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Abstract

In this work, we present Phantom, a novel privacy-preserving
framework for obfuscating deep neural network (DNN) model
deployed in heterogeneous TEE/GPU systems. Phantom em-
ploys reinforcement learning to add lightweight obfuscation
layers, degrading model performance for adversaries while
maintaining functionality for authorized user. To reduce the
off-chip data communication between TEE and GPU, we
propose a Top-K layer-wise obfuscation sensitivity analysis
method. Extensive experiments demonstrate Phantom’s supe-
riority over state-of-the-art (SoTA) defense methods against
model stealing and fine-tuning attacks across various archi-
tectures and datasets. It reduces unauthorized accuracy to
near-random guessing (e.g., 10% for CIFAR-10 tasks, 1%
for CIFAR-100 tasks) and achieves a 6.99% average attack
success rate for model stealing, significantly outperforming
SoTA competing methods. System implementation on Intel
SGX2 and NVIDIA GPU heterogeneous system achieves
35% end-to-end latency reduction compared with most recent
SoTA work.

1 Introduction

Machine learning (ML) has revolutionized numerous fields,
including computer vision, natural language processing to
healthcare and autonomous systems [1-5]. Deploying produc-
tion machine learning system is a costly and time-consuming
process, often requiring a massive amount of training data,
computational resources, and expert knowledge. As a result,
model owners invest tremendous resources to build SoTA
DNNss in order to provide competitiveness. This considerable
investment has led to growing concerns about the security of
the intellectual property embodied in these models. In par-
ticular, the risk of model theft or unauthorized replication by
adversaries has emerged as a critical issue.

One of the most threatening attacks that compromise ML
confidentiality is model stealing [6]. Model stealing attacks
aim to reconstruct a substitute model that has similar inference
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behavior to the victim model ! (e.g., accuracy and fidelity).
This process typically involves an adversary sending care-
fully crafted inputs to the target model and using the returned
predictions to train their own "knockoff" model [7]. These
attacks can be launched against ML models that only expose
their functionality to adversaries through inference APIs [8].
More recent attacks leverage a combination of side-channel
attacks and reverse engineering techniques to enhance model
extraction [9, 10]. For instance, DeepSniffer [11] extracts
model architecture information by monitoring the inference-
time memory access patterns via GPU memory-bus snooping.
DeepSteal [12] exploits the rowhammer-based side channel
to exfiltrate partial weight bits, which are then utilized to
build an accurate local model. Carlini et al. [13] introduce
a training data extraction attack that extracts verbatim text
sequences from language models. With the additional knowl-
edge of the model via the aforementioned attack vectors, an
adversary can then perform more powerful model extrac-
tion, called the fine-tuning attack, which trains a local model
initialized from the partially-known state the victim model
(e.g., model weights and architecture) using limited training
dataset. Model stealing with fine-tuning attacks leads to direct
intellectual property theft and unauthorized model replication,
significantly undermining competitive advantage or research
efforts from model owners [8, 12].

One approach to protect the confidentiality of DNN models
during inference is to use cryptographic primitives. Specifi-
cally, homomorphic encryption (HE) [14] enables computa-
tions on encrypted data, allowing model inference without
decrypting sensitive information [15] (e.g., user inputs). Se-
cure multi-party computation (MPC) [16] divides model pa-
rameters and computations across multiple parties to prevent
any single entity from accessing the complete model or data
[17]. Despite the good privacy guarantees, these cryptographic

'In this paper, the victim model refers to a private DNN model trained us-
ing proprietary datasets and computational resources. The obfuscated model
denotes the model resulting from the application of various protection meth-
ods to the victim model. A pre-trained model refers to a publicly available
model.
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Figure 1: Overview of Secure Model Deployment. The model owner trains and deploys a DNN model in a heterogeneous TEE
and GPU computing system, with sensitive knowledge stored in the TEE. Authorized users receive correct responses, while
adversaries are given incorrect answers, protecting the model’s private knowledge.

methods dramatically increase computational requirements
and the model inference time, making them impractical for
real-time applications or resource-constrained edge devices
[18].

An alternative strategy leverages trusted execution environ-
ments (TEE) supported by mainstream chip vendors such as
Intel Software Guard Extensions (SGX) [19] and Arm Trust-
Zone [20]. SoTA TEE (i.e., SGX) establishes isolated secure
enclaves that offer hardware-supported data confidentiality
and integrity protection against privileged software and ad-
vanced hardware exploits [19]. While being more efficient
than cryptographic techniques, TEE applications have inher-
ent constraints, such as the limited size of secure memory
and non-trivial metadata management overhead [19]. Recent
studies on secure ML inference utilize TEE to serve as the
root of trust, and outsource computation to external untrusted
accelerators (e.g., GPUs) [18, 21, 22]. These works aim to
optimize ML system performance by moving the majority of
the inference computation externally while relying on opera-
tions inside TEE to protect data outside of enclaves (e.g., for
user inputs [8]). Unfortunately, since certain portions of the
model (e.g., the weight parameters) outsourced are visible to
attackers, recent studies demonstrate that adversaries can still
leverage the observed partial model information to perform
successful model stealing attacks [22]. As a countermeasure,
the work in [22] proposes to fine-tune a public pre-trained
model (PTM) by only updating weights on certain inserted
layers, which are kept in the TEE. The layers that belong to
the original PTM are offloaded externally. Since all the model
parameters influenced by model owner’s dataset are secured
inside TEE, model confidentiality is believed to be guaranteed.
It is worth noting that such mechanism is limited to scenar-
ios where a secretive model is built from pre-trained models,
and does not apply to more general cases where model is

initialized (e.g., model architecture) and trained from scratch.

In this paper, we propose Phantom, an end-to-end TEE-
enabled DNN model privacy-preserving framework in het-
erogeneous TEE/GPU systems, targeting to defend against
model stealing. Phantom employs a reinforcement learning-
based architecture search method to add a small portion of
redundant lightweight convolution layers together with the
corresponding keys, which obfuscates both DNN architecture
and weight parameters, creating a transformed version of the
original model that is running in the untrusted computing envi-
ronment (i.e., GPU). In TEE, a simple and lightweight ‘MUX’
operation with the keys is able to recover the real computing
path from obfuscated paths caused by the learned redundant
parameters. Then, the authorized user could achieve the com-
plete full function of the protected DNN model. While, the
adversary could only access the obfuscated model in the un-
trusted environment without keys, where the model is trained
to provide false output, as shown in Figure 1. In the Phantom
framework, we leverage the GPU’s computational power by
offloading all linear layers (including both benign parameters
and learned obfuscated parameters), such as convolutional
layers, to the GPU. This allows the model to benefit from
hardware acceleration for the most computationally intensive
operations. Meanwhile, all non-linear layers (e.g. ReLU) and
MUX operations are executed within the TEE, protecting crit-
ical components of the DNN model. The contributions of this
paper are as follows:

* We propose a novel privacy-preserving DNN model ob-
fuscation framework, Phantom, to obfuscate both model
architecture and weights through a reinforcement learn-
ing based searching algorithm equipped with novel multi-
objective reward function for optimizing obfuscation ef-
ficacy and overhead. Our obfuscated model effectively
degrades the model performance for adversaries to the
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level of random guessing (e.g., approximately 10% ac-
curacy for CIFAR-10 dataset).

The obfuscated DNN model is partitioned to execute in
TEE/GPU systems, where only the authorized user with
keys could achieve full model functionality and accuracy.
Extensive experiments on fine-tuning attacks and model
stealing attacks demonstrate the superior performance
of our methods over SoTA works [22, 23]. Interestingly,
we demonstrate our defensive method could successfully
defend against powerful fine-tuning attack under various
learning rates, assuming adversary could access partial
model parameters in an untrusted environment and 10%
training data. While, the prior SOTA works [22, 23] both
failed in such strong attacks.

Our system implementation of obfuscated models from
Phantom into heterogeneous Intel SGX2 and GPU sys-
tem reveals an important finding that unlike previous
implementation on SGX1, where the bottleneck is com-
putation within TEE, the primary bottleneck becomes
the frequent data communication between SGX2 and
GPU. This challenge has not been fully investigated and
analyzed. To overcome such new challenge, we propose
layer-wise obfuscation sensitivity analysis to constraint
obfuscation only on the most sensitive layers, thus leav-
ing other layers untouched, to significantly reduce the
overall system overhead. Compared with prior work [22],
our approach reduces the overall system latency by 35%.

