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ABSTRACT
Robotics and machine learning algorithms can potentially

enhance upper limb rehabilitation, addressing the limitations of
traditional therapy methods. This study presents a novel Human-
Robot Interaction (HRI) platform with human brain activities
assessment capability aimed at enhancing upper limb rehabilita-
tion by addressing the limitations of conventional therapy. Uti-
lizing a 7-DOF Franka Emika robotic arm, the system supports
patients in performing lifting, grasping and reaching tasks struc-
tured based on Wolf Motor Function Test (WMFT). Functional
near-infrared spectroscopy (fNIRS) concurrently monitors cor-
tical activation and functional connectivity to evaluate neural
engagement and recovery. Visual feedback guides participants,
while forearm EMG and brain activity from the moving limb
are recorded to train deep learning models that classify physi-
ology movement and cognitive load in real time. Quantitative
performance metrics, including average trajectory deviation and
non-dimensional squared jerk, assess movement accuracy and
smoothness, correlating with task complexity. The platform also
incorporates a robot impedance control scheme and an interac-
tive interface to adapt assistance dynamically based on predicted
movement. By integrating biomechanical performance data with
neural indicators, this approach enables a personalized, data-
driven rehabilitation framework.
Keywords: Robot Teleoperation, End Effector Design,
fNIRS, Human Robot Interaction, Upper Limb Rehabili-
tation
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NOMENCLATURE
𝑛 Norm vector
𝑞 Robot Joint Angle
𝑇 Transformation Matrix
𝑋 Cartesian Coordinate X axis
𝑌 Cartesian Coordinate Y axis
𝑍 Cartesian Coordinate Z axis
𝐾 Stiffness
𝐷 Damping
𝐼𝐴 Area Moment of Inertia
𝜏 Joint Actuator Torque
𝑀 (𝑞) Inertia Matrix
𝐶 (𝑞, 𝑞̇) Coriolis and Centrifugal Matrix
𝐺 (𝑞) Gravity Matrix
𝐽 (𝑞) Geometric Jacobian Matrix
𝐽𝑣 (𝑞) Linear Velocity Portion of Geometric Jacobian Matrix
𝐽𝜔 (𝑞) Angular Velocity Portion of Geometric Jacobian Matrix
𝑅𝑖 Coordinate Rotation Matrix
𝐾𝐸 Kinetic Energy
𝑃𝐸 Potential Energy

1. INTRODUCTION
Upper limb rehabilitation is a critical component in the re-

covery of individuals with motor impairments caused by stroke,
traumatic injury, or neurological disorders. Traditionally, occu-
pational therapy in clinical settings relies on therapist-guided,
repetitive exercises to help individuals regain motor function.
However, these conventional approaches are constrained by high
therapist workloads, variability in treatment quality, and limited
individual engagement [1, 2]. In response to these limitations,
Human-Robot Interaction (HRI) systems and emerging technolo-
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gies such as machine learning and virtual reality have been ex-
plored to enhance therapy by offering consistent, data-driven, and
personalized interventions [3, 4].

Rehabilitation robots can provide structured assistance rang-
ing from passive motion, where the robot moves the patient’s
limb without any effort from the patient, to adaptive resistance,
in which the robot adjusts resistance based on the patient’s ef-
fort. Recent advancements in artificial intelligence have allowed
these systems to respond dynamically to individual needs [5, 6].
Upper limb functionality becomes crucial in these cases, as re-
habilitation robots must adapt to the unique needs and abilities
of each individual. Traditional approaches to evaluating upper
limb functionality include standardized assessments like the Wolf
Motor Function Test (WMFT) and the Fugl-Meyer Assessment
(FMA) [7]. More recent studies have explored sensor-based
methods for quantifying motor performance, including motion
capture with Kinect sensors [8, 9], electromyography [10], and
functional near-infrared spectroscopy (fNIRS) [11], which offer
more frequent, objective, and non-invasive monitoring.

While sensor-based methods offer significant benefits, they
also present challenges, primarily the complexity of the recorded
data. Machine learning models, particularly deep neural networks
(DNNs), are capable of interpreting this data, predicting motion
trajectories, and even estimating rehabilitation outcomes [12, 13].
These tools can reduce therapist workload while supporting more
individualized recovery planning [14, 15]. In parallel, 3D visu-
alized platforms provide immersive rehabilitation environments
and can facilitate motor imagery in early-stage recovery or for
individuals with limited mobility [16, 17]. When integrated,
these technologies present a powerful opportunity to reshape the
delivery and evaluation of rehabilitation.

