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Abstract—This paper addresses the challenges associated
with nonlinear Subsynchronous Oscillations (SSOs) induced by
Inverter-Based Resources (IBRs) in power systems. Through
adaptive isostable coordinate-based phase reduction, we intro-
duce a 2-dimensional reduced model to analyze limit cycles in
a two-area power system including one IBR. In particular, the
methodology focuses on exploring nonlinear oscillations induced
by Hopf bifurcation, providing insights into frequency-amplitude
responses. The accuracy of the reduced-order model is verified
by numerical studies compared with the full-order model. Our
research contributes by presenting a novel model reduction
technique and advancing the understanding of limit cycles in
IBR-integrated power systems. This offers valuable implications
for the stability and performance of modern power grids with
increased IBR penetration.

Index Terms—Inverter-based resource, subsynchronous oscil-
lation, limit cycle, Hopf bifurcation, phase reduction, isostable
coordinates, nonlinear oscillation.

I. INTRODUCTION

While penetrations of inverter-based resources (IBRs) are

rapidly increasing globally, the usage of IBRs has brought

about unwanted effects, including subsynchronous oscillations

(SSOs) [1]. To address these issues, advanced solutions such

as SSO adaptive damping controllers have been proposed for

oscillations characterized by fixed points [2]. However, there

is a need for a comprehensive understanding and mitigation

strategy for various oscillatory phenomena, especially nonlin-

ear oscillations induced by bifurcations. It is essential to note

that if the oscillation is associated with a stable limit cycle,

the oscillation becomes sustained, which has been observed in

some SSO events. [3], [4].

In contrast to the effective analysis and control of linear

oscillations using various tools designed for linear systems,

the exploration of limit cycles poses challenges in high-

dimensional dynamic systems. In addition, the frequency of

a limit cycle cannot be fully characterized by the analysis

of fixed points. This challenge can lead to confusion when

observing undamped oscillations in reality without the corre-

sponding identification of eigenpairs through eigenanalysis.

The growing complexity and high dimensionality of modern

power systems pose significant challenges to their analysis
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and control. Full-order models, while comprehensive, are

computationally expensive and often impractical for real-time

nonlinear optimal control or detailed analytical studies such as

time domain simulations [5]. For instance, understanding and

characterizing nonlinear SSOs demands efficient methods that

go beyond traditional linearization approaches. Reduced-order

modeling, such as phase reduction [6], provides a transforma-

tive solution to these challenges by drastically simplifying the

dimensionality of the system. By reducing a high-dimensional

limit cycle oscillator to a one-dimensional ordinary differential

equation, phase reduction captures the essential dynamics

of the system in a more tractable form. This enables the

development of optimal control strategies [7] and analytical

insights that would be otherwise obscured in the full-order

model.

However, this impressive reduction in dimensionality comes

with the requirement that the magnitude of perturbations must

be uniformly bounded in time by ϵ, where 0 < ϵ ≪ 1, to

ensure the validity of the results to first-order accuracy in ϵ.
Considering this limitation of phase reduction, an alternative

approach to broaden its applicability involves utilizing phase-

amplitude coordinate systems. These systems account for tran-

sient dynamics in directions transverse to the periodic orbit.

Recent advancement in this direction is the adaptive phase-

amplitude reduction strategy in [8], [9], which incorporates

the standard definition of asymptotic phase based on isochrons

[10] and additionally considers slowly decaying isostable co-

ordinates [11], representing level sets of the slowest decaying

Koopman eigenfunctions [12]. By considering a family of

limit cycles emerging for different parameter sets, the adaptive

selection of the nominal parameter set helps limit errors in the

reduced-order equations.

The paper presents several notable contributions. While

there exist studies examining limit cycles induced by switch-

ing of controllers [3], [4], the literature on methodologies

for model reduction of power system SSOs involving IBRs,

remains limited. Addressing this gap, the paper introduces a

novel reduced-order phase-amplitude model tailored for char-

acterizing limit cycles in power systems. Initially, a nonlinear

SSO is constructed and its source is explained and discussed.

Through comprehensive case studies, the proposed model

demonstrates great accuracy in capturing oscillatory dynamics

while maintaining a low-dimensional representation. Further-
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more, the frequency-amplitude characterization of the SSO

is analyzed based on the reduced-order model. Comparative

analysis between two reduced models further highlights the

efficacy of the proposed approach. Notably, while the full-

order model often suffers from the curse of dimensionality in

designing control strategies, the implemented control strategy

for both reduced-order models shows promising accuracy

with significantly lower dimensions, which underscores the

practical value of the proposed model in mitigating SSOs.

II. MODEL REDUCTION

A. Isochrons and Phase Reduction

Consider a dynamical system of the form:

ẋ = f (x, p0,u) , (1)

where x ∈ R
N denotes the state variable, f ∈ R

N is the vector

field describing system dynamics, p0 ∈ R is some parameter,

and u ∈ R
M is an input from controllers. Suppose that (1)

has a stable T (p0)-periodic orbit solution xγp0 for a constant

choice of p0 when u = 0. A phase of nonlinear oscillation can

be defined by θ ∈ [0, 2π) for all states x ∈ xγp0 , with θ scaled

so that θ̇ = 2π/T (p0) = ω(p0) when u = 0. Note that this

definition builds a bijection mapping between θ and x ∈ xγp0 .

The definition of phase can be extended to the whole basin of

attraction Dp0 of xγp0 by isochrons [6]. For instance, let θ1 be

the phase associated with some a ∈ xγp0 , the θ1 isochron is

defined:

{x ∈ Dp0 | lim
t→∞

∥Φ(t,a)−Φ(t,x)∥ = 0 },

where Φ(t,x) denotes the flow of (1) under u = 0. With the

phase well defined in Dp0 , by changing state variables to phase

coordinates, the system’s asymptotic dynamic response to u

can be characterized by a one-dimensional dynamical system:

θ̇ =
∂θ

∂x

⊤ dx

dt

=
∂θ

∂x

⊤ (

f (x, p0,0) +
∂f

∂u
u+O

(

∥u∥2
)

)

= ω (p0) + Z(θ, p0)u+O
(

∥u∥2
)

+O
(

∥∆x∥
2
)

,

(2)

where Z(θ, p0) =
∂θ
∂x

⊤ ∂f
∂u

is often called the phase response

curve (i.e. which characterizes the response to inputs), ∆x =
x−xγp0(θ), and ⊤ denotes the transpose. By truncating second-

order terms in (2), phase reduction provides a 1-dimensional

reduced system for the original N -dimensional system (1).

However, (2) can only provide a reliable result in a close

neighborhood of xγp0 , which will limit the application in the

analysis of SSOs.

B. Phase-Amplitude Reduction

It is noteworthy that the reduced-order system (2) is de-

signed primarily to capture the timing aspects of limit cycles.

A more comprehensive understanding of the system dynamics

needs the integration of amplitude coordinates with phase

coordinates, i.e., the phase-amplitude system which can effec-

tively capture the dynamics governing the decay in directions

transverse to a periodic orbit. In this paper, Floquet coordinates

[13] are utilized to represent the effects of amplitudes. With

∆x = x − xγp0(θ) in mind, (1) can be approximated by

the linear system ∆ẋ = Jx where the Jacobian J(t) of f

evaluated at xγp0(θ(t)) is a T (p0)-periodic matrix. Suppose

the corresponding monodromy matrix is diagonalizable, the

state can be written in the form of

x− xγp0(θ) =
N−1
∑

j=1

ψjgj (θ, p0) +
N−1
∑

j=1

O
(

ψ2
j

)

(3)

near xγp0(θ(t)), where gj (θ, p0) ∈ C
N denotes the Floquet

eigenfunction associated with the isostable coordinate ψj ∈ C

for j = 1, . . . , N − 1. Note that one dimension has been ab-

sorbed due to the contribution from the Floquet eigenfunction

gN with Floquet multiplier λN = 1 by the phase coordinate,

yielding N − 1 total isostable coordinates. To linear order

of accuracy, the isostable coordinates together with the phase

reduction (2) yields a set of phase-amplitude reduced equations

θ̇ = ω (p0) + Z (θ, p0)u,

ψ̇j = κj (p0) + Ij (θ, p0)u,

j = 1, . . . , β,

(4)

where Ij (θ, p0) =
∂ψj

∂x

⊤
∂f
∂u

and all partial derivatives are

evaluated at xγp0(θ). The Floquet exponent κj is associated

with the jth Floquet eigenfunction gj . Note the dimension β
is not necessarily equal to N − 1. Instead, N − 1 − β fast

decaying Floquet coordinates can be ignored and sorted by

the magnitude of their associated Floquet exponents. Numer-

ical strategies such as ”adjoint method” for computing the

necessary terms Z (θ, p0) and Ij (θ, p0) in both (1) and (2)

are summarized in [14].

C. Adaptive Phase-Amplitude Reduction

While (4) can provide additional amplitude information to

better design control strategies, (4) together with (2) are only

valid in a close neighborhood of the limit cycle xγp0(θ), which

means both the Floquet coordinates ψj and input u should be

kept small. Consequently, (2) and (4) are typically only used

to analyze weakly perturbed dynamical systems.

Recently, adaptive phase-amplitude reduction [8] has been

proposed to solve this issue to drive the system far from

the reference limit cycle. The crucial feature of the adaptive

phase-amplitude reduction strategy is that it actively updates

the system parameters (and consequently the nominal limit

cycle) with the explicit goal of keeping the state close to the

nominal limit cycle, which means truncation errors O
(

ψ2
j

)

can

be effectively kept small. Following this approach, suppose (1)

has a stable limit cycle xγp(θ), ∀p ∈ B, where B is a compact

set of interest including p0. Immediately a family of limit

cycles can be defined as {xγp(θ) | p ∈ B } and generalized

phase θ(x, p) and a set of generalized Floquet coordinates

ψ1(x, p) . . . , ψβ(x, p) can be defined accordingly for each p.

Following [8], (1) can be rearranged as

ẋ = f(x, p,u) + ue(t,x, p), (5)

where

ue (t,x, p) = f (x, p0,u)− f(x, p,u).
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Note that (1) and (5) are identical but with different references,

one can treat the vector field of (5) as f(x, p,u) taking ue

as the equivalent input, resulting in a periodic orbit solution

xγp(θ) when ue = 0. By appropriately choosing a time-

varying parameter p, it is possible to limit the magnitude of

the isostable coordinates, which mitigates truncation errors,

resulting in a reduced-order model suitable for inputs of

significant magnitude. As demonstrated in [8], the allowance

for p to be nonstatic, in conjunction with the phase-amplitude

coordinates, leads to the following reduced-order model:

θ̇ = ω(p) + Z(θ, p)ue(t, p,x) +D(θ, p)ṗ,

ψ̇j = κj(p)ψj + Ij(θ, p)ue(t, p,x) +Qj(θ, p)ṗ,

j = 1, . . . , β

ṗ = Gp (p, θ, ψ1, . . . , ψβ) ,

(6)

where
D(θ, p) ≡

∂θ

∂p
= −

∂θ

∂x

⊤ ∂xγ

∂p

∣

∣

∣

∣

θ,p

∈ R,

Qj(θ, p) ≡
∂ψj
∂p

= −
∂ψj
∂x

⊤ ∂xγ

∂p

∣

∣

∣

∣

θ,p

∈ C,

∂xγ

∂p

∣

∣

∣

∣

θ,p

≡ lim
ϵ→0

(

x
γ
p+ϵ (θ)− xγp (θ)

)

ϵ
.

