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Abstract—This paper addresses the challenges associated
with nonlinear Subsynchronous Oscillations (SSOs) induced by
Inverter-Based Resources (IBRs) in power systems. Through
adaptive isostable coordinate-based phase reduction, we intro-
duce a 2-dimensional reduced model to analyze limit cycles in
a two-area power system including one IBR. In particular, the
methodology focuses on exploring nonlinear oscillations induced
by Hopf bifurcation, providing insights into frequency-amplitude
responses. The accuracy of the reduced-order model is verified
by numerical studies compared with the full-order model. Our
research contributes by presenting a novel model reduction
technique and advancing the understanding of limit cycles in
IBR-integrated power systems. This offers valuable implications
for the stability and performance of modern power grids with
increased IBR penetration.

Index Terms—Inverter-based resource, subsynchronous oscil-
lation, limit cycle, Hopf bifurcation, phase reduction, isostable
coordinates, nonlinear oscillation.

I. INTRODUCTION

While penetrations of inverter-based resources (IBRs) are
rapidly increasing globally, the usage of IBRs has brought
about unwanted effects, including subsynchronous oscillations
(SSOs) [1]. To address these issues, advanced solutions such
as SSO adaptive damping controllers have been proposed for
oscillations characterized by fixed points [2]. However, there
is a need for a comprehensive understanding and mitigation
strategy for various oscillatory phenomena, especially nonlin-
ear oscillations induced by bifurcations. It is essential to note
that if the oscillation is associated with a stable limit cycle,
the oscillation becomes sustained, which has been observed in
some SSO events. [3], [4].

In contrast to the effective analysis and control of linear
oscillations using various tools designed for linear systems,
the exploration of limit cycles poses challenges in high-
dimensional dynamic systems. In addition, the frequency of
a limit cycle cannot be fully characterized by the analysis
of fixed points. This challenge can lead to confusion when
observing undamped oscillations in reality without the corre-
sponding identification of eigenpairs through eigenanalysis.

The growing complexity and high dimensionality of modern
power systems pose significant challenges to their analysis
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and control. Full-order models, while comprehensive, are
computationally expensive and often impractical for real-time
nonlinear optimal control or detailed analytical studies such as
time domain simulations [5]. For instance, understanding and
characterizing nonlinear SSOs demands efficient methods that
go beyond traditional linearization approaches. Reduced-order
modeling, such as phase reduction [6], provides a transforma-
tive solution to these challenges by drastically simplifying the
dimensionality of the system. By reducing a high-dimensional
limit cycle oscillator to a one-dimensional ordinary differential
equation, phase reduction captures the essential dynamics
of the system in a more tractable form. This enables the
development of optimal control strategies [7] and analytical
insights that would be otherwise obscured in the full-order
model.

However, this impressive reduction in dimensionality comes
with the requirement that the magnitude of perturbations must
be uniformly bounded in time by €, where 0 < ¢ < 1, to
ensure the validity of the results to first-order accuracy in e.
Considering this limitation of phase reduction, an alternative
approach to broaden its applicability involves utilizing phase-
amplitude coordinate systems. These systems account for tran-
sient dynamics in directions transverse to the periodic orbit.
Recent advancement in this direction is the adaptive phase-
amplitude reduction strategy in [8], [9], which incorporates
the standard definition of asymptotic phase based on isochrons
[10] and additionally considers slowly decaying isostable co-
ordinates [11], representing level sets of the slowest decaying
Koopman eigenfunctions [12]. By considering a family of
limit cycles emerging for different parameter sets, the adaptive
selection of the nominal parameter set helps limit errors in the
reduced-order equations.

The paper presents several notable contributions. While
there exist studies examining limit cycles induced by switch-
ing of controllers [3], [4], the literature on methodologies
for model reduction of power system SSOs involving IBRs,
remains limited. Addressing this gap, the paper introduces a
novel reduced-order phase-amplitude model tailored for char-
acterizing limit cycles in power systems. Initially, a nonlinear
SSO is constructed and its source is explained and discussed.
Through comprehensive case studies, the proposed model
demonstrates great accuracy in capturing oscillatory dynamics
while maintaining a low-dimensional representation. Further-
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more, the frequency-amplitude characterization of the SSO
is analyzed based on the reduced-order model. Comparative
analysis between two reduced models further highlights the
efficacy of the proposed approach. Notably, while the full-
order model often suffers from the curse of dimensionality in
designing control strategies, the implemented control strategy
for both reduced-order models shows promising accuracy
with significantly lower dimensions, which underscores the
practical value of the proposed model in mitigating SSOs.

II. MODEL REDUCTION
A. Isochrons and Phase Reduction
Consider a dynamical system of the form:

x =f(x,po,u), 1
where x € R denotes the state variable, f € R is the vector
field describing system dynamics, pg € R is some parameter,
and u € RM is an input from controllers. Suppose that (1)
has a stable T'(po)-periodic orbit solution x7 for a constant
choice of pg when u = 0. A phase of nonlinear oscillation can
be defined by 6 € [0, 27) for all states x € x , with ¢ scaled
so that § = 27 /T (po) = w(po) when u = 0. Note that this
definition builds a bijection mapping between 6 and x € x)) .
The definition of phase can be extended to the whole basin of
attraction Dp, of Xgo by isochrons [6]. For instance, let 6; be
the phase associated with some a € x;fo, the 6, isochron is
defined:

{x €D, | Jim |®(t,a) - B(t,%)] =0},

where ®(t,x) denotes the flow of (1) under u = 0. With the
phase well defined in D,,, by changing state variables to phase
coordinates, the system’s asymptotic dynamic response to u
can be characterized by a one-dimensional dynamical system:

j_ 00" dx
 Ox di
a0 " of
5 (rm0)+ Gru o () @

= w (po) + Z(6,p0) u+ O (Ju]) + 0 (| ax|?),

where Z(6,po) = %T% is often called the phase response
curve (i.e. which characterizes the response to inputs), Ax =
x—x} (¢), and T denotes the transpose. By truncating second-
order terms in (2), phase reduction provides a 1-dimensional
reduced system for the original /N-dimensional system (1).
However, (2) can only provide a reliable result in a close
neighborhood of x , which will limit the application in the

analysis of SSOs.

B. Phase-Amplitude Reduction

It is noteworthy that the reduced-order system (2) is de-
signed primarily to capture the timing aspects of limit cycles.
A more comprehensive understanding of the system dynamics
needs the integration of amplitude coordinates with phase
coordinates, i.e., the phase-amplitude system which can effec-
tively capture the dynamics governing the decay in directions
transverse to a periodic orbit. In this paper, Floquet coordinates
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[13] are utilized to represent the effects of amplitudes. With
Ax = x — x} () in mind, (1) can be approximated by
the linear system Ax = Jx where the Jacobian J(t¢) of f
evaluated at x (6(t)) is a T'(po)-periodic matrix. Suppose
the corresponding monodromy matrix is diagonalizable, the

state can be written in the form of
N-1 N-1
x—x7,(0) = > wigi (0po) + > 0w (3
j=1 j=1

near x7 (6(t)), where g; (6, po) € CV denotes the Floquet
eigenfunction associated with the isostable coordinate i; € C
for j = 1,..., N — 1. Note that one dimension has been ab-
sorbed due to the contribution from the Floquet eigenfunction
gy with Floquet multiplier Ay = 1 by the phase coordinate,
yielding NV — 1 total isostable coordinates. To linear order
of accuracy, the isostable coordinates together with the phase
reduction (2) yields a set of phase-amplitude reduced equations

0 =w(po)+Z (9 po)u,

¥; = K (po) +1; (6, p0) u, )
J=1... 6;
] _ 0y Tﬁ . . .
where I, (0,p0) = 5 5, and all partial derivatives are

evaluated at x) (¢). The Floquet exponent r; is associated
with the 7" Floquet eigenfunction g;. Note the dimension j3
is not necessarily equal to NV — 1. Instead, N — 1 — ( fast
decaying Floquet coordinates can be ignored and sorted by
the magnitude of their associated Floquet exponents. Numer-
ical strategies such as “adjoint method” for computing the
necessary terms Z (0, po) and I; (6,po) in both (1) and (2)
are summarized in [14].

C. Adaptive Phase-Amplitude Reduction

While (4) can provide additional amplitude information to
better design control strategies, (4) together with (2) are only
valid in a close neighborhood of the limit cycle x7 (), which
means both the Floquet coordinates v; and input u should be
kept small. Consequently, (2) and (4) are typically only used
to analyze weakly perturbed dynamical systems.