2 Background and Related Work

2.1 Attack Methods

Prior works have identified and explored numerous attack
vectors that can be potential threats to model privacy and in-
tellectual property [7, 8, 24-29]. Model stealing attacks aim
to reconstruct a functionally equivalent model by querying
the target model and observing its outputs. Tramer et al. [8]
demonstrated the feasibility of such attacks against black-box
machine learning models, highlighting the vulnerability of
models exposed through prediction APIs. Their work showed
that even with limited query access, attackers could reproduce
models with high fidelity, raising concerns about the protec-
tion of proprietary model architectures and parameters. Build-
ing upon this, Jagielski et al. [24] introduced high-fidelity
extraction attacks that could recover models that are function-
ally close to the victim model and match its architecture. Their
approach combined optimization-based extraction with data-
free distillation, achieving SoTA extraction fidelity for both
neural networks and decision trees. Orekondy et al. [7] pro-
posed the Knockoff Nets framework, which demonstrated that
it’s possible to steal machine learning models via prediction
APIs without any knowledge about the model’s architecture

or the data it was trained on. Their method used a reinforce-
ment learning-based strategy to adaptively generate queries,
significantly improving the efficiency of model-stealing at-
tacks. Recently, Carlini et al. [30] showed that model stealing
attacks can be even more powerful than previously thought.
They demonstrated that it’s possible to extract models with
near-perfect fidelity using orders of magnitude fewer queries
than prior work, highlighting the increasing sophistication of
these attacks.

Fine-tuning attacks represent a more powerful threat to
model privacy. In these attacks, adversaries start with an ob-
fuscated model and fine-tune it on a small dataset to recover
its full functionality or adapt it to a new, related task. This ap-
proach can inadvertently reveal information about the original
model architecture or training data. Song and Shmatikov [31]
demonstrated how fine-tuning attacks could compromise the
privacy of language models. Their work showed that models
fine-tuned on sensitive data could leak information about that
data, even when the pre-training dataset was public. The ef-
fectiveness of these attacks is further amplified in the context
of transfer learning, a popular technique in which pre-trained
models are adapted for new tasks. Wang et al. [28] explored
how transfer learning can be exploited to steal functional-
ity from pre-trained models. They showed that an attacker
with access to a fine-tuned model could potentially recover
significant information about the base model, compromising
its intellectual property. He et al. [32] introduced a novel at-
tack called "Model-Inversion Fine-Tuning" (MIFT), which
combines model-inversion techniques with fine-tuning to re-
construct training data from black-box access to fine-tuned
models. Their approach showed that even models fine-tuned
on a small amount of private data could be vulnerable to
privacy leaks.

2.2 Trusted Execution Environment

With the increasing concerns about the security of data on
remote computing platforms (e.g., cloud computing), TEEs
have garnered significant interest in recent years. TEEs ad-
dress the risk of data exposure by protecting against attacks
from privileged software, such as malicious operating systems
or hypervisors, as well as physical threats like memory bus
snooping. In a TEE, the CPU serves as the root of trust, of-
fering data security for user-defined regions of an application
called enclaves through hardware-enforced encryption and
attestation [19, 33—35]. Variants of TEEs have been adopted
by all major processor vendors, including Intel SGX [19],
AMD SEV [36], and ARM TrustZone [20]. Given the strong
security guarantees provided by TEEs, many privacy-sensitive
workloads have been designed to leverage their capabilities,
including those aimed at protecting the privacy of entire mod-
els. Recent works have investigated the possibility of pre-
serving model privacy by executing selective layers inside
the TEE while offloading the majority of computations to
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more powerful external accelerators, such as GPU [21, 22,
37]. SoTA works [22, 37] can protect model parameters by
only executing non-linear layers inside TEE, while offloading
majority of the large linear layers (which can be computed
over masked model parameters [21]).

Current State of Intel SGX. Intel introduced trusted com-
puting in their consumer processor series with SGX1 (i.e.,
SGX-Client) [19]. A key limitation in this early adaptation
is limited available system memory for enclave processes
(particularly, <128MB usable enclave memory). Enclaves
with larger memory footprints suffer from non-trivial perfor-
mance degradation due to the expensive memory swapping
operations between protected and unprotected memory re-
gions. Intel SGX2 (i.e., SGX-Server) [38] uses total memory
encryption instead of limited enclave memory, superseding
the earlier SGX implementation. This extends the available
protected memory for enclave processes (i.e., upto 512GB),
which significantly reduces the enclave execution overhead
for large memory footprint applications. SGX2 offers near-
native performance, making it more efficient and capable of
handling larger datasets and more complex queries in machine
learning applications.

2.3 TEE-Shielded DNN

TEEs have emerged as a promising approach to protect the
privacy and integrity of DNN during inference. TEEs provide
hardware-isolated secure enclaves that safeguard sensitive
code and data from unauthorized access, even in the presence
of a compromised operating system.

Several research efforts have explored the use of TEEs for
securing DNN inference. These approaches can be catego-
rized into two primary methods: TEE-only [39—41] and TEE-
GPU partition [18, 21, 22, 42] methods. TEE-only method
encapsulates the entire DNN model within TEE, providing
comprehensive protection. In contrast, TEE-GPU partition
method adopts a hybrid approach, protecting privacy-sensitive
components of the DNN model in TEE while leveraging GPU
acceleration for non-sensitive computations, thereby optimiz-
ing both security and performance.

Ohrimenko et al. [39] implement secure machine learning
through a dual-enclave architecture leveraging SGX (server-
side) and TrustZone (client-side) TEEs. The system aims to
protect model privacy through data-oblivious algorithms and
core primitives that prevent information leakage via mem-
ory access patterns. The framework executes training entirely
within client TrustZone enclaves, while server-side SGX han-
dles secure aggregation of encrypted client updates. Memory
constraints are alleviated through streaming processing and
optimized data structure design, enabling large-model pro-
cessing in secure chunks. PPFL [40] offers model privacy
in federated learning through a dual-TEE architecture uti-
lizing TrustZone (client-side) and SGX (server-side). PPFL
employs greedy layer-wise training where each layer trains

independently within TEE until convergence. All training
occurs within client TrustZone, while server-side SGX han-
dles secure aggregation. This mechanism ensures continuous
protection by keeping model layers inside TEEs during both
training and aggregation phases, only exposing them after
convergence, making PPFL the first framework to achieve
full model protection in federated learning. T-Slices [41]
is a novel framework for secure deep learning inference on
TrustZone-enabled edge devices with limited trusted memory.
The key innovation lies in its dynamic slicing technique that
enables execution of large DNN models within constrained
TEEs by fragmenting each layer into smaller slices that fit
within available trusted memory, overcoming the limitations
of traditional layer-wise partitioning approaches. The system
employs an optimized memory management scheme where
encrypted slices are sequentially loaded into TEE, processed
securely, and aggregated, with trusted memory allocated only
for actively processing slices. By maintaining data encryp-
tion outside TEE and performing all computations within the
secure environment, T-Slices ensures complete model and
data confidentiality while efficiently managing memory con-
straints. However, these TEE-only approaches suffer from sig-
nificant performance overhead due to limited computational
capabilities and memory constraints within secure enclaves,
especially for large deep learning models. These limitations
have motivated hybrid approaches that combine TEE security
with accelerator performance.

