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Abstract—Deep sensor array decoding is essential for remote 

health monitoring and big data, leveraging the deep mining 

capability to reveal the subtle patterns in the decayed signal 

contactlessly captured. In this study, we propose a novel two-stage 

deep learning framework for deep array signal decoding, with the 

first stage for signal fidelity boosting through the latent-space 

transformation, and with the latter stage for medical insights 

generation through the convolutional neural network. The latent-

space transformation with the deep autoencoder facilitates the 

suppression of the noise and interferences in the raw signal, 

thereby boosting signal fidelity crucially. We have further 

investigated the enhanced supervision for signal fidelity boosting 

by referring to the additionally captured near-body signal. 

Evaluated on the real-world application, acoustic sleep apnea 

detection, our novel deep learning framework has achieved a 

detection accuracy of 93.3%, superior to state-of-the-art. This 

study will greatly advance remote health big data with innovative 

deep sensor array mining. 
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I. INTRODUCTION  

Deep learning and vital sign perception have been advancing 
health practices recently [1, 2]. For instance, the wearable 
systems have been broadly reported for cardiac, brain, and 
biomechanical tracking, among others. In addition to wearables, 
the remote heath monitoring with noncontact systems has also 
been advanced quickly, leveraging the highly convenient 
settings.  

We take a special interest in remote health monitoring with 
noncontact systems. There have been previously reported 
studies on remote health monitoring. The smartphone has been 
used for acoustic data acquisition and then deep learning has 
been designed for data analysis [3]. Smartphone has also been 
used in another study for breathing decoding, from Liu et al. [4]. 
Li et al. [5] reported the radar-based health monitoring. Husaini 
et al. [6] reported the Ultra-Wide-Band radar for breathing 
detection.  

Nevertheless, the studies on deep learning and array signal 
decoding are still limited and urge the extensive efforts in this 
field. Notably, the array signal perception is expected to bring in 
spatial dynamics of the pattern of interest. In this study, we 
propose a novel array signal perception and decoding system. 
The deep learning of health signals has been researched for a 
while, but the previous studies usually directly target the 

inference. For instance, the Convolutional Neural Network 
(CNN) has been designed for remote acoustic decoding [7]. The 
reverse neural network has been reported for vital sign prediction 
[8]. Multi-task CNN [9] has been developed for remote vital sign 
processing. These studies are of great promise for the vital sign 
decoding but only directly perform the inference. Instead, in our 
study we further boost the signal fidelity before the inference, 
thereby boosting the performance of the system. 

In this study, we propose a novel two-stage deep learning 
framework for deep array signal decoding, with the first stage for 
signal fidelity boosting through the latent-space transformation, 
and with the latter stage for medical insights generation through 
the convolutional neural network. The latent-space 
transformation with the deep autoencoder facilitates the 
suppression of the noise and interferences in the raw signal, 
thereby boosting signal fidelity crucially. We have further 
investigated the enhanced supervision for signal fidelity boosting 
by referring to the additionally captured near-body signal. This 
study will advance long-term continuous health monitoring, 
thereby facilitating the big data practices [10, 11]. 

Our major contributions are summarized as below: 

(1) A novel deep sensor array decoding system with array 
signal perception, signal fidelity boosting, and medical 
insight inference;  

(2) The latent-space encoding that suppresses the noise and 
interferences in the raw signal, for signal fidelity 
boosting before inference; 

(3) Real-world experiments on sleep apnea detection to 
validate the two-stage deep learning framework that is 
composed of the fidelity boosting and inference steps.   

 

II. APPROACH 

A. System Diagram 

The system diagram is given in Fig. 1. The breathing sound, 
while strong near the the human subject, decays rapidly when it 
propagates to the remote acoustic monitor. Therefore, we 
propose a novel two-stage deep learning framework, to firstly 
boost the array signal fidelity through the autoencoder that owns 
the encoder and decoder, and then generate the medical insight 
though the convolutional neural network. 

B. Latent-Space Array Signal Fidelity Boosting  

The latent-space array signal fidