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Abstract—Federated learning (FL) enables collaborative model
training across decentralized clients without sharing raw data.
However, its deployment in real-world settings faces severe
challenges, including data heterogeneity, system heterogeneity
with device capability variance, communication overhead, and
privacy concerns. A common limitation of existing work is
the lack of consideration for the joint impact of these issues,
ultimately leading to degraded performance. These limitations
are particularly evident in healthcare, where data distribution
differs across hospitals and patient groups, which makes a
single global model often inadequate. In this paper, we propose
PFedCDP for medical imaging, a unified framework for privacy-
preserving, heterogeneity-aware personalized federated learning
(PFL), which addresses these issues. PFedCDP introduces a
device capability-aware client clustering mechanism that assigns
appropriately scaled neural architectures to devices based on
computational capacity, memory, battery, and network metrics.
Personalized training is then guided by a mechanism that
preserves locally important parameters while still incorporat-
ing global knowledge, ensuring that clients benefit from both
personalization and collaboration. To have a generalized server
model, we add a post-hoc refinement stage that strengthens
representation robustness and effectively transfers diverse cluster
knowledge. Furthermore, the integration of differential privacy
and model quantization ensures privacy and communication
efficiency. Experimental evaluations on mammography datasets
demonstrate that PFedCDP outperforms state-of-the-art base-
lines, achieving robust personalization and privacy preserva-
tion under heterogeneous and non-IID conditions in real-world
healthcare scenarios. Our implementation repository is publicly
available at https://github.com/shadhin39/PFedCDP.

Index Terms—Federated Learning, Client Clustering, Knowl-
edge Distillation, Fisher Information, Contrastive Learning.

I. INTRODUCTION

Federated learning (FL) has emerged as a transformative
distributed machine learning paradigm that enables collab-
orative model training across decentralized devices while
preserving data locality and privacy [1]. Unlike traditional
centralized approaches that require raw aggregation of data,
FL allows multiple participants to contribute to a shared model
without exposing their sensitive information [2]. This property
is particularly crucial in today’s era of big data, where massive
volumes of information are generated across diverse sources,
and it directly addresses fundamental privacy concerns in

modern AI applications [3]. This revolutionary approach has
gained substantial attention across a wide range of applica-
tions, including smart homes [4], autonomous vehicles [5],
and critical domains like healthcare [6]. In healthcare, FL is
particularly valuable, as strict privacy regulations restrict data
sharing across hospitals. It has been applied to medical imag-
ing and disease prediction, where multi-hospital collaboration
can substantially improve model performance [6]. However,
clinical data are often highly non-independent and identically
distributed (non-IID). For example, in mammography, vari-
ations in imaging devices, acquisition protocols, and patient
demographics across hospitals introduce significant domain
shifts [7]. This heterogeneity can degrade the performance
of a single global model and highlights the need for PFL
approaches that adapt to local patient populations while still
leveraging shared knowledge. Such data heterogeneity is only
one part of the challenge. In practice, FL deployment must also
contend with the heterogeneous computational capabilities of
edge devices, which create bottlenecks as clients differ widely
in processing power, memory, battery life, and connectivity
[8]. These difficulties are further compounded by communi-
cation constraints and the need for robust privacy guarantees
in real-world deployments [9].

These challenges highlight that beyond addressing hetero-
geneity, effective FL must also incorporate personalization to
ensure reliable performance across diverse clients, especially
in sensitive domains such as healthcare [6]. Unlike generic
FL strategies that enforce a single global model, person-
alization allows local models to retain parameters that are
most relevant to their unique data distributions [10]. This
is critical in medical imaging tasks such as mammography,
where data distributions vary widely between hospitals due to
differences in imaging equipment, acquisition protocols, and
patient demographics. For example, rural or resource-limited
hospitals often face a scarcity of annotated mammograms
and may encounter class imbalance problems, while larger
urban medical centers may have more diverse and better-
curated datasets [11]. Without personalization, a global model
fails to perform adequately in low-resource settings, which
could increase inequalities in healthcare quality. Moreover,
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because patient data are highly sensitive and subject to strict
privacy regulations, centralizing medical images for model
training is infeasible. Under these circumstances, PFL offers
a compelling solution, allowing hospitals to collaboratively
learn robust global representations while ensuring that each
institution’s local model is adapted to its specific patient and
resource environment. Recent work [12], [13] such as Fisher
information-based parameter selection provides a principled
way to achieve this balance by preserving parameters critical
to local tasks while incorporating global knowledge.

Although personalization improves model effectiveness
across diverse clinical settings, deployment also requires
strong privacy protections to ensure that sensitive patient
information remains more secure during training. Privacy-
preserving techniques in FL have evolved significantly, with
differential privacy (DP) emerging as the gold standard for
formal privacy preserving technique [14]. Recent advances
combine DP with communication efficiency techniques such
as quantization to reduce overhead while maintaining model
utility [15]. However, balancing privacy preservation with
model performance remains a critical challenge, particularly
in heterogeneous environments where device capabilities and
data distributions vary significantly [16].

Despite these advances, existing solutions often address in-
dividual challenges, failing to provide a unified framework that
simultaneously handles device heterogeneity, data distribution
variations, and privacy requirements. While prior studies [9],
[17] have focused on privacy preservation and Dinh et al. [10]
have investigated performance costs, the combined treatment
of these two aspects remains unexplored.

To address these limitations, we introduce PFedCDP, a
novel privacy-preserving heterogeneity-aware PFL framework.
Our approach employs capability-based clustering to manage
device heterogeneity, while personalization on the client side
is achieved by using Fisher information to preserve locally
important parameters and we also apply knowledge distillation
(KD), where the server’s classification layer acts as a teacher to
refine client models. On the server side, we adopt a two-stage
strategy: (a) iterative aggregation of feature extractors during
federated rounds, and (b) a final, post-hoc model refinement
phase that synergistically combines multi-teacher Knowledge
Distillation (MTKD) [18], informed by Shapley values [19],
with Supervised Contrastive Learning (SCL) [20] on a public
dataset. To ensure practical viability, the framework integrates
DP [14] and quantization [21] for robust privacy protection
and communication efficiency. Our framework makes several
key contributions, which are listed below:

• A capability-based client clustering mechanism that ef-
ficiently manages device heterogeneity by stratifying
clients into computational capability clusters.