(7)

Note D(θ, p) and Qj(θ, p) characterize how changes in the

parameter p influence θ and ψj , respectively, and provided

Gp can be chosen so that ψj remains O(ϵ) for j ≤ β
and that the neglected isostable coordinates have sufficiently

large magnitude Floquet exponents, (5) is accurate up to

O(ϵ) provided that ue is an O(1) term [8]. While (6) accu-

rately captures nonlinear oscillations, the isostable coordinates

ψ3, . . . , ψβ typically correspond to rapidly decaying Floquet

eigenfunctions compared to those linked with ψ1 and ψ2.

Therefore, explicitly considering these additional isostable

coordinates is often unnecessary in practice. Thus, consider

(6) with only the single slowest isostable coordinate:

θ̇ = ω(p) + Z(θ, p)ue(t, p,x) +D(θ, p)ṗ,

ψ̇ = κ(p)ψ + I(θ, p)ue(t, p,x) +Q(θ, p)ṗ,

ṗ = Gp (p, θ, ψ) .

(8)

Note that in (8) the subscript denoting the isostable coordinate

index has been dropped or convenience of notation. Letting

Gp (p, θ, ψ) = −
I(θ, p)ue(t, p,x)

Q(θ, p)
(9)

allows for the following simplification of (8):

θ̇ = ω(p) + Z(θ, p)ue(t, p,x) +D(θ, p)ṗ,

ψ̇ = κ(p)ψ,

ṗ = −
I(θ, p)ue(t, p,x)

Q(θ, p)
,

(10)

where ψ̇ = κ(p)ψ is decoupled and will converge to ψ = 0
as time approaches to infinity and can be ignored. The final

2-dimensional reduced-order model becomes

θ̇ = ω(p) + Z(θ, p)ue(t, p,x) +D(θ, p)ṗ,

ṗ = −
I(θ, p)ue(t, p,x)

Q(θ, p)
.

(11)

7

III. POWER SYSTEM MODEL

A. IBR Model

The model of the inverter usually includes a phase-locked

loop (PLL), frequency and voltage support functions, a current

limit controller, and a pulse-width modulation generator. The

PLL is employed to generate frequency and angle reference

signals for other components, featuring a PI controller for rotor

angle control. Furthermore, Voltage and frequency support

functions enhance voltage and frequency response perfor-

mance. We followed the model used in [15]. Note that in this

paper we mainly consider Hopf-Bifurcation-induced SSOs, so

limits of controllers are disabled to avoid the influence of limit

cycles induced by switching. While this model is simplified,

the resulting phenomena still provide practical insights. The

system model of the PLL is

δ̇ = ∆ω̂,

φ̇ = Kivq,
(12)

where δ is the relative angle of the d-axis (PLL output

angle) with respect to the terminal voltage, ω̂ is the output

rotor angular frequency, ∆ω̂ = ω̂ − ω0 is the frequency

derivation with respect to the nominal frequency ω0 and φ
is the intermediate state variable involved in the PI control

loop. Ki and Kp are gains of the PI controller in the PLL,

and vq is the voltage on the q-axis. Note the rotor angle speed

ω̂ and voltage on the q-axis vq in (12) are defined:

∆ω̂ = Kpvq + φ,

vq = (idX + iqR)− eeq sin δ,
(13)

where id and iq are the output of the support function, respec-

tively, and eeq is the equivalent terminal voltage magnitude.

Moreover, the algebraic equations in support functions are

vd = (idX − iqR) + eeq cos δ,

id = Idcon − Pω∆ω,

iq = Pp (vd − vref ) + ς,

ς̇ = Pi (vd − vref ) ,

(14)

where Pp, Pi, and Pω are parameters in controllers of voltage

and frequency support functions, vref is the nominal value of

vd, and ς is the intermediate variable in the voltage control

loop. Here the frequency droop is added on the constant set

point Idcon in order to regulate real power. R + jX is the

equivalent impedance between the IBR and the equivalent

voltage source. A more detailed explanation of (12), (13) and

(14) can be found in [15].