One of the pioneering works in TEE-GPU partition meth-
ods is Slalom, proposed by Tramer and Boneh [21]. Slalom
leverages Intel SGX to protect DNN privacy and integrity. The
key innovation of Slalom is its novel partitioning approach:
linear layers are outsourced to a GPU for acceleration, while
nonlinear operations are performed inside the TEE. This strat-
egy improves performance compared to fully TEE-based exe-
cution while maintaining strong security guarantees. Slalom
demonstrated that it’s possible to achieve both privacy and
efficiency in DNN inference, opening up new possibilities
for secure machine learning. Focusing on the model privacy
challenges of edge computing, Mo et al. [18] introduced Dark-
neTZ, a system designed for edge devices using Arm Trust-
Zone. DarkneTZ explores the trade-offs between security and
performance by selectively executing sensitive layers of a
DNN within the TEE. Their work demonstrated that protect-
ing even a small number of layers can significantly enhance
model privacy with minimal performance overhead. This
approach is particularly valuable for resource-constrained
devices where full model protection might be impractical.
Zhang et al. [22] conducted a comprehensive evaluation of
existing TEE-shielded DNN partition (TSDP) approaches. He
found that current TSDP approaches follow a training before-
partition strategy, which may not provide the level of security
originally assumed and may have potential vulnerabilities in
these systems. TEESlice [22], a partition-before-training strat-
egy to generate a hybrid model, which is a public backbone
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and private slices. This innovative approach allows for more
precise control over which parts of the model are protected,
addressing the memory constraints often encountered in mo-
bile TEEs. By carefully designing the partitioning scheme,
TEESlices achieves a balance between security and perfor-
mance that is well-suited to on-device deployment scenarios.
Expanding the concept of model partitioning, Lee et al. [42]
introduced Occlumency, a system that leverages SGX for
privacy-preserving inference on edge devices. Occlumency
proposes optimizations to reduce the memory footprint and
computational overhead of secure inference, making it feasi-
ble to run protected models on devices with limited resources.
Their work highlights the importance of considering hardware
limitations when designing TEE-based protection schemes.

While TEE-based approaches offer strong security guar-
antees, they face several challenges. Memory limitations of
TEEs, especially on edge devices, can restrict the size of mod-
els that can be fully protected. Performance overhead due to
context switching and secure memory access can impact in-
ference speed. Additionally, the inability to utilize specialized
hardware accelerators (e.g., GPUs) from within the TEE can
limit computational efficiency.

3 Threat Model

Following the prior model privacy protection works [37], we
consider a powerful adversary could access the untrusted ex-
ecution environment, including the operating system (OS)
and GPU. The adversary can observe and steal the model
knowledge and data outside the TEE, but cannot access the
ones inside the TEE. In line with industry practices and previ-
ous research [18, 22, 43], we assume that the deployed DNN
models provide only class labels as output to both adversaries
and authorized users. Any intermediate results, such as pre-
diction confidence scores, remain protected within the TEE.
We assume the adversary can query the victim model with
limited numbers to build a transfer dataset, which can be used
to train a surrogate model for model stealing attack [12, 22].
Furthermore, we assume the adversary can obtain at most
10% original training dataset for fine-tuning attack, which is
a more powerful assumption based on prior works [12, 23].

4 Phantom

4.1 Overview

In this work, we propose Phantom, a novel privacy-preserving
deep neural network model obfuscation framework in hetero-
geneous TEE and GPU system, targeting to defend against
model stealing and fine-tuning attacks, while maintaining high
computational efficiency. Phantom employs a reinforcement
learning-based architecture search method to add small and
lightweight learned layers together with the corresponding

“keys”, creating a structurally different yet functionally equiva-
lent transformed form running in untrusted environment. Note
that, such keys are the index indicating the redundant layers
computed in the untrusted environment that mislead the final
model outputs. The keys are only known to the authorized
user stored and processed within TEE. This architectural trans-
formation serves to obscure the model’s true structure and
functionality from potential adversaries in untrusted environ-
ment.

Unlike prior model partition approaches that place many
privacy-related slices in TEE, which introduces high com-
putational overhead inside TEE and frequent data transfer
overhead across GPU and TEE in CPU, Phantom outsources
computation-intensive layers to GPUs and targets to reduce
data transfer frequencies between TEE and GPU. The core
of Phantom’s protection mechanism lies within the industry-
standard TEE, where lightweight MUX operation with the
authorized keys is able to recover the real computing path
from obfuscated paths caused by the learned redundant param-
eters, achieving model privacy protection without significant
performance penalties.

Phantom’s obfuscation process involves three key steps:

1). Analyzing the sensitivity of each layer within the model
and identifying the most sensitive ones. This step is essential
to help reduce the data communication between GPU and
TEE, which is important for reducing performance overhead.

2). Transforming the original model architecture by intro-
ducing additional obfuscation layers through a reinforcement
learning framework with our proposed multi-objective reward
function for maximizing defense performance and minimiz-
ing overhead.

3). Training the added obfuscation layers to degrade model
performance by maximizing model classification loss and
generating the obfuscation layer index as keys.

Importantly, the original model weights remain unchanged
during the training phase. This preserves the core functional-
ity and performance of the model for authorized users who
possess the necessary keys to recover it. By training the obfus-
cated weights, Phantom creates a protective shield around the
original model without altering its essential components. The
obfuscated Phantom model maintains the original model’s
performance characteristics while significantly increasing its
resilience against model stealing and fine-tuning attacks. For
authorized users, the obfuscated layers can be bypassed in
TEE through lightweight MUX operation, ensuring full model
functionality. However, when adversaries query the model
without keys, the final prediction incorporates the results of
the obfuscated layers, leading to a false final model output
and effectively concealing the true architecture and critical
weights in an untrusted environment. This makes it extremely
challenging for attackers to extract its proprietary information.
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Figure 2: Overview of Phantom. The computation-intensive linear layers, including original convolution layers and redundant
convolution blocks, are placed in the untrusted world - GPU. The non-linear layers, like ReLU, are placed in the secure world -
TEE. The mask and unmask layers are used to protect the intermediate data transferred between TEE and GPU. The MUX is
used to select different computation results depending on the user’s keys.

4.2 Design Objective

The design objective of Phantom is to strike an optimal bal-
ance between enhancing model privacy and minimizing the
computational overhead introduced by privacy-preserving
mechanisms. Unlike approaches that fully encrypt models
or execute entire or partial models within TEEs, which can
incur substantial performance penalities [21, 44], Phantom ob-
fuscates the original model architecture with small searched
and trained lightweight layers. By carefully integrating these
additional layers, we aim to achieve a level of privacy com-
parable to more heavyweight solutions while significantly
reducing the associated computational and off-chip data com-
munication costs.

Our design objective can be formalized as a min-max op-
timization problem, balancing the dual goals of maximizing
privacy protection and minimizing introduced overhead. Let
‘M be the original DNN model and M (M, L) be the obfus-
cated model with small additional protective layers added
according to configuration A. We aim to find the optimal con-
figuration A* that maximizes privacy while simultaneously
minimizing the overhead. This can be expressed mathemati-
cally as:

A* = argmax [P(L) — O(N)] (1)

AeA
where P(A) quantifies the privacy protection level achieved
by configuration A, O(A) represents the overhead costs, and
A is the set of all valid configurations. Optimizing this objec-

tive function enables simultaneously maximizing privacy and
minimizing overhead within a single optimization objective.
This formulation encapsulates the inherent trade-off between
privacy and performance, seeking a configuration that pro-
vides the best possible privacy guarantees while keeping the
introduced overhead to a minimum.

4.3 Obfuscated Architecture Search

Our obfuscated architecture search algorithm aims to find the
optimal configuration A* of lightweight obfuscation layers for
a given victim model M. The algorithm seeks to determine
the optimal additional obfuscation layers’ structure required
for effective obfuscation. As shown in Algorithm 1, each
obfuscation layer is searched from a defined candidate layer
pool, as shown in the Figure 3, which includes no operation
(Null) and convolution layers with kernel sizes 1, 3, 5, and 7,
a total of 5 candidates for each obfuscation layer. Then, the
total search space is defined by the potential obfuscation layer
insertion positions (whole layers for now), depth of search
(defined as number of obfuscation layers to be added for each
insertion position), and candidate size of each layer. Lets
define N, represents the number of layers in the victim model,
N, represents the number of layers in the final obfuscated
model, D represents the depth of search. After performing our
obfuscated architecture search algorithm, the total number of
layers in the obfuscated model, N,, would be:

NVSN() SNv+D'Nv (2)
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We define our obfuscation network as an over-
parameterized structure that includes all possible operations
for each obfuscation path. The policy gradient-based
exploration strategy through the REINFORCE algorithm
is used to learn a policy that optimizes operations for
each path (Algorithm 1). The policy initially prioritizes
exploration when uncertainty is high and gradually transitions
toward exploitation as it converges, guided by our defined
reward function. The learned policy network produces
a probability distribution over the available architectural
choices, as shown in Figure 3. Actions are sampled from this
distribution, creating a natural balance between exploration
and exploitation.

