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Abstract

The current study presents the transition of large amplitude oscillations to a
fixed hovering point in the context of Bio-inspired flapping robots (BIFRs). The
experimental arrangement allows two degrees of freedom for the BIFRs under study:
body pitching and translation. The primary objective of this investigation is to compare
the flight mechanics characteristics of two almost-identical BIFR configurations: a
two-winged configuration and a four-winged one that exploits wing-wing interaction
for aerodynamic effects. A motion capture system is utilized to track the two degrees
of freedom of each BIFR. The study reveals that the four-winged BIFR exhibits
passive transition of large amplitude oscillations to a fixed point beyond a certain
frequency, whereas no such transition was observed for the two-winged BIFR at any
frequency within the considered range. Realizing that the main difference between
the two systems lies within the wing-wing interaction, this study thus underscores
the significance of the wing-wing interaction for the transitional response upon the
four-winged model. This response might be due to a phenomenon called vibrational
stabilization. From the study, it can be implied that wing-wing interaction promotes
the transitional response beyond a critical frequency.
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Introduction

In the last few decades, the Bio-inspired flapping flight has garnered a lot of attention
from the aerodynamics, flight mechanics, and control communities. Although in the
twentieth century, the main focus of flapping flight research was to understand the
unsteady lifting mechanism (Ellington et al. 1996; Dickinson et al. 1999; Ellington and
Lighthill 1984), in the twenty-first century, it moved towards efficient flapping flights
(Taylor et al. 2003; Berman and Wang 2007; Ramananarivo et al. 2011). Researchers
have put effort into optimizing some parameters to obtain higher efficiency for a given
traditional flapping mechanism (Zheng et al. 2020; Chen et al. 2024). Another accepted
way of increasing efficiency is a passive way; to exploit a non-traditional mechanism,
such as the clapping effect facilitated by the wing-wing interaction (Armanini et al. 2016;
Balta et al. 2021; Deb et al. 2023). The wing-wing interaction utilizes a stronger wingtip
vortex Armanini et al. (2016) and an intensified jet effect Jadhav et al. (2019). Balta
et al. (2021) demonstrated with flow visualization and force measurement that wing-wing
interaction exploits this jet effect to passively enhance thrust generation. Deb et al. (2023)
experimentally demonstrated how the jet effect actively enhances thrust during hovering.
Furthermore, the bio-inspired flying robots (BIFRs) expose themselves to persistent
oscillating aerodynamic forces. These oscillations are induced onto the body’s motion in
addition to its mean trajectory, which makes these vibrations self-induced. Intriguingly,
it has been noted that these vibrations further enhance the performance of a four-winged
flapping robot that enjoys wing-wing interaction (Deb et al. 2023, 2022)(e.g., Model B
shown in Figure 1b 2b 3b). In contrast, these self-induced oscillations are detrimental
to the conventional flapping mechanism (e.g. Model A shown in Figure la 2a 3a).
However, in a real flight, stability is also a very important factor apart from enhanced
efficiency.

It has been observed that in nature, e.g., the flapping flight of insects employs a passive
stabilization mechanism, known as vibrational stabilization (Taha et al. 2015). This
phenomenon was first observed in 1908 on an inverted pendulum (Stephenson 1908),
and the underlying physics was revealed in 1951 by (Kapitza 1951). In this phenomenon,
the unstable equilibrium is stabilized when subjected to a sufficiently fast vibration.
Since then, numerous studies have been conducted to analyze and understand vibrational
stabilization and control (Vela and Burdick 2003; Bullo 2002; Tahmasian and Woolsey
2015; Meerkov 1980; Hong 2002; Berg and Wickramasinghe 2015; Maggia et al. 2020).
In flapping flight Taha et al. (2016); Hassan and Taha (2018) analytically assessed the
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longitudinal flight stability near the hovering point of a flapping wing micro air-vehicle
(FWMAV) by considering wing inertial effects and higher-order interactions. They were
able to exhibit a negative pitch stiffness and a decrease in pitch damping due to the higher-
order interactions and wing inertial dynamics. Along a similar line, Taha et al. (2020)
employed chronological calculus to elucidate the utilization of vibrational stabilization in
response to pitch perturbations by a hawkmoth during hovering. Moreover, by analyzing
the interaction between the fast oscillatory aerodynamic loads on the wings and relatively
slow body motion, Hassan and Taha (2019) showed a similar vibrational stabilization
mechanism.

