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Abstract

Finite-sum Coupled Compositional Optimization (FCCO), characterized by its
coupled compositional objective structure, emerges as an important optimization
paradigm for addressing a wide range of machine learning problems. In this paper,
we focus on a challenging class of non-convex non-smooth FCCO, where the outer
functions are non-smooth weakly convex or convex and the inner functions are
smooth or weakly convex. Existing state-of-the-art result face two key limitations:
(1) a high iteration complexity of O(1/€%) under the assumption that the stochastic
inner functions are Lipschitz continuous in expectation; (2) reliance on vanilla
SGD-type updates, which are not suitable for deep learning applications. Our main
contributions are two fold: (i) We propose stochastic momentum methods tailored
for non-smooth FCCO that come with provable convergence guarantees; (ii) We
establish a new state-of-the-art iteration complexity of O(1/¢”). Moreover, we
apply our algorithms to multiple inequality constrained non-convex optimization
problems involving smooth or weakly convex functional inequality constraints.
By optimizing a smoothed hinge penalty based formulation, we achieve a new
state-of-the-art complexity of O(1/€”) for finding an (nearly) e-level KKT solu-
tion. Experiments on three tasks demonstrate the effectiveness of the proposed
algorithms.

1 Introduction

In this paper, we consider the finite-sum coupled compositional optimization (FCCO) problem

. 1
min F(w)i= =37 fi(gi(w)), ()
where f; : R% — R is continuous, g; : R? — R% is continuous and satisfies g;(w) = Eg;(w, &;),
and the expectation is taken over the random variable &; fori = 1,...,n.

FCCO has been effectively applied to optimizing a wide range of risk functions known as X-
risks [1, 2, 3, 4], and group distributionally robust optimization (GDRO) [5, 6]. Recently, it was
also applied to solving non-convex inequality constrained optimization problems [7, 8]. Several
optimization algorithms have been developed for non-convex FCCO (1) under different conditions.

*Department of CSE, Texas A&M University, College Station, USA
"Tippie College of Business, The University of Iowa, Iowa City, USA.
Correspondence to: tianbao-yang@tamu.edu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://arxiv.org/abs/2506.02504v2

Table 1: Comparison between our algorithms and prior works for the non-smooth non-convex FCCO
problem. The complexity of SONX is for finding a nearly e-stationary solution (Definition 3.1), and
that of SONEX and ALEXR2 for smooth inner functions are for finding an approximate e-stationary
solution (Definition 4.1), which implies a nearly e-stationary solution under a verifiable condition of
the inner functions. The complexity of ALEXR?2 for weakly convex inner functions is for finding
a nearly e-stationary solution to the outer smoothed objective. In this table, “WC” means weakly
convex, “C” means convex, “ *” means monotonically non-decreasing, “SM” means smooth, “PMS”
means that the proximal mapping can be easily computed, “MLC0” means that the function is mean
Lipschitz continuous of zero-order (Assumption 4.6).

Algorithm fi Gi Complexity  Loop Update type
SONX [6] WC, *  WC,MLCO __ O(¢ %) _ Single SGD
SONEX (Ours) WC,PMS  SM, MLCO O(e7?) Single  Momentum or Adam
ALEXR2 (Ours)  C,PMS SM O(e7®) Double Momentum or Adam
ALEXR2 (Ours) C,PMS, 7 wC O(e®) Double Momentum or Adam

Table 2: Comparison between our algorithms and prior works for solving non-convex inequality
constrained optimization problem. gy is the objective and g; are constraint functions.

Algorithm g0 gi Constraint Sampling Complexity ~ Loop Update type
0SS [9] wC wC No O(e™) Double SGD
ICPPAC [10] WwC wC No O(e79) Double SGD
SSG[11] WC C No O(e™8) Single SGD
Lietal. [7] SM SM Yes O(e™7) Single  Momentum or Adam
Yang et al. [8] WC WC, MLCO Yes O(e™%) Single SGD
Liuetal. [12] wWC WC, MLCO No O(e79) Single SGD
SONEX (Ours) SM  SM, MLCO Yes O(e7) Single Momentum or Adam
ALEXR2 (Ours) WC wC Yes O(e?) Double Momentum or Adam

Most of them require the smoothness of f; and g;. Hu et al. [6] has initiated the study of non-smooth
non-convex FCCO where both the inner and outer functions could be non-smooth. However, their
results face two key limitations: (1) a high iteration complexity of O(1/€%) under the assumption
that the stochastic inner functions are Lipschitz continuous in expectation; (2) reliance on vanilla
SGD-type updates, which are not suitable for deep learning applications.

Novelty. This paper addresses these limitations by proposing stochastic momentum methods for
non-smooth FCCO, where f; is non-smooth and g; could be smooth or weakly convex, and improving
the convergence rate to O(1/€%). To the best of our knowledge, this is the first work to propose
stochastic momentum methods for solving non-smooth FCCO problems. Unlike [6] that directly
solves the original problem, the key to our methods is to smooth the outer non-smooth functions based
on the Moreau envelope smoothing or equivalently the Nesterov smoothing when they are convex,
which is referred to as outer smoothing. When the inner functions are non-smooth weakly convex, we
further smooth the transformed objective using another layer of Moreau envelope smoothing, which
is referred to as nested smoothing. Then we propose stochastic momentum algorithms to optimize
these smoothed objectives.

Contributions and Significance. We establish two main results regarding non-smooth FCCO. In
the first result, we consider non-smooth FCCO with non-smooth outer functions and smooth inner
functions. With outer smoothing, we propose a single-loop stochastic momentum method named
SONEX to solve the resulting smoothed objective. Our main contribution here lies at a theory that
guarantees a convergence rate of O(1/€%) under a meaningful convergence measure. Specially, we
show that when the outer smoothing parameter is small enough, the proposed algorithm is guaranteed
to find a novel notion of approximate e-stationary solution to the original problem, which implies
the standard nearly e-stationary solution to the original problem under a verifiable condition of inner
functions. In the second result, we consider non-smooth FCCO with non-smooth convex outer
functions and non-smooth weakly inner functions. With nested smoothing, we propose a novel
double-loop stochastic momentum method named ALEXR?2 for solving the resulting smoothed
objective and establish a convergence rate of O(1/¢®) for finding an e-stationary solution of the
smoothed objective. Table 1 compares our methods with those of the existing works for non-smooth
FCCO problems from different aspects.



Then we consider novel applications of these two algorithms to non-convex inequality constrained
optimization. By optimizing a smoothed hinge penalty function with the proposed stothastic mo-
mentum methods, we derive a new state-of-the-art rate of O(1/€°) for finding an e-KKT solution
when objective and constraint functions are smooth, and for finding a nearly e-KKT solution when
objective and the constraint functions are weakly convex. Table 2 summarizes the complexity of our
methods and existing works for solving non-convex inequality constrained optimization problems.

2 Related work

FCCO. FCCO is a special case of stochastic composite optimization (SCO) [13, 14] and conditional
stochastic optimization (CSO) [15] when the outer expectation is a finite sum. FCCO was first intro-
duced in [4] as a model for optimizing the average precision. Later, [2] proposed the SOX algorithm
and improved the convergence rate by adding gradient momentum and further being improved in [16]
by replacing exponential moving average (EMA) with MSVR and STORM estimators for inner
function and overall gradient, respectively. All these techniques have gain success in optimizing
Deep X-Risks [1] such as smooth surrogate losses of AUC and contrastive loss [17, 18]. For convex
FCCO problem, [2] reformulate FCCO as a saddle point problem and use restarting technique to
boost convergence rate. For non-smooth weakly-convex FCCO (NSWC FCCO), [6] leverages MSVR
technique and requires O (%) iterations to achieve a nearly e-stationary point.

Smoothing techniques: An effective approach for solving non-smooth optimization is to approximate
the original problem by a smoothed one using different smoothing techniques, including Nesterov’s
smoothing [19], randomized smoothing [20], and Moreau envelope [21, 22]. Our method is related
to the one based on Moreau envelope, which is a prevalent technique for weakly convex non-smooth
problems. This method approximates the objective function by its smooth Moreau envelope and then
computes an e-stationary point of the Moreau envelope, which is also a nearly e-stationary solution of
the original problem [22, 23]. The similar technique has been extended to min-max problems [24, 25]
and constrained problems [9, 10, 11, 26]. Our methods are different from these works because we
consider the Moreau envelope of each outer function and design stochastic momentum methods.
Similar outer smoothing techniques have been developed in [27] for compositional objectives.
However, different from our work (1) their algorithm cannot handle multiple outer functions of a
finite sum structure as (1); (2) their algorithm is not momentum method; (3) their convergence theory
requires mean Lipchitz continuity of the gradient of the inner functions for finding a primal-dual
e-stationary (KKT) solution of the min-max formulation of the original problem.

Non-convex constrained optimization: Most existing works for stochastic non-convex constrained
optimization focus on the smooth problems. For example, [28] proposes a double-loop inexact
augmented Lagrangian method for stochastic smooth nonconvex equality constrained optimization
under a regularity assumption on the gradients of the constraints. A quadratic penalty method
is developed by [29] under similar assumptions but uses only a single loop. Both [29] and [28]
consider only smooth problems while we also consider non-smooth problems. For non-smooth
but weakly convex problems, the existing methods can compute a nearly e-KKT point based on
the Moreau envelopes of the original problem with iteration complexity O(e~°) [9, 10, 11, 26, 8].
The penalty-based method by [12] reduces the number of evaluations of the subgradients to O(e~%)
but still needs to evaluate O(¢~°) function values. In contrast, our method only needs complexity
O(e7?) to compute a nearly e-KKT point. For smooth constrained optimization with non-convex
equality constraints, variance-reduced stochastic gradient methods have been developed based on
quadratic penalty [29, 30]. One can convert inequality constraints into equality constraints by adding
slack variables s2 or s (requiring s > 0) to each inequality constraint [30]. However, adding s?
will introduce spurious stationary points [31, 32], while adding s > 0 will make the domain or the
constraint functions unbounded which violate the assumptions in [29, 30]. More importantly, we
consider non-smooth constraint functions while [29, 30] only consider smooth cases.

3 Preliminaries

Let || - || be the Euclidean norm. For g(-) : R? — R%, let Vg(-) € R4 be its Ja-
cobian and let [|[Vg(-)|| = maxycra |uj=1/Vg(-)ull be the operator norm. Let g;(w,B) =
I%\ > ees9i(w,€),i = 1,2,--- ,n be an estimator of g; based on samples from a minibatch

B. A function f(-) is monotonically non-decreasing if for any x;,x, € R% satisfying that



X1k < Xok, k € [d1] where x;, denote the k-th element of x, it holds that f(x;) < f(x2). A

function f(-) is p-weakly convex for p > 0if f(-) + £ ||-|I? is convex. A function g(-) is L-smooth
for L > 0if g is differentiable and Vg(-) is L-Lipschitz continuous. A vector-valued mapping g(-) is
L-smooth for L > 0 if g is differentiable at each component and Vg(-) is L-Lipschitz continuous w.r.t
to the operator norm. Given a p-weakly convex function f(-), we denote its regular subdifferential as
df(-). For a p-weakly convex function f(-) and a constant A € (0, p~!), the proximal mapping and
the Moreau envelope of f(-) with parameter \ are defined as follows, respectively,

. 1 . 1
prox, ;(u) := arg min f(v) + o [u—v|? and f(u) := m‘}nf(v) + o u—v|?.
v
It is known that, for A € (0,p7 1), fo(+) is Ly := max{3, 775, }-smooth [33] and

u — prox, ;(u)

Viz(u) = ff € Of (prox, ;(u)). 2)
For a non-smooth weakly convex objective, we follow existing works [21] [6] and aim to find a nearly
e-stationary solution defined below.

Definition 3.1. A solution w is an e-stationary solution of (1) if dist(0, 0F (w)) < e. A solution w is a
nearly e-stationary solution of (1) if there exists w’ such that ||w —w’|| < e and dist(0, 0F(w’)) < e.