The algorithm evaluates sampled architectures using our
designed multi-objective reward function that balances task
performance, obfuscation effectiveness, and computational
overhead, as below:

R=—(—a-AS+p-AL) 3)

where AS denotes the change in a predefined performance
score, AL represents the change in DNN computing system
latency, and o and P are weighting factors for AS and AL,
respectively. For the performance evaluation, instead of us-
ing accuracy, which would require training each candidate
architecture and thus significantly increase the searching com-
plexity, we utilize the performance evaluation score proposed
by Mellor et al. [45]. This score is based on the concept of ac-
tivation patterns in untrained networks and can be computed
quickly without compute-intensive weight training, thereby
accelerating the architecture search process while still provid-
ing a solid measure of model performance.

Specifically, in our work, the score is calculated as follows:

* For a given untrained network and a minibatch of input
data, we compute the binary activation patterns at each

layer. These patterns indicate which neurons are active
(output > 0) or inactive (output < 0) for each input.

* We then construct a kernel matrix Ky by computing
the Hamming distances between these binary activation
patterns for all pairs of inputs in the minibatch.

* The final score is computed as s = log || K ||, where || - ||
denotes the matrix norm.

This score has been shown to correlate well with the net-
work’s final trained accuracy, making it a suitable proxy for
performance during architecture search. By using this score
instead of accuracy, we can evaluate thousands of potential
architectures with several orders of magnitude smaller search-
ing time.

During the training phase of the obfuscated layers, we
freeze the weights of the original model parameters while
exclusively optimizing the newly added obfuscation lay-
ers. These obfuscation layers are trained to maximize the
cross-entropy loss, effectively degrading the final obfuscated
model’s accuracy. Specifically, our loss function takes the
form:

N
mngL(e) =—Y yilog(5)+ (1 —yi)log(1—3;) (4
i=1

Where 6 represents the model parameters, £(0) is the cross-
entropy loss function, N is the number of samples, y; is the
true label for the i-th sample, and ¥; is the predicted probabil-
ity for the i-th sample. We intentionally degrade the model’s
performance when exposed to adversaries by training small
obfuscation layers to maximize the loss function. Concur-
rently, we freeze the weights of the original model layers,
thereby maintaining the core functionalities and performance
for authorized users.

The training process alternates between architecture search,
updating policy using REINFORCE, and model update, train-
ing the weights of newly added obfuscation layers. This pro-
cess continues until convergence or a maximum number of
iterations is reached. Once the search converges, we construct
the final obfuscated model by keeping the frozen victim model
layers unchanged and adding the selected obfuscation layers
into the search space following these frozen layers. Algorithm
| shows the full search pipeline.

The final obfuscated model preserves the original model’s
functionality and performance for authorized users, who can
bypass the obfuscation paths through a secure MUX mecha-
nism within the TEE. Simultaneously, it presents a deceptive
structure to potential adversaries, substantially enhancing the
model’s resilience against unauthorized access and model
extraction attempts.
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Algorithm 1 Obfuscated Model Search

Algorithm 2 Layer-wise obfuscation sensitivity analysis

Require: Search space parameters .S, Original network A/,
Training batches B;, Search batches B;
Ensure: Optimized controller C, Trained optional knobs X,
Obfuscated model Mop¢
BEGIN
Define the number of layers to be obfuscated L,
Define the depth of search space D;
Define the candidate operations X
for each batch b; in B, do
Freeze the original network weights 6,
for each layer [ in original network A’ do
Sample candidate knobs %
Remove the other knobs
10:  end for
for each batch b, in B; do
12: Maximize the loss function £(0)
13: Update weight parameters 6
14:  end for
15 for each batch by in B; do

R A

—
—_

16: Evaluate the obfuscation performance %,
17: Evaluate the inference latency £;

18: Calculate the reward R

19:  end for

20:  Calculate mean reward function &

21:  Maximize the Reward %

22:  Update the controller C

23: end for

24: Generate the obfuscated model Mq,r based on the con-
troller C’s searched result, choosing the optimal knobs
X; for each layer.

25: Return C and Myp¢

26: END

4.4 Layer-wise Obfuscation Sensitivity Analy-
sis

With the advent of SGX2 TEE systems, which are increasingly
supported by modern hardware, the memory and computation
limitations of SGX1 have been largely mitigated. However,
our subsequent system evaluation reveals a new challenge: in
current widely adopted SGX2 systems, off-chip data transfer
has emerged as the primary performance bottleneck in het-
erogeneous GPU and TEE system. This bottleneck becomes
particularly significant when considering comprehensive ob-
fuscation techniques. Even though conducting an architecture
search across all layers of a DNN model can yield effective
obfuscation and defensive performance, it introduces substan-
tial off-chip data transfer overhead between the secure TEE
environment and the untrusted GPU environment due to the
largely increased number of layers, which have also be re-
vealed in prior works [22, 37]. Therefore, in this work, we
propose layer-wise obfuscation sensitivity analysis before the

Require: Victim model M, Kernel sizes K, Number of mod-
els’ layers N, Training dataset D;, Test dataset D,
Ensure: Rank List R
1: BEGIN
2: Add convolution layer with kernel size K after each layer
in the original model M to generate N models
3: for each model M; in N do
4. for each epoch e in E do
5 for each batch b in Dr do
6: Maximize loss function £(6)
7 Update weight parameters 0
8 end for
9: Measure accuracy A; on the test dataset
10:  end for
11:  Store model M; and corresponding test accuracy A;
12: end for
13: for each model ; in N do
14:  Fine-tune M; on 10% D; for E; epochs
15:  Measure fine-tuning attack accuracy Ay ; of M; on Dy
16: end for
17: Rank the models 9 based on 1/Ay;, where Ay is their
fine-tuning attack accuracy
18: Return &
19: END

above discussed obfuscated architecture search to reduce the
number of obfuscated layers by constraining the searching
only applied to the sensitive layers and excluding the insensi-
tive layers.

Layer-wise obfuscation sensitivity analysis is used to iden-
tify which layer in a victim model, after being augmented
with lightweight obfuscation layers, is more effective against
the strong fine-tuning attack. To perform a layer-wise obfus-
cation sensitivity analysis on the original victim model M
with N layers, we first generate N models where only one
lightweight convolution layer with the same kernel size is
added after each individual layer. For example, the i model
has only one convolution layer added after the i layer. Then,
all these N generated models are trained, with frozen back-
bone mode, through only tuning the newly added obfuscation
layer to maximize the cross-entropy loss. Then, we conducted
fine-tuning attack on these N obfuscated models, achieving N
attack accuracies, which could indicate the obfuscation effec-
tiveness of each layer. It is easy to see that the lower of these
attack accuracy, the less success of fine-tuning attack, and thus
more effective of the added obfuscation layer in a particular
postion of network. Therefore, we use the 1/accuracy as the
sensitivity score of each layer and only pick the top ranked
k (top-k) layers, rather than the entire layers, to conduct the
searching algorithm | discussed above to significantly reduce
the number of added onfuscation layers. Here, the value of
K is a hyperparameter of Phantom framework. By using our
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Top-K obfuscation sensitivity methods, the total number of
layers in the obfusacted model, N, in equation 2, would be-
come: N, <N, <N, + D-K. In our experiment section, we
will discuss the perforamnce and overhead for whole layer
searching and Top-K (K=3 as an example) layer searching.

4.5 Intermediate Feature Protection

To ensure the confidentiality of data exchanged between the
TEE and GPU, following the prior work [21], we employ
a custom one-time pad (OTP) encryption method. This ap-
proach safeguards intermediate values during computation
without compromising efficiency.

The process begins by establishing a shared finite field. We
select a prime number p, typically slightly larger than 224, to
serve as the modulus for our operations. This choice allows
us to accommodate 8-bit quantized values while remaining
within the bounds of standard floating-point precision. For
each data & that requires protection, our system follows these
steps:

* Quantization The TEE converts /4 to an 8-bit fixed-point
format, yielding A. This step standardizes our input and
minimizes precision loss.