Furthermore, Taha et al. (2018) conducted experimental work in a two-degree-of-
freedom bio-inspired flapping robot and utilized vibrational stabilization to explain their
observation. This present study adopts a similar experimental configuration, employing a
system characterized by two degrees of freedom, but comparing two flapping robots:
(i) a two-winged robot designated as Model A, and (ii) a four-winged robot named
Model B. Both models employ an identical crank-and-rocker mechanism for flapping and
share the same wing material and geometry. The sole distinction between these robots
resides within their aerodynamic characteristics. Model A (depicted in figures la, 2a,
and 3a) employs a classical flapping mechanism, leveraging unsteady phenomena such
as wake capture (Dickinson et al. 1999) and stable leading edge vortices (Sane 2003;
Ellington et al. 1996) to generate aerodynamic forces. Conversely, Model B (illustrated
in figures 1b, 2b, and 3b) strategically harnesses wing-wing interactions to enhance thrust
production (Bennett 1977).

In the present study, the flight mechanics characteristics of these two flapping robots are
compared at different flapping frequencies. As such, the effect of wing-wing interaction
on the transitional behavior is assessed. The observed response of transition from high
amplitude oscillations to a fixed point, might also be an example of antimonotonicity
(Dawson et al. 1992; Bier and Bountis 1984). The only way the reason for the transition
can be concluded is through a rigorous analytical exercise. However, this rigorous
analysis heavily relies on the complex aerodynamics (shown in the equation of motion
in the appendix), which could not be easily modeled due to the complex flow field and
wing-wing interactions. Regardless, the transitional phenomenon underscores a favorable
flight condition for the flapping flight with wing-wing interactions.

Experimental Method
Flapping Wing Models
Two different configurations of bio-inspired flapping robots are considered: (i) Model A,
denoted as a two-winged flapping robot (figures 1a, 2a, 3a), and (ii) Model B, referred
to as a four-winged flapping robot (figures 1b, 2b, 3b). Both flapping robots, Model A
and Model B, are able to flap with a crank-rocker mechanism, which is also utilized

by Balta et al. (2021) in the same laboratory. The leading edge rod is highlighted with
red and the outline of the trailing edge is highlighted with yellow. The leading rod is
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Total wings: 4
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(a) Model A (b) Model B

Figure 1. Front view of the two BIFR configurations (Balta et al. 2021)

Total wings: 2

~ Total wings: 4

(a) Model A (b) Model B

Figure 2. View from the side of the FWMAVs (Balta et al. 2021)

Total wings: 2 “Total wings: 4

(a) Model A (b) Model B

Figure 3. An isometric view of the two BIFR configurations (Balta et al. 2021)

driven by the crank-rocker mechanism. The total number of wings for each model is
shown and wings are numbered accordingly. The wing geometry is shown in Figure 4,
with consistent color scheme for the leading edge (LE) and trailing edge (TE) as Figures
1,2 & 3. The wing span of the leading edge (LE) is 140mm (denoted by R). The root
chord of the wing is denoted by a, which is 95mm and the trailing edge (TE) is elliptical
in shape. This wing geometry is consistent among all the models chosen for this study.
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R =140 mm

Figure 4. Wing Geometry

The crank-rocker mechanism drives the LE rod, which sets the wing in motion. More
detail about this mechanism is provided in the appendix. The mechanism for generating
aerodynamic forces fundamentally differs from Model A to B. While Model A (the two-
winged robot) relies on a traditional lift generation mechanism via wing translation (i.e.,
translatory lift (Dickinson et al. 1999; Taha et al. 2012)), Model B exploits the wing-wing
interaction (Balta et al. 2021; Armanini et al. 2016). Existing literature establishes that
the wing-wing interaction inherently contributes to enhanced thrust during flapping flight
(Bennett 1977; Phan et al. 2016). Thrust generation mechanisms for Model A & B are
aerodynamically different (Balta et al. 2021; Deb et al. 2023). Consequently, it can be
anticipated that the responses of the dynamical system will vary when tested with these
distinct flapping mechanisms.