We make the following assumption on (1) throughout the paper.

Assumption 3.2. We assume that f; is C'z-Lipschitz continuous, g; is Cy-Lipschitz continuous
fori =1,...,n, prox,, (w) and its subgradient are easily computable, and one of the following
conditions hold:

Al. f;is pg-weakly convex, and g;(w) is L4-smooth for all 4.
A2. f;is convex, and g;(w) is L4-smooth for all 5.
A3. f; is convex and monotonically non-decreasing, and g;(w) is p,-weakly convex for all 4.

Remark: The Lipschitz continuity of f and g in Assumption 3.2 are fairly standard for FCCO
problems. Since we target at non-smooth f and g, Lipchitz continuity is a minimal assumption. In
the considered applications of GDRO and learning with fairness constraints in section 6, f is hinge
and hence Lipschitz continuous.

4 Smoothing of Non-smooth FCCO

We first describe the main idea of our methods and then present detailed algorithms and their
convergence. Under the Assumption 3.2, we can show F' is also weakly convex. To improve the
convergence rates and accommodate deep learning applications, we develop stochastic momentum
methods, which can be easily modified to incorporate with adaptive step sizes (cf. Appendix E).
The challenges of developing provable stochastic momentum methods for solving (1) lie at the
non-smoothness of f; and potentially g;.

Let us first consider smooth g; and defer the discussion for weakly convex g; to subsection 4.2. The
key idea is to use a smoothed version of f;, denoted by f; , and to approximate (1) by

. 1
min F(w) =3 fialgi(w). 3)
We can easily show that when g¢; is L,-smooth, then F)\(w) is Lp-smooth with Lp =
Cg max{%, 1_p+pf} + CyLg (cf. Lemma A.1). As aresult, the problem becomes a smooth FCCO

where both inner functions and outer functions are smooth, which makes it possible to employ
existing techniques to develop stochastic momentum methods to find an e-stationary point of (3),
which is a point w satisfying E[||V Fx(w)||] < e. However, what this implies for solving the original
problem and what constitutes a good choice of A remain unclear. Below, we present a theory to
address these questions. We introduce the following notion of stationarity of the original problem.

Definition 4.1. A solution w is an approximate e-stationary solution of (1) if there exist
t1,...,tym and y; € Of;(t;) fori = 1,...,n such that ||t; — g;(W)]| < € ¢ =1,...,n, and

|5 X Vai(w)yi|| < e

This definition implies that when € — 0, the solution converges to a stationary solution of F(-).
Given this definition, our first theorem is stated below whose proof is given in Section A.3.



Algorithm 1 SONEX for solving (3)
1: Input: T, \, wo = w_1,vo, 1,7, 7, 3, Vt.

2: Sample a batch of data B; » from the distribution of §; fori =1,...,n.
3: Setu; o = gi(wo,Bi2) fori =1,...,n.
4: fort =0,1,--- ;T —1do
5. Sample B C {1,...,n} and a batch of data B} , from the distribution of &; for i € Bj.
6: fori=1,...,ndo
7: Update
w _ (1= uie +7g:(we, Bf,z) + 7/(9z‘(Wt>Bf,2) - gi(Wpl’Bf,z)) ifi € Bﬁ
it4+1 Uis ifi ¢ B
8: end for

9:  Compute G; = @ Ziegi V fix(ue i) Vgi(w, Bf,z)
10:  Update viy1 = (1 — B)vy + BGy

11: Update w; 1 = w; — vy or Adam-type update

12: end for
13: Output: w., with 7 randomly sampled from {1,2,--- T}

Theorem 4.2. If w is an e-stationary solution to Fx(-) with X = €/Cy such that ||VFy(w)| < ¢,
then w is an approximate e-stationary solution to the original objective F(-).

A remaining question is whether an approximate e-stationary point is also a nearly e-stationary
solution of the original problem (1). We present a theorem below under the following assumption.

Assumption 4.3. There exist ¢ > 0 and 6 > 0 such that, if w is an e-stationary point of
F\ with A\ = ¢/Cy and € < ¢, it holds that Ay (Vg(w)Vg(w)") > 4, where Vg(w) =
[v.gl (W)Tv R VQTL(W)T}T’

Remark: In Assumption 4.3, once € is smaller than ¢, the lower bound § does not depend on €. The
empirical justification for this assumption is provided in subsection E.5.

Theorem 4.4. Suppose Assumptions 3.2 (Al) and 4.3 hold. If w is an approximate e-stationary
solution of (1) with ¢ < min q c, ﬁ } w is also a nearly e-stationary solution of (1).
9

Remark: The proof is given in Appendix A.4. It is notable that the Assumption 4.3 is easily
verifiable (cf. Appendix F.5 for empirical evidence). In addition, when we consider the applications
in non-convex constrained optimization, this condition is commonly used in existing analyses [7, 8].

4.1 Single-loop Methods for Smooth Inner Functions

Next, we present a single-loop algorithm for finding an e-stationary point of (3). The key ingredients
of the algorithm include two parts: (1) maintaining and updating n sequences wu; ; for tracking each
9i(w¢),i = 1,...,n, which are updated in a coordinate-wise manner; (2) a stochastic momentum
update. We present the detailed updates in Algorithm 1, which is referred to as SONEX. We note that
the algorithm is inspired by existing stochastic momentum methods for smooth FCCO. First, Step
7 for updating u; ¢+ is from the MSVR algorithm [16]. Different from MSVR, we directly utilize
the stochastic momentum update in Step 10, 11, which are similar to SOX [2]. In contrast, MSVR
also leverages a variance reduction technique (STROM) to compute an estimate of the stochastic
gradient, which requires a stronger assumption that Vg;(w; §) is Lipschitz continuous in expectation.
Our analysis shows that this is not helpful for improving the convergence, as the complexity will be
dominated by a term related to the smoothness of f; x, which is in the order of O(1/e).

We assume the following conditions of the stochastic estimators of g; and their gradients.

Assumption 4.5. There exist constants oy > 0 and o7 > 0 such that the following statements hold
for g;(w) and g;(w,&;): fori = 1,...,n and any w € R?

Elgi(w. &) — g:(W)|I* < 03, E||0gi(w, &) — 9g:(w)|* < of
Assumption 4.6. There exist a constant Cy such that E¢||g;(w, &) — gi(w', &)[]2 < Cgllw — w'||2.



It is notable that these assumptions have been made in [6] which is important for analyzing variance
reduction technique such as MSVR. We refer to Assumption 4.6 as mean Lipchitz continuity of
zero-order (MLCO). Let By and B denote outer and inner batch sizes.

Theorem 4.7. Under Assumption 3.2 (Al), 4.5 and 4.6, by setting A\ = ©O(e),f =
O(min{ By, Bo}e?),y = O(Bae*),n = @(&T‘/Bjeg), SONEX withy' = 1 —~ + % and
v < % converges to an approximate e-stationary solution of (1) within T = O( 31356*5) itera-
tions.

Combining the above theorem with Theorem 4.4, we obtain the following guarantee:

Corollary 4.8. Under Assumption 3.2(Al), 4.3, 4.5 and 4.6, with the same setting as in Theorem 4.7,
SONEX converges to a nearly e-stationary solution of (1) within T = O( 317\1/376_5) iterations.

We compare our proposed SONEX with SONX for solving (1). Under assumption 4.6, the rate of
SONX is O(1/¢%) which is worse than our result of O(1/¢°) in Corollary 4.8.

4.2 A Double-loop Algorithm for Smooth or Weakly-Convex Inner Functions

In this subsection, we further improve our results to achieve the same convergence rate of O(1/¢”) by
(1) removing the MCLO assumption instead assuming that f; are convex; (2) designing a stochastic
momentum method with a convergence guarantee for weakly convex g;. It is worth mentioning that
the convexity of f; holds for a broad range of real applications such as group DRO and the application
in non-convex constrained optimization as discussed in next section. Before introducing our new
algorithm, we need to first reformulate the problem.

Let us first consider the scenario that satisfies Assumption 3.2 (A3). For simplicity of notation, we
denote f; » by f;. When f; is convex, we cast the problem (3) into a minimax formulation:

min Fy(w) := 1 Zn max {y, gi(w) = fi (yi)}, “

wcRd n 1=1y,cRd1

where f; is the conjugate function of f;. In Appendix A.2, we show that this is also equivalent to the
classical Nesterov’s smoothing [19]. Under Assumption 3.2 (A3), fl is also C'y-Lipschitz continuous,

convex, non-decreasing because of (2). As a consequence dom(f;) C {y: € R{||lys]| < Cy}.

This implies that, for any y; € dom(f;), function y,” g;(w) is ||y:||1 p4-Weakly convex in w and also

Vd1Cypg-weakly convex because ||y; |1 < v/di|ly:| < +/diC}. This further implies that F(-) is
\ = V/d1Cypg-weakly convex.

Different from last subsection, there is another challenge we need to deal with in order to develop a

stochastic momentum method, which comes from that g; are non-smooth. To tackle this challenge,
we use another Moreau envelope smoothing of F)(-) and solve the following problem:

min { £y ) 1= n;m{m >+1||z—w2}} )

weRd

= min {mln max *Zyz g9i(z (YZ) + - ||Z —wl| } (6)

weR? | zeR4 ycR™41 1L

where v € (0, p;;) andy = [y{,...,y,.]". The benefit of doing this is that (i) the resulting
objective F) ,(w) is smooth (cf. Lemma C.2), which allows us to employ stochastic momentum
method; (ii) the inner min, max, becomes a strongly-convex and strongly-concave problem due to
that f; is smooth and its conjugate is strongly convex, and v € (0, p}i) (cf. Lemma C.3).

Recall that VF) ,(w) = L(w — prox, (w)). Given an approximate solution of prox, . (w),
denoted by 2, of the inner minimization problem in (5), we can use %(w — ) as an inexact gradient
F,(w) to update w with a momentum method in order to solve (5). To obtain an estimate z; at
the ¢-th iteration, we employ a recent algorithm ALEXR [5] for solving the inner minimax problem.
With an estimate z;, we will update w1 by a momentum update. We present the detailed steps
of our double-loop algorithm named ALEXR?2 in Algorithm 2, where Uy (vi,y5) is the Bregman

divergence induced by f;, namely, Up(yi,yi) = iy — fiiy)) — <6ﬁ* (¥)),yi — y;> For
the sake of convergence analyses we need Uy~ to be bounded, as stated in the assumption below.



Algorithm 2 ALEXR?2 for solving (6)

1: Input: T, wo € R%, vy = 0, K4, o, 8, ,1,6,7 > 0
2: fort=0,1,..., 7T —1do

3: Setz;o =21 = w; and initialize y; o = [yg}())T, . ,y%)'l']‘r € Rrdi,
4. fork=0,1,...,K; —1do )
5: Sample B* < {1,...,n} and two independent batches of data Bfg and Bfg from the

distribution of ¢, for ¢ € Bik
Compute 3, = gi (2.1, Bos) + 0(gi (20, BYS) — gi(ze—1,Br3)) for i € By,
7: for:=1,...,ndo

2

8: Yike1 = .
bR v\ ifi ¢ BUF
9: end for . @
s A
10: Compute Gt,k = Wlk‘ ZieBi”" [892 (Zt’]ﬁ Bi,Q )]Tyt,k+l
11: Update z; 41 = arg min, g {(GM, z) + 5 ||z — we||® + % |z — zt7k\|2}
12: end for

13: Let Gt = %(Wt _Zt,Kt)
14: Update Vitl = (1 — 6)Vt + ﬁGt
15: Update w; 11 = W; — avyy or use Adam-type update

16: end for
17: Output: w, with 7 randomly sampled from {1,2,...7}

Besides, we would like to point out that the sequences of y; can be updated similar to u; sequences
in SONEX similar to [5], i.e., y; ,, = V fi x(uj 1), where uj . = (1 = F)uf ;. + 79 (21 45 Bf;) +
40(9i (2105 BES) — gi(Zek—13 BLS)). where 4 = v/(1+ 7).

Assumption 4.9. We assume that f; is a function s.t. Uj.(y1,¥2) is bounded for any y;,y2 €
dom(f}) C R%.

Remark: We point out that this condition is not strong under our setting where f; is lipschitz
continuous and dom(f;) is consequently bounded and it is satisfied by many practical convex
lipschitz-continuous functions such as hinge function, smoothed hinge function(i.e. f; x or f; in this
paper), etc.

The following theorem states the convergence of ALEXR?2 with proof given in Section C.
Theorem 4.10. Suppose assumption 3.2 (A3), 4.5 and 4.9 hold and X = ¢/C in (4). For any € > 0,
there exists 0 € (0,1) with 1 — 0 = O(€?) such that, by setting ) = 1gf“”LJc and v = (1%)", B<i

o= ﬁ and K, = O (ﬁ + e%), ALEXR? returns w, as a nearly e-stationary solution of

(4) in expectation within T = O(e~2) and a total iteration complexity of O (ﬁ + 6%)
Remark: We can easily extend the above result to Assumption 3.2 (A2). When g; are smooth, we
do not need the monotonicity of f; as the minimax problem min, max, is still guaranteed to be
strongly-convex and strongly-concave when v € (0, p}i) where pp, = v/d1CyL, is the weak
convexity parameter of F.

Finally, we show that when g; are smooth, we can also obtain a nearly e-stationary solution to the
original problem (1). Different from the result in Theorem 4.7, the above theorem only guarantees a
nearly e-stationary solution to F\. To address this gap, we can recover a nearly e-stationary solution
to (1) from w, by running ALEXR starting with w, with K = O(e~°) iterations. This result is
stated as the following corollary with the proof given in Section C.

Corollary 4.11. Suppose assumption 3.2 (A2), 4.3, 4.5, 4.9 hold. For any ¢ < min {c, ﬁ},
gt
let W, =ALEXR(w,, K) with K = O ( 2 + e%) n= 1fszf and v = %for@ € (0,1)

B1Bsed



withl — 0 = O( 4). W, is a nearly e-stationary solution of (1) and it is found with a total iteration
complexity ofO(B Bt ).

5 Smoothed Hinge Penalty Method for Constrained Optimization
In this section, we consider a constrained optimization problem with m > 1 inequality constraints:

min go(w) s.t. g;(w) <0,i=1,---,m )
w

where g; : R? — R is continuous and satisfies g;(w) = Eg;(w, &;) and the expectation is taken over
the random variable ¢; for: = 0, 1, ..., m. Following [8], we consider an exact penalty method for
(7) by solving the following unconstrained problem:

min ®(w) := % Z gi(w ©))

weRd

where p is a sufficiently large number. Let f(-) := p[-]+- so the penalty term £ >~ [g;(W )] has
the same structure as F(w) in (1). Yang et al. [8] have employed SONX for solving the above
problem and established a complexity of O(1/¢%) for finding a nearly e-KKT solution. Below, we
apply the smoothing idea and ALEXR?2 or SONEX for improving the convergence rate. Our key idea
is to optimize an outer smoothed problem:

1 1 « A
min (w) := go(w) + ooy > algiw)) = go(w +— Z {yzgz w) — ny} )
i=1 i=1

weRd

where fx(z) := min.rcr f(2') + 55 (2 — 2/)%. Except for the term go, the objective function of (9)
has the same structure as (3) and (4) with f;" (y;) = 397 + Lo, (¥:)-

Assumption 5.1. There exists a constant 6 > 0 such that 0., (J(w)) > § for any matrix J(w) =
[hy(w), ..., hy(w)] € R™*™ with h;(w) € dg;(w) and any w satisfying max;—1___m g;(w) > 0.

Under this assumption, we have the following proposition whose proof is given in Section D.1.

Proposition 5.2. Suppose Assumption 5.1 hold. If p > M and \ = £, a nearly e-stationary

solution w to (9) is also a nearly O(€)-KKT solution to the orzgmalproblem (7) in the sense that there
exist¥e and vy > 0 fori = 1,..... m such that [ — || < e, dist(0, Dgn() + 1", Ogu(¥)11) <
O(e), maxi—1,...m gi(W) < O( )and lgs(W)vi| < O(e),Vi=1,2,--- ,m.

To find a nearly e-stationary solution to (9), we can adapt either SONEX if g; are smooth or ALEXR2 if
g; are weakly convex with a minor change by including the stochastic gradient of g in the calculation
of G;. The complexity of this approach is presented below with proofs given in Section D.2.

Theorem 5.3. Suppose assumption 4.5 and 5.1 hold, and the stochastic (sub)gradient of go has
bounded variance. Let p > m(Cy, + 1)/6 and X = €/ p.

o if {g:}, are weakly convex, then with O (#) iterations ALEXR? find a nearly e-KKT

solution w for (7) satisfying that there exist W and v; > 0fori =1,... ,msuchthatE |w — w|| <
€ and Edist(0, 6g0( V) 4+ Yot 0g:(W)v;)) < O(e) and it holds with probability* 1 — O(e) that
max;=1,.m ¢i(W) < O(e )and|gz( | < O(e),Vi=1,2,--- ,m

o if {g:}1, are smooth, then with @) (W) iterations SONEX can find an e-KKT solution w

for (7) similar as above except for w = w.

Notably, our method not only improve the rate but also enjoy an improved dependence on §, compared
to O(¢=%675) in prior work [8].

*If |g;(w)| < oo for any 4 and w, this high probability result can be replaced by IE[ _max g9i(W)] < O(e)
and E|gi(w)vi]] < O(e), Vi = 1,2, --

.....
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Figure 1: Training loss curves (left three) and testing accuracy (right one) of different methods for
Group DRO with CVaR ratio 7 = 0.15 on different datasets.
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Figure 2: Training curves of AUC values (fig 1,3) and constraint violation (fig 2,4) of different
methods. The format of legend is "Algorithm(penalty function, p)", and SH, H, smH mean square
hinge, hinge and smoothed hinge, respectively.
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Figure 3: Training curves of Target AACC values (fig 1,3) and constraint violation (fig 2,4) of
different methods. The format of label is "Algorithm(penalty function, p)", and SH, smH mean
square hinge and smoothed hinge, respectively.

6 Numerical Experiments

We conduct experiments to verify the effectiveness of the proposed algorithms. For non-smooth
non-convex FCCO, we consider GDRO with CVaR divergence [5]. For non-convex constrained
optimization, we follow [8] and consider two tasks, namely AUC maximization with ROC fairness
constraints and continual learning with non-forgetting constraints.

GDRO with CVaR divergence. We consider the following GDRO with CVaR divergence, which
minimizes top-k worst groups’ losses [5]:

. 11
minmin s + — ; By~ U8 (x,9)) — 5]+ (10)

where n is the number of groups, r = k/n, and D, denotes the data of the g-th group.

We use 3 datasets: Camelyonl7, Amazon [34], and CelebA [35]. The first two datasets are from
WILDS Benchmark for evaluating methods tackling the distributional shift [36], where Camelyon17
has 30 groups and Amazon has 1252 groups. CelebA is a large-scale facial attribute dataset containing
over 200,000 celebrity images annotated with 40 binary attributes. We select 4 binary attributes
‘Attractive’, ‘Mouth_Slightly_Open’, ‘Male’ and ‘Blonde_Hair’ and construct 16 groups, where
‘Blonde_Hair’ also serves as the label for classification. We compare SONEX with SONX and
OOA, where OOA is a stochastic primal-dual algorithm 3. We use pretrained Densenet121 [38],
Distilbert [39] and ResNet50 [40] for Camelyon17, Amazon and CelebA, respectively. We perform
Adam-type update for SONEX on Amazon dataset and momentum-type update on Camelyon17 and
CelebA datasets. We run each experiment for 3 random seeds and report their average performance.
The hyperparameter tuning is discussed in Appendix F.1.

Results. We report our result under setting of = 0.15 in Figure 1, where the first 3 figures are the
loss curves on the training dataset while the last one is the test accuracy. Our experiment results
shows that SONEX performs better than SONX and OOA on GDRO tasks.

SWe extend the original OOA [37] to GDRO with CVaR setting as in [5]




AUC maximization with ROC fairness constraints. The formulation is given in Appendix F.2,
where the objective is AUC loss and constraints specify the tolerance of the gap between false
positive rates (true positive rates) of two sensitive groups at different classification thresholds. For this
experiment, we follow almost the same setting as in [8]. Two datasets are used, namely Adult [41] and
COMPAS [42], which contain male/female, Caucasian/non-Caucasian groups, respectively. We set
thresholds at I" = {—3, —2, —1,--- , 3} and the tolerance x = 0.005, which gives us 14 constraints.
We learn a simple neural network with 2 hidden layers. We compare ALEXR?2 with the method
in [7] that optimizes a squared-hinge penalty function with the SOX algorithm [2], the method
in [8] that optimizes a hinge penalty function with the SONX algorithm [6], the double-loop method
ICPPAC [10]. We perform Adam-type update for ALEXR2. We run each method for totally 60
epoches with a batch size of 128, repeat five times with different seeds and then report average of the
AUC scores and constraint values. Hyperparameter tuning is presented in Appendix F.2.

Results. We compare the training curves of objective AUC values and the constraint violation
measured by the worst constraint function value at each epoch for different methods in Figure 2
on different datasets. These results demonstrate that ALEXR?2 optimizing smoothed hinge penalty
function can better maximize AUC value on both datasets than the baseline methods while still having
similar constraint satisfaction.

Continual Learning with non-forgetting constraints. We follow a similar experimental setup to [7]
for fine-tuning a CLIP model for autonomous driving on the BDD100K dataset [43], a large-scale,
multi-task driving image dataset. The formulation is given in Appendix F.3, where the objective is the
contrastive loss on a target task (e.g., classifying foggy and overcast condition), and the constraints
specify the logistic loss of the new model should not be larger than that of the old model for other
different classes (e.g., clear, snowy, rainy, partly cloudy). Since the objective function is another
FCCO, we modify SONEX such that the gradient estimator of the objective is computed similar as
the smoothed square penalty function. We compare with SOX that optimizes the squared hinge loss
use the Adam-type update for both methods. We do not compare with SONX that optimizes the hinge
penalty function with SGD-type update as it fails for learning the Transformer network used in this
experiment. Hyperparameter tuning is presented in Appendix F.3.

Results. We present training curves of accuracy improvement and constraint violation on different
target tasks in Figure 3. It shows that our method can achieve higher accuracy on target tasks than the
baseline method of using squared hinge function while retaining similar constraint satisfaction.

7 Conclusions and Discussion

In this paper, we have considered non-smooth non-convex finite-sum coupled compositional opti-
mization, where the out functions are non-smooth and inner functions are smooth or weakly convex.
We proposed stochastic momentum methods to improve the convergence rate and accelerate the
training for deep neural networks. We also considered the applications of the proposed stochastic
momentum methods to solving non-convex inequality constrained optimization problems and derived
state-of-the-art results for finding an e-KKT solution. Our experiments demonstrate the effectiveness
of our methods. One limitation of our results is that our single-loop method SONEX still has a worse
complexity than the double-loop method ALEXR?2 in terms of dependence on the inner batch size.
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A Proofs of Technical Lemmas

A.1 Proof of Lemma A.1

Lemma A.1. Under Assumption 3.2(Al), F(-) in (1) is pp-weakly convex with pr = /d1L,Cy +
pgC2. If gi is Ly smooth, then F(w) is Lp-smooth with Lp = C? max{}, Jffpf} + CsL,.