This study aims to develop an integrated rehabilitation plat-
form that leverages machine learning, functional near-infrared
spectroscopy (fNIRS) [18], real-time physiological function as-
sessment, and robotic assistance to support recovery in individ-
uals with upper limb motor impairments. The proposed system
is designed to be adaptive, scalable, and user-centered, directly
addressing critical limitations in traditional therapy, such as in-
consistent feedback, limited personalization, and challenges in
maintaining individual engagement. At the core of the system is
a machine learning model trained on fNIRS data and EMG data
to assess motor functionality, using the Wolf Motor Function Test
(WMFT) as a clinical benchmark. By interpreting neural activ-
ity during motor tasks, the system can classify an individual’s
motor function capacity and track progress over time. Based on
these classifications, personalized rehabilitation trajectories are
generated to reflect the individual’s capabilities and therapeutic
goals. These trajectories are then executed through a dexterous
robotic platform that provides real-time, guided assistance. This
approach ensures that individuals receive consistent, repeatable
therapy while reducing the burden on clinical staff.

The system integrates neurophysiological monitoring to an-
alyze brain activity in response to physical actions, providing
insight into both functional recovery and neural adaptation. The
combination of objective data verification and robot-assisted per-
sonalized training supports the development of a clinical assess-
ment tool for upper limb rehabilitation. Ultimately, this work

contributes a novel framework that enhances hospital-based oc-
cupational therapy by fusing intelligent evaluation, personalized
intervention, and robotic support into a unified therapeutic sys-
tem.

2. METHODOLOGY
The proposed rehabilitation system integrates machine learn-

ing, functional near-infrared spectroscopy (fNIRS), robotic assis-
tance, and trajectory generation into a unified platform designed
to support personalized upper limb therapy. The system archi-
tecture consists of three core components: (1) acquisition of
brain activity data via fNIRS during motor tasks, (2) deep neu-
ral network (DNN) classification of motor functions via surface
electromyography (EMG) signals, (3) impedance robot guidance.

2.1 Experimental Setup

FIGURE 1: EXPERIMENTAL SETUP.

A pilot study was conducted with healthy individuals to as-
sess the feasibility of the proposed multi-modal rehabilitation
system, which integrates visual stimulation, robotic assistance,
muscle activity monitoring, and neuroimaging. The experimen-
tal setup is described as in Figure 1. This pilot study involved
three healthy adult participants (two male, one female; ages 19,
25, and 35 years), all right-hand dominant with no history of
neurological or musculoskeletal disorders. All participants com-
pleted the full sequence of upper limb tasks in both unassisted
and robot-assisted conditions. The study was approved by the In-
stitutional Review Board (IRB) of San José State University IRB
24-286), and informed consent was obtained from all participants
prior to data collection.

The task set, as demonstrated in Figure 2, included: Place
your forearm on the desk (Task 1), Place your forearm on the
box (Task 2), Move your forearm with weight (Task 3), Pick up
a can (Task 4), and Pick up a pen (Task 5). These tasks were
not randomized as the WMFT is a sequential evaluation of motor
functions. The participants were shown all the tasks they would
perform, with the moderator confirming their understanding. The
experiment flowed as follows: video instructions (5 seconds), text
instructions (5 seconds), onset of the "start movement" marker
(5 seconds), jitter (randomly 8, 10, or 12 seconds), then reset
(5 seconds). Each task is to be performed five times, including

2 Copyright © 2026 by ASME



times of instructions, onset, jitter (holding of the position), and
reset, before moving on to the next task.

While completing tasks with and without robotic assistance
(2.3), sensors including an fNIRS montage (2.2), electromyogra-
phy (EMG) (2.4), and inertial measurement units (IMUs) (2.4)
were attached to participants to capture neural activity, muscle
engagement, and movement trajectories. This data was then fed
into machine learning models to predict effort levels and task
performance.

2.2 fNIRS montage and experimental setup
To deliver task instructions and synchronize neurophysiolog-

ical recordings with motor activity, a custom visual stimulation
protocol was developed using PsychoPy (version 2025.1.1). The
program was designed to present a sequence of five 2D animated
motor function tasks modeled after the Wolf Motor Function Test
(WMFT), a standardized assessment used to evaluate upper limb
function. Each animation visually demonstrated the movement
to be performed by the participant and served both as a cognitive
cue and motor planning stimulus.