* Mask Generation Using a secure random number gen-
erator, the TEE creates a unique mask r within the range

[0,[7—1}.

* Encryption The TEE computes the encrypted value %,
as follows:
he=(h+r) modp ®)

This operation effectively obscures the true value with
the random mask.

* GPU Computation The GPU receives &, and performs
the required linear operation, denoted as g(-). The result,
y = g(h.), is then returned to the TEE.

* Decryption To recover the original result, the TEE cal-
culates: .
g(h) = (y—g(r)) modp (6)
This decryption works due to the homomorphic proper-
ties of modular addition over linear functions. To opti-
mize performance, g(r) values are pre-computed and se-
curely stored in TEE, reducing real-time computational
overhead.

OTP allows the GPU to operate on encrypted data as if it
were unencrypted, while maintaining data confidentiality. The
security of this system relies on the single-use nature of each
mask and the secure management of these masks within the
TEE. By implementing this tailored OTP scheme, it achieves
a balance between security and efficiency, enabling secure
outsourcing of computations to the GPU while preserving the
privacy of sensitive intermediate values.

4.6 Model Partition for TEE-GPU Deployment

Our model partitioning strategy leverages a heterogeneous
TEE/GPU system to achieve an optimal balance between
computational performance and model privacy. The overall
workflow is shown in Figure 2. The TEE hosts non-linear
layers, mask and unmask operations for intermediate value
protection, and MUX for recovering model functionality us-
ing "keys". Concurrently, the GPU handles computationally
intensive tasks such as linear layers, batch normalization, and
pooling operations. This strategic distribution of tasks capital-
izes on the secure processing capabilities of the TEE while
harnessing the high-performance computing power of the
GPU, resulting in a system that effectively combines privacy
and efficiency.

Following this predetermined partitioning strategy, our de-
ployment process allocates specific components of the ob-
fuscated model architecture to either TEE or GPU execution
environments. We initialize the TEE with non-linear layer
parameters and obfuscation keys, while concurrently loading
the GPU with obfuscated linear layer parameters. This deploy-
ment approach ensures efficient utilization of both the secure
TEE environment and the GPU’s computational capabilities.

The forward pass alternates between GPU and TEE envi-
ronments, with the GPU performing linear operations and the
TEE handling non-linear activations and de/re-obfuscation of
intermediate results. This iterative process continues through
each layer until reaching the final layer, where the TEE gen-
erates the secure prediction. To ensure data integrity and
confidentiality, all communication between TEE and GPU is
encrypted using the OTP method.

5 Experiment Setup

5.1 Models and Datasets

To evaluate the efficacy of our approach and following similar
experiment setup as prior works [22, 23], we utilize three
popular DNN model architectures, i.e., AlexNet [1], ResNet-
18 [46], VGG-16 [47], and three datasets, i.e., CIFAR-10 [48],
CIFAR-100 [48], STL-10 [49] for our experiments.

5.2 Victim Model Training

To create realistic victim models for compare with SoTA
defense methods, we used ImageNet pre-trained models as
our starting point. We then fine-tuned these models for each
combination of architecture and dataset using the following
process, mimicking common practices in real-world scenar-
ios: 1) Final Layer Adaptation: We replaced the final fully
connected layer of each pre-trained model to match the num-
ber of classes in our target datasets (10 for CIFAR-10 and
STL-10, 100 for CIFAR-100). 2) Full Model Fine-tuning:
We trained these adapted models on our chosen three datasets,
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allowing all layers to be updated. This approach enables the
models to adjust their learned features to each dataset’s spe-
cific characteristics. 3) Data Augmentation: We applied
standard data augmentation techniques, including random
cropping and horizontal flipping, to enhance the models’ gen-
eralization capabilities and mitigate overfitting. 4) Optimiza-
tion: We trained the models using stochastic gradient descent
(SGD) with a learning rate of 0.01 and momentum of 0.9. A
CosineAnnealinglR learning rate scheduler was employed to
gradually adjust the learning rate during training, facilitating
more effective fine-tuning. 5) Performance Monitoring: We
tracked validation accuracy throughout training and imple-
mented early stopping to prevent overfitting, selecting the
model checkpoint with the highest validation performance.

This experimental setup, utilizing three model architectures
and three datasets, allows us to evaluate our protection ap-
proach across diverse scenarios. By fine-tuning ImageNet
pre-trained models on our chosen datasets, we closely sim-
ulate real-world practices where such models are often the
targets of attacks. This approach enables us to assess the
robustness and effectiveness of our defense method under
various model architectures, providing insights into its perfor-
mance in protecting fine-tuned models.

5.3 Obfusacted Model Search Implementation

In our model architecture searching algorithm implementa-
tion, we define the architecture search space with two layer
branches B and a search depth D of three after each layer.
Hence, following each frozen victim model layer, there would
be six blocks could be added with lightweight obfuscation lay-
ers. This configuration provides a balance between the explo-
ration of potential obfuscation strategies and computational
feasibility. For REINFORCE learning algorithm training, we
employ a Stochastic Gradient Descent (SGD) optimizer with
an initial learning rate of 0.01 and a momentum of 0.9. We
use a cosine annealing learning rate scheduler and train for
120 epochs, with reinforcement learning updates occurring
every 300 steps.

Our experiments are conducted on an NVIDIA A6000
GPU, with training durations ranging from 18 to 38 hours
for each model and dataset combination. This variation in
training time is primarily due to differences in model archi-
tecture complexity and dataset size. Phantom is designed as
a one-time effort per model-dataset pair for privacy protec-
tion. For example, with our hardware setup, it takes around
26 hours for Phantom to search the optimal obfuscated model
for ResNet-18 on CIFAR-10. This obfuscation process com-
bines two essential phases: i) the search phase for identifying
optimal positions for lightweight obfuscation layers; ii) the
fine-tuning phase for maintaining model functionality while
ensuring privacy. Once the obfuscation process is complete,
it could be deployed to TEE-GPU heterogeneous system for
privacy-preserving inference without further update. This one-

time investment is reasonable considering the long-term pri-
vacy benefits and protection against model theft, making it a
general and practical solution.

5.4 Heterogeneous TEE/GPU System Imple-
mentation

We implement Phantom’s model obfuscation features on the
popular machine learning library PyTorch. There are two key
components providing system-level security of Phantom: i)
protection of model parameters through TEE-aware selec-
tive offloading of computation, and ii) protection of model
architecture through side channel resilient model obfuscation.
Protecting Model Parameters. We utilize homomorphic
computation property of linear layers to offload these layers to
GPU, while keeping the non-linear layers in TEE only. During
execution, the encrypted model is first loaded into the enclave
memory and decrypted. On runtime, when a specific layer is
offloaded to GPU, we first generate a mask (Section 4.5) and
apply it over the layer parameters before sending them to GPU
for computation. This ensures the unencrypted copy of model
parameters only exists in the TEE, model parameters sent to
GPU is always in masked form. Once the masked computation
is completed, it is sent back to the TEE for unmasking.
Protecting Model Architecture. In addition to model pa-
rameters, Phantom also provides robust model architecture
protection. In particular, the model architecture protection
scheme in Phantom has three components: i) key-based model
obfuscation that obfuscates in-memory model architecture
with an authorized key (Section 4.1) to derive the real com-
putation path. Phantom only stores the obfuscated model
in memory, and utilizes the authorized key to only keep the
computation corresponding to real path during runtime; ii)
constant-path computation over obfuscated model regardless
of the authorized key content to prevent leakage of model
architecture over data-flow dependent side channel (i.e., mem-
ory bus snooping [11], cache template attacks [S0-52] or
advanced TEE-metadata based attacks [35, 53]). During run-
time, Phantom executes all available paths in the obfuscated
model regardless of if the specific path is part of real compu-
tation dictated by the authorized key. This ensures that the
performed computations and memory accesses during infer-
ence is not impacted by the authorized key; and iii) branch-
agnostic recovery of real computation path from the obfus-
cated model. Phantom utilizes branchless bitwise operations
to select specific paths of execution corresponding to spe-
cific authorized key value (e.g., result = (a- ~ key) | (b - key);
this operation selects path corresponding to a when key = 0
and path corresponding to b when key = 1, without introduc-
ing any control-flow dependent side channel [54, 55]). This
principled approach ensures no control-flow-dependent side
channel leakage of model architecture information during
runtime.