Proof. Consider any w and w’ in R, any i € {1,...,n} and any v; € 9f;(t;) att; = g;(w). By
Assumption 3.2(A1), v,/ gi(w) is ||v;]|1 L,-smooth in w and f; is p-weakly convex, we have

Filgi(W") = filgi(w) + v (g:(W') = gs(w)) — %f lgs (w') — g (w)|”

C? 5
> filgi(w)) + V] (g:(w') = ga(w)) = L2 | = w]

vil|1 L o psC; 2
> filgs(w) + v Vst (w' = w) — L s = 228

\/‘Tlchg+pr§ / 2
VOIS T |

where the second and the last inequalities hold because of lipschitzness of f; and g; from Assump-
tion 3.2, the third because v, g;(w) is ||v;||1 Ly-smooth in w.

> filgi(w)) +vi Vgi(w')(w' — w)

)

By the p¢-weak convexity of f; and lemma 13 in [33], we know that f; ) is Ly, := max{%7 1f){pf -
smooth. Since Vf; \(w) = (W — prox, ;,(w))/\ € 9fi(prox,,(w)), we have ||V fi x(w)| <
Cy by Assumption 3.2. Therefore, by Assumption 3.2 again, we can easily show that

V fialgi(w))Vgi(w) is (CZLy, 4+ CyLg)-Lipschitz continuous (see Lemma 4.2 in [44]), so is
VEA(w) = L5 Vfia(gi(w))Vgi(w). O
A.2 Proof of Proposition A.2

Proposition A.2. When f; is convex, the smoothed problem (3) is equivalent to the Nesterov’s
smoothing, i.e.,

. 1 < T A 2
=S "yl gi(w) = £ (v ; 11
mln}rlrémgni lylg( ) — fi (i) 2||y I3 (11)

* * . .. \C?
where Q = dom(f), f7 (yi) + 3 will3 = f7 (). In addition, f;x(9) < fi(g) < fin(g) + =L

Proof. We prove by deriving (11) from (3).

Fy(w) = % Z fix(gi(w))

1l 1 2
= ;Ielgl - ;fz(yz) + N ||YZ - gz(W)H

. 1 - T * 1 2
= puin s 0 3 yle— J1 () + g Iy~ i)

1 < T * 1 2
= s puin 0 3 yle— () + g Iy~ i)

where the dual domian Z = {z : z € 0f;(t),t € domf;} C {z: ||z|| < C}is bounded; the second
equality is from definition of f; 5, the third equality holds from convexity of f; and the fourth equality
holds from Sion’s minimax theorem [45] and the convexity of f;*.
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Note that the the inner-level minimization problem can be solved exactly as y; = g;(w) — Az, since
it’s a quadratic function, we plug y; into the RHS, then we have:
Fiw) = max LY aTgw) 1) = 3 P (12
W) = max — Z;, g;\W) — |, (Z;) — — ||Z;
A i Gi i \Zj D) %

zEZ" N 4
1=1

Besides, note that f(x,u) = fi(u) + 55 [u— x||? is jointly convex, fia(x) = miny f;(u) +
lu — x||? is also convex. Then we have

1 — 1 —
=~ fialgi(w) = = 2l gi(w) = fix(=i)
=1 =1

2 |

Compare this with 12 we have

A
finlzi) = fi(zi) + 5 Iz

Now we already have that
* A 2 *
fialg) = glg)zgzjg = [fi(zi) = 2 |z:[|” and fi(g) = ;né%{zjg = [i(2:)
then f; x(g) < fi(g) naturally holds. Besides,

A A A
filg) = iné%” g— fi(z) < gléuzcz;rg — fi(z) — B} ||Zz||2 + glgozi B} HZZ|\2 < fialg) + 5012‘

O

A.3 Proof of Theorem 4.2

Proof of Theorem 4.2. Suppose w is an e-stationary solution to F\(-) with A = €/C'. It holds that

IV F(w Zsz (9:(W))Vgi(w

<e.

Y Z (9i(w) — prox, ¢, (9:(w))) Vs (w)

By (2) and Cf—LlpSChltZ continuity of f;, we have ||gz(w) — prox, 4, (9:(w))[| < ACy < e. Let
t; = prox, s, (9i(w)) and y; = (gi(w) — prox,;, (9:(w)))/A € Ofi(prox,;, (9i(w))) = 0fi(t:). It
holds that [|[t; — gi(w)|| <€, i=1,...,n,and |2 37" | Vg;(w)yi|| <€, so w is an approximate
e-stationary solution to the original objective F'(-) by definition. O

A.4 Proof of Theorem 4.4

We need the following lemma.

Lemma A.3. Suppose Assumption 3.2 (Al) or (A2) holds. If Ay (Vgi (W)Vgi<W)T) > 0, it holds

that Amin (Vi (W)Vgi(W')T) > & for any w' satisfying |[w' — w|| < ﬁ.

Proof. Consider any w’ satisfying |w’' — w|| < 4C 7~ Note that
Amin (Vgi(w’)Vgi(w’)T) = min  u' Vg (w)Vgi(w') u
ueR |jul|=1
Let
Uy € argmin u' Vg (w)Vg(w') u
ueR, Jluf=1
It holds that

Amin (Vi (W)Vgi (W) ") = Amin (Vg (W)Vgi(w') ")
<ul, Vg (w)Vgi(w) "uw —ul, Vg (W) Vg (w') T uy
=uy, (Vgi(w)Vgi(w)" = Vg (w)Vgi(w') ") uw:
< ||ng )Vgi(w ) - Vgi(wl)v.gi(wl)TH
<20,L, | —w'|.
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This implies
/ NT / NT / J J
Amin (Vg,'(w )Vgi(w') ) > Amin (Vgi(w )Vgi(w') ) —2C,L, |lw—w'|| > — 3= 35
O
Proof of Theorem 4.4. Suppose w is an approximate e-stationary solution of (1) with ¢ <
min {c,ﬁ}. There exist ti,...,t,, and y; € 9f;(t;) for ¢ = 1,...,n such that
g™g
[t; — gi(w)|| <€, i=1,...,n,and !% Dy Vgi(w)yiH <e

Consider the following optimization problem

1 n
mgn{q(ﬂ =0t —gi(v>2}- (13)
=1

We want to show that the optimal objective value of (13) is zero and there exists an optimal solution

w’ such that ||w' — w|| < 405&.
By the condition on ¢, it holds that 4C < 4C . Hence, by Lemma A 3, if ||v — w|| < 2% 20 it
holds that
R 5
2
Va1 = Zw 5:0) || = 5 lai(v) — il = D)
i=1
Moreover, it always holds that
V()| < Z lgi(v) — till* = 2C5q(v).
Let L, be the smoothness parameter of ¢(v) on the compact set {v € R¢| ||v — w| < 4% ne} Let

vy fort = 0,1,... be generated by the gradient descent method using vo = w and a step size of
n= L%’ i.e., viy1 = vi — nVq(vy). Suppose ||vs — w| < == 4C " fors = 0,1,...,t (which is true
at least when ¢ = 0). By the standard convergence analysis of the gradient descent method for a
L,-smooth objective function, we have

L
q(viy1) <q(vi) +(Va(ve), Vir1 — vi) + 7q||Vt+1 —v?
1 1)
<q(v¢) — TL(I||VQ(Vt)||2 < q(vi) — TQ(Vt)

Applying this inequality recursively gives

eIVl < ot < (1= 57 ) atvo)

Recall that [|t; — g;(w)|| < e such that ¢(vo) = 5= >0, [|t; — g(w)|> < % By the triangular
inequality, we have

t t
Ve =Wl < D0l Va(va)l < nCy

(1 0 ); . < 477C'qun6 _ 4C'gne.
g — 2L4n 4] ]
By induction, we have ||v; — w|| < 409”6 fort=0,1,....

Let w’ be any limiting point of {v;};>¢. It holds that [|w’ — w| < =< 4C " and

t—o0

5 t
g(w') < lim (1 - ) q(vo) =0,
2L,
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meaning that w’ is the optimal solution to (13) with the objective value equal to zero, which implies
t; =gi(w')fori=1,...,n.

Since w is an approximate e-stationary point of (1) and y; € 0f;(t;), we have

—Zafz (g:(w')Vgi(w')
= *Zafz )Vgi(w')
< fzafl )Vgi(w Zafz D) (Vgi(w >—Vgi(w)>H
= %Zyivm( Zaf1 i) (Vgi(w )Vgi(W))H
<e+ Oyl fw—w < (1+ M%)

where the last inequality is by Assumptions 3.2. This means w’ is an O(e)-stationary solution of (1)
and thus w is a nearly O(e)-stationary solution of (1). O

B Convergence Analysis of SONEX

In this section, we present the proofs for Theorems 4.7. Let E; be the conditional expectation

conditioning on B{ and B, fori = 1,...,nand s = 0,1,...,¢ — 1. To facilitate the proofs, the
following quantities are defined based on the notations in Algorithm 1 fort =0,...,7 — 1,
Vit = ver1 — VEA(wo)| (14)
1
U1 325 ||U-t+1 - g(Wt)||2 (15)
Wo=[Ug e Ung] | (16)
g(we) =[g1(we), ..., gn(we)] " (17

B.1 Proof of Theorem 4.7

Lemma B.1 (Lemma 2 in [46]). Suppose n < 57— in Algorithm I with Ly defined in lemma A.1. It
holds that

Fr(Wi1) < Fa(wi) + gvm - g VBl = Iven . (18)
where Vi, is defined as in (14).

A recursion for V. is provided below.

Lemma B.2 (Lemma 9 in [2]). Let V;41 be defined as in (14). Suppose B < % in Algorithm 1. It
holds that

2L30°E Ivenll’| 1303 )

E[Viga] < (1= B)E [Via] + 3 + . E [||ut+2 — i1
282C3(C2 + 0?)

P B B

+ 5B8L3CTE [Upys)] (19)

where C? 1= 092 + ;—i, and Uiy 1, uy and g(wy) are defined as in (15), (16) and (17), respectively.

The following lemma provides the recursion for the estimation error Uy of the MSVR estimator of
g(w).
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Lemma B.3 (Lemma 1 in [16]). Suppose ~' = % +(1—=7)andy < % and the MSVR update
is used in Algorithm 1. It holds that

7B 8nC; 2B1y*0}

E [Upys] < (1 — =HE[U, A —wy? 20)
[Ueya2] < ( —)EUs4] + B, [Werr —wel|” + B (
The following lemma handles the term [|u;; — ug||*.
Lemma B.4 (Lemma 6 in [16]). Under the same assumptions as Lemma B.3, it holds that
4B~? In?Ch 2B1y%03
Elljursz — ') € —EU] + ——LEllwi — w2+ =22 @D
2

Now we are ready to proof Theorem 4.7

Proof of Theorem 4.7. Note that ||wy1 — w¢||> = n2||vig1]|%. Let P be a non-negative constant
to be determined later. Taking the weighted summation of both sides (18), (19), (20), and (21) as
specified in the following formula

1 1 SL?C%

- x(18)+ = x (19)+ P x (20) + ——— x (21),

1 B np
we have

1 1
5EF>\(Wt+1) + BEVHQ + (P = 5L3CY) EUpyr

1 1 1 B 12L%2C3+%B
< EF(wo) + ( - ) EViy1 + (P (1 - 7n1> Tl A Wty § 75 AW

B2 -

L 2Lge?  8nCoPy®  2TnL3CiCon ) o ’

“\17 3 "B T Bp el
2OHC+ob) | 2B19%0tP | SLICIPORB: 1y o (oo
min{ By, By} nBs BnBs 2 AWy

We choose 7 such that
1 2L%n? B 8nC§P772 B 27anchC§n2 -

- — 22
i B B - @
Moreover, we set P to be the solution of the following linear equation
'YBl 12L§c012’}/281 9 2
P(l— - )+ n? =P —5L%CY,
which means y oo
n 121 Cl’}/ Bl
P=— 51202+ L1
vB1 ( et pn?
Combining the results above gives
1 1
511«:1a(w,5+1) + B]EVHQ + (P —5L3C}) EUpyr
1 1
SEEFA(wt) + B]EV;H + (P —5L3C}) EUpyy
20€5(Cy +01) | 2Bin?otP | BLICTY 0B 1 o oo
min{B1, By} nB, BnB, 2 AT
Summing both sides of the inequality above over ¢t = 0,1,...,7 — 1 and organizing term lead to
1= 2 (1 1
2
7 > IVEA(wy)]| <z (n(FA(wo) — Fx(wr)) + BEVl + (P —5L3CY) EU1>
t=0
4BCF(CE 4+ 01)  4Byy202P  12L5CP°03 By o3

min{Bl, BQ} TLBQ BHBQ
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Note that Lp = O(), Ly = O(1) and P = O(55= + 73z)- We require that all the terms in

2 2
the right-hand side to be in the order of O(e?). To ensure % = O(e?), we must have

B = O(min{ By, Bs}¢?). To ensure ALBWT? =0(gl= + W) = O(€?), we must have v =
2,2
O(Bze*). With these orders of 3 and -, we also have P = O(5 ;) and mg;i;:(’& = O(e*).