Synchronization with fNIRS data acquisition and EMG log-
ging was achieved through digital event triggers. PsychoPy was
configured to send serial port triggers via local ethernet at the on-
set of each animation and at movement execution cues, enabling
precise alignment of neurophysiological data with stimulus tim-
ing, as presented in Figure 3. This trigger-based system ensured
that brain and muscle activity could be reliably segmented and
analyzed in correspondence with specific tasks.

All visual stimuli were presented on a 24-inch LCD mon-
itor placed approximately 60 cm from the participant’s seated
position. Participants were instructed to follow each animated
movement using their right hand.

This setup provided a repeatable and controlled method of
presenting task cues, while enabling synchronized data collection
for analyzing cortical and muscular responses across standardized
upper limb rehabilitation tasks.

2.3 Robot-assisted Upper Limb Guided Physical
Training

Robot-assisted training was delivered using a 7-DoF Franka
Emika Research 3 (FR3) robot, controlled via an impedance-
based interaction scheme [19]. The 7-degree-of-freedom Franka
Emika Research 3 (FR3) robot was selected for this study due
to its built-in torque sensors, high-resolution joint control, and
native support for impedance-based interaction. These features
make it particularly well-suited for upper limb rehabilitation tasks
that require compliant, adaptive movement in response to hu-
man interaction. The robot’s redundancy allows for flexible arm
configurations during therapy, and its real-time ROS-compatible
control interface enabled the integration of multimodal physi-
ological feedback for adaptive guidance. Compared to other
commercially available platforms, the FR3 offered an optimal
balance between safety, responsiveness, and programmability in
a research-focused rehabilitation setting. The system enables as-
sisted and guided physical therapy through impedance-controlled,

trajectory-based movement generation that aligns with the Wolf
Motor Function Test (WMFT) designed in Section 1.

The dynamic behavior of the FR3 robot is modeled using
Lagrangian mechanics. The equations of motion for both the
lead (𝑙) and follower ( 𝑓 ) robots in joint space are described as:

𝜏𝑙 + 𝜏ℎ = 𝑀𝑙 (𝑞𝑙)𝑞𝑙 + 𝐶𝑙 (𝑞𝑙 , 𝑞̇𝑙)𝑞̇𝑙 + 𝐺𝑙 (𝑞𝑙) (1)

𝜏𝑓 + 𝐽 (𝑞𝑓 )𝑇𝐹𝑒𝑥𝑡 = 𝑀𝑓 (𝑞𝑓 )𝑞𝑓 + 𝐶𝑓 (𝑞𝑓 , 𝑞̇𝑓 )𝑞̇𝑓 + 𝐺 𝑓 (𝑞𝑓 ) (2)

Here, 𝑞𝑙 and 𝑞𝑓 represent joint positions; 𝑀 , 𝐶, and 𝐺

correspond to the inertia matrix, Coriolis/centrifugal forces, and
gravity vector, respectively. 𝐽 (𝑞𝑓 )𝑇𝐹𝑒𝑥𝑡 captures the external
force applied at the end-effector.

The robot’s kinetic energy is defined as:

𝐾𝐸 =
1
2
𝑞̇𝑇𝑀 (𝑞)𝑞̇ (3)

where 𝑀 (𝑞) is the mass matrix derived as:

𝑀 (𝑞) =
𝑛∑︂
𝑖=1

[︁
𝑚𝑖𝐽𝑣𝑖 (𝑞)𝑇 𝐽𝑣𝑖 (𝑞) + 𝐽𝜔𝑖

(𝑞)𝑇𝑅𝑖 (𝑞)𝐼𝑖𝑅𝑖 (𝑞)𝑇 𝐽𝜔𝑖
(𝑞)

]︁
(4)

The system’s potential energy is given by:

𝑃𝐸 =

𝑛∑︂
𝑖=1

𝑔𝑇𝑟𝑐𝑖𝑚𝑖 (5)

where 𝑔 is the gravitational vector, and 𝑟𝑐𝑖 is the position of
the center of mass of link 𝑖.