Overall, Phantom provides complete protection of model
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Table 1: Comparison of model performance with and without authorized user keys. In each cell, the left accuracy is with a key,

and the right accuracy is without a key.

AlexNet

ResNet-18 VGG-16

CIFAR-10 CIFAR-100 STL-10 CIFAR-10

CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10

No Privacy Left Outside! 86.37%/83.71%  61.96% / 56.46%
84.13%/59.30%  56.09% / 22.94%
84.13% /9.90%  56.09% / 1.00%
84.13%/10.03%  56.09% / 0.98%

80.17% / 76.54%
82.37% 1 22.99%
82.37% 19.97%
82.37% / 10.86%

NNSplitter
Ours (Whole Layer)
Ours (Top-3 Layer)

93.65% 195.47%
93.01% /9.99%
93.01% / 10.00%
93.01% /9.90%

73.11% 1 73.03%
72.76% 1 1.00%
72.76% / 0.94%
72.76% 1 1.19%

89.67% 1 89.42%
94.80% /25.11%
94.80% / 10.53%
94.80% /10.04%

76.79% 1 79.94%
72.75% 1 0.98%
72.75% 10.94%
72.75% 1 1.19%

86.22% / 87.51%
94.79% 1 22.28%
94.79% 1 10.53%
94.79% 1 10.04%

93.06% /91.62%
93.02% / 10.00%
93.02% / 10.00%
93.02% /9.90%

! For *No Privacy Left Outside’ work, the performance with key means the performance of their method’s pruned and trained model, while the performance without key is from the pre-trained backbone model.

architecture and parameters. Phantom’s novel architecture
search enables efficient model obfuscation. In addition, Phan-
tom enables the first side-channel resistant architecture obfus-
cation by preventing both data- and control-flow-dependent
side-channel leakages during runtime.

6 Experiment Results

6.1 Obfuscation Effectiveness

To protect a model’s privacy, an effective defense method
should significantly degrade the model’s performance or even
mislead adversaries who lack legal authorization. To evaluate
the effectiveness of our obfuscation method, we compare it
with two recent SOTA baseline methods [22, 23] across three
popular neural network architectures (AlexNet, ResNet-18,
and VGG-16) using three datasets (CIFAR-10, CIFAR-100,
and STL-10).

Table 1 presents the results, showcasing model performance
with and without authorized user keys for the obfuscated
model. We evaluate our approach under two different set-
tings: the whole layer and the Top-3 layer. The whole layer
setting applies the obfuscation to all layers of the victim
model, while the Top-3 setting selects only the three most sen-
sitive layers based on our sensitivity analysis. Our proposed
methods under both settings reduced the exposed model per-
formance to nearly random guessing levels for adversaries.
For 10-class classification tasks (CIFAR-10 and STL-10), ac-
curacy dropped to approximately 10%, while for the 100-class
task (CIFAR-100), it fell to around 1%.

The No Privacy Left Outside method [22] performs worse
than our approach and NNSplitter [23] because it doesn’t
explicitly consider degrading model performance as an objec-
tive for privacy protection. Consequently, adversaries can still
achieve model performance functionally close to that with
authorized access. For adversaries aiming to use or misuse
such a model without incurring costs, this defense method
may not adequately protect the model’s privacy. Our proposed
method consistently outperformed both baseline approaches,
NNSplitter and No Privacy Left Outside, regarding obfus-
cation accuracy (model performance without a key) across
all model-dataset combinations. This demonstrates the effec-
tiveness of our obfuscation technique in preserving model

functionality for authorized users while providing strong pri-
vacy protection against unauthorized access.

6.2 Defend Against Fine-Tuning Attack

o NNSplitter on ResNet18 with CIFAR10 00 Ours (Top-3) on ResNet18 with CIFAR10
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Figure 4: Comparison of defensive performance against fine-
tuning attack between NNSplitter and Ours Top-3.

Fine-tuning attacks assume a strong adversary could obtain
the partial obfuscated model [12, 23], including both its ar-
chitecture and partial weights, along with a limited portion of
private training datasets, typically no more than 10% of the
total. This assumption is feasible in practice, as demonstrated
by several recent studies. DeepSniffer [11] exploits architec-
tural cues to reconstruct the complete architecture of deep
neural networks without prior knowledge of the target model.
DeepSteal [12] demonstrates the use of memory side channel
attacks to steal the weights of deep neural networks. Addi-
tionally, Carlini et al. [13] introduce a training data extraction
attack that can extract verbatim text sequences from language
models. Their work demonstrates that these models may un-
intentionally memorize and subsequently reveal portions of
their training data. The 10% training dataset assumption is
considered robust, as training a model from scratch with ran-
domly initialized weights using only 10% of the dataset often
yields functional performance. This is demonstrated in the
Baseline row of Table 2, where some models trained on this
limited dataset still achieve notable accuracy. If an adversary
obtains more than 10% of the training dataset, the necessity of
stealing the protected victim model is substantially reduced.
In this scenario, they could instead construct a comparable
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Table 2: Comparison of defensive accuracy for fine-tuning attack. green indicates success and red indicates failure.

AlexNet

ResNet-18 VGG-16

Average

CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10

Baseline (Random) 77.26% 41.87% 52.01% 59.38% 37.33% 50.47% 31.26% 47.91% 64.35% 51.32%

No Privacy Left Outside (LR: 0.01 ) 83.98% 59.21% 81.13% 85.09% 59.27% 90.71% 90.79% 68.97% 93.97%  79.25%
No Privacy Left Outside (LR: 0.001) = 80.35% 54.82% 7987%  78.36% 50.02% 86.52% 85.91% 60.37% 93.39%  74.40%
NNSplitter (LR: 0.01) 9.99% 1.00% 10.00% 91.79% 70.39% 75.89% 93.19% 67.91% 77.99%  55.35%
NNSplitter (LR: 0.001) 84.31% 58.09% 79.39% 93.00% 71.98% 75.71% 93.81% 72.23% 78.18%  80.26%

Ours (Whole Layer) (LR: 0.01) 10.00% 1.00% 10.03% 12.13% 32.83% 10.03% 10.01% 12.40% 10.03% 12.05%
Ours (Whole Layer) (LR: 0.001) 10.00% 1.00% 10.03% 17.64% 11.23% 10.03% 11.27% 6.42% 10.03%  9.74%
Ours (Top-3) (LR: 0.01) 10.00% 1.00% 10.03% 10.00% 1.43% 10.03% 10.00% 13.92% 10.03%  8.49%

Ours (Top-3) (LR: 0.001) 10.00% 1.00% 11.18% 10.00% 1.00% 17.22% 10.00% 12.67% 10.03%  9.23%

model using publicly available standard architectures.

In our experiment, we model the adversary’s capabilities
based on the realistic attack scenarios described above. We
evaluate five settings in our comprehensive fine-tuning attacks
assessment: baseline, No Privacy Left Outside [22], NNSplit-
ter [23], ours (Whole Layer), and ours (Top-3). The baseline
involves training a model with randomly initialized weights.
For No Privacy Left Outside, we use the pre-trained back-
bone model part of their hybrid model design as a starting
point, then train it with 10% of the training dataset. For our
approach, Whole Layer means the searching space is whole
layer as described in the Algorithm 1. While the Top-3 means
the obfuscation layer searching is only applied to the top-3
ranked sensitive layers to reduce the searching space and ob-
fuscation model overhead. For all methods, the training data
is the same random 10% of the entire training dataset.

To ensure a fair comparison, we maintain consistent fine-
tuning attack settings across all five settings, utilizing 150
training epochs, an SGD optimizer, and a CosineAnnealingl.R
learning rate scheduler. This scheduler dynamically adjusts
the learning rate of the SGD optimizer throughout the fine-
tuning process. We consider an obfuscation method successful
when the performance of its obfuscated model after being fine-
tuned by an adversary is consistently lower than the baseline
setting with training from random weights. Otherwise, the
fine-tuning attack is successful.