Therefore the last three terms in (23) are O(€?).
To satisfy (22), we will need to set

—0(mind B B L [BiS
= Lo VaP TV o

s BB 5 [Bi min{Bl,Bg}€2}>
n 9

n

=0 (min {mm{Bl, Bsle’,
B1VBsy 4

p €).

We also set the sizes of B; 5 to be O(Z;) so that EU; = O( 3). Also, it is easy to see that F)\(wg) —
Fyx(wr) =0(1) and EV, = O(1). Then the first term in (23) becomes

0(+1+P>10( + ! +— )
n 5 N T Blmﬁg min{Bth}@ B13263
which will become O(e*) when T' = O( 5

=0

\/Ee5 )

C Convergence Analysis of ALEXR2

To establish the complexity of Algorithm 2, we first present the convergence result of ALEXR [5]
which is the inner loop of ALEXR?2, and it shows the complexity of Algorithm 2 to produce z; such

thatHzt prox,, p, (Wi ||2 O(€).
Theorem C.1 (A Variant of Theorem 1 in [5] when g; is non-smooth p,-weakly convex and
w = % — Vd1Cypg). Suppose Assumptions 3.2 (A3) and 4.5 hold. For any ¢ > 0, there ex-

ists 0 € (0,1) with1—6 = O(e€’) such that, by setting n = ﬁ and~y = (ﬁ —1)~1

the inner loop of Algorithm 2 (i.e., ALEXR) guarantees §IE Hzt prox, p,
o n nLy Cfo' Cf02 CfC A no?
K =0 (31 +Co\/ Vg, T t Bviaie T BV T vaee ) = OmBe)

(wy ||2 < € for anyt after

iterations.

In this section, we provide the convergence analysis for ALEXR2 in Algorithm 2.
Yand pp, = /d1Cypy.

Lemma C.3. The inner min-max problem in 6 is a (7 — pry )-strongly-convex and A-strongly-concave

Lemma C.2. F),(w)is Lp, ,-smooth with L, , = max{X, -2 VPF

problem when v € (0, pp; b.

Proof. As discussed in Section 4.2, the term y,” g;(w) is pp, -weakly convex with pg, = /d1Cyp,.
Therefore, when v € (0, p}j) the objective in (6) becomes strongly convex in z for any fixed
y € Rndi,

To establish strong concavity in y, we note that the term f* is the Fenchel conjugate of a %—smooth

function ﬁ It is a standard result in convex analysis (see, e.g., Theorem 18.15 in [47]) that the
conjugate of an L-smooth function is %-strongly concave. Thus, f;* is A-strongly convex.

The remaining terms in the objective are either independent of y or linear in y, and hence do not
affect strong concavity. Therefore, the objective is strongly convex in z and strongly concave in y
when v € (O,p}i). O
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C.1 Proof of Technical Lemma
Note that our proof for theorem C.1 is almost the same as that of theorem 1 in [5], we only show the
difference in this and the following subsections.

Lemma C.4 (Generalization of Lemma 7 in ALEXR [5] to weakly-convex g;). Suppose that
Assumptions 3.2(A2), 4.5 hold. Then, the following holds for Algorithm 2.

1 e
“EY (giwisr) = gi(w.), 5, ) —E (G, Wiss — W)
i=1

2 2 2 ~2
Gt cih
< B B + 9 fHW
~ 1 k+1
T 1 5

d1CrL
\/T2f gHWk:

— w5 + - w5 (24)

SRS

Proof. For this lemma we only highlight the difference t0 the proof of lemma 7 in ALEXR [5]. We
define Ay = g Yscpe [Vai(wis B) Twi']y — & S0 [Vai(wi)] T3 -

1 n e
- > <9i(wk+1) — 9i(Wy), y,(CJ)rl> —(Ghs W1 — Wy)
=1
1 n

=— <9i(Wk+1) - gi(Wg), 9;(@21> + %i <gi(wk) — gi(Wy), 37;(@21>

n- ;
1= i=1

1
+ <n Zl Vgi(wg)] Ty](c_i)rl + A, Wy Wk+1>

gi smoolh6 n
- Z <gz Wk+1 gi(Wk)a y](€+1> < Z ng Wk ykil’ Wi — >
i=1
n

L, a2, 1 RN 1750
+7HWk—W || *E; k+17 <n;Vgl Wk yk+1+Ak, Wi — Wiyl

I~/ (i
= HZ@’E}“ 9i(Wii1) — gi(wi > < Z Vgi(wi)] iy, Wi — Wk+1>
=1 =1
VdiCyL 2
Tg [wi —w™|

S

+ <Ak, W, — Wk+1> + (25)

Note that we have an extra term in blue in 25 comparing with lemma 7 in [5] due to the weakly
convexity of g;. And the remaining part is just the same so we omit it.

O

Lemma C.5 (Generalization of Lemma 8 in ALEXR to weakly-convex g;). Suppose that assump-
tions 3.2(A3), 4.5 hold. Then, the following holds for Algorithm 2.

1 n
ﬁ]EZ <gz‘(Wk+1) = g9i(W.), Z/;(cll> E (G, Wri1 — Wa)

i=1
Cjot | CiC 2,2 11
+ 9% pac2c2 Lyl JICp )
<2 T2 2w = wally + 5w =W (26)
n v

VdiC
%fpguwk_

Proof. Similar to lemma C.4, we have an extra term w* ||2 in the upper bound for

weakly convex g;.
O

Sthis inequality also holds with assumption 3.2(A3) so lemma C.5 can use the same technique to handle
weakly convexity of g;
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C.2 Proof of Inner Loop

Proof of theorem C.1. Similar to theorem 1 in [5] but use lemma C.5 instead of lemma 8 in ALEXR,
we have

E[L(Wkt1,Yx) — LW, 1))

< ME[U—* (Y 1)) — ﬂIE[U**( )]
< B 72 (Yses Yk B, Fr Y Y41
# (g + Y Y Blhw —wild — (1 o) Bl — weal
_ (71” - )\2—)1\_71)\39) E [Uf;‘ (ngrlayk)} - (2177 - QC/\SQ - Tl?i) Blwirs —willa + %E Iwi = wiall
4 BTy — T4 + 2];1A zrl 2f)f)g Cfgjf i cf+q 7+ 4Ofcz o
Y

Define T} == 1E||w, — wk||§ and TY = é]EUf-i* (yx, yx)- Note that L(Wg11,Ys)— L(W, Jry1) >
0. Multiply both sides of (27) by #~* and do telescoping sum from k = 0 to K; — 1. Add nf~ "+ T},
to both sides.

g EKerw Ki—1 1 B
L S (v (L (1-2)) 7 oen)

1 1 1
- ((n TR+ G+ DT - u«:rkﬂ))

c%l C _

+ : 1 1
n AB(1+ ;) L + T
Ki—1
- 1 (>\2 + /\39) _
- 0 - Bl
k.Z:o <7n An [Uf: (Grt1,yr)]
K:—1 1 1
\ 1 P s C? CQ o
_ ok _nv s T \g grci o »
kz:o (277 ! 2o 2 e = WkHz 2)3 Wik, = Wi, -1l
(28)
T,+fcqu 1
Letn>W 0> 3 and1/v > 4V/dCypgsuchthat 6 > 2275 and 1 +1 < oty
such that 6 > % Then,

K:—1
t B1

kZ:O o (((717 + i Cppg) TY + (i + (1 - n)) Ty em) - ((% LA ( Ly, - IEFk+1)>

1 1 B 11 1
(% + VdiCrpg)TY + (7 (1 — nl>) Ty — OET, — o~ ¢+t ((77 + ;) ¥, Tt (5 +1)T%, — EFKt> .

By setting w_; = wp, we have I'y = 0. Besides, we have I'g,

<
] C
IS lgiwie) = gitwie Dl [0 = 7| = S lwi, - waall g -yl <

c .
ot W, —wKt_1||2 + %Uﬁ* (y+,yk,). Note that the first term in the RHS here can-
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celled out with the last term of RHS in 28. Thus,
6~ K ™

1 1 B
Ke < n =+ diCppg) YT + <W (1 - ;)) Ty

n
1 1 1 A3S 1
R (S T (21 2y L yw
(’17+V) K,+(7+ 2)\n2) K~ g K
—_———

0
Cio} | CiC2 _
201 +20)02  —h + —pt HACIC) | A (L Pet ) i
~ ) ElUF k1, yn)]

e DL
1 T, 1
AB(1+3) i k=0
Q
K,—1 1,1 2 2
1 -+ C Cy
- o — -1 2 _ 9 _ E 2. 29
> ot (- - g - g ) mis - @
v
. . CyvBix . .
To make the © terms in (29) be non-negative, we choose Ao < A3 < —=2X—=_ while ensuring that
n\/ECfpg
An? A \/ ”\/acfpg)‘ VB1A 1
"SO\NE "nind) T Tevm ) =0 —— ",
3D1 2+ A3 Cyv By Cyr/nVd1Cpy Pe™1

(30)

By selecting ) = a/yi/;T(jcfpg’ % = n(?ie) —land L =4y/d,Cyp, we have that % +(1-2) =
B16

n(l1-0)"
1 B
14— 1))#(1—9)
TV < u(1+ny/diCrpg)05e Ty + (” gxerY
Hlg, = u( nvai fpg) 0 9/V _ \Fcfpg 0
2 C?(Tf Cf g 2 2 _K K
21 4+20)03 | Fp + Tt HACHCE) (0K —1)pKe  (1-6)u
AB(1+2) %+; 0-'—1  0/v—+/dCyp,
B Ciot 02 3 2
L0 2(1 +20)02 5 +4CfC’
< w1+ g/ diCyp 0K Ty + n gy 4 oy 0 2
,U,( n 1 fpg) 0 10/ 0 AB2(1+l) 7_’_”
2(1 + 20)02 Ciot  CiCy
14+ diCrpg )05 Ty +205e1Y 42 0 Acicy
(1 +nvdiCspg) 0o+ 0T ()\Bg(,lerl)—H? B, + Bl +4C;
We select
o 1 Bl 1 BlA\/dlepg )\BgBlel BQ\/ dlpge/ B1\/d1pg \/ pg
1-0=0(-N—A—+ AN A S A
2 n O n ogn Cyoi CyC? C'fC’2
to make (30) hold and
2,2 2 1-9 Cf"l qu acac?
2(1 + 20)02 Ciot | I, 4o 22 21 +20)(1 ~ )ogn | (1-9) + HAC%)
€.
ABa(: +1) Bs 31 ! By By \/ 1cfpg -

Besides, we show that T can be bounded by constant.(boundedness of Y} is already guaranteed by
assumption 4.9). Note that w; = prox, p, (W) we have:

1
0 €OF\(W™) + ;(W* —wp)

oW — W' € vOF\(wW")
1

w 1 1
Y =5 Iwo = w|I” < 5 (vCr)* = 5 (vC1Cy)* = O(C1C3p7)