Recently, adaptive phase-amplitude reduction [8] has been
proposed to solve this issue to drive the system far from
the reference limit cycle. The crucial feature of the adaptive
phase-amplitude reduction strategy is that it actively updates
the system parameters (and consequently the nominal limit
cycle) with the explicit goal of keeping the state close to the
nominal limit cycle, which means truncation errors O (¢J2) can
be effectively kept small. Following this approach, suppose (1)
has a stable limit cycle x)(6), Vp € B, where B is a compact
set of interest including pg. Immediately a family of limit
cycles can be defined as {x)(¢) | p € B} and generalized
phase 6(x,p) and a set of generalized Floquet coordinates
P1(x,p)...,¥a(x,p) can be defined accordingly for each p.
Following [8], (1) can be rearranged as

x = f(x,p,u) + ue(t, x,p), 5)
where
Ue (ta va) =f (Xap0a 11) - f(X,p, u)'
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Note that (1) and (5) are identical but with different references,
one can treat the vector field of (5) as f(x,p,u) taking ue
as the equivalent input, resulting in a periodic orbit solution
x)(0) when ue = 0. By appropriately choosing a time-
varying parameter p, it is possible to limit the magnitude of
the isostable coordinates, which mitigates truncation errors,
resulting in a reduced-order model suitable for inputs of
significant magnitude. As demonstrated in [8], the allowance
for p to be nonstatic, in conjunction with the phase-amplitude
coordinates, leads to the following reduced-order model:

0 = w(p) + Z(0,p)ue(t, p,x) + D(0,p)p,
Ui = ki (p)Y; +Li(0,p)ue(t,p,x) + Q; (6, p)p,

. (6)
j=1,...,8
p:Gp(p797w1>“‘7¢ﬂ)u
where T
00 00 ' ox"
D =—=—-—— — R
(0,p) op ox op e’pe :
ooy Qi 00X
Q] (97p) - ap - 6X 8}) o.p S (C7 (7)
| (9. (0) =3 (0)
dp 0.p T €50 € ’

Note D(6,p) and Q,;(0,p) characterize how changes in the
parameter p influence 6 and 9);, respectively, and provided
Gp can be chosen so that ¢; remains O(e) for j < f
and that the neglected isostable coordinates have sufficiently
large magnitude Floquet exponents, (5) is accurate up to
O(e) provided that u, is an O(1) term [8]. While (6) accu-
rately captures nonlinear oscillations, the isostable coordinates
3, ...,Yg typically correspond to rapidly decaying Floquet
eigenfunctions compared to those linked with ¢; and 5.
Therefore, explicitly considering these additional isostable
coordinates is often unnecessary in practice. Thus, consider
(6) with only the single slowest isostable coordinate:
0 = w(p) + Z(0, p)ue(t, p,x) + D(0,p)p,

1/.} = Fé(p)l/J + I(e7p)ue(t7p7 X) + Q(evp)pu ®)

p: GP (paeaw) :
Note that in (8) the subscript denoting the isostable coordinate

index has been dropped or convenience of notation. Letting
_ 10, puc(t,p,x)

G, (p,0, 9
allows for the following simplification of (8):
6 = w(p) + Z(H,p)ue(t,p, X) + D(@,p)p7
_I(0, p)ue(t, p,x)
QW,p) 7

where ) = k(p)1 is decoupled and will converge to ¢ = 0
as time approaches to infinity and can be ignored. The final
2-dimensional reduced-order model becomes
0 = w(p) + Z(0, p)uc(t, p,x) + D(0, p)p,
_I(0.p)uc(t,p,x)
a Q(6,p)

Y
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III. POWER SYSTEM MODEL
A. IBR Model

The model of the inverter usually includes a phase-locked
loop (PLL), frequency and voltage support functions, a current
limit controller, and a pulse-width modulation generator. The
PLL is employed to generate frequency and angle reference
signals for other components, featuring a PI controller for rotor
angle control. Furthermore, Voltage and frequency support
functions enhance voltage and frequency response perfor-
mance. We followed the model used in [15]. Note that in this
paper we mainly consider Hopf-Bifurcation-induced SSOs, so
limits of controllers are disabled to avoid the influence of limit
cycles induced by switching. While this model is simplified,
the resulting phenomena still provide practical insights. The
system model of the PLL is