• A Fisher Information-guided personalization strategy that
selectively preserves important local parameters while
incorporating global knowledge, as well as employing
KD where a server model guides the training of the
client’s classification layer.

• A privacy-preserving communication protocol that com-
bines DP with quantization for enhanced security and
efficiency.

• A post-hoc refinement process that leverages Shapley
value-weighted MTKD with SCL to improve final server
model robustness.

II. LITERATURE REVIEW

FL has emerged as a promising paradigm for decentralized
machine learning, but its practical deployment remains con-
strained by non-IID data, heterogeneous devices, communica-
tion bottlenecks, and privacy risks [15]. Early solutions such
as FedProx introduced proximal regularization to stabilize
training under heterogeneity [16]. Another technique, pFedMe,
applied a Moreau envelope framework to enable client-level
adaptation with personalization [10]. Recent methods like
PFedCS focus on personalization, which emphasizes model
partitioning and similarity based collaboration, it also enhances
knowledge sharing among clients with related classifiers [22].
For personalization, Fisher information-based methods have
also been explored, as they preserve parameters that are
most important to local tasks while still incorporating global
knowledge [12]. These studies show that personalization is
important for stable performance, especially in domains such
as healthcare, since client distributions differ significantly
there.

Another line of research focuses on KD as a mechanism
for model heterogeneity and communication efficiency. FedDF
pioneered ensemble distillation on the server to fuse various
client models [8]. FedCKD extended this by combining multi-
teacher guidance with personalized history to improve sta-
bility [23]. FedMD leveraged KD on shared public datasets
to support heterogeneous client models, achieving an ap-
proximately 20% improvement in accuracy over standalone
training [24]. KD has also been shown effective for handling
device heterogeneity, where smaller models learn from larger
or ensemble teachers using soft targets [25]. MTKD frame-
works have been proposed to guide student models through
multiple teachers, although they often remain sensitive to non-
IID data distributions [18]. Multiple surveys underline KD’s
versatility in FL, spanning privacy preservation, generalization,
and transfer across heterogeneous environments [25], [26].

Although KD methods primarily address model hetero-
geneity and communication efficiency, they often overlook
fairness in contribution across clients, which Shapley value-
based approaches tackle through systematic client contribu-
tion weighting. ShapleyFL applied Shapley values to client
weighting for robust aggregation under adversarial or low-
quality updates [4]. FedKDShap extended this principle to
KD, emphasizing feature importance and mitigating non-IID
degradation [19].

While Shapley value-based methods improve fairness and
robustness in aggregation, other directions focus on strength-
ening feature representations to better handle non-IID data.
FedRCL adapted SCL to prevent representation collapse,
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Fig. 1. The proposed PFedCDP framework architecture. (a) shows the high-level, end-to-end system, including heterogeneous client clusters on private
dataset Dk and the server’s post-hoc refinement stage on proxy dataset Dpub. (b) details the iterative training loop within a single client cluster and server,
highlighting model decomposition for feature layer aggregation as well as Fisher information and KD based personalization.

strengthening global feature spaces while maintaining local
adaptability [27].

In addition to representation-level improvements, the practi-
cal implementation of FL must also address privacy and com-
munication constraints to ensure both security and efficiency.
DP has become the widely accepted standard for formal guar-
antees [17], but its integration with PFL often degrades utility.
DP-pFedDSU proposed dynamically sparsified client updates
via reparameterization and adaptive norms, reducing the noise
required under the same privacy budget and achieving stronger
trade-offs between privacy and personalization [9].

III. METHODOLOGY

We propose PFedCDP, a novel PFL framework tailored
to address real-world constraints in decentralized learning,
including device heterogeneity, data heterogeneity, commu-
nication limitations, and privacy preservation. The overall
framework is organized into two principal components: a
client-side personalization phase and a server-side post-hoc
refinement phase, both of them are described in detail in the
subsequent subsections.

A. System Architecture

Figure 1 illustrates the proposed PFedCDP framework,
which operates in a client–server environment with heteroge-
neous devices and a server-side refinement stage. The architec-
ture is organized into two levels. The first one is the overview
showing how heterogeneous client clusters connected to the
central server using Figure 1a, and then the detailed training
loop for a single-client cluster shown in Figure 1b.

On the client side, devices are grouped into three capability-
based clusters (High, Medium, and Low) according to compu-
tational resources and network conditions. For example, high-
capability devices, such as workstations or servers with GPUs,

are assigned deeper neural networks; medium-capability de-
vices such as personal laptops or desktops are given mod-
erately complex models; and low-capability devices such as
mobile phones or IoT nodes are assigned lightweight shallow
models. This clustering ensures that weaker devices do not
become bottlenecks while still allowing them to contribute
effectively. For each client k, the client model Wk is de-
composed into a feature extractor, and a classification layer
(WC,k). The feature extractor is responsible for learning gen-
eral representations that can be shared and aggregated across
clients, while the classification layer captures task-specific
patterns specific to the client’s local data. This framework
keeps the classification layer on the local client side and only
shares the feature extractor with the server, which ensures
client specific personalization. It also allows each client to
adapt their predictions to its own data distribution while still
benefiting from global knowledge. On the server end, the
feature extractors are aggregated using FedAvg to produce a
prototype for each cluster. The server then refines these proto-
types in a post hoc stage. In this stage, MTKD gathers knowl-
edge from all cluster models. Then the Shapley value weights
adjust the impact of each model. Finally, SCL strengthens
the representation robustness using the public proxy dataset
Dpub. This refinement enables the server to integrate diverse
knowledge across clusters and improve generalization without
requiring access to sensitive private data.