=2
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Since Ly = % = O(%), the number of inner loop iterations needed by Algorithm 2 to make
pY%, < € is

~ L C CC? CcyC2
Ki=0 (4 Cyy |l o1 P e B
Bl Bl\/dlngf BQ\/ pg le/dlpgﬁ vV dpoG

where O(-) hides the polylog(CtCyp,/¢') factor and the green term is the dominant term so K; =
~ TL0'2
O( Bo Bloee') : O

C.3 Proof of Outer loop

Proof of Theorem 4.10. Let w_; = wo. By lemma C.2, F , (w;) is Lr, ,-smooth. Since 3 < %,
we have
[Vitr = VExu(wi)l®

2

— = . - TP+ 1= TP twen) = TP ) 45 (e - ) = Vo))

<+ 9087 (W4 5) lve= ThweF+ (14 5) IV win) - VEL WP
+(1+ %) 2 %(Wt —2¢) — VFy (W)

2

3L%,
S(lfg)uvt VFy. U(Wt 1)“ + — 6 ||Wt 1*Wt|| +3ﬁH Wt*zt) VFA V(Wt)
2

2

3o

e e 439 w20 - VAL ()

2

<= D) e = Vs (we ) +

(€29}

Since o < ﬁ, by Lemma 2 in [46], we can obtain a result similar to (18) in Lemma B.1, that is,
A, v

e e @
Fxw(Werr) < Fxo(we) + o [[ves — VEy(wi)* = ) IV Fx o (wo)||* — 1 Ve l*  (32)
Multiplying both sides of (31) by % and adding them to both sides of (32), we have

« 2
5 IVEv (wo)]

« «
<Py (w) = Fr(wen) + (5 = 5) (Ive = VB we )l = Ve = VF (o))
3L2 1 2
«
= 7 Ivenl” + = el - 3a | D (wi = 20) = VL (wi)
o «
SFau(w) = Fry(we) +(5 = 5) (||vt — VB (Wit [P = [Vers = VB (wo)|)

)

(6% 2 2 3o R 2
T (vel = Iveal?) + 5 (2 = prox, s, (w1)]

where the second inequality is because VF) ,(w;) = +(w; — prox, (w;)) and a < 2 s0

372
a” L
Fxv

«
12

By Theorem C.1, for ¢’ = 326 , there exists 6 € (0,1) with 1 — § = O(e?) such that, by setting =
1-6 (1 0)n

9u and y B, > inner loop of Algorithm 2(i.e. ALEXR) guarantees E ||zf Prox,, g, (wy H2
”1§ for any ¢ after K; = O (B?é/;EQ + jz) iterations.
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Recall that vg = 0 and w_; = wq. Summing the inequality above overt = 0, - - - T'— 1 and dividing
both sides by %, we have:

T—1
1
E[dist(0, DF (prox,, » =7 > E(VE(w)?
t=0
2 2 T-1
2E(Fx,,(wo) — Fx(wr)) (ﬂ 1) HVF’\ v(wo)] 6 2
= oT 1/2T ; E Hzt Prox, g, (Wt)H

[\v]

<2E(Fyu(wo) — Fiv(wr)) (% ) HVFA’”(WO)HZ + &

- ol T 3’
By setting T = O(e?), we’ll have E[dist(0, F) (prox,,, (w-)))?] < €, meaning that w is a
nearly e-stationary point of (4) in expectation. Recall that Ly = O($) so K; = O(¢~?). Hence, the

total complexity for finding such a solution is ZtT;()l K, =O(e). O

Proof of Corollary 4.11. When g; is Lg-smooth, Fy(-) is L p-smooth where Ly = O(%) = O(%) is
defined in lemma A.1. By Theorem 4.10,

1
E[[VEx(prox, g, (Wr))ll = ~Ellprox, s, (wr) — wr[| < O(e).

According to Theorem C.1, for ¢/ = O(€*), there exists § € (0, 1) with 1—8 = O(e*) such that, by set-
tingn = 15 GL yand vy = (a—6)n ) in inner loop of Algorithm 2(i.e. ALEXR), w, =ALEXR(w,, K)

satisfies %IE | w- — proxVFA w,) H < ¢* and thus

E||W- — prox, ;. (w.)|| < O(€%)

after K = O < Bng = + %) iterations. Then we have

E|VE\(W-)[| < E[[VEx(prox, g, (wW-))|| + LrE||prox, p, (w-) = W-|| < O(e),

which means w- is an e-stationary solution of (3). By Proposition 4.4, W is a nearly e-stationary
solution of (1). By Theorem 4.10, w is found within complexity O(e~®) and W, =ALEXR(w, K)

has complexity K = O( UL S %) The total complexity for computing W, is still

B Boet
0] (ﬁ + 5%,) O
D Convergence Analysis of SONEX and ALEXR2 applying to Constraint

Optimization Problems

In this section, we present the complexity analysis of Algorithm 2 when it is applied to (8) to solve
the constrained optimization problem 7.

D.1 Proof of Proposition 5.2 and its variant

Proof of Proposition 5.2. By the definition of fy(-), we have

V() = 5 min{[ ], Ao}

Suppose w is a nearly e-stationary point of (9), which means there exists W such that |[w — w|| < e
and dist(0, 0® 5 (W)) < e. This means there exist h; (W) € dg;(W) and

= LV (0i(W)) = 5 min{lg: (%)) Ao}
fort =0,1,...,m such that

[lho(W) +J(W)r| < (33)
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where J(W) = [hy(W),...,hy,(W)] € R>*™and v = (v1, -+ , 1) | € R™.

Suppose max;—1,...m gi(W) > €. Then there exists & such that [g(W)]+ > €. Recall that A = <.

We have

.....

SIS

v = s minf[ge (W] Mo} = 5e =

By Assumption 5.1, we have

o (w) + J(W)rll = [IF(W)v] = [ho(W) ]| = omin(J(W)) V]| = [ho(w)I] = - i —Cy>1,

which contradicts with (33). Therefore, we must have

“max ¢g;(w) <e. (34)
i=1,....,m
Finally, when max;—1 ., g;(W) < ¢ wehaveforVi=1,2,--- ,m
O mind[gi (W], Ao} p e
i m<2m wwgﬁm%.{[%m < PN Wl <00, G9)
i=1 i=1
With (33), (34) and (35), w is an e-KKT point of (7) so w is a nearly e-KKT point of (7). O]

Proposition 5.2 is given when w is a deterministic nearly e-stationary solution to (9). However, the
solution w found by our algorithms is only a nearly e-stationary solution to (9) in expectation. This
means there exists w such that E |w — w|| < e and Edist(0, 0®(W)) < e. In this case, we cannot
prove the four inequalities in the conclusion of Proposition 5.2 hold deterministically. Instead, we can
only show that the first two inequality hold in expectation while the last two hold in high probabilities.
We present this variant of Proposition 5.2 below with its proof.

Proposition D.1. Suppose Assumptions 3.2(A3) and 5.1 hold. If p > m(c D and \ = , a nearly

e-stationary solution w to (9) in expectation is also a nearly O(e)- KKT solution to the orlgmal
problem (7) in the sense that there exist W and v; > 0 fori = 1,...,m such that E ||w — w| < ¢
and ]Edlst(O dgo(W) + >0, Bgl( wi)) < O(e) and it holds with probability 1 — O(e) that
_max gi(w) < O(e) and [g:(w)wi| < 0(0)¥i = 1,2+ .m

Proof. By the definition of f)(-), we have

VA0 = 5 =min{[]5, A}

Suppose w is a nearly e-stationary point of (9) in expecation, which means there exists w such that
E ||w — w|| < e and Edist(0, 0®»(W)) < e. This means there exist h;(W) € dg;(W) and

= Y (0s(#)) = 5 min{[gi (%), Ap}

am
fori=20,1,...,m such that
E[[ho(w) + J(W)v| <€
where J(W) = [h1(W), ..., h,,(W)] e R*™ and v = (14, ,vp) " € R™.

Suppose max;—1,....m gi(W) > €. Then there exists k such that [gi(W)]4+ > €. Recall that A = ﬁ.
We have

1 . N 1 p
vp = min{[gp(W)]4, A0} = e = .
By Assumption 5.1, we have
o (W) + J(W)v[| = [J(W)v]| = [Vgo(W)[| Z omin(I(W)) ]| — [[ho(W)]| > ——Cy>1
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Therefore,
e > |lho (W) + I(W)v|
= | Iha(%) + 38w | g gi() > )| Prob( gx_gi() >

I

+E [HhO(W) +J(W)y| | Z_:I{laxmgi(vi/) < e)] Prob(2 max ¢;(W) <€)

=1,....m

.....

. op
ZProb(i:I£§§7rl gi(W) > €) (m - Og)

As a result,
. op -
PI'Ob(_j{laX gi(W) >¢) <e oo Cy = Ofe). (36)
Finally, when max;—1,_._m gi(W) <€, wehaveforVi =1,2,--- ,m
N min{[g (W)l A0} p e
99 < Z 0l = 3l L ;m”+ b < 23wl < 000)
i=1 i=1

It then follows from (36) that for Vi = 1,2, - - -
Prob (|g;(w )Vzl > 0(e)) < O(e).

D.2 Sketch Proof of Theorem 5.3

Since the proof is almost the same as that of Theorem 4.10, we only highlight the difference in the
proof.

We first consider the case where {g; }/, are weakly convex. We will slightly modify Algorithm 2 to
solve the following problem

min {(I))\’l,(w) = m]iRn {(I>,\(z) + L ||z - W||2}} 37
zERC

weRd

m
— o . a _|_7 _ 38
f{mmu{ NGRS Tt }} o

where @, , (w) is defined in (9). According to Proposmon D.2 in [6], the second (compositional)
term in @ (w) is (ppy)-weakly convex. Hence, ®(w) is pg, -weakly convex with pe, = pg + ppy-
Ifv < pgi, Py, (w)is (L — pg, )-strongly convex. As done in Section (4.2), in the ¢th iteration of
Algorithm 2, we apply ALEXR to solve the inner min-max problem in (38) with w = w, namely,

1 A 1
~ Li(z,y) = e (W) — 242 4z — w2V
m“?]{ o) =t 5 (vinw) = ) 4 g thlz}
we only need to replace G j, in Algorithm 2 to

> 10gi(zen B v, (G9)

N
SIS

G = G(t),k + G}k = agO(Zt,kagé) + ﬁ
1

where B(t)’; is a batch of data sampled from the distribution of &g.