5= Ad,

. (12)
<)0 = K1UQ7

where § is the relative angle of the d-axis (PLL output
angle) with respect to the terminal voltage, @ is the output
rotor angular frequency, Ao = & — wy is the frequency
derivation with respect to the nominal frequency wg and ¢
is the intermediate state variable involved in the PI control
loop. K; and K, are gains of the PI controller in the PLL,
and v, is the voltage on the g-axis. Note the rotor angle speed
w and voltage on the g-axis v, in (12) are defined:
Aw = Kpvg + ¢,

Vg = (igX +iqR) — ecqsind,
where i4 and 4, are the output of the support function, respec-
tively, and e, is the equivalent terminal voltage magnitude.
Moreover, the algebraic equations in support functions are

vg = (1gX — igR) + eeq cOS Y,

13)

Z.d = Idcon - PwAwa
. 14)
g = P;D (Ud - vref) +,

éZPi(vd_vref)v

where P,, P;, and P,, are parameters in controllers of voltage
and frequency support functions, v;..; is the nominal value of
v4, and ¢ is the intermediate variable in the voltage control
loop. Here the frequency droop is added on the constant set
point I;.,, in order to regulate real power. R + jX is the
equivalent impedance between the IBR and the equivalent
voltage source. A more detailed explanation of (12), (13) and
(14) can be found in [15].

B. Multi-Machine Classical Model

The M -machine classical model is considered in this paper,
whose generators are represented by the second-order swing
equation:

. wo Wi — Wo
w; = Pm,i - Pe,i - D s
2HZ wo

Si:wi_w()a
where ¢ € {].72,...7]\4}7 0;y Wi, Pmi, Pej, H; and D;

respectively represent the absolute rotor angle, rotor angular
speed, mechanical power, electrical power, inertia constant

15)
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and damping constant of machine ¢, and P,; = Ef gi +
Z;’\il,j;ﬁi [aij Sil’l (51 — 5_7) + b” COSs (52 — 5j)], Where Ez', 9is
ai;, and b;; represent network parameters including all loads.

IV. CASE STUDIES

To characterize the nonlinear SSO, the two-area system
model is considered [5], and its topology is shown in Fig. I.
Generator G4 in the system is modeled as an IBR using
equations (12) to (14), while generators G1 to G3 follow
classical models given by (15). The specific parameters for the

_aoMw

Gl 1 6 10 11
.«m.mm 10 )25

L1

Areh | Ara 2

7I14|km8\mkm9

Fig. 1: Two-area system.

IBR are outlined in Table I, with the remaining parameters
for the two-area system consistent with those detailed in
[5]. This setting is motivated by the typical situation where
the proportional gain K, is considerably smaller than the
integral gain K; and is sometimes assumed to be zero in
literature [15]. The eigenvalues of the linearized system at
the fixed point are presented in Table II. Although the fixed
point is not small-signal stable due to an unstable mode
introduced by the IBR, the system dynamics converge to
a limit cycle rather than diverge after a small perturbation.
Oscillations are observed in all state variables, particularly,
the frequency deviations of traditional generators and the
current 7, of the IBR participate in oscillations, the 3-second
steady-state results are illustrated in Fig. 2. To characterize
these oscillations, notice the damping is zero, indicating a
limit cycle. Furthermore, the frequency associated with the
unstable eigenpair is 5.1944 Hz, while the observed limit
cycle frequency is 4.9395 Hz, indicating a nonlinear relation-
ship between the frequency and amplitude. Typically, a well-
designed power system could locally avoid the existence of
a limit cycle. However, the bifurcation could happen due to
the switching of some parameters or load varying, which is
common in practice. Then, the stability property of the fixed
point is changed, and a stable limit cycle may appear such as
Fig. 2. Indeed, note this model does have a subcritical Hopf
TABLE I: Default Setting of Parameters for the IBR

K K, P P P,
{(rad/s)/p.u.} {(rad/s)/p.u.} {p.u/(rad/s)} (p.u./p.u.) (p.u/p.u.)
1400 1.9 0.0027 200 0

