform to assess sourcing claims for 59 wood products,
focusing on birch due to concerns over sourcing from sanc-
tioned regions, where SIRA and spatial models were used
to validate or refute claimed harvest locations. WFID has
also supported enforcement efforts, helping identify over
260 tons of allegedly illegal timber (Speed) in Belgium and
supporting at least nine additional ongoing investigations.

6 Conclusion and Future Work

Data valuation based on Shapley values demonstrates
promising results in SIRA analytics, and region-based data
selection further enhances performance by removing low-
value data clusters. The greatest gains are observed when
low-value data points with higher absolute Shapley values
are removed, while the largest drops occur when high-value
points are excluded, showing that the inferred values are
meaningful and useful for product provenance verification.
Future work will generalize these methodologies to addi-
tional parts of natural resource supply chains.
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