We then consider the case where {g; }7, are smooth. In this case, we can directly apply Algorithm 1
to (9), which is different from (3) only in the extra term go. To handle this difference, we only need
to replace G in Algorithm 1 to

Gy = GY + G} = Vgo(wi, BY ) + Bt > Vfinluei)Vai(we, Bl ,) (40)

ieBt

where B o is a batch of data sampled from the distribution of §y. With these changes, we can prove
Theorem 5.3 as follows.
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Sketch Proof of Theorem 5.3. When {g;}" , are weakly convex:

For simplicity of notation, we drop the dependence on ¢ in the notation of all variables and parameters
in the proof below. First, we need to modify Lemma 5 in [5]. We have

Li(zk+1,y) — Lt(2, ¥k+1) (41)
-1 -1 -1
Y +1 _ Y _
§7Uf.* (¥, ¥x) — Uﬂ* (Y Yrt1) — ?Uf; (Yr+1,Y8)
“ ~(1 [ 1 2
mngMH ﬁ%msﬂ&+%w—m5 42)
1 2
T Iz — 251115 — o ||Zk+1 — zill>
1 & ;
+ m Z <92 Zk+1 ( ) yl(cj_1> - <G11c7 Zg+1 — z> (43)

i=1
+90(2k+1) — go(z) — <Gk, Zk+1 — z>,

where the blue terms above are included due to the modifications to Algorithm 2. Next, we modify
Lemma 8 in [5] to handle the additional terms above. Denote that Ag = gy(z) — Gg. Note that

— (G}, zr1 — 2) = — (g0(2k), Zhi1 — 2) + (A}, Zp1 — 7)),

where g{,(z1) € Og(zy) is a subgradient at z5. The term <A2, Zpt1 — z> can be handled in the same
way as in (24) in [5]. Due to the weak convexity of gy, we have

P
90(z) — go(zx) > (90(21), 2 — 24) — ;’HZ — zf3-
Then, the remaining blue terms in (41) can be upper bounded as

90(zx+1) — 90(2) — (90(2x), Zb 41 — 2)
=g0(zr+1) — 90(2zx) + g0(2zx) — 90(2) — (90(21), Zt1 — 2)

<Cyllzir1 — 2zill2 + (90(2x), 2 — 2) — (90(2k), 21 — 2) + %gHZ — 7|3

1 1 2
acz (54 1) Izees — 2l )
L+ (g (z) 2k — 2er) + 222~ 2l

_%+% 16
1 1 2
scz (5+3)lzeri—=l}
<9 2901z — 7|12
_%_’_% + 8 + 9 HZ Zk||2

Let (2., y.) be the saddle point of L;(z,y). Then, we can get
E[Lt(Zk+1,¥+) — Lt(Zs, Yi41)]

-1 B -1
v+ ( - *1) 41
<—— PP R[Uz (¥, — E[U 7 (y«,
= B, [ f; (y )’k)] B, [ 7 (y Yk+1)]
1 \/dlepg Pg 2 1 1 2
— 4 ———=+ = | E||z. — — E ||z,
+ (277 + 2 + 2 ||Z Zk||2 2,,7 + = 4v HZ Zk+1||2
D VAR _ 1 C?* 31 1 )
(= - 2 E [Un Gre1vw)] — [ 5 — 555 — 2+ 2) | Ellzwss —
(m’y am ) fi (Vie+1,vk) (277 22 8(77 - 1/) 241 = 2ull3
C%qs2  (C%c?
902 2(1+20)0.2 f71 + f g +80202+802
— 9K ||z, — zg_1 |2 + E[Tys1 — 6T 0 L2
+ e 21 — ze—1l[3 + E[Tk41 k] + Bor( 1) + 7+

(44)

Following the similar proof as in Theorem C.1, the modified inner loop of ALEXR?2 described in
Section 5 can guarantee 45E ||z, — prox,, g, (w¢) ||; < ¢ for any ¢t after K; = O(ﬁ) Because
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e o . ~, C?
A= % and p > % as specified in Proposition D.1, we have K; = O(ﬁ;ea

directly leverage the result from Appendix C, i.e.

). For outer loop, we

Cyp, C?
T = O(max{p, + ppg, pCy e ?) = O(max{p, + —42, —L}e7?)

. 2 2 . . .
By setting ¢ = —— = —<——, the total iteration will be

pgtrrg — p 4 Cala
2
o)
B2B1 5465

The proof follows almost the same procedure as the proof of Theorem 4.7. In particular, since v; and
G will contain the additional stochastic gradient from gy, we need to replace (14) by

Vi1 =|lvirs — Vo (wy)|? (45)
while U4 1, u; and g(wy) are still defined as in (15), (16) and (17). Like Lemma B.1, it holds that

When {g;} , are smooth:

a(Wre) < Da(we) + 5 Vir = o [VEA(w)[* = ] v (46)

if n < ﬁ By a proof similar to Lemma 3 in [2], we can still show (19) for V;; in the new

definition in (45). Moreover, (20) and (21) still hold as they are not related to go. Finally, we can still
take the weighted summation of both sides (46), (19), (20), and (21) as in the proof of Theorem 4.7
to show that

T—1
1 5 1 m 1 m
~57 Ve <=0 .
T ; IVertwe)ll™ <7 (31«/3263 t (B, Baje | 313263)

This means Algorithm 1 finds a nearly e-stationary point of ®, (w) in expectationin 7' = O(ﬁ)
iterations. Then the conclusion follows from Proposition D.1 and the fact that Cy = O(%).
O

E SONEX with Adaptive Learning Rates

In this section we will show that our algorithms can also be easily extended to adaptive learning
rate while still retaining the same complexity under an additional assumption introduced later. We
consider an adaptive step size update such as adam:

Wiyl = Wy — 110 Vg1, 1) = Stp1 = (1= )8 + /Gy oGy

Ui
Vst te
where G is the overall gradient estimator mentioned in algorithm 1 and o denotes Hadamard(element-
wise) product. The following assumption has been justified for the adaptive step size by [48].

Assumption E.1. We assume that the adaptive learning rates 7 are (element-wise)bounded, i.e.
ner <M < ey

for any element 7); of 7).

Below we provide lemmas which are straightforward extensions of lemma B.1~ B.4 to adaptive
. . . .. 2 ~ 2 2 92 2
learning setting. The proof is similar except that ||w; 1 — w¢||” < [0 vega||” < |[n?c2viga]|” =
2.2 2
n°cg Vel
Lemma E.2. (Lemma 3 in [48]) Under assumption E. I, for wyy1 = Wy — o vyyy, withne, <1 <
ney and NLp < 2%’2 we have:
NCy nc

C
F(wis1) < F(we) + T8 Vips = THIVE(w) [P = 2L [vea 7)

where Vi1 = ||[vigr — VF(wy)|”
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Lemma E.3. If 8 < 2, the gradient variance Vi1 = ||vi41 — VF(wy) H2 can be bounded as

2L2PCE v ?] 31207
1 2
5 + :L E| D llusoi = useril

ZiEB§+1

E[Vite] < (1= B)E [Vig1] +

(48)
25202((2 + 02)

L2
mln{Bl, BQ} + 5/8 Cl [Ut+2] )

u = [ues,. .. ,utm,]T, g(wy) = [g1(We), ..., gn(wy)]T.

where Ut+1 = % Hut_H — g(Wt) 2,

Lemma E.4. Suppose v = % + (1 —~) and v < L and the MSVR update is used in
Algorithm 1. It holds that

vB1 8710377203 2 231’)/20% 49
E[Uts2] < (1 = —=)E[Up1] + B, Ef[vesl” + Wby (49)

Lemma E.5. Under the same assumptions as Lemma B.3, it holds that

4B1~? In>Con’ 2B1720}
Bllurss — wen ) < L g + X gy, 2 2800 o)
1 2
We then give the following theorem with similar proof technique.
Theorem E.6. Under Assumption 3.2 (AI) 4.5 and 4.6, by setting N = O(e),f =
¢; min R €2 e Bi1vB n—

o(ammBLBle) o — g(ala) ;= (U YPE ) SONEX with o' = 1~y + o2

converges to an approximate e-stationary solution of (1) within T = O(%e_s’) iterations.
l
Combining the above theorem with Theorem 4.4, we obtain the following guarantee:
Corollary E.7. Under Assumption 3.2(Al), 4.3, 4.5 and 4.6, with the same setting as in Theorem E.0,
2 5
SONEX converges to a nearly e-stationary solution of (1) within T = O( o B F —5) iterations.

Proof of theorem E.6 and corollary E.7. Since the proof is almost the same as the theorem 4.7 and
corollary 4.8, we only highlight the difference.

Let P > 0 be a positive constant to be decided later. Taking the weighted summation of both sides
(47), (48), (49), and (50) as specified in the following formula

1 3L5C%
n— x (47) + B X (48)+ P x (49) + ——— ﬂ X (50),
we have
1 1
777IEFA (Wep1) + B1[<:Vt+2 + (P = 5L7CY) EUpys
1 11 B 12L5C3° By
SiEF)\(Wt) + <ﬁ — > EVt—i—l + <P <1 _ ’yn1> + f/87i2 EUt+1
a 2Lt 8anQP77202 2TnL3CiCney, 5 )
dey 32 By - B Iveaal
WCHCH o) | aiip OOy o
min{ By, Ba} nBy BnBy 2¢y, AT

We choose 7 such that
a  2L%in%c2 8an2Pnch B 27nL?C’12C’§772c2

ey B Br B.j G1)
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We follow proof of 4.7 to set
n 12L2 012’}/231
P=— 51202+ L1 7).,
vB1 < et pn?

which satisfies the following linear equation
(o). i
n

B =P 5L3CY,

Combining the results above gives

7EF)\(Wt+1)+ ﬂEVHg—&- (P —5L3CF) EUpyn

770u
m EF,\(wt) + ﬂEVHl + (P = 5L7C}) EUpq
20€3(Cy +0i) | 2B1?otP | GLICIY 0By ey oy
- W .
min{ By, B2} nBy BnBs 2¢., ANTE
Summing both sides of the inequality above over t = 0,1,...,T — 1 and organizing term lead to
15 2, (1 1
T D IVEA(w)| <7:';1 (nc (Fx(wo) — Fx(wr)) + BEV;L + (P —5L3C}) EUl)
t=0 “
1 min{ By, By} nBy BnBs

Note that Lp = O(L), Ly = O() and P = O(5%= + 73z=)- We require that all the terms

. . . . 4c,BC3(C2+03
in the right-hand side to be in the order of O(€?). To ensure % = O(€?), we must
. 2 2 2P i e
c;min{B1,B>}e€ 4c, Bivy o Cu _ 2
have 8 = O(%) To ensure == = ©0(5l5 + m) = O(e?), we

must have v = O(%) With these orders of $ and , we also have P = O(;5"5;) and
2~2_ 2 2
W = O(e*). Therefore the last three terms in (52) are O(e?).

To satisfy (51), we will need to set

ol [ pind B [BL 1 [Bif
= c3 L’V nP Ly V n

Biv/Bs Bymin{B;, B
=0 C—é min ¢ — mm{Bl, Byle®, =2 ) \/Cl pmin{ By, By} e
\ ¢ Cu n

CuMn

= O (Cll.sBl B2 €3> .

250,

We also set the sizes of B; > to be O(Z;) so that EU; = O( 3). Also, it is easy to see that F)\(wg) —
Fyx(wrp) =0(1) and EV; = O(1). Then the first term in (52) becomes

10 1 +1—|—P3 10 ci5n n Cu n CuN
- Sz S| = =
T ne B T 2-5le/B263 ¢ymin{By, Bo}e? = ¢; By Bae?

which will become O(€2) when T = O(T;’;—zes)-

Then the remaining part is just the same as the proof of corollary 4.8. O

F More Experiment Details

F.1 GDRO with CVaR divergence

Motivation of GDRO Modern machine learning models are typically trained under the empirical
risk minimization (ERM) framework, which treats all samples in the dataset equally. Although ERM
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often achieves strong average performance on test sets drawn from distributions similar to the training
data, it can perform poorly on rare or underrepresented subpopulations, i.e., it lacks robustness to
distributional shifts. The motivation of GDRO is to address the spurious correlation between features
and labels, and distributional shift. GDRO partitions the dataset into groups representing different
distributions and applies a robust optimization scheme that assigns more weight on the worst groups.
Specifically, GDRO considers the following objective:

mmrlrg% - Zng(x,y ~p, (05 (%, 7))

where 2 C A is the set of distribution under consideration and A is the simplex. We consider
here a popular choice of @ = {p € A : p; < ,Vi € [n]}, which, by solving the inner-level
maximization problem, leads to an equivalent reformulation 10 corresponding to the so-called CVaR
divergence [5, 49]. Intuitively GDRO with CVaR divergence aims to minimize averaged loss of the
top-k worst groups.

CAMELYON17-WILDS [34] is part of the WILDS benchmark suite and consists of histopathology
whole-slide images from five medical centers, with the goal of detecting metastatic tissue in lymph
node biopsies. Following the WILDS setup, we frame this as a binary classification task on image
patches, where the primary challenge lies in distribution shift across hospitals (domains). We construct
group with attributes ‘hospital’ and ‘slide” which generates 30 groups.