In healthcare applications such as mammography screening,
this design is particularly beneficial because hospitals often
vary in computational resources as well as in patient data
distributions. PFedCDP ensures that hospitals with limited
compute capacity or smaller datasets can still participate
meaningfully without compromising privacy or accuracy.

Although client data are assumed to be non-IID in practice,
in our experiments statistical heterogeneity is emulated using



a Dirichlet partitioning strategy [2].

B. Heterogeneity-Aware Client Clustering

To manage the device heterogeneity of client devices,
we implement a capability-aware clustering mechanism prior
to training. For each client k, four normalized capability
parameters are computed to assess their suitability for FL.
The CPU capability is calculated as CCPUk

=
fcurrentk

fmaxk
,

which reflects how much of the device’s maximum processing
frequency is currently available. The memory capability is
given by CMemk

=
Mavailablek

Mtotalk

, which indicates the propor-
tion of usable memory relative to the total memory capac-
ity, thereby capturing whether the client can accommodate
training workloads. The battery capability is expressed as
CBatteryk

=
Battery Levelk

100 , which directly translates the per-
centage of the battery into a normalized score that accounts
for the reliability of the device under limited energy condi-
tions. Finally, the network capability is defined as CNetk =
1 − current Latencyk

maximum Acceptable Latency , where higher latency values pro-
portionally decrease the performance. This formulation make
sure that clients with faster and more stable connections are
assigned with higher capability, on the other hand those near
the acceptable latency limit get lower scores because their
communication is less efficient.

These four metrics provide a clear view of the computa-
tional, memory, energy, and communication resources of each
client in a normalized form. Finally, all four matrices are
combined into a one weighted overall score, COk

. The weights
(w1, w2, w3, w4) can be tuned based on which resources
matter most, and they can add up to 1 (

∑
wi = 1). For

instance, if the battery level is considered less critical for
a particular deployment, its weight could be reduced (e.g.
w1 = 0.3, w2 = 0.3, w3 = 0.1, w4 = 0.3). If all resources
matter the same, each one gets an equal weight of 1/4. The
score is calculated as follows:

COk
= w1CCPUk

+ w2CMemk
+ w3CBatteryk

+ w4CNetk .
(1)

Then clients are placed into one of the three clusters (High,
Medium, Low) based on their overall score (COk

). This is
relative to predefined thresholds (TH , TM ).

Cluster(COk
) =


High, COk

≥ TH
Medium, TM ≤ COk

< TH

Low, COk
< TM

(2)

We have organized our architecture into three distinct client
clusters, where each cluster tailored to specific computational
capabilities and corresponding neural network model complex-
ities. Cluster 1 is designated as the high capability cluster. It
utilizes Deep Neural Network models, and it is suitable for
devices with substantial computational resources. The medium
capability cluster (Cluster 2) will be assigned Medium Size
Neural Network models, designed for devices with moderate
processing power. Finally, the low capability cluster (Cluster 3)
will employ very few layered neural networks, optimized for
devices with limited computing capabilities.

C. Personalized Federated Training Loop
The core of our framework is an iterative training loop

that combines client-side personalization with server-side ag-
gregation of feature extractors. As described in Algorithm 1,
each client first personalizes its feature extractor using Fisher
information to preserve locally important parameters, while
replacing the remaining parameters with the global knowledge
received from the server. The client then refines its classifica-
tion layer through KD guided by the server’s model. After
local updates are computed, clients apply differential privacy
and quantization before transmitting their feature extractor
updates to the server. Algorithm 2 then describes the server-
side process, where client updates are dequantized, aggregated
within each cluster, and subsequently refined through a post-
hoc stage that integrates Shapley-weighted MTKD with SCL.
Together, these two algorithms provide a step-by-step view
of how PFedCDP balances personalization and generalization
across heterogeneous clients.

1) Server-to-Client Model Distribution: Following the Fig-
ure 1b, the classification of clients into discrete clusters based
on their computational capabilities, the iterative personalized
training process is initiated. The first step in each communi-
cation round involves the distribution of the server-to-client
model. At the start of each communication round t, the server
sends a complete cluster-specific prototype model to each
participating client k. This model consists of the aggregated
feature extractor for that cluster from the previous round
(W t−1

L,global), and the server’s own powerful classification layer
for that cluster W t−1

C,server.
2) Client-Side Personalization and Training: Upon receiv-

ing the server model (W t−1
L,global + W t−1

C,server), each client k
undertakes a multi-step local training process. The first step
involves feature extractor personalization with fisher infor-
mation. Fisher information, a classical statistical measure of
parameter sensitivity, which captures how much each model
parameter contributes to the likelihood of the observed data,
making it a natural criterion for identifying which parameters
are most important to preserve for local personalization [14].
In this stage, the client personalizes its local feature extractor
WL,k by retaining parameters with high Fisher scores while
allowing less critical parameters to be updated from the global
model. For a parameter wj , the fisher information is defined
as

F (wj) =

(
∂ logL(w,Dk)

∂wj

)2

, (3)

where L(w,Dk) denotes the likelihood function of the client’s
data. Based on a predefined threshold TFisher, two binary
masks are created: a Personal Mask (Mpersonal) and a Global
Mask (Mglobal). The two masks are used to separate param-
eters that should be preserved for local personalization from
those that should be replaced with global updates. Parameters
with high Fisher values, which contribute significantly to the
client’s local task, are preserved using the Personal Mask:

Mpersonal[j] =

{
1, if F (wj) ≥ TFisher

0, otherwise.
(4)



On the other hand, parameters with low Fisher values are
deemed less critical for local specialization and are instead
updated with the corresponding global parameters using the
Global Mask:

Mglobal[j] =

{
1, F (wj) ≤ TFisher

0, otherwise.
(5)

The client’s feature extractor for the current round, W t
L,k, is

then initialized by combining the preserved local parameters
with the updated global parameters from the server’s model
W t−1

L,global:

W t
L,k =Mpersonal ⊙W t−1

L,k +Mglobal ⊙W t−1
L,global, (6)

where ⊙ denotes element-wise multiplication. This selec-
tive update strategy allows clients to maintain crucial local
knowledge while benefiting from globally aggregated updates
for less critical parameters. By following this strategy, the
framework balances personalization and generalization.