System Response Measurement

Figure 5 presents a schematic of the experimental setup used in the present work. The
setup consists of a metallic frame (shown in light green), which serves as a mounting
platform for the experimental setup. It is securely fixed to the laboratory floor. There is
a pendulum rod (in yellow) mounted on hinge ’a’. The rod is allowed to rotate freely
about the hinge, enabling it to swing like a regular pendulum. The pendulum angle
between the pendulum rod and the vertical axis is denoted by . The BIFR (in blue)
is mounted to the pendulum rod through a connecting rod (in green) at the hinge b’
located on the robot as shown in Figure 5. The Figure also shows the approximate
location of the center of mass (CM) of the flapping robot (in purple). The approximate
location of the CM in the flapping robot frame is normalized by the body length (I;) of
it, (dg/lp, hg/lp) ~ (—0.37,—0.1). The change in CM due to the flapping of the wings
can be neglected because the wings hold less than 1% of the robot mass. The body of
the robot is free to rotate about this hinge. The body pitching angle between the BIFR
body and the horizontal axis is denoted by 6. Whenever the robot flaps, depending on
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Figure 5. Schematic of the Experimental Setup with Marker locations

the frequency of flapping, v and 6 undergo oscillatory responses about certain average
values. These angles provide valuable information about the behavior and dynamics of
the system under study. The angle 6 represents the pitching angle of an animal or a BIFR
in free flight, and the angle v mimics the translatory motion of the animal/BIFR. In fact,
this reduced-degree-of-freedom setup is typical in the literature on helicopter stability
and control (Dhiman et al. 2022).

In order to measure the angles synchronously, we have adopted a Motion capture system.
This system consists of active markers and a tracker. The active markers are placed
at the points of interest, and the tracker captures their positions in space over time.
The accuracy of this system is remarkable, with spatial accuracy down to 0.1mm and
temporal accuracy of 1us. Six markers (shown in red in Figure 5) are strategically placed
for measurements. Markers 1, 2, and 3 are fixed orthogonally on the metallic frame,
providing a stable reference. Marker 1, placed on the hinge ’a’, along with marker 4,
allows for the measurement of the angle . The angle 6 is measured with the help of
markers 5 and 6. The signals are acquired from the markers at 500 samples per second.
In addition to the angles ~, 6, a hall sensor is utilized to measure the flapping frequency
of the BIFR.
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Results and Discussion

This section focuses on the main study of the paper about the stability characteristics of
the two BIFR configurations at various flapping frequencies.

Unsteady Response of the BIFR models

This subsection discusses the transitional responses of Model A & B in terms of
pendulum angle, v, and body pitching angle, 6. Figure 6a shows the transitional system
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(a) Response of Model A in terms of the pendulum angle v and the body pitching angle 6 as the
angle v and the body pitching angle 6 as the flapping frequency increases from zero to
flapping frequency increases from a lower to a beyond the critical frequency. The increase in
higher value. The increase in frequency with time  frequency with time is also shown in the bottom
is also shown in the bottom figure. figure.

Figure 6. Unsteady system response of Model A & B with varied flapping frequencies

response of Model A. The increase in flapping frequency with time is also shown
at the bottom. The frequency is calculated with a 0.5-second time interval. With the
current methods utilized in this study, it is impossible to obtain a smooth frequency-
time relation. Hence, the reported frequency is an interval-averaged value. The flapping
frequency increases from about 5 Hz at ¢ = 0 to about 20 Hz in almost ¢t = 14.5 seconds.
During this excursion, the system traverses into high amplitude oscillation with Model A.
Similarly, Figure 6b shows the transitional response of the body and the pendulum angle
for Model B as the flapping frequency increases from an inert state at ¢ = 2 seconds to
around 20 Hz. The high amplitude oscillations of Model A do not show any indication
of abating, as shown in Figure 6a. In contrast, Figure 6b shows an evident transition
into a fixed point {(6,7) ~ (50°,40°)} at ¢ ~ 12. This transition is observed beyond a
critical flapping frequency (about 22 times the natural frequency of the system). It should
be clarified that these two datasets show unsteady responses of the system, where the
flapping frequency increases with time. The response at a given frequency is discussed
in the later sections. Even while experimenting with steady flapping frequency, this fixed
point transition is observed for Model B. However, this phenomenon is not observed in
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Model A at any achievable frequencys; this transitional behavior into a fixed point might
be attributed to the effect of wing-wing interactions in flapping flight (Taha et al. 2015;
Bullo 2002).