Amazon-WILDS [50] is a text classification dataset derived from Amazon product reviews, where
the goal is to predict binary sentiment (positive or negative) based on TF-IDF features of review
text. The data spans multiple product categories. We construct group with the attribute ‘user’ which
generates 1252 groups.

CelebA [35] is a large-scale facial attribute dataset containing over 200,000 celebrity images annotated
with 40 binary attributes. We select 4 attributes ‘Attractive’, ‘Mouth_Slightly_Open’, ‘Male’ and
‘Blonde_Hair’ and construct 16 groups, where ‘Blonde_Hair’ also serves as the target attribute for us
to do classification.

Hyperparameter tuning. We tune the same hyperparameters of different methods from the same
candidates as follows for fair comparison. For the three tasks we train the models for 10, 4, 15 epochs
with batch size and the number of groups within a mini batch of 256(8), 32(8), 64(4), respectively.
We set a = 0.15 for all the three dataset. We tune learning rate in {le-5, 2e-5, Se-5, le-4, 2e-4, Se-4,
le-3, 2e-3, 5e-3}, Ain {1,0.1,0.01}, v and § in {0.1, 0.2, 0.5, 0.8} and 4 in {0.01, 0.02, 0.05, 0.1,
0.2}. We set weight decay to be 0.01, 0.01, 0.02 for the three tasks, respectively. We use step decay
(decay by 0.3x for every 3 epochs), linear decay with 1st epoch warmup, step decay (decay by 0.2x
for every 3 epochs) for learning rate for the three tasks, respectively.

F.2 AUC Maximization with ROC Fairness Constraints

In this part we perform experiment on learning a model with ROC fairness constraint [51] following
the same experlment setting as [8]. Suppose the data are divided into two demographic groups
D, = {(al,b?)};*, and D, = {( f,bf)}?;"l, where a denotes the input data and b € {1, -1}
denotes the class label. A ROC fairness is to ensure the ROC curves for classification of the two
groups are the same.

Since the ROC curve is constructed with all possible thresholds, we follow [51] by using a set
of thresholds T" = {71, -, 7, } to define the ROC fairness. For each threshold 7, we impose a
constraint that the false positive rate (FPR) and true positive rate (TPR) of the two groups are close,
formulated as follow:

Ny

+(w) ::‘%ZI{ble}o(sw(ai)—T ——Zl{b“—l}a(sw( )—m)|-r<0
P =1 M

np Ny

o ‘7 ZI{bP = —1}o(sw(aj) —7) — — ZI{bu =—1}o(sw(aj) — 1) ‘ — k<0,
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Figure 4: Training curves of 5 constraint values in zero-one loss of different methods for continual
learning with non-forgetting constraints when targeting the foggy class. Top: squared-hinge penalty
method with different p; Bottom: smoothed hinge penalty method with different p.

where sy () denotes a parameterized model, o(z) is the sigmoid function, and x > 0 is a tolerance
parameter. We use the pairwise AUC loss as the objective function:

F(W) |D+||D | Z Z W )y Xi _s(wvxj))a

X €D+x eD_

where D, and D_ denote the set of positive and negative examples regardless their groups, respec-
tively. We follow [8] to recast original constraint optimization as the following hinge-penalized
objective:

min F(w 2‘”26 W)t + Blh; (w4 (53)

Tel

It is notable that the penalty terms in the above problem can be formulated as [hF (w)]+ = f(g(w;T)),
where f(g) = [lgr = gaf = Kly, gr(wi) = & 32 Y] = Do(sw(al) —7), ga(wi7) =
% S b = 1o (sw(al) — 7). Asa result f is convex, g(w) is smooth. As a result, Algo-
rithm 2 is applicable.

Hyperparameter tuning. For ALEXR2, we tune K} in {5, 10}, tune « (i.e. learning rate for outer
loop) and 7 (i.e. learning rate for inner loop) in {1e-3, le-2, 0.1, 1}, and tune A (i.e. smoothing
coefficient for outer function) and v (i.e. smoothing coefficient for overall objective) in {2e-2
2e-3, 2e-4} and {0.1, 0.01}, respectively. We fix the hyperparameters in MSVR update for both
ALEXR2 7 and SONX, i.e. # = 0.8 and 4’ = 40 = 0.1. For the two baseline algorithms, we tune
the initial learning rate in {0.1, le-2, 1e-3, le-4}. We decay learning rate(outer Ir for ALEXR?2) at
50% and 75% epochs by a factor of 10. We tuned p = {4, 6,8, 10,20, 40} for ALEXR2 and SONX
and p = {10, 40, 80, 100, 200, 400, 800, 1000} for SOX. We also compare a double-loop method
(ICPPAC) [10, Algorithm 4], where we tune their 7 in {0.1, 0.01}, 7 in {1, 10, 100},  in {1e-2, 1e-3,
le-4}, and fix 6; to 0.1.

F.3 Continual learning with non-forgetting constraints

We follow [7] and consider training a CLIP model [52] with global contrastive loss (GCL) [17] as
the objective and a so-called model developmental safety (MDS) constraints on protected tasks, given
by:

min F(w, D) Z LecL(w; (x4, t:), (7,7, Z;)),
(xl,t )ED

s.t. hy := ,Ck(W,Dk) — ﬁk(wold;Dk) <0,k=1,---,m

"As discuss in section 4.2, update of y in inner loop is equivalent to MSVR update, i.e. Yit =
Vfin(uie)s it = (1= )i+ 39i (2e.53 BU3) +30(9i(zex3 BES) — 9:(2e-1.83 BE))
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Figure 5: Training curves of 4 constraint values in zero-one loss of different methods for continual
learning with non-forgetting constraints when targeting the overcast class. Top: squared-hinge penalty
method with different p; Bottom: smoothed hinge penalty method with different p.

where LgeL(w; (x4, t;), (7,7, Z; )) is the two-way GCL for each image-text pair (x;, t;),

exp(Er(w,x;) " Ep(t;)/T)
S oy exp(E1(x)T Er(t)/7)
exp(Er(t;) T Er(x;)/7)
Y ox,ez- eXp(Er(t;) TEr(x:)/7)’

where Ej(x) and Er(t) denote the normalized feature representation of an image x and a text
t, generated by visual encoder and text encoder of CLIP model, respectively. 7,” denotes the

set of all texts to be contrasted with respect to (w.r.t) x; (including itself) and Z,” denotes the
set of all images to be contrasted w.r.t ¢; (including itself). Here, the data D is a target dataset.
Li(w,Dy) = nik 2~ (s ys)~Dy Le(W, X, ;) is the loss of the model w on the k-th protected task,
where ¢y, is a logistic loss for the k-th classification task.

LeeL(w; x4, 3, T, ,Z; ) == —Tlog

K2

—1log

Hyperparameter tuning. The training data for the target tasks are sampled from the training set of
BDD100K and LAION400M [53], while the data used to construct the MDS constraints are sampled
exclusively from BDD100K. For all the method we use the same learning rate of 1e-6 and the same
weight decay 0.1. For each experiment we run for 60 epochs * 400 iterations per epoch and the batch
size is 256. We tune p in {0.01, 0.1, 1, 5, 10, 20, 40, 80} for SONEX+smooth Hinge and in {1, 20,
50, 100, 200, 400, 800} for SOX+squared hinge; we set 1 = 72 = 0.8,7] =75 = 0.1,7 = 0.05
where 1,7} is the hyperparameter in MSVR update for objective term (i.e. Lgcr ®) while 72, 75 is
the hyperparameter in MSVR update for the penalty terms.

F.4 Ablation Study

We conduct a series of ablation studies to examine the effects of key hyperparameters and design
choices.

Results for varying 3 We investigate the impact of different 5 on model performance. We evaluate
B €{0.1,0.3,0.5,0.7, 1.0} and conduct experiments for SONEX on Amazon dataset for GDRO task
and ALEXR?2 on Adult dataset for AUC maximization with ROC fairness constraints. The results are
shown in table 3 which indicates the importance of setting 8 < 1.0 .

Results for varying ¢ We analyze the influence of different § of ALEXR2 on model performance,
testing 6 € {%, %, i, %, 1} and conduct experiments for ALEXR2 on Adult dataset. As shown in
Table 4, the final AUC of ALEXR?2 remains relatively stable across this range, suggesting that it is
not highly sensitive to 6.

8note that GCL is also a type of FCCO problem, we can also apply MSVR update to track the inner functions
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Benefit of Adam-type update Finally we compare Adam-type update with momentum-type update.
We conduct experiments for SONEX on Amazon dataset and ALEXR?2 on Adult dataset and the
results are summarized in table 5. They clearly demonstrate the advantage of using Adam-type
updates, which consistently yield superior performance.

Table 3: Final loss and AUC of SONEX and ALEXR2 on Amazon dataset and Adult dataset
respectively, with varying 3

SONEX w/ varying 3 0.1 0.3 0.5 1.0

Final loss 0.5657 0.5563 0.5768 0.578
ALEXR2 w/ varying /3 0.1 0.3 0.5 1.0
Final AUC 0.8975 0.8976 0.8973 0.8969

Table 4: Final AUC of ALEXR2 with varying 6 on Adult dataset

varying 6 0.1 0.3 0.5 1.0
Final AUC | 0.8975 0.8976 0.8973 0.8969

Table 5: Comparison between Adam-type update and Momentum-type update for SONEX and
ALEXR2 on Amazon dataset and Adult dataset, respectively

Algorithm Adam-type Momentum-type
SONEX(Final Loss) 0.5657 0.9666
ALEXR2(Final AUC) 0.8975 0.861

F.5 Verification of Assumption 4.3

We verify the assumption 4.3 by computing minimum eigenvalue \,,;,, of Vg(w)Vg(w) ' in group
DRO experiment. We compute \,,;,, for models trained on Camelyon17 and CelebA from the last
epoch and report it in table 6. Our experiment results demonstrate that the minimum eigenvalue of
Vg(w)Vg(w) ' remains positive after training process finishes.

Besides, assumption 5.1 has been verified empirically in Appendix A.1 of [7].

F.6 Other Details of Experiments

Computing Resource and Running time: The experiments of AUC Maximization with ROC
Fairness Constraints and the experiments of group DRO of Camelyon17 dataset and CelebA dataset
in our paper is run on an A30 24G GPU, among which the first experiment takes less than 10 minutes
for each run while for the second one, Camelyon17 takes about 4 hours and CelebA takes about
5 hours, for each run. The Amazon dataset of group DRO experiment is run on one A100 40GB
GPUs and takes about 12 hours each run. The experiment of continual learning with non-forgetting
constraints is run on two A100 40GB GPUs and takes about 12 hours each run.

Data Split: We perform data split of CelebA dataset ourselves: within each group, samples are
divided into training, validation, and test sets in an 8:1:1 ratio. For all the other datasets mentioned in
our paper we use default split.

Other Experiment results We show the training curves of individual constraint values for our
two experiments about constraint optimization, as shown in Figure 4, 5 (continual learning with
non-forgetting constraints) and Figure 6, 7 (AUC maximization with ROC fairness constraints). Note
that we use other weather conditions except foggy to construct non-forgetting constraints since there
is no foggy data in BDD100k for defining such a constraint.
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Table 6: Minimum eigen values A, of Vg(w)Vg(w) T at different solution.

Camelyonl7 | seed1 seed2 seed3
Amin 0.0206  0.0349  0.0261

CelebA | seed 10  seed 20
Amin 0.9000 0.2713
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Figure 6: Training curves of 14 constraint values of different methods on adult dataset for AUC
maximization with ROC fairness constraints. Top row: SOX with squared-hinge penalty method;
Middle: SONX with Hinge penalty method; Bottom: ALEXR2 with smoothed hinge penalty method.
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Figure 7: Training curves of 14 constraint values of different methods on COMPAS dataset for AUC
maximization with ROC fairness constraints. Top row: SOX with squared-hinge penalty method;
Middle: SONX with Hinge penalty method; Bottom: ALEXR?2 with smoothed hinge penalty method.
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