An impedance controller governs the interaction between
robot and participant. The control input is defined as:

𝜏 = 𝑀̂ (𝑞)𝑞𝑑 + 𝐶 (𝑞, 𝑞̇)𝑞̇ + 𝐺 (𝑞) + 𝐷 (𝑞̇𝑑 − 𝑞̇) + 𝐾 (𝑞𝑑 − 𝑞) (6)

Assuming perfect model estimation (𝑀̂ (𝑞) = 𝑀 (𝑞)), the
closed-loop dynamics simplify to:

𝜏ℎ = 𝑀𝑚,𝑙 (𝑞𝑙) (𝑞𝑑,𝑙 − 𝑞𝑙) + 𝐷𝑙 (𝑞̇𝑑, 𝑙 − 𝑞̇𝑙) + 𝐾𝑙 (𝑞𝑑, 𝑙 − 𝑞𝑙) (7)

𝜏𝑒𝑥𝑡 = 𝑀𝑚, 𝑓 (𝑞𝑓 ) (𝑞𝑑, 𝑓 − 𝑞 𝑓 ) +𝐷 𝑓 (𝑞̇𝑑, 𝑓 − 𝑞̇ 𝑓 ) +𝐾𝑓 (𝑞𝑑, 𝑓 − 𝑞𝑓 )
(8)

The robot’s interaction with the participant was regulated by
an impedance controller (Figure 4) that follows participant’s tra-
jectories. Feedback on joint positions, torques, and end-effector
forces was collected in real time using OPC UA. Workspace map-
ping ensured consistent motion scaling between input and output
configurations, using the following linear transformation:

𝑌 = (𝑋 − 𝑋𝑚𝑖𝑛) ×
(︃
𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

)︃
+ 𝑌𝑚𝑖𝑛 (9)
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TABLE 1: PARTICIPANT DEMOGRAPHIC AND EXPERIMENTAL INFORMATION

Participant ID Sex Age (years) Dominant Hand Notes
1 Male 19 Right No reported neurological issues
2 Male 25 Right No reported neurological issues
3 Female 35 Right No reported neurological issues

FIGURE 2: FNIRS EXPERIMENTAL DESIGN WITH PSYCHOPY INTEGRATION

The control architecture, implemented in Simulink, is shown
in Figure 4. The model managed real-time impedance adjust-
ments based on user interaction, supporting smooth and respon-
sive guidance throughout the tasks.

Only one set of impedance parameters was implemented for
the robot-assisted tasks. This configuration was informed by
neurophysiological findings from fNIRS and EMG data classi-
fication, which highlighted the need to balance participant en-
gagement with safety and motion fidelity. Cortical activation and
muscle recruitment observed during active task conditions allow
us to consider high, moderate, or low impedance for promoting
neuromuscular involvement without overloading the participant.
The example of a set of selected joint-level stiffness (𝐾) and
damping (𝐷) gains [6] for wrist support is presented in Table 2.

TABLE 2: IMPEDANCE GAINS SETUP IN ROBOT-ASSISTED
MODE

Gain Type Joint
𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7

Stiffness (𝐾) 800 800 800 800 500 300 100
Damping (𝐷) 50 50 50 50 30 25 15

This impedance configuration was used exclusively during
robot-assisted trials to provide real-time, compliant motion as-
sistance based on the individual’s effort and interaction forces.
In contrast, unassisted tasks were performed without robotic in-
tervention, serving as a baseline for comparison. By integrating
classified tasks and biomechanical response, the impedance con-
troller ensured smooth, safe, and adaptive physical interaction
during assisted and guided rehabilitation exercises.

The custom-designed wrist-mounted end effector (Figure 5)
was developed to provide stable and secure forearm support dur-
ing robot-assisted rehabilitation. Its modular and ergonomic de-
sign accommodates individuals with muscle stiffness, weakness,
or limited voluntary control, ensuring safe and effective transfer of
actuation forces from the robot to the participant’s limb. Follow-
ing modular design principles described in [6], the end effector
supports ambidextrous mounting and allows for customizable ad-
justments based on forearm size and posture. Additionally, the
system can be extended with interchangeable elbow and shoulder
adapters, enabling targeted stabilization and assistance at different
anatomical locations to accommodate diverse therapeutic needs.

2.4 Electromyography (EMG) Sensor Setup and
Muscle Engagement
To assess muscle engagement during both unassisted

and robot-assisted upper limb tasks, surface electromyography
(EMG) sensors were used to capture activity from four primary
muscles: Biceps Brachii (BB), Triceps Brachii (TB), Flexor Carpi
Radialis (FCR), and Flexor Digitorum Superficialis (FDSF).
These muscles are frequently activated during occupational ther-
apy tasks such as reaching, grasping, and lifting. An additional
inertial measurement unit (IMU) was placed on the extensor dig-
itorum to record wrist orientation and movement. Figure 6 illus-
trates sensor placement on the participant’s dominant limb.

Participants first performed a task series of task 1, task 2,
task 3, task 4, and task 5 that were unassisted, which served as
a baseline. Each task was performed under two engagement lev-
els: unassisted mode, involving normal muscle activation without
assistance, and an assisted mode, in which participants’ wrist, el-
bow or shoulder joint are connected to FR3 robot using specific
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(a)

(b)

FIGURE 3: (A) FNIRS MONTAGE DESIGN AND (B) SOURCE
AND DETECTOR PLACEMENT

end effector adapter during the motion to simulate muscular re-
sistance.

Following the unassisted trials, participants repeated the task
sequence using robot-assisted movement, guided by the Franka
Emika Research 3 (FR3) robot. While seated, participants were
connected to a custom wrist-mounted end effector. In the Re-
laxed condition, they followed the robot’s motion passively with
minimal grip or resistance. In the Resisting condition, partici-
pants actively opposed the robot’s movement in the z-direction,
simulating active participation and effort during therapy.

EMG signals were acquired using the Delsys EMGworks
system and processed in EMGworks Analysis. Signals were nor-
malized to each muscle’s maximum voluntary contraction (MVC)
using root mean square (RMS) values. A Butterworth filter was
applied to reduce noise, while IMU data were filtered using an
inclination filter to isolate relevant kinematic features.

To estimate human-applied force and muscle effort, a least
mean squares (LMS) filter was used. The resulting clean sig-
nals were integrated into a hybrid model that included a deep
neural network (DNN) trained on both EMG and IMU features.
This model classifies and predict the tasks being performed, en-
abling real-time adaptation during therapy and post-analysis of
individual engagement and functional capacity.

3. RESULTS AND DISCUSSION
3.1 fNIRS-Based Neural Activity Trends

Figure 7 show the measures from fNIRS: mean oxygenated
(HbO) and deoxygenated (HbR) hemoglobin concentrations. An
increase in HbO typically reflects higher neural activity in a brain
region. A decrease in HbR is often observed alongside an increase
in HbO during neural activation. HbO increased significantly
over channels corresponding to the left motor cortex, aligning
with right-arm movement during the task. Among all figures, the
first peak indicates the start of the task, and the second peak indi-
cates the holding portion of the task. The averages are calculated
after dropping channels with low coupling index, indicating that
the data from them is pure noise. The mean was then calculated
for all channels across the five repetitions of a task.

To ensure data quality, the averages were calculated after
excluding channels with a low coupling index—defined as those
with a correlation coefficient below 0.75 between the two wave-
lengths (760 nm and 850 nm) used in optical density measure-
ments. This threshold is commonly used in fNIRS [20] to detect
channels affected by poor optode contact or motion artifacts.
On average, 10–15% of channels were removed per participant.
These channels were considered to contribute primarily noise
rather than meaningful neural signals, and their exclusion im-
proves the reliability of the calculated hemodynamic response.

The mean was then calculated for all remaining channels
across the five repetitions of a task. The rapid increase of HbO
following the task onset was most pronounced over channels cov-
ering the contralateral primary motor cortex (M1), consistent
with activation during right upper limb movement. Additional
activation in prefrontal regions during Tasks 2 and 5 suggests
heightened cognitive engagement during these more complex or
goal-oriented movements. The HbR has a reduced response dur-
ing brain activity, which may indicate that the rate of oxygen
delivery outpaces the consumption of oxygen by the cells. To-
ward the end of the task, the concentrations return toward the
baseline.

Figure 7e most clearly depicts the concentration responses
from the starting and holding portions of the task. Each peak
is clear and distinct, showing a directly observable difference in
engagement throughout the task. A tertiary peak is also visi-
ble, indicating a further change in cognitive engagement beyond
the two phases of the task. Figure 7b similarly depicts a clean
response. The overall larger magnitude compared to the others
tasks indicates a higher level of cognitive engagement needed by
the task. Figure 7c contains four distinct peaks indicating further
sources of cognitive engagement beyond the two phases of the
task. Figure 7d shows a less distinguishable graph. The hold-
ing peak still occurs, however, at a greatly reduced magnitude,
showing minimal deviation from baseline noise. The reduced
peak indicates that the hold phase required much lower cognitive
engagement to perform. A tertiary peak then indicates a further
stimulus. Finally, Figure 7e contains clear and distinct peaks for
the two phases of the task, followed by a tertiary peak indicating
a change in stimulus.

One cause of the tertiary and quaternary peaks is that reset
movements are likely being captured as tertiary peaks. For ex-
ample, in task 5, the pencil needs to be returned to the table. The

5 Copyright © 2026 by ASME



FIGURE 4: SIMULINK MODEL FOR JOINT IMPEDANCE CONTROL OF THE FR3 ROBOT

(a) (b)

FIGURE 5: CUSTOM WRIST-MOUNTED END EFFECTOR FOR
FRANKS EMIKA RESEARCH 3 ROBOT (FR3)

FIGURE 6: EMG SENSOR PLACEMENT ON RIGHT UPPER
LIMB

movement for this requires cognitive engagement, lowering the
arm, releasing the fingers, and stopping the pencil from moving.
All of this leads to the presence of additional peaks. Another
cause of additional peaks and fluctuations during a task is be-
cause of distractions, sudden noises, making additional motions
than described in the task, and visual distractions all contribute
towards the conative engagement of a subject.

3.2 Using DNN to Predict and Classify Tasks via
Muscle Activation Measurement from EMG
The convolutional neural network (three 1-D convolutional

layers followed by two fully connected layers) achieved a valida-

tion accuracy of 81.97% after convergence (Figure 8). Overall
confusion matrix is also presented in Figure 8. Although lower
than the preliminary expectation reported earlier, the model still
performed well given the modest dataset size and pared-down ar-
chitecture. Validation loss stabilized after 25 epochs, indicating
limited over-fitting once early stopping was triggered.

TABLE 3: TASK-LEVEL CLASSIFICATION PERFORMANCE

Task ID Action performed Precision %
1 Place forearm on desk 71%
2 Place forearm on a 40 cm high box 19%
3 Move forearm with 1kg weight 67%
4 Pick up can to mouth for drinking 56%
5 Pick up a pen to 40cm high 48%

Table 3 shows detailed results of the classification. We ob-
served High performers (Tasks 1 & 3, Place arm on the table, and
Move forearm with weight correspondingly) and low performer
(Task 4, Pick up a can to mouth for drinking). Both actions in-
volve distinctive flexor/extensor activation with limited overlap,
enabling reliable separation. The EMG signature of a cylindrical
grasp overlaps those of lighter pen lifts (Task 5) and weighted
movements (Task 3), leading to misclassifications. Denser elec-
trode coverage of intrinsic hand muscles or additional kinematic
channels could improve discrimination. Moderate confusion
(Tasks 2, Place arm on a 40 cm box) shared shoulder–elbow
trajectories with Task 4 and Task 5, which blurs boundaries,
adding inertial-measurement-unit (IMU) data or spatially richer
EMG maps may help.

These observations also highlight the inherent limitations of
relying solely on surface EMG signals. EMG-based classifica-
tion can be challenged by cross-talk between adjacent muscles,
individual variability in muscle recruitment, and overlapping ac-
tivation patterns in complex tasks. To address these challenges,
we recognize the value of multi-sensor fusion. Future work will
explore combining EMG with complementary modalities such as
IMUs for 3D kinematics, which can help distinguish tasks with
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(a) Task 1: Place forearm on the desk (b) Task 2: Place forearm on a 40 cm box

(c) Task 3: Move forearm with 1 kg weight (d) Task 4: Pick up can to mouth for drink-
ing

(e) Task 5: Pick up a pen to 40 cm high

FIGURE 7: MEAN CONCENTRATION OF OXYGENATED (HBO) AND DEOXYGENATED (HBR) HEMOGLOBIN ACROSS ALL TASKS.
CALCULATED FROM ALL SOURCE-DETECTOR PAIRS ACROSS ALL TRIALS WITHIN A GIVEN TASK.

similar muscle activations but different spatial trajectories. Ad-
ditionally, increasing the number of EMG channels to include
finer-grained muscle groups—particularly in the hand and shoul-
der—can enhance task separability and robustness of the classi-
fication pipeline.

The notably lower precision scores for Task 2 (19%), Task
4 (56%) and Task 5 (48%) need further analysis. Task 2 is plac-
ing the forearm on a 40 cm high box, which involves a lifting
motion that shares joint trajectories and muscle engagement pat-
terns with other vertical reaching tasks (Tasks 4 and 5), leading
to overlapping EMG signals. Similarly, Task 4 (picking up a
can to the mouth for drinking) requires a compound movement
involving shoulder flexion, elbow flexion, and wrist stabilization.
These muscle activations overlap with both weighted movements

(Task 3) and lighter object manipulations (Task 5), which likely
contributed to classification ambiguity. These lower scores may
reflect not only the complexity and similarity of the biomechan-
ical profiles involved but also limitations in the current sensor
configuration and model granularity. In particular, the limited
EMG electrode coverage of intrinsic hand muscles and absence
of hand kinematics likely reduced the model’s ability to discrim-
inate fine-grained motor patterns.

Comparative analysis with similar studies shows consistent
trends. For instance, prior work by Zhou et al. [21] and Kim et
al. [22] also report reduced classification accuracy in tasks in-
volving fine object manipulation or compound movements with
overlapping activation profiles. These studies highlight the im-
portance of multimodal inputs (e.g., combining EMG with IMU
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(a) Training Accuracy and Loss

(b) Confusion Matrix

FIGURE 8: DNN MACHINE LEARNING FOR CLASSIFY TASKS
WITH PARTICIPANTS

or vision-based tracking) to improve discriminability across sim-
ilar functional tasks. As future work, we plan to increase EMG
spatial resolution, incorporate inertial sensing, and expand the
dataset size to support more robust, task-specific classification.
This will allow the system to better distinguish nuanced move-
ments and support clinical deployment for a wider range of reha-
bilitation scenarios.

The task-specific classification accuracies highlight where
the current EMG-driven control pipeline is ready for clinical de-
ployment (gross placement and resisted forearm movement) and
where further signal enhancement is required (power grasp and
intermediate elevations). These insights provide a quantitative
road map for refining sensor placement and multimodal fusion to
achieve truly adaptive, intention-aware rehabilitation robotics.

3.3 Neurophysiological Insights and Impedance
Stiffness Recommendation for Training
Integrated analysis of fNIRS and EMG signals provided valu-

able insight into participant effort, engagement levels, and neural
activation under different training conditions. This data was used

to inform recommendations for selecting appropriate impedance
stiffness values in upper limb rehabilitation scenarios.

fNIRS measurements revealed increased cortical activa-
tion—specifically elevated oxygenated hemoglobin (HbO) lev-
els—in both motor and prefrontal regions during five tasks across
robot-assisted and unassisted modes. It suggests higher cognitive
and motor effort when individuals actively engage with robots in
movement control. EMG signals confirmed this pattern, showing
increased average values for all four monitored muscles during
Task trials, particularly the Biceps Brachii and Flexor Carpi Ra-
dialis.

Based on this individual’s data, a light impedance stiffness
profile is recommended for upper limb rehabilitation tasks de-
signed to elicit active user participation while maintaining safety.
Specifically, joint stiffness values in the range of:

• 𝐾 = [300–500] N·m/rad for shoulder and elbow joints
(𝑞1–𝑞4),

• 𝐾 = [150–300] N·m/rad for wrist joints (𝑞5–𝑞6),

• 𝐾 ≤ 100 N·m/rad for distal joints (𝑞7),

were found to encourage meaningful muscular engagement with-
out overloading the participant, especially during robot-assisted
modes. These values balance the need for support with the goal of
maintaining high neural activation, as supported by the combined
fNIRS and EMG responses.

While only a single set of impedance parameters was ap-
plied in the current study, the observed task-dependent variations
in neural and muscular engagement highlight the potential of
dynamic impedance tuning. In future work, we aim to imple-
ment an adaptive control framework in which impedance param-
eters are adjusted in real time based on physiological indica-
tors—particularly fNIRS-derived cognitive load and EMG-based
effort metrics. For example, sustained increases in HbO within
prefrontal or motor cortex regions could indicate heightened cog-
nitive load or task difficulty, prompting a decrease in stiffness to
reduce user burden. Conversely, low neural engagement could
trigger an increase in challenge through greater resistance or task
complexity. This strategy aligns with emerging research in real-
time, intention-aware HRI systems. Previous study from the au-
thors [6] demonstrated the integration of motion intention detec-
tion into impedance control for upper extremity disorders, while
Zhao et al. [23, 24] proposed a shared control paradigm using in-
tention estimation to adjust robotic assistance levels dynamically.
These studies support the feasibility and effectiveness of adaptive
impedance control driven by physiological and cognitive cues,
particularly in rehabilitation robotics.