After completion of the personalization step, the client
trains its classification layer using KD. At this point, the
personalized feature extractor layer W t

L,k remains frozen and
the client trains and updates only its classification layer
WC,k. Here, the server model with its classification layer
((W t−1

L,global+W
t−1
C,server)) acts as the teacher and, on the other

hand, the client model with its classification layer (WC,k)
serves as the student. Through this KD based teacher student
setup, the server helps guide the client by aligning the client’s
predictions with the softened outputs of the global model,
while the client also learns from its own local labels.

Formally, the student model θS generates logits zstudent =
θS(x) for local data x, while the teacher produces logits
zteacher for the same inputs using W t−1

L,global and W t−1
C,server.

Both logits are converted into softened probability distribu-
tions using the softmax function σ with a distillation temper-
ature TKD:

ỹstudent = σ(zstudent/TKD), (7)

ỹteacher = σ(zteacher/TKD). (8)

The temperature TKD smooths the distributions, enabling the
student to capture relative class probabilities from the teacher
rather than relying solely on hard labels.

The local training objective combines two components.
First, the standard cross entropy loss checks how well the
student model predicts the true labels y:

LCE = − 1

|yb|
∑
i∈b

logPθS (yi | xi), (9)

where yb is the batch of true labels and PθS (yi | xi) is the
probability that the student predicts for each sample. Second,
the Kullback-Leibler (KL) divergence measures how far the
student’s softened outputs are from the teacher’s softened
outputs:

LKD = DKL(ỹteacher ∥ ỹstudent). (10)

The overall local training loss combines these two terms with
weights that control their influence:

Llocal = (1− λ)LCE + λT 2
KDLKD, (11)

where λ controls how much weight the distillation term gets
and T 2

KD adjusts the KL part based on the temperature. By
minimizing Llocal, the client updates its classifier to fit its own
data while remaining consistent with the knowledge from the
server’s global model.

3) Client-to-Server Update Transmission: After completion
of its local training, each client k prepares the updated model
for transmission. The local model, W t

local,k, is split into
two distinct parts: first the updated feature extractor, W t

L,k,
and the other one is the updated classification layer, W t

C,k.
For aggregation on the server side, only the updated feature
extractor, W t

L,k, is going to be transmitted. This transmission
strategy significantly reduces the communication cost, because
the classifier stays on the local device, where it remains
personalized to the client’s own data. The feature extractor,
conversely, represents more generalizable features learned
across the client’s dataset, which makes it suitable for global
aggregation and integration into the server’s prototype models.
To protect user data and reduce network overhead, two tech-
niques are applied concurrently after the client-side updates are
computed and before transmission to the server: DP for privacy
preservation and Quantization for communication efficiency.

i. Privacy Preservation with Differential Privacy: DP [15]
is a widely used technique that protects sensitive data by
adding calibrated noise to model updates. In our framework,
this is achieved by privatizing the feature extractor update
∆W t

L,k through L2 norm clipping followed by the addition of
Gaussian noise. C2 is the clipping threshold that controls the
maximum contribution of a client to the global update. ∆c

DP

is the local update after clipping, ∆t
DP is the final local update

after clipping and adding noise, N is the Gaussian noise added
to ensure DP, and σ is the noise multiplier computed by the
privacy accountant, and composition mechanism with respect
to ϵ and δ [14].

∆c
DP =

∆W t
L,k

max(1,
||∆W t

L,k||2
C2

)
, (12)

∆t
DP = ∆c

DP +N (0, C2
2σ2). (13)

ii. Communication Efficiency via Quantization: To further
enhance communication efficiency, the privatized update is
quantized into a compact lower bit integer representation.
Let ∆W t

q denote the quantized update, and b the number of
bits used for quantization. The transformation is expressed as
follows:

∆W t
q = round

(
∆t

DP −∆wmin

∆wmax −∆wmin
× (2b − 1)

)
, (14)

where ∆wmin and ∆wmax represent the minimum and maxi-
mum values of the update, respectively. This quantization step
reduces the precision of transmitted updates, thereby lower-
ing the bandwidth requirements, while maintaining sufficient
fidelity for effective aggregation at the server.



4) Server-Side Aggregation: To construct a stronger global
representation from distributed training, the server aggregates
feature extractor updates collected from clients in each cluster.
Since the transmitted updates are quantized for efficiency, the
server first dequantizes them and then aggregates the results.

i. Dequantization: Since client updates are transmitted in
compressed form to save bandwidth, the server reconstructs
an approximate full precision update from each client k by
dequantization (∆W k

dq) [21]:

∆W k
dq = ∆wmin +

∆W k
q

2b − 1
× (∆wmax −∆wmin) (15)

ii. Aggregation: The server aggregates the dequantized fea-
ture extractor updates using Federated Averaging (FedAvg) to
produce the new global feature extractor for the next round,
W t

L,global [3].