Figure 4 compares the performance of NNSplitter [23] and
our (Top-3) obfuscation method on ResNet-18 and CIFAR-
10 in defending against fine-tuning attacks. We evaluate the
fine-tuning performance across a range of learning rates (0.9,
0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001), covering
most commonly used rates for training DNN models. The red
dotted line in both left and right figures represents the base-
line accuracy. The left plot in Figure 4 shows that NNSplitter
exhibits high sensitivity to different learning rates during fine-
tuning, with all fine-tuning accuracies higher than the baseline
for ResNet-18, indicating unsuccessful defense. In contrast,
the right plot in Figure 4 demonstrates our method’s defen-

sive performance against fine-tuning attacks under various
learning rates. Our approach shows consistent success across
all tested learning rates, with accuracy levels remaining be-
tween 10% and 20%, which is much lower than the training
from random baseline (59.48% accuracy). This uniformity
is crucial, as it indicates that an attacker would gain no addi-
tional advantage by varying the learning rate. The stability
and success of our method’s performance suggest that it effec-
tively protects the model’s knowledge, making it significantly
more challenging for an attacker to infer information even if
the obfuscated model is completely leaked in an untrusted
environment.

We also conduct a comprehensive comparison of fine-
tuning attack accuracy across different methods: No Privacy
Left Outside, NNSplitter, ours (Whole Layer), and ours (Top-
3). As evidenced by Figure 4, the effectiveness of defensive
methods against fine-tuning attacks can be sensitive to learn-
ing rate variations, with performance potentially fluctuating
across different rates. Considering such, we provide two learn-
ing rate settings, 0.01 and 0.001, for each defensive method for
fair comparison. In Table 2, we mark the successful defense in

green and the unsuccessful defense in red . Our whole layer
obfuscation and top-3 obfuscation methods achieve average
fine-tuning accuracies ranging from 9.74% to 12.05% and
from 8.49% to 9.23%, respectively, both significantly lower
than the baseline average of 51.32%. In contrast, No Privacy
Left Outside and NNSplitter range from 74.40% to 79.25%
and from 55.35% to 80.26%, respectively, both higher than
the baseline, indicating the failure of defending against fine-
tuning attacks. NNSplitter is successful only for AlexNet with
learning rate of 0.01, all other settings failed.

6.3 Defend Against Model Stealing Attack

Model stealing is an attack method where an adversary aims to
create a "knockoff" or surrogate model that replicates the func-
tionality of a victim model, using only black-box access to
query the victim model. The attack process typically involves
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Table 3: Comparison of defensive accuracy for model stealing attack. We bold the lowest defensive accuracy. The lower the
defensive accuracy for model stealing attacks, the better the performance in defending against model stealing attacks.

AlexNet ResNet-18 VGG-16 Average

CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10
No Privacy Left Outside!  19.04% 8.27% 24.15% 31.40% 10.90% 29.19% 30.87% 9.78% 32.92%  21.84%
NNSplitter 10.00% 1.00% 15.90% 12.50% 1.10% 11.00% 35.60% 14.30% 15.40%  12.89%
Ours (Whole Layer) 10.00% 1.00% 10.00%  10.00% 1.00% 10.00%  10.00% 1.00% 10.00%  7.00%
Ours (Top-3 Layer) 10.00% 1.00% 10.00%  10.00% 1.00% 10.00%  10.00% 1.00% 10.00%  6.99%

! The accuracy of the model stealing attack *No Privacy Left Outside’ is sourced from their paper.

initializing a surrogate model using a publicly available pre-
trained model, sampling images from an out-of-distribution
dataset to query the victim model and collect predictions, and
then training the surrogate model on these collected image-
prediction pairs to mimic the victim model’s behavior. The
effectiveness of model stealing is evaluated by measuring the
surrogate model’s accuracy on the victim model’s private test
dataset, indicating how well the surrogate model performs
after being trained on the adversary’s constructed dataset.

To assess our approach’s resilience against model stealing
attacks, we conducted experiments following the protocol
established in prior works [7, 22]. We used CIFAR-100 as the
out-of-distribution dataset for sampling query data, employ-
ing a random sampling strategy [7] to select 30,000 queries
[22]. This approach simulates realistic model stealing attacks
where attackers strategically choose queries to maximize in-
formation gain about the target model.

We evaluated model stealing accuracy across four ap-
proaches: No Privacy Left Outside [22], NNSplitter [23], ours
(Whole layer) and ours (Top-3). The evaluation covered three
different model architectures (AlexNet, ResNet-18, and VGG-
16) and datasets (CIFAR-10, CIFAR-100, and STL-10).

As Table 3 shows, our method demonstrated superior
protection across all datasets and model architectures. For
AlexNet on CIFAR-10 and CIFAR-100, our approach and
NNSplitter limited the attack success rate to 10.00% and
1.00% respectively, lower than No Privacy Left Outside at
19.04% and 8.27%. On STL-10, our method achieved the
lowest attack success rate of 10.00%, compared to 24.15%
for No Privacy Left Outside and 15.90% for NNSplitter. With
the more complex ResNet-18 architecture, our approach out-
performed existing methods. On CIFAR-10, we reduced the
attack success to 10.00%, compared to 12.50% for NNSplit-
ter and 31.40% for No Privacy Left Outside. Similar trends
were observed for CIFAR-100 (1.00% vs. 1.10% and 10.90%)
and STL-10 (10.00% vs. 11.00% and 29.19%). For VGG-
16, our method’s efficacy continued to shine. On CIFAR-10,
we achieved an attack success rate of 10.00%, outperform-
ing both NNSplitter (35.60%) and No Privacy Left Outside
(30.87%). Similar trends were observed for CIFAR-100 and
STL-10.

The results indicate that our obfuscation method effectively
prevents the leakage of private knowledge from the victim
model to the adversary, thereby hindering the construction
of an accurate surrogate model. Our approach demonstrates
remarkable resilience against model-stealing attacks across
various model architectures and datasets.

6.4 System Overhead Evaluation

We evaluated the runtime overhead of the Phantom scheme by
comparing it to a baseline model and a SOTA model parameter
protection scheme, No Privacy Left Outside [22]. To evalu-
ate different TEE backends, we conducted experiments on
two platforms: SGX2 platform, represented by an Intel Xeon
Gold 6342 processor with the latest Intel SGX (SGX2) imple-
mentation, and SGXI platform, represented by an Intel Core
i7 9700K processor with an older SGX (SGX1) implemen-
tation. To enhance computational efficiency, we leveraged
GPUs for accelerating lightweight obfuscated convolution
layers. Specifically, the SGX2 platform utilizes an NVIDIA
A40 GPU, while the SGX1 platform utilizes an NVIDIA GTX
1080Ti GPU.

We evaluated the inference speed of Phantom on our real
system protocol, focusing on total execution latency and its
breakdown components: GPU latency (the time needed to
complete the computation inside the GPU), TEE latency (the
time required to finish the computation inside the TEE), and
data transfer time (the time needed to transfer data between
the GPU and TEE). The inference latency reported is for a
single batch with a size of 100. To mitigate cold start effects
for the GPU, we conducted a warmup step before measure-
ments. All measurements were repeated 50 times to obtain
average inference times.

For the system-level overhead analysis, we chose ResNet-
18 as our baseline model. We evaluated a layer-branched ver-
sion of ResNet-18, where all linear convolution layers were
split into two parallel branches, aligning with the experiment
setting defined in Section 5.3. The baseline ResNet-18 model
serves as our reference point for inference time evaluation.
We evaluated the performance of this baseline on three differ-
ent device settings: GPU-Only, TEE-Only, and heterogeneous
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Table 4: Inference Time Overhead Evaluation. We bold the lowest total inference time with its breakdown time.

SGX2 SGX1
Total GPU TEE Data Total GPU TEE Data
Execution Latency Latency Transfer Execution Latency Latency Transfer

Latency (ms) (ms) (ms) Latency (ms) | Latency (ms) (ms) (ms) Latency (ms)

ResNet. 18! GPU-only 2.51 2.51 (100%) - 4.65 4.65 (100%) - -

TEE-only 34.27 - 34.27 (100%) - 492.7 - 492.7 (100%) -
No Privacy Left Outside TEE-GPU 17.42 1.72 (10%) 5.96 (34%) 9.74 (56%) 341.95 440 (1%)  238.39(70%)  99.17 (29%)
Ours (Whole Layers) TEE-GPU 37.11 492 (13%)  12.02 (32%)  20.17 (54%) 543.05 2.57 (0%)  388.43 (72%) 152.06 (28%)
Ours (Top-3 Layers) TEE-GPU 11.33 1.62 (14%)  3.34 (29%) 6.41 (57%) 196.12 4.02 (2%) 145.04 (74%) 47.07 (24%)

! The ResNet-18 evaluated here is a layer-branched version in which all convolutional layers are split into two parallel branches.