B. Multi-Machine Classical Model

The M -machine classical model is considered in this paper,

whose generators are represented by the second-order swing

equation:

ω̇i =
ω0

2Hi

(

Pm,i − Pe,i −Di

ωi − ω0

ω0

)

,

δ̇i = ωi − ω0,

(15)

where i ∈ {1, 2, . . . ,M}, δi, ωi, Pmi, Pei, Hi and Di

respectively represent the absolute rotor angle, rotor angular

speed, mechanical power, electrical power, inertia constant
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and damping constant of machine i, and Pei = E2
i gi +

∑M
j=1,j ̸=i [aij sin (δi − δj) + bij cos (δi − δj)], where Ei, gi,

aij , and bij represent network parameters including all loads.

IV. CASE STUDIES

To characterize the nonlinear SSO, the two-area system

model is considered [5], and its topology is shown in Fig. 1.

Generator G4 in the system is modeled as an IBR using

equations (12) to (14), while generators G1 to G3 follow

classical models given by (15). The specific parameters for the

Fig. 1: Two-area system.

IBR are outlined in Table I, with the remaining parameters

for the two-area system consistent with those detailed in

[5]. This setting is motivated by the typical situation where

the proportional gain Kp is considerably smaller than the

integral gain Ki and is sometimes assumed to be zero in

literature [15]. The eigenvalues of the linearized system at

the fixed point are presented in Table II. Although the fixed

point is not small-signal stable due to an unstable mode

introduced by the IBR, the system dynamics converge to

a limit cycle rather than diverge after a small perturbation.

Oscillations are observed in all state variables, particularly,

the frequency deviations of traditional generators and the

current iq of the IBR participate in oscillations, the 3-second

steady-state results are illustrated in Fig. 2. To characterize

these oscillations, notice the damping is zero, indicating a

limit cycle. Furthermore, the frequency associated with the

unstable eigenpair is 5.1944 Hz, while the observed limit

cycle frequency is 4.9395 Hz, indicating a nonlinear relation-

ship between the frequency and amplitude. Typically, a well-

designed power system could locally avoid the existence of

a limit cycle. However, the bifurcation could happen due to

the switching of some parameters or load varying, which is

common in practice. Then, the stability property of the fixed

point is changed, and a stable limit cycle may appear such as

Fig. 2. Indeed, note this model does have a subcritical Hopf

TABLE I: Default Setting of Parameters for the IBR

Ki

{(rad/s)/p.u.}

Kp

{(rad/s)/p.u.}

Pω

{p.u./(rad/s)}
Pi

(p.u./p.u.)

Pp

(p.u./p.u.)

1400 1.9 0.0027 200 0

TABLE II: Eigenvalues and Corresponding Modes

Eigenvalue Mode Type Frequency (Hz)

0.1931 + 32.6373i
Unstable 5.1947

0.1931− 32.6373i
−0.1933 + 7.3215i

Stable 1.1482
−0.1933− 7.3215i
−0.1865 + 3.9576i

Stable 0.6299
−0.1865− 3.9576i

−0.3881 Non oscillation 0

−11.9342 Non oscillation 0

(a) Frequency derivations (b) Current of the IBR in q-axis

Fig. 2: Nonlinear SSOs involving the IBR

bifurcation [6] at Kp = 2.0209 (or Pi = 186.4) when all

other parameters are held constant. The accurate 2-dimensional

reduced order nonlinear model (11) can be employed for this

specific bifurcation. The nonstatic parameter p in (11) can be

selected as either Kp or Pi. For the sake of generality, both are

considered, resulting in two reduced-order models. The first

(resp., second) model has 2 variables: p ∈ [1.2, 2.02] (resp.,

p ∈ [186.4, 208]) parameterizes the set of limit cycles that

result when taking different constant values of Kp (resp., Pi);
θ is the phase along a given limit cycle. Intuitively, moving

p closer to 2.02 (resp., 186.4) moves the system close to the

Hopf bifurcation and reduces the amplitude of oscillations.