D. Post-Hoc Server-Side Refinement with SCL and Shapley
Values informed MTKD

Following completion of federated training rounds, the
server initiates a crucial post-hoc refinement phase for ag-
gregated prototype models (P1, P2, . . . , Pn) within the PFed-
CDP architecture. This phase leverages a public dataset and

Algorithm 1 PFedCDP: Client-Side Local Training
1: Input: Cluster index c, previous global feature extractor
W t−1

L,global(c), server’s classifier W t−1
C,server(c), local data

Dk, Number Local Epochs E.
2: Output: Quantized update ∆W t

q for feature extractor
3: Download from the server:
4: Global feature extractor W t−1

L,global(c).
5: Server classifier W t−1

C,server(c).
6: Compute Fisher information F (wj) for each parameter wj

using eq. 3.
7: Build masks Mpersonal using eq. 4 and Mglobal[j] using

eq. 5.
8: Combine parameters: W t

L,k ← Mpersonal ⊙ W t−1
L,k +

Mglobal ⊙W t−1
L,global using eq. 6.

9: Freeze the updated feature extractor W t
L,k.

10: Initialize student model: feature extractor W t
L,k, classifier

WC,k. Teacher model: W t−1
L,global +W t−1

C,server.
11: for each epoch e = 1 to E do
12: Compute student logits zstudent and teacher logits

zteacher for batch (x, y) ⊂ Dk.
13: ỹstudent ← σ(zstudent/TKD), using eq. 7.
14: ỹteacher ← σ(zteacher/TKD) using eq. 8.
15: Compute LCE , LKD,Llocal using eq. 9, 10, 11.
16: Update local classifier WC,k by minimizing Llocal

17: end for
18: Compute raw update: ∆W t

L,k ←W t
L,k −W

t−1
L,global.

19: Clip and add noise (Differential Privacy):
20: ∆W c

DP ; ∆W
t
DP . using eq. 12 and eq. 13 respectively.

21: Quantize update: ∆W t
q using eq. 14.

22: Return: Transmit ∆W t
q to the server.

integrates both Ensemble MTKD [18] with Shapley values-
based weighting and SCL [20]. Our motivation for integrating
Shapley values-based weighting [19] and SCL stems from
their efficacy in leveraging a local public or proxy dataset.
This public dataset is separated from anything learned in the
private dataset of all the clients. It lets the server refine the
model to improve robustness and discrimination while without
compromising the private data.

The server starts its refinement step by treating the cluster
prototypes as a group of teacher models. Each prototype Pk

effectively gathers the knowledge from its respective client
cluster after the completion of all federated rounds. Then
each prototype serves as an individual teacher model θ(k)T .
The server then initializes a new student model, θS , which
will become the refined global model. A labeled proxy dataset
(xtrain, ytrain) is used to combine the knowledge of all teachers.

Prior to training of θS , PFedCDP computes Shapley value-
based feature importance for each teacher model θ(k)T using the
proxy data. A feature importance vector ψ(k) is derived using
shapley values, which quantifies each input feature’s contri-
bution to the teacher’s predictions on a representative subset
of class-balanced test samples. These individual ψ(k) vectors
are then aggregated (e.g., averaged) to form a combined im-
portance weight ψ, capturing the collective feature importance
across the teacher ensemble. This ψ will subsequently guide
the distillation process by weighting the loss function [19],

ψ =
1

K

K∑
k=1

ψ(k). (16)

The training of the student model θS proceeds using ensemble
MTKD over multiple epochs (E) and mini-batches (xb, yb)
from the public training data. For each batch, we have followed
the two steps which are: i) Each teacher θ(k)T generates logits
z
(k)
T = θ

(k)
T (xb). These are combined to form an ensemble

prediction of the teacher z̄T = 1
K

∑K
k=1 z

(k)
T . ii) Softened

probability distributions are derived from teacher and student
model logits using a distillation temperature using equation 7,
and 8. The KD loss (LKD) is then computed as the KL
divergence between these softened distributions using equa-
tion 10. Crucially, instead of traditional cross-entropy loss,
our framework integrates SCL as the primary classification
objective. SCL enhances representation learning by promoting
intraclass compactness (pulling samples from the same class
together) and interclass separability (pushing samples from
different classes apart) [20]. This is achieved by generalizing
the standard contrastive loss to handle an arbitrary number of
positive examples for a given anchor within a mini-batch. This
method encourages the encoder to generate closely aligned
representations for all instances of the same class, leading
to a more robust clustering of the representation space. The
supervised contrastive loss for a single anchor sample i is



given by:

LSCL
i =

−1
2Nỹi − 1

2N∑
j=1,i ̸=j,ỹi=ỹj

log
exp(zi · zj/τ)∑2N

k=1,i̸=k exp(zi · zk/τ)
.

(17)
Here, zi, zj , and zk are the representation embeddings of the
samples, the sum in the numerator is over all other ”positive”
samples j in the mini-batch that share the same label as the
anchor i, Nỹi

is the total number of images in the mini-
batch that have the same label, ỹi, as the anchor, and τ is
a temperature hyperparameter. This LSCL term, summed over
all samples in the batch, directly contributes to the overall loss.

The total loss LSupMTKD for the student model combines
the SCL loss and the KD loss:

LSupMTKD = (1− α)LSCL + αT 2 LKD. (18)

Here, α is a balancing hyperparameter, and T 2 scales the KL
term. Finally, LSupMTKD is weighted by the Shapley-based
importance ψi to yield the feature-weighted distillation loss
LSupMTKDShap:

LSupMTKDShap =
1

|F |

|F |∑
i=1

ψiLSupMTKD. (19)

The overall server-side refinement process, which combines
MTKD, Shapley weighting, and SCL, is shown in Algorithm 2.

IV. PERFORMANCE EVALUATION

This section discusses the experimental evaluation of our
proposed PFedCDP framework. We assess its performance in
handling data and system heterogeneity, preserving privacy,
and achieving high model accuracy, precision, recall, f1-score,
specificity, and AUC compared to baseline methods [28].

A. Experimental Setup

1) Datasets and Distribution: To simulate a realistic med-
ical imaging scenario, we utilize two public mammography
datasets: the Curated Breast Imaging Subset of DDSM (CBIS-
DDSM) [29] and the Mammographic Image Analysis Society
(MIAS) dataset [30].

