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Abstract—Deep sensor array decoding is essential for remote
health monitoring and big data, leveraging the deep mining
capability to reveal the subtle patterns in the decayed signal
contactlessly captured. In this study, we propose a novel two-stage
deep learning framework for deep array signal decoding, with the
first stage for signal fidelity boosting through the latent-space
transformation, and with the latter stage for medical insights
generation through the convolutional neural network. The latent-
space transformation with the deep autoencoder facilitates the
suppression of the noise and interferences in the raw signal,
thereby boosting signal fidelity crucially. We have further
investigated the enhanced supervision for signal fidelity boosting
by referring to the additionally captured near-body signal.
Evaluated on the real-world application, acoustic sleep apnea
detection, our novel deep learning framework has achieved a
detection accuracy of 93.3%, superior to state-of-the-art. This
study will greatly advance remote health big data with innovative
deep sensor array mining.
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I. INTRODUCTION

Deep learning and vital sign perception have been advancing
health practices recently [1, 2]. For instance, the wearable
systems have been broadly reported for cardiac, brain, and
biomechanical tracking, among others. In addition to wearables,
the remote heath monitoring with noncontact systems has also
been advanced quickly, leveraging the highly convenient
settings.

We take a special interest in remote health monitoring with
noncontact systems. There have been previously reported
studies on remote health monitoring. The smartphone has been
used for acoustic data acquisition and then deep learning has
been designed for data analysis [3]. Smartphone has also been
used in another study for breathing decoding, from Liu ef al. [4].
Li et al. [5] reported the radar-based health monitoring. Husaini
et al. [6] reported the Ultra-Wide-Band radar for breathing
detection.

Nevertheless, the studies on deep learning and array signal
decoding are still limited and urge the extensive efforts in this
field. Notably, the array signal perception is expected to bring in
spatial dynamics of the pattern of interest. In this study, we
propose a novel array signal perception and decoding system.
The deep learning of health signals has been researched for a
while, but the previous studies usually directly target the
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inference. For instance, the Convolutional Neural Network
(CNN) has been designed for remote acoustic decoding [7]. The
reverse neural network has been reported for vital sign prediction
[8]. Multi-task CNN [9] has been developed for remote vital sign
processing. These studies are of great promise for the vital sign
decoding but only directly perform the inference. Instead, in our
study we further boost the signal fidelity before the inference,
thereby boosting the performance of the system.

In this study, we propose a novel two-stage deep learning
framework for deep array signal decoding, with the first stage for
signal fidelity boosting through the latent-space transformation,
and with the latter stage for medical insights generation through
the convolutional neural network. The latent-space
transformation with the deep autoencoder facilitates the
suppression of the noise and interferences in the raw signal,
thereby boosting signal fidelity crucially. We have further
investigated the enhanced supervision for signal fidelity boosting
by referring to the additionally captured near-body signal. This
study will advance long-term continuous health monitoring,
thereby facilitating the big data practices [10, 11].

Our major contributions are summarized as below:

(1) A novel deep sensor array decoding system with array
signal perception, signal fidelity boosting, and medical
insight inference;

(2) The latent-space encoding that suppresses the noise and
interferences in the raw signal, for signal fidelity
boosting before inference;

(3) Real-world experiments on sleep apnea detection to
validate the two-stage deep learning framework that is
composed of the fidelity boosting and inference steps.

II. APPROACH

A. System Diagram

The system diagram is given in Fig. 1. The breathing sound,
while strong near the the human subject, decays rapidly when it
propagates to the remote acoustic monitor. Therefore, we
propose a novel two-stage deep learning framework, to firstly
boost the array signal fidelity through the autoencoder that owns
the encoder and decoder, and then generate the medical insight
though the convolutional neural network.