TABLE II: Eigenvalues and Corresponding Modes

Eigenvalue Mode Type Frequency (Hz)
0.1931 + 32.6373i
0.1931 — 32.6373i Unstable 5.1947
—0.1933 + 7.3215i1
~0.1933 — 7.3215i Stable 1.1482
—0.1865 + 3.95761
—0.1865 — 3.9576i Stable 0.6299
—0.3881 Non oscillation 0
—11.9342 Non oscillation 0
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Fig. 2: Nonlinear SSOs involving the IBR

bifurcation [6] at K, = 2.0209 (or P, = 186.4) when all
other parameters are held constant. The accurate 2-dimensional
reduced order nonlinear model (11) can be employed for this
specific bifurcation. The nonstatic parameter p in (11) can be
selected as either K, or F;. For the sake of generality, both are
considered, resulting in two reduced-order models. The first
(resp., second) model has 2 variables: p € [1.2,2.02] (resp.,
p € [186.4,208]) parameterizes the set of limit cycles that
result when taking different constant values of K, (resp., F;);
0 is the phase along a given limit cycle. Intuitively, moving
p closer to 2.02 (resp., 186.4) moves the system close to the
Hopf bifurcation and reduces the amplitude of oscillations.
By setting a series of different initial conditions for (11),
the relationship between the amplitude of the SSO of IBR’s
frequency deviation Aw and its natural frequency (denoted
as w(p) in (11)) is effectively characterized, and the resulting
Frequency-Amplitude (F-A) curve is illustrated in Fig. 3. It can
be concluded that the natural frequency of the SSO increases
as its amplitude decreases until the frequency approaches
5.1947 Hz, indicating the occurrence of the bifurcation. These
findings explore the nonlinearity of the SSO, and both models
accurately capture its dynamics, demonstrating accuracy even
near the bifurcation point. The SSO is recreated using the
phasor model [15], capable of capturing oscillatory dynamics
induced by the control parameters of IBRs. Note that this
case is not isolated and can be replicated in more complex
systems. For instance, a 5.7-Hz nonlinear SSO event was
simulated using NREL’s ParaEMT platform on the WECC
EMT model, illustrating the presence of SSOs in larger, more
detailed systems [16].

To further validate the accuracy of proposed models, dy-
namic responses to the step change of parameters are first
considered, setting P,, to 8x 1073 at t = 0 s and then adjusting
it to 3.8 x 107* at t = 2.5 s. Corresponding 5s simulation
results of system responses are shown in Fig 4. In the first
(resp., second) model, p increases (resp., decreases), bringing
the system closer to the Hopf bifurcation until ¢ = 2.5 s
and then decreases (resp., increases), moving away from the
bifurcation. While the behavior of the reduced-order and
full-order models closely align, perfect matching of model
dynamics is generally not expected due to the truncation of
lower amplitude modes ¢ in both reduced-order systems.
Moreover, an input u :=[0 000000 —kA® 0] in (1), (i.e.,
changing ¢ = K;V, —kAw®) is designed to verify responses of
reduced-order models, here k¥ = 0.2. 5s simulation results are
shown in Fig. 5. The additional input u can drive the system
back to the stable operation indicated by the increasing natural
frequency w(p), and both reduced-order 2-dimensional models
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can accurately capture the dynamics along simulations before
bifurcation happens when w(p) approaches 5.19 Hz. Note that
the relative errors in Fig 4d and Fig. 5d are due to the accu-
mulation of errors associated with the oscillation phase 6. It
is crucial to emphasize that both the frequency and amplitude
of the reduced-order models exhibit a close alignment with
the full-order models throughout the entire simulation, which
can be observed from Fig 4b and Fig. 5b. The consistency in
matching frequency and amplitude demonstrates the reliability
and accuracy of the reduced-order models in capturing the
essential dynamics, providing a comprehensive understanding
of the system’s behavior.
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V. CONCLUSION AND FUTURE WORK

In this paper, a nonlinear SSO has been studied and char-
acterized, in particular, a reduced-order model is introduced
which leverages recently developed adaptive phase-amplitude
reduction techniques. By parameterizing a family of limit cy-
cles associated with a particular parameter p, a 2-dimensional
reduced-order model of the form (11). The result shows
it accurately replicates large amplitude nonlinear oscillation
dynamics, in response to the step change of parameters and
external forcing. In future work, the reduced-order model will
be applied to stability analysis and control of such IBR-
induced nonlinear SSOs.
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