The private data held by clients is represented by the CBIS-
DDSM dataset. This is a curated and standardized version of
the Digital Database for Screening Mammography (DDSM),
which consists of 2,620 scanned film mammography studies.
It is a comprehensive collection containing normal, benign,
and malignant cases with verified pathology information. We
use 2,326 training images and 772 testing images for our
experiments. To simulate statistical heterogeneity, we split the
training data among all clients using a dirichlet distribution
with (α = 0.5). This produces non IID data at each client
side. This setting reflects real world scenarios where hospitals
hold patient data with different biases.

The MIAS dataset serves as the public data on the server.
It contains mammography images with labels that mark each
case as Benign (B) or Malignant (M). We used 280 training
samples and 50 testing samples for the refinement stage.
During this step, SCL and Shapley weighted MTKD help

to strengthen the generalization of the global model without
requiring any private client data.

2) Simulation Environment and Models: Our simulation
uses the Flower framework [2] to handle communication
between the central server and the heterogeneous client envi-
ronment. We simulate the three client clusters defined in our
methodology (High, Medium, and Low capability). Each clus-
ter is assigned a different model architecture that matches its
computational capability. We utilized the Flower framework’s
gRPC-based architecture to reliably simulate client-server in-
teractions, with each cluster communicating on a dedicated
port (e.g., 8080, 8081, 8082). The framework employs three
CNN models on the client side that are tailored to the device
capability. Model A is for high-capability devices that uses
two convolutional blocks with 32 and 64 filters, followed by
a dense layer of 128 units prior to the classification layer.
Then, Model B is designed for medium-capability devices,
which have lighter convolutional layers with 16 and 32 filters,

Algorithm 2 PFedCDP: Server-Side Training and Post-Hoc
Refinement

1: Input: Client Clusters C, thresholds (TH , TM ), rounds T ,
Training Epoch E, proxy dataset (xtrain, ytrain)

2: Output: Refined global student model θS
3: for each round t = 1 to T do
4: Send (W t−1

L,global(c),W
t−1
C,server(c)) to clients in all c

5: Receive client’s local updates quantized ∆W k
q

6: for each client k do
7: Dequantize: ∆W k

dq ← DeQuant(∆W k
q ) using eq. 15.

8: end for
9: for each cluster c do

10: ∆W c
agg ← Avgk∈C(c)(∆W

k
dq) (FedAvg)

11: W t
L,global(c)←W t−1

L,global(c) + ∆W c
agg

12: end for
13: end for
14: Broadcast ∆W c

agg, W
t
L,global(c) to the client clusters.

15: Collect final cluster models {P1, . . . , PC}
16: Compute Shapley feature importance vectors
{ψ(1), . . . , ψ(C)} and average to get ψ using eq. 16.

17: Initialize student model θS
18: for each training epoch 1 to E do
19: for each batch (xb, yb) in proxy dataset (xtrain, ytrain) do
20: Compute teacher logits {z(k)T = Pk(xb)}Ck=1 and

average to get z̄T
21: Compute student logits zS ← θS(xb)
22: Compute distillation loss LKD using eq. 10 and

LSCL using embeddings of θS with eq. 17.
23: Calculate LSupMTKD using eq. 18.
24: Apply Shapley weighting: LSupMTKDShap ← ψ ·

LSupMTKD using eq. 19.
25: Update θS with gradientdescent
26: end for
27: end for
28: Return: Refined model θS



a 64-unit dense layer, and includes dropout regularization.
Finally, Model C is built for low-capability devices, which is
an ultralight version with only 8 and 16 filters, and a 32-unit
dense layer. For post-hoc refinement on the server, a student
model is trained with 16 and 32 filters, a 64-unit dense layer,
and a dropout of 0.5, ending with a softmax classification
layer. The simulation runs for 20 federated rounds, with each
client performing local training for 20 epochs per round,
tailored to its capability. For privacy and efficiency, we apply
Differential Privacy (ϵ = 5.0, C2 = 2.5) and Quantization (8
bits) to the model updates before transmission to the server.

B. Evaluation
We have evaluated PFedCDP against two baselines: a

centralized model trained on all private data (serving as an
upper bound) and a standard FedAvg implementation. We
use a wide set of metrics to evaluate the performance of the
dataset given the medical nature of the datasets. We report
Accuracy, Precision, Recall (Sensitivity), Specificity, F1 Score,
and AUC (Area Under the Curve), as the clinical impact of
false negatives and false positives is really important in these
scenarios.

1) Quantitative Analysis: Tables I and II show the final
test results. PFedCDP clearly improves over FedAvg on every
metric for both private (CBIS-DDSM) and public (MIAS)
datasets. In the more challenging CBIS-DDSM dataset, PFed-
CDP reaches an accuracy of 94.1% and a high sensitivity of
93.5%. These results get close to the centralized upper bound
and show strong performance on non IID data. On MIAS, the
model reaches near perfect numbers, including 99.5% accuracy
and a 99.9% AUC. This highlights how effective the post
hoc refinement stage is at producing a well generalized global
model.

2) Heterogeneity and Personalization Analysis: Figure 2
compares the performance of heterogeneous client clusters on
the CBIS-DDSM dataset when training with 10, 50 and 100
clients. Cluster A (high capability) consistently achieves the
highest accuracy across all settings. In contrast, Clusters B
and C also show steady improvement. It demonstrates that,
our framework enables clients of varying capacities to benefit
from federated training. In particular, with the fewer clients
(e.g., 10 clients) the framework achieves higher final accuracy
and faster convergence than 50 or 100 clients. This is because
each client holds more samples, which produces less noise
to local gradients and enables more effective personalization.
As the number of clients increases, data fragmentation and
client drift become more pronounced. This leads to slower
convergence and slightly lower peak accuracy. However, in
all settings, Fisher information based personalization allows

clients to retain critical local knowledge while still integrating
global updates. Thus, the architecture mitigates the adverse
effects of non-IID data and heterogeneous device capacities.

3) Post-Hoc Refinement Evaluation: Figure 3 shows the
effectiveness of the server side post-hoc refinement stage. It
compares the final PFedCDP student model with FedAvg and
a centralized model across six performance metrics on the
MIAS test dataset. In every plot in the corresponding sub-
figures, the PFedCDP model, which is refined with Shapley
weighted MTKD and SCL, converges faster and reaches higher
final scores than FedAvg. This ensures that the refinement
stage effectively gathers knowledge from the different teacher
models and builds a stronger and more discriminative global
model. As a result, it generalizes better on the public/proxy
dataset.

4) Comparison with State-of-the-Art (SOTA): To better
understand its performance, we also compare PFedCDP with
several recent state of the art (SOTA) approaches. Tables III
and IV show that PFedCDP demonstrates highly competitive,
and superior performance in both public and private datasets,
similar to our approach.

In summary, PFedCDP effectively handles heterogeneity
and privacy in FL through capability-aware clustering, Fisher-
guided personalization, and advanced post-hoc refinement
which delivers a robust, scalable, and high-performing PFL
framework.

V. CONCLUSION

This paper introduces PFedCDP, a novel framework that
addresses the key challenges of FL data heterogeneity, sys-
tem heterogeneity, privacy, and communication overhead. Our
approach provides a practical solution to train personalized
models on diverse devices with limited resources. PFedCDP
uniquely combines capability-aware client clustering, Fisher
information-guided personalization, and a server-side refine-
ment stage using Shapley-weighted distillation and contrastive
learning. For security and efficiency, the framework also
integrates differential privacy and quantization. Our compre-
hensive experimental evaluations on public mammography
datasets show that PFedCDP outperforms FedAvg, achieving
94.1% accuracy on the private CBIS-DDSM data and 99.5%
on the public MIAS data. These results validate that our inte-
grated approach effectively mitigates the challenges of non-IID
data and system variance. For future work, we plan to explore
more dynamic client clustering algorithms and investigate the
framework’s applicability to other data modalities, such as text
and time series data. In general, PFedCDP marks a step toward
practical, and efficient PFL systems, especially in healthcare.

TABLE I
PERFORMANCE COMPARISON ON THE CBIS-DDSM (PRIVATE) DATASET.

Method Accuracy(%) Precision(%) Recall/Sensitivity(%) F1-Score(%) Specificity(%) AUC(%)
Centralized 96.2 96.6 95.8 96.2 96.5 98.8
Standard FedAvg 85.7 86.5 84.0 85.2 87.0 91.0
PFedCDP (Ours) 94.1 94.8 93.5 94.1 94.5 97.5



TABLE II
PERFORMANCE COMPARISON ON THE MIAS (PUBLIC/PROXY) DATASET.

Method Accuracy(%) Precision(%) Recall/Sensitivity(%) F1-Score(%) Specificity(%) AUC(%)
Centralized 99.8 99.9 99.7 99.8 99.9 99.9
Standard FedAvg 91.3 91.8 90.5 91.1 92.0 95.5
PFedCDP (Ours) 99.5 99.6 99.4 99.5 99.6 99.9

(a) No. of Clients - 10 (accuracy) (b) No. of Clients - 50 (accuracy) (c) No. of Clients - 100 (accuracy)

Fig. 2. Global accuracy of heterogeneous client clusters (A: High capability, B: Medium capability, C: Low capability) on non-IID partitions of the CBIS-
DDSM dataset across 20 federated rounds. With fewer clients (10 clients), larger local datasets yield faster convergence and higher accuracy, while 50 and
100 clients introduce more fragmentation and drift, reducing peak accuracy. Nevertheless, all clusters show steady improvement, demonstrating that PFedCDP
allows clients of varying capabilities to benefit from both global aggregation and Fisher Information guided personalization.

(a) Accuracy vs. Rounds/Epochs (b) Precision Score vs. Rounds/Epochs (c) Recall Score vs. Rounds/Epochs

(d) F1-Score vs. Rounds/Epochs (e) Specificity Score vs. Rounds/Epochs (f) AUC Score vs. Rounds/Epochs

Fig. 3. performance comparison on the public MIAS dataset. The subfigures illustrate the better performance of the final student model (enhanced via post-hoc
refinement) over the standard FedAvg baseline across six key metrics: (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score, (e) Specificity, and (f) AUC.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Sci-
ence Foundation under Grants CNS-2107057, CNS-2318664,
CSR-2403249, CNS-2431596, CNS-2431594, NSF-2348417
and NSF-2431597.

REFERENCES

[1] P. D. Lam, V. P. Tinh, D.-D. Le, N. H. Nam, T. A. Khoa et al., “Joint
federated learning using deep segmentation and the gaussian mixture
model for breast cancer tumors,” IEEE Access, vol. 12, pp. 94 231–
94 249, 2024.

[2] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão et al.,
“Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

[3] X. Zhang, R. Chen, J. Wang, H. Zhang, and M. Pan, “Energy efficient
federated learning over cooperative relay-assisted wireless networks,”
in GLOBECOM 2022-2022 IEEE Global Communications Conference.
IEEE, 2022, pp. 179–184.

[4] Q. Sun, X. Li, J. Zhang, L. Xiong, W. Liu, J. Liu, Z. Qin, and
K. Ren, “Shapleyfl: Robust federated learning based on shapley value,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 2096–2108.

[5] S. R. Pokhrel and J. Choi, “Federated learning with blockchain for au-
tonomous vehicles: Analysis and design challenges,” IEEE Transactions
on Communications, vol. 68, no. 8, pp. 4734–4746, 2020.



TABLE III
PERFORMANCE COMPARISON ON THE CBIS-DDSM DATASET

Reference and Methodology Acc. (%)
PFedCDP (Ours)
PFL with Post-Hoc Refinement

94.1

Joint FL [1]
Joint FL with Gaussian Mixture Model

93.1

Optimized FL [11]
FL with Marine Predators Algorithm

92.32

Transfer Learning FL [31]
FedAvg with CNN

89.33

FL for Enhanced Deep Learning [7]
Deep Learning in FL

75.0

Data Management App for FL [32]
Basic FL Application

71.0

TABLE IV
PERFORMANCE COMPARISON ON THE MIAS DATASET

Reference and Methodology Acc. (%)
PFedCDP (Ours)
PFL with Post-Hoc Refinement

99.5

Screening CNN [33]
CNN on Screening Mammography

99.14

Ensemble Classifier [34]
Optimized Ensemble Method

97.76

Joint FL [1]
Joint FL with Gaussian Mixture Model

96.7

Image Segmentation [35]
Pre-processing and Segmentation

96.22

Comparative Analysis [36]
CNN

94.23

[6] D. C. Nguyen, Q.-V. Pham, P. N. Pathirana, M. Ding, A. Seneviratne,
Z. Lin, O. Dobre, and W.-J. Hwang, “Federated learning for smart
healthcare: A survey,” ACM Computing Surveys (Csur), vol. 55, no. 3,
pp. 1–37, 2022.

[7] D. G. Patadia, “Federated learning for enhanced deep learning integra-
tion,” Ph.D. dissertation, Institute of Technology, 2024.

[8] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation
for robust model fusion in federated learning,” Advances in neural
information processing systems, vol. 33, pp. 2351–2363, 2020.

[9] C. Wang, Y. Zhang, N. Gao, and Q. Luo, “Differential privacy personal-
ized federated learning based on dynamically sparsified client updates,”
arXiv preprint arXiv:2503.09192, 2025.

[10] C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with moreau envelopes,” Advances in neural information processing
systems, vol. 33, pp. 21 394–21 405, 2020.

[11] J. K. Mishra and A. A. Sharma, “Optimized federated learning algorithm
for breast cancer detection using the marine predators algorithm,” Jes,
vol. 20, pp. 911–20, 2024.

[12] J. Liu, J. Ren, R. Jin, Z. Zhang, Y. Zhou, P. Valduriez, and D. Dou,
“Fisher information-based efficient curriculum federated learning with
large language models,” arXiv preprint arXiv:2410.00131, 2024.

[13] D. Jhunjhunwala, S. Wang, and G. Joshi, “Fedfisher: Leveraging fisher
information for one-shot federated learning,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2024, pp. 1612–1620.

[14] X. Yang, W. Huang, and M. Ye, “Dynamic personalized federated learn-
ing with adaptive differential privacy,” Advances in Neural Information
Processing Systems, vol. 36, pp. 72 181–72 192, 2023.

[15] X. Zhang, J. Ding, M. Wu, S. T. Wong, H. Van Nguyen, and M. Pan,
“Adaptive privacy preserving deep learning algorithms for medical data,”
in Proceedings of the IEEE/CVF winter conference on applications of
computer vision, 2021, pp. 1169–1178.

[16] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[17] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in

Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[18] H. Zhang, D. Chen, and C. Wang, “Confidence-aware multi-teacher
knowledge distillation,” in ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 4498–4502.

[19] N. S. Shadin and X. Zhang, “Fedkdshap: Enhancing federated learning
via shapley values driven knowledge distillation on non-iid data,” in
Companion Proceedings of the ACM on Web Conference 2025, 2025,
pp. 1744–1751.

[20] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in neural information processing systems, vol. 33, pp.
18 661–18 673, 2020.

[21] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Federated
learning with quantization constraints,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 8851–8855.

[22] S. Wu, Y. Jia, B. Liu, H. Xiang, X. Xu, and W. Dou, “Pfedcs: A
personalized federated learning method for enhancing collaboration
among similar classifiers,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 39, no. 20, 2025, pp. 21 572–21 580.

[23] P. Wang, B. Liu, W. Guo, Y. Li, and S. Ge, “Towards personalized
federated learning via comprehensive knowledge distillation,” in 2024
IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2024, pp. 3807–3812.

[24] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” arXiv preprint arXiv:1910.03581, 2019.

[25] L. Qin, T. Zhu, W. Zhou, and P. S. Yu, “Knowledge distillation
in federated learning: A survey on long lasting challenges and new
solutions,” arXiv preprint arXiv:2406.10861, 2024.

[26] A. Mora, I. Tenison, P. Bellavista, and I. Rish, “Knowledge dis-
tillation for federated learning: a practical guide,” arXiv preprint
arXiv:2211.04742, 2022.

[27] S. Seo, J. Kim, G. Kim, and B. Han, “Relaxed contrastive learning
for federated learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 12 279–12 288.

[28] N. S. Shadin, S. Sanjana, S. Chakraborty, and N. Sharmin, “Performance
analysis of glaucoma detection using deep learning models,” in 2022
International conference on innovations in science, engineering and
technology (ICISET). IEEE, 2022, pp. 190–195.

[29] R. S. Lee, F. Gimenez, A. Hoogi, K. K. Miyake, M. Gorovoy, and D. L.
Rubin, “A curated mammography data set for use in computer-aided
detection and diagnosis research,” Scientific data, vol. 4, no. 1, pp. 1–9,
2017.

[30] J. Suckling, “The mammographic images analysis society digital mam-
mogram database,” in Exerpta Medica. International Congress Series,
1994, vol. 1069, 1994, pp. 375–378.

[31] Y. N. Tan, V. P. Tinh, P. D. Lam, N. H. Nam, and T. A. Khoa, “A
transfer learning approach to breast cancer classification in a federated
learning framework,” IEEE Access, vol. 11, pp. 27 462–27 476, 2023.

[32] D. Tkachenko and M. Mazur-Milecka, “A mammography data man-
agement application for federated learning,” in 2024 16th International
Conference on Human System Interaction (HSI). IEEE, 2024, pp. 1–6.
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