B. Latent-Space Array Signal Fidelity Boosting

The latent-space array signal fidelity boosting aims to
transform the raw signal to the sparse space for noise and
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Fig. 1. The proposed novel two-stage deep learning framework, to
firstly boost the array signal fidelity, and then generate the medical
insight. (Notes) E: encoder; D: decoder; F: inference function.

inference suppression. It is achieved by an encoder Dy, and a

decoder DZ , as (1), where, Y and w correspond to their
parameters, respectively, x™ is the n — th signal segment, and
X™ is reconstructed signal from the latent space representation
Dy, (x™).
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The learning process is as (2), where, L*(-) is the mean
square loss function, x™¢ and X™¢ correspond to the ¢ — th
channel in the input and output, respectively, C is the number of
channels, and N is the number of instances.
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To further investigate the array signal fidelity boosting
approach, we have considered two architectures, with the first
named as ‘AE + CNN’ denoting autoencoder plus convolutional
neural network, and with the latter named as ‘Guided AE +
CNN’ that further introduces the nose-side acoustic signal as
part of the ground truth during fidelity boosting. For the latter
one, the loss function is thus as (3), where, x* + ug{* is the new
ground truth that also considers the nose-side strong signal s
regulated by the coefficient y, and T is the number of samples
in the signal segment. This will facilitate the understanding of
whether additional training information can enhance detection
performance.
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C. Inference and Evaluation

The boosted array signal is then fed into the inference stage,
which is composed of the convolutional neural network and the
fully connected neural network. To extensively evaluate the
effectiveness of the proposed novel deep learning framework,
we have compared it with the CNN-only method, and the CNN
method with the boosted dataset (bstCNN) considering that the
sleep apnea events in our experiments are minority cases [7].
Further, we have taken into account the Dynamic Time Warping
(DTW) for comparison, which is a popular sequence matching
technique for classification.

III. RESULTS

A. Experiments

In out experiments, we have collected the human data with
the IRB approval, from four human subjects. Each one
performed two trials for training and testing, respectively, with
each trial as 30-min. In each trial the participants were asked to
have normal breath for 50min, and then repeat the process: hold
the breath for about 10-sec and then have normal breath for
about 50-sec. The customized array monitor was placed on the
bedframe for noncontact acoustic monitoring.

B. Latent-Space Array Signal Fidelity Boosting

The latent-space array signal fidelity boosting has been
illustrated in Fig. 2, where two boosting methods are given in
al-a2) and bl-b2), respectively. As shown, in al) the ‘AE +
CNN’ method can effectively suppress the signal distortions that
may be induced by noise and interferences. One (channel No. 4)
of the four channels is chosen for visualization. In a2), all four
boosted channels are visualized together, indicating the
effectiveness of the algorithm.

Further in bl), the ‘Guided AE + CNN’ shows enhanced
signal fidelity boosting, since the reconstructed signal is more
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Fig. 2. The latent-space array signal fidelity boosting, where two
boosting methods are given in al-a2) and b1-b2), respectively.
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Fig. 3. The inference performance of the two methods, ‘Guided
AE + CNN’ and ‘AE + CNN’, where state-of-the-art, bstCNN,
CNN, and DTW, are also illustrated. (Note) nb: non-breath.



consistent with the trend of the raw signal. b2) further illustrates
all channels boosted. The interesting results indicate that the
introduction of the nose-side strong acoustic signal to the
training process can facilitate the signal boosting essentially.

C. Inference Performance vs State-of-the-art

The inference performance of the two methods, ‘Guided AE
+ CNN’ and ‘AE + CNN’, is given in Fig. 3, where state-of-the-
art methods [7], bstCNN, CNN, and DTW, are also illustrated.

The proposed ‘Guided AE + CNN’ approach has the highest
accuracy (93.3%), as well as the highest recall and fl-score,
regarding the non-breath events (nb). This indicates that the
algorithm encourages the detection of the non-breath events,
which is essential for sleep apnea monitoring.

IV. CONCLUSION

In this study, we have proposed a novel two-stage deep
learning framework for array signal decoding, targeting the
remote health big data. The array signal fidelity is firstly boosted
in the first stage with the latent-space transformation through the
deep autoencoder, thereby suppressing the noise and
interferences. The enhanced supervision is further investigated
through introducing the near-body signal as the additional
reference. In the second stage, the enhanced signal is fed into the
convolutional neural network for inference. Evaluated on the
remote sleep apnea detection application, the proposed
innovative framework can effectively boost the acoustic signal
fidelity and detect the non-breath events with an accuracy up to
93.3%. This study will greatly advance remote health big data
through deep signal array decoding innovations.
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