Integrating fNIRS and EMG within such a control loop would
enable personalized therapy tailored to the user’s moment-to-
moment state, ultimately improving both engagement and out-
comes. This multimodal fusion approach represents a promising
next step toward fully responsive, intelligent rehabilitation sys-
tems.

3.4 User Engagement and Future Clinical Validation
While fNIRS and EMG data provided valuable insight into

neural and muscular engagement during rehabilitation tasks, the
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current pilot study did not include subjective engagement met-
rics or behavioral feedback. Nonetheless, participant motivation
and sustained cognitive focus are essential for the effectiveness
of repetitive rehabilitation protocols. To support these goals, we
plan to develop a gamified interaction interface aimed at improv-
ing user engagement throughout therapy sessions.

The proposed gamified layer will feature real-time visual
feedback, performance-based progress tracking, and adaptive
task challenges that respond to the participant’s physiological
signals and motion accuracy. By transforming standard rehabili-
tation exercises into interactive, goal-driven experiences, we aim
to create a more immersive and motivating environment. Prior
studies [25–27] have demonstrated that such gamification strate-
gies can enhance adherence and treatment outcomes, especially
in long-term or home-based rehabilitation contexts.

In parallel, we are preparing a follow-up clinical study in-
volving stroke patients with upper limb motor impairments. This
trial will evaluate the safety, usability, and therapeutic potential of
the system in a clinical setting. Conducted under IRB-approved
protocols, the study will include multiple therapy sessions per
participant and assess both functional outcomes—such as the
Fugl-Meyer Assessment (FMA) and the Wolf Motor Function
Test (WMFT)—and subjective engagement metrics. Physiolog-
ical signals will be continuously monitored to assess cognitive
and motor workload across sessions. These next steps will pro-
vide the necessary validation to generalize the platform to clinical
populations and support its advancement toward intention-aware,
adaptive neurorehabilitation.

This study serves as an initial pilot and is, to our knowledge,
the first to integrate real-time fNIRS-based cortical monitoring
with EMG-driven robotic assistance for upper limb therapy. The
primary objective was to investigate whether meaningful rela-
tionships exist between motor performance and brain activity
during structured tasks. The results provide early evidence that
neural activation patterns may offer actionable input for adaptive
impedance control, enabling task difficulty and robotic assistance
to be dynamically tuned based on user cognitive load.

We acknowledge several limitations, including the small
sample size of three healthy individuals and the absence of a
formal step-by-step clinical therapy protocol. These constraints
limit the generalizability of our current findings. Future work will
focus on recruiting a broader and more diverse participant pool,
including stroke survivors; integrating additional sensing modali-
ties such as inertial measurement units (IMUs), higher-resolution
EMG arrays, and hand kinematics; and establishing a clinically
informed, progressive rehabilitation protocol. These efforts will
lay the groundwork for deploying an adaptive, patient-centered
neurorehabilitation platform in real-world therapeutic settings.

4. CONCLUSION
This study presents a novel, integrated rehabilitation platform

that combines robot-assisted therapy, machine learning, and real-
time neurophysiological monitoring to support upper limb motor
recovery. The system utilizes a 7-DOF Franka Emika robot to
deliver impedance-controlled physical assistance for tasks mod-
eled on the Wolf Motor Function Test (WMFT), while functional
near-infrared spectroscopy (fNIRS) and surface electromyogra-

phy (EMG) capture brain and muscle activity. A deep neural
network was trained to classify motor engagement across tasks
using multimodal input, providing real-time insights into partic-
ipant effort and functional capacity. To our knowledge, this is
the first study to systematically examine cortical hemodynamics
during guided upper limb rehabilitation, establishing a direct link
movement and neurocognitive activation. This approach enables
adaptive, personalized therapy through data-driven modulation
of impedance parameters based on individual engagement. Lim-
itations include the use of a healthy cohort, small sample size,
and reduced classification accuracy in tasks involving complex or
overlapping motions. Future work will expand to clinical popula-
tions, incorporate richer sensor arrays for fine-grained intention
detection, and explore closed-loop control based on real-time
brain activity. By integrating biomechanics with brain monitor-
ing, this platform lays the groundwork for intelligent, intention-
aware neurorehabilitation.
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