By setting a series of different initial conditions for (11),

the relationship between the amplitude of the SSO of IBR’s

frequency deviation ∆ω̂ and its natural frequency (denoted

as ω(p) in (11)) is effectively characterized, and the resulting

Frequency-Amplitude (F-A) curve is illustrated in Fig. 3. It can

be concluded that the natural frequency of the SSO increases

as its amplitude decreases until the frequency approaches

5.1947 Hz, indicating the occurrence of the bifurcation. These

findings explore the nonlinearity of the SSO, and both models

accurately capture its dynamics, demonstrating accuracy even

near the bifurcation point. The SSO is recreated using the

phasor model [15], capable of capturing oscillatory dynamics

induced by the control parameters of IBRs. Note that this

case is not isolated and can be replicated in more complex

systems. For instance, a 5.7-Hz nonlinear SSO event was

simulated using NREL’s ParaEMT platform on the WECC

EMT model, illustrating the presence of SSOs in larger, more

detailed systems [16].

To further validate the accuracy of proposed models, dy-

namic responses to the step change of parameters are first

considered, setting Pω to 8×10−3 at t = 0 s and then adjusting

it to 3.8 × 10−4 at t = 2.5 s. Corresponding 5s simulation

results of system responses are shown in Fig 4. In the first

(resp., second) model, p increases (resp., decreases), bringing

the system closer to the Hopf bifurcation until t = 2.5 s
and then decreases (resp., increases), moving away from the

bifurcation. While the behavior of the reduced-order and

full-order models closely align, perfect matching of model

dynamics is generally not expected due to the truncation of

lower amplitude modes ψ in both reduced-order systems.

Moreover, an input u := [0 0 0 0 0 0 0 −k∆ω̂ 0]⊤ in (1), (i.e.,

changing φ̇ = KiVq−k∆ω̂) is designed to verify responses of

reduced-order models, here k = 0.2. 5s simulation results are

shown in Fig. 5. The additional input u can drive the system

back to the stable operation indicated by the increasing natural

frequency ω(p), and both reduced-order 2-dimensional models
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can accurately capture the dynamics along simulations before

bifurcation happens when ω(p) approaches 5.19 Hz. Note that

the relative errors in Fig 4d and Fig. 5d are due to the accu-

mulation of errors associated with the oscillation phase θ. It

is crucial to emphasize that both the frequency and amplitude

of the reduced-order models exhibit a close alignment with

the full-order models throughout the entire simulation, which

can be observed from Fig 4b and Fig. 5b. The consistency in

matching frequency and amplitude demonstrates the reliability

and accuracy of the reduced-order models in capturing the

essential dynamics, providing a comprehensive understanding

of the system’s behavior.

Fig. 3: Frquency-Amplitude characterization of the SSO

(a) Frequency derivations (b) Zoomed view of (a)

(c) Natural frequency of the SSO (d) Relative errors

Fig. 4: System response to the changing of Kω

V. CONCLUSION AND FUTURE WORK

In this paper, a nonlinear SSO has been studied and char-

acterized, in particular, a reduced-order model is introduced

which leverages recently developed adaptive phase-amplitude

reduction techniques. By parameterizing a family of limit cy-

cles associated with a particular parameter p, a 2-dimensional

reduced-order model of the form (11). The result shows

it accurately replicates large amplitude nonlinear oscillation

dynamics, in response to the step change of parameters and

external forcing. In future work, the reduced-order model will

be applied to stability analysis and control of such IBR-

induced nonlinear SSOs.
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