Natural Response of the Two BIFR Models
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Figure 7. System Response visualized with temporal change to 6 — ~ plane

The response of the system for different flapping frequencies and different models
can be visualized differently. At some flapping frequencies, both models show large
amplitude oscillations in the system. Figure 7 shows the system response for model B
at 15.5H z flapping frequency. Figure 7a shows the measurement of the body angle
and the pendulum angle v with respect to time. Whereas, figure 7b shows the same
plot with phase average in the 6 — « plane. All the subsequent orbit plots are phase-
averaged.
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Figure 8. Evidence of Hopf Bifurcation (Hopf 1942) in the system response
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Figure 8 shows the amplitudes of the limit cycle oscillations both in pendulum angle ()
and the body angle (). Figure 8(a) shows the plot for Model A and Figure 8(b) depicts
the response for Model B. The amplitudes of oscillation from the phase-averaged data
are calculated as follows:
A’Y — 'Ymar;’Ymin (1)
Ay = Omaz §9mm

The amplitudes A, & Ay are shown in Figure 8 in blue and orange respectively. For both
models A & B it can be observed that at a very low frequency (< 10H z for Model A
and < 8 H z for Model B), there is no significant oscillation. This can also be observed in
Figure 9 where the response at these very small frequencies appears to be fixed points in
the @ —  plane. As the flapping frequency increases, the system sets into high amplitude
oscillation and the responses appear to be orbits at these frequencies. This is the point of
Bifurcation shown in Figure 8. This can be an evidence for Hopf Bifurcation (Hopf 1942).
However, for Model B a reverse bifurcation is observed beyond a frequency threshold
(f > 18H~z) as shown in Figure 8. In this region, the high amplitude oscillations
turn into small amplitude oscillations (almost a fixed point). This behavior is called
antimonotonicity in literature (Dawson et al. 1992; Bier and Bountis 1984). However,
there is no equivalent observation for model A.

150 -

° f=21Hz

(a) Model A (b) Model B

Figure 9. System Response visualized in § — - plane at different flapping frequencies for
both models

In the light of these findings, the behavior is found to be of a Hopf bifurcation type. As
flapping frequency increases, the hovering fixed point transitions to a limit cycle of large
amplitude, as shown in Figure 8. Moreover, for Model B, these limit cycles transition
into fixed points, showing behavior of a reverse Hopf bifurcation type. Although these
stable limit cycles may have an averaged attitude that is close to the fixed point, it is of
too large amplitude to be acceptable for an insect or a micro air vehicle. A satisfactory
hovering must be achieved by a minimal body oscillation amplitude.

Figure 9 shows a few examples of system responses of both models at a few flapping
frequencies in the § —  plane. The arrows in both figures show the direction of increase
in flapping frequency. Figure 9b shows the transition of high amplitude oscillations to a
fixed point, for the flapping mechanism with wing-wing interaction.
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Evidently, this discernible discrepancy in this comparative observation can be attributed
to the wing-wing interaction. Despite their same crank and rocker mechanisms, wing
geometry, and wing material, the pivotal variance lies in the aerodynamic response,
particularly the wing-wing interaction within Model B. The aerodynamic characteristics
due to the wing-wing interaction seem to be the driving factor behind the transition to a
fixed-point equilibrium condition, observed in Model B, in contrast to Model A.

Stability of the Orbits

200 200
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(a) Model A (b) Model B

Figure 10. Perturbation of the closed orbits

The response of the system in # — ~ plane can be shown as a closed orbit for a range
of flapping frequencies for both Model A & B. The relatively large amplitudes of the
pendulum and the body angle are responsible for this shape. Given the focus of this study
on system stability, it is pertinent to evaluate the stability of these orbits. To investigate
this, we introduced a perturbation to the orbit at a flapping frequency of 16 Hz, as
illustrated in Figure 10. Figure 10a shows the system response to the applied perturbation
for Model A and Figure 10b shows the same for Model B. The blue curve denotes the
orbit before the application of the manual perturbation. The red curve shows the response
of the system immediately after applying the perturbation. The red marker shows the
point where the perturbation is applied and the green arrow shows the attenuation of the
perturbation and the system returning to the limit cycle. The green arrow shows the orbit
after the perturbation dies down. The perturbations were applied manually. Hence, it is
not controlled or prescribed perturbations. However, after obtaining the data, the range
of perturbations can be calculated. The conclusion of this perturbation study is based on
the range of perturbations tabulated below. The perturbation range is normalized by the
flapping frequency f at which they are applied.

Range Ypert/ f Opert/ |
Model A [1.4 39] [7 237]
Model B [1 10] [3 342]

Table 1. Flapping Angles for different Flapping Mechanisms
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Although the large amplitude oscillation with the limit cycle is stable from a dynamical
system perspective, the amplitude is too large for stable hovering. In this situation, the
body of the BIFR deviates a significant amount from the hovering point. Hence, hovering
in this case is deemed undesirable. However, the reverse transition from high amplitude
oscillation to a fixed point hovering observed for Model B is desirable for stable hovering
with minimal deviation.

Recovery of Model B from Various Perturbations

Upon achieving fixed point hovering beyond a flapping frequency for Model B, the
system is subjected to various perturbations to study its qualitative recovery from these
perturbations. Figure 11 & 12 shows the responses of the system in terms of (¢) and 6(t)
after the application of different perturbations (initial conditions). All the perturbations
are provided at around the flapping frequency of 20 Hz (f ~ 20 Hz). At this frequency,
the hovering point is about (6,%5) ~ (55°,30°).

Four different perturbations are considered. The system is subjected to angular
perturbations both in body and pendulum angle, as presented in Figure 11. First, the
flapping robot’s body is set to a reduced angle (6(0) < @) and subsequently released.
The system restores its equilibrium in about 4 seconds, as shown in Figure 11a. A
similar relatively fast recovery is observed when Model B is subjected to the second
type of perturbation: the system is released at an initial pendulum angle larger than
the equilibrium value (i.e., v(0) > %), as shown in Figure 11b. Moreover, Figure 11a
indicates that a significant perturbation in the body angle may not cause a significant
influence on the pendulum angle. In contrast, Figure 11b shows that an initial disturbance
in the pendulum angle v may significantly impact the body pitching angle 6.
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(a) System’s Response Upon Release from Initial  (b) System’s Response Upon Release from Initial
Body Angle Pendulum Angle

Figure 11. Recovery of Model B from angular perturbations.

The other two perturbations considered in this work are concerned with applying an
initial velocity (i.e., an impact) to the pendulum and the body as presented in Figure
12. Figure 12a shows the system’s recovery from an initial body impact 0(0) > 0.
Moreover, Figure 12b shows the system response after applying an impact on the
pendulum +(0) < 0. It may be prudent to emphasize that these perturbations were applied
manually, so uniformity was not the concern. Supplementary material provides video
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recordings of the system’s recovery in each case presented in Figure 11 & 12.Since
the perturbations were applied manually, the quantification of the perturbations is not
prescribed. However, it can be quantified during data analysis. For each trial, we calculate
the perturbations as initial conditions (70, 0o, o, 90) and show them as a range in
a table. The impact perturbations (o, o) are normalized by the flapping frequency
f in the table. More details about these perturbations are provided in the appendix as
supplementary material.

Perturbation ~y > 7 6y >0orby <6 Y/f <0 Oo/f >0

Range [54° 70°] [22° 134°] [6.55 —4.75] [12.2 20.6]

Table 2. Ranges of perturbations applied in the current study
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(a) System Behavior Following Body Impact (b) System Behavior Following Pendulum Impact
Perturbation Perturbation

Figure 12. Recovery of Model B from different pendulum perturbations.

One may ask whether the observed stability of Model B in comparison to Model A is
due to vibrational stabilization (i.e., a higher-order effect that cannot be captured by
direct averaging techniques). We believe that this is a possibility because it is achieved
only beyond a certain frequency threshold (around 22 times the natural frequency of the
system), which is typical in vibrational stabilization (Stephenson 1908; Kapitza 1951;
Vela and Burdick 2003; Bullo 2002; Meerkov 1980; Taha et al. 2015, 2016; Hassan and
Taha 2018, 2019; Taha et al. 2020, 2018). In contrast, our previous stability analysis
using traditional averaging techniques indicated that the averaged system becomes more
unstable as the frequency increases (Taha et al. 2014). In fact, at large mean angles
of attack, the flapping counter torque mechanism (i.e., pitch damping) weakens as the
flapping frequency increases (Bhatti et al. 2021; Taha 2013). So, these two facts may
imply that the observed stability of model B at high frequencies is likely to be due to
vibrational stabilization.

Finally, we would like to conclude by stating the main finding of this work: the stability
of two almost-identical BIFRs, one with conventional flapping and another that exploits
wing-wing interaction, was tested over a range of flapping frequencies. The latter
exhibited a passive transition from large limit cycle oscillations to a fixed point, and the
former did not. The two flappers have the same wing geometry, material, and motor, with
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the only key difference in the wing-wing interaction. Hence, the wing-wing interaction
may have a key role to play in the passive transition from a large amplitude limit cycle
to a fixed point. Combined with our previous efforts by Hassan and Taha (2018) that
showed the superiority of the wing-wing interaction BIFR over the traditional one in
terms of thrust generation (Hassan and Taha 2018) and handling self-induced vibrations
(Deb et al. 2023), one may conclude that the wing-wing interaction offers a very attractive
design choice for bio-inspired flapping robots (Dickinson et al. 1999).

Highlights
These are the following highlights of this study

1. Wing-wing interaction may have a major role in transitioning from a large
amplitude oscillation to a fixed point.

2. For bio-inspired flapping robots (BIFRs) whose wings experience considerable
interaction, the hovering equilibrium experiences a natural (passive) transition to a
favorable hovering condition, beyond a critical threshold of frequency.

3. In contrast, a dynamically-similar BIFR, whose wings do not enjoy significant
wing-wing interactions, could not achieve the transition to a fixed point within the
observed frequency range.

Conclusion

The present study is concerned with the effect of wing-wing interaction on a transitional
phenomenon in flapping flight. For this purpose, we designed an experimental setup that
allows only two degrees of freedom for the bio-inspired flapping robots (BIFR) under
study: body pitching and translation. The stability characteristics of two almost identical
BIFR configurations are experimentally tested. The first configuration, referred to as
Model A, is a two-winged flapping robot that employs conventional flapping to generate
aerodynamic forces. In contrast, the second configuration (Model B) is a four-winged
robot, whose wing-wing interaction affects its aerodynamic force generation. At low
flapping frequencies, both flapping robots exhibit high amplitude oscillations. Although
these high-amplitude limit cycles are shown to be stable, from a hovering perspective, it
is undesirable for a flapping robot. However, a discernible departure emerges beyond
a critical frequency: Model B, characterized by the wing-wing interaction, exhibits
reverse Hopf Bifurcation, a property that eludes Model A. It is noteworthy that both
models share uniform attributes: the crank and rocker mechanism, wing geometry, and
material composition. Consequently, the pivotal demarcation is attributed to the wing-
wing interaction, which is enjoyed by Model B but not by Model A. In this context, the
reverse bifurcation observed in Model B is attributed to the wing-wing interaction. It
is possible that the transition from high amplitude oscillation to a fixed point is due to
vibrational stabilization, as the flapping frequency at which this phenomenon occurs is
22 times the natural frequency of the system.
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We also tested the recovery of Model B towards its stable equilibrium after applying
different perturbations. These perturbations include a release from angular positions
different from equilibrium values and impact perturbations imparted to both the body’s
initial angular velocity and translational velocity. The hovering point beyond the
transition of Model B was robust enough to sustain a variety of perturbations with
significant magnitudes. However, the response characteristics during recovery (e.g.,
settling time) were different for different perturbations, which points to the underpinning
nonlinear dynamics of the system. This study unveils an interesting outcome that may be
important for the design of flapping-wing robots. The wing-wing interactions promote
passive stabilization of flapping robots, which may relax the stringent requirements of
the flight controller and its actuators, making flapping robots more feasible and easier
to design. Based on previous results in the literature of interacting wings aerodynamics
that showed positive effects on thrust generation and handling self-induced vibrations,
interacting wings seem to be an attractive design choice.
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