TEE-GPU. The GPU-Only setting, where the entire model
is placed on the GPU, serves as the upper bound for infer-
ence speed. The TEE-Only setting, with the whole model in
the TEE, offers the best privacy protection but serves as the
lower bound for inference speed. The heterogeneous TEE-
GPU setting, the focus of our work, leverages both GPU’s
computation power and TEE’s protection ability.

We evaluated the obfuscation strategies of No Privacy Left
Outside and ours under the heterogeneous TEE-GPU platform
setting. In terms of total execution latency, our Top-3 obfus-
cation strategy demonstrated the best performance among the
tested approaches. On the SGX2-based platform, our Top-3
obfuscation strategy required 11.33 ms compared to 17.42
ms for No Privacy Left Outside and 37.11 ms for our whole
layer obfuscation strategy. Similarly, on the SGX1-based plat-
form, the latencies were 196.12 ms, 341.95 ms, and 543.05
ms, respectively. This superior performance is due to lower
computational requirements inside the TEE and reduced data
transfer needs between GPU and TEE, as shown in the break-
down times in Table 4.

In particular, as shown in Table 4, data transfer latency con-
stitutes the dominant portion of overall execution latency
on the SGX2-based TEE-GPU platforms, accounting for
around 50%-60% across all evaluated models. In contrast,
the older SGX1-based platform experiences significant per-
formance degradation primarily due to computational bot-
tlenecks within the TEE, as highlighted by prior work [22]
and further corroborated by our experiments on SGX1. We
observe that more than 70% of the total execution latency
in SGX1-based TEE-GPU platform is due to TEE-execution
overheads (compared to <35% TEE related overheads in
SGX2). Overall, the improved computational performance of
SGX2, relative to its predecessor, has effectively shifted the
primary bottleneck from TEE computation to data transfer
latency for TEE-shielded DNN approaches.

SGX2 introduces two significant enhancements over SGX1
that have a substantial impact on ML workloads. First, SGX2
increases the maximum encrypted memory (EPC) capacity
to 512GB, a significant upgrade from SGX1’s 128MB limit.
This eliminates the need for frequent and expensive memory

swapping operations during runtime, which posed a critical
bottleneck for large and memory-intensive ML workloads
in SGX1. Second, SGX2 enables resource sharing among
enclaves within the same process, facilitating efficient mul-
tithreading and parallel execution. These advancements col-
lectively reduce SGX2’s computational overhead to approxi-
mately 10%-15% of native execution, making earlier observa-
tions about SGX1’s computational bottlenecks less applicable.
Our findings reveal that, with SGX2, the primary performance-
limiting factor shifts to data communication overhead in fu-
ture heterogeneous systems.

We encourage the research community to consider this
new bottleneck when designing future TEE-Shielded DNN
algorithms, as data transfer time has become a critical factor
in the overall performance of these systems.

7 Conclusion

This paper introduced Phantom, a novel framework for ob-
fuscating deep neural networks in heterogeneous TEE-GPU
systems. Phantom employs reinforcement learning to add
lightweight obfuscation layers, effectively protecting model
privacy while preserving authorized performance. Our layer-
wise sensitivity analysis enables efficient, informed obfusca-
tion. Extensive experiments demonstrate Phantom’s superior
defense against fine-tuning and model-stealing attacks com-
pared to SOTA methods. Implementation on SGX2 systems
revealed data transfer as the primary bottleneck, with our Top-
3 obfuscation strategy significantly reducing latency. Phantom
represents a significant step towards practical DNN privacy
protection, balancing strong security with computational effi-
ciency.

Ethics Considerations

In developing Phantom, we conducted a thorough ethical
analysis to ensure responsible innovation while protecting
legitimate security interests. Our analysis focused on key
stakeholder impacts and technical design decisions that could
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affect different parties involved in the deployment and use of
our system.

From a stakeholder perspective, we primarily considered
model owners who face significant risks from model theft that
could undermine their competitive advantage. Our research
addresses their need for intellectual property protection while
maintaining reasonable implementation costs through our
Top-K sensitivity optimization. For legitimate users, our sys-
tem ensures authorized users maintain high model accuracy
with minimal performance overhead, where the Top-K layer
sensitivity analysis specifically optimizes this balance be-
tween security and efficiency. Regarding the broader research
community, while our work advances model protection tech-
niques, we acknowledge potential misuse risks. Therefore,
we focus on defensive techniques and transparently document
their capabilities.

Our technical design choices were guided by ethical consid-
erations at each step. We chose obfuscation over full encryp-
tion to balance security with practical deployment constraints,
particularly for resource-constrained organizations. Our se-
lective layer protection approach through sensitivity analysis
achieves robust security while minimizing system overhead.
Throughout development and evaluation, we used only pub-
lic datasets (CIFAR-10, CIFAR-100, STL-10) and commit
to open-sourcing our implementation to ensure transparency
and reproducibility.

Open Science

In alignment with USENIX Security’s open science policy,
we commit to making our research artifacts publicly available.
The artifacts include the complete source code for the Phan-
tom framework implementation, along with evaluation scripts
for model training and attack simulation.

Our repository contains essential datasets, implementations,
configurations, hyperparameters, and performance measure-
ments. We provide comprehensive documentation with de-
tailed setup instructions and deployment guidelines. All arti-
facts are accessible through our public GitHub repository~,
ensuring complete transparency of our research.
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Appendix

Security Analysis Against Brute-Force Attacks

Suppose we have an original DNN model with L layers.
An unknown number N of lightweight layers have been
added to the original DNN model for obfuscation. Also, those
lightweight layers can be inserted at any position in the origi-
nal model except before the first layer. In addition, the added
lightweight layers are indistinguishable from the original
model layers. Our goal is to identify and skip those added
lightweight layers to recover the original model.

The number of options to insert N of lightweight layers
into the DNN model with L - I layers is a classic stars and
bars problem in combinatorics, which is given by:

C(N,L—1)= (Na(L5”;1> = (NZLL;2> )
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Alternatively, since () = (,,), we can write:

1) = (N+L—2>

N ®)

The total number of configurations T is:

N IN+L-2
CECET) e

N=1

The binomial coefficient (N +1$_2) grows polynomially with

respect to N for a fixed L. However, as N increases, the values
become significantly large due to the combinatorial nature.
Therefore, a brute-force search through all possible
configurations is computationally infeasible.

To illustrate the computational infeasibility of a brute-force
attack, let us consider a practical scenario with the following
settings:

* Following the same setting of the paper, we consider the
number of branches to be 2, the K of Top-K design to be
3, and the depth of each added block to be 3.

e L = 36 be the number of layers in the original DNN
model ( We consider the ResNet-18 model, which has
18 layers. Following the original branching setting with
2, the total number of layers is 18 x 2).

e N = 18 be the unknown number of lightweight lay-
ers added to the model. (Following the number of
branches, Top-K, and depth of block setting, the number
of lightweight layers is 2 * 3 * 3)

C(18.35) = (18+1385—1)
52
(i)
B 52!
~18!x (52— 18)!
521
~18!x 34!

Calculating the exact value of (J3) yields:
C(18,35) =42,671,977,361,650 (10)
So, the total number of configurations is approximately:
C(18,35) ~ 4.2 x 1013 (11)

With over 10'® possible configurations, a brute-force
search would require checking each configuration individ-
ually, which is computationally infeasible given current tech-
nology. To obtain a reliable measurement that aligns with

our experimental setup, we conducted 50 rounds of testing
on an NVIDIA A6000 GPU with proper warm-up periods.
The results showed that testing a single configuration takes
an average of 129.14 ms. Therefore, to test all configurations,
it will take

42,671,977,361,650 configurations
- 7.74 configurations/second
= 5.5131754 x 10"?seconds
~ 174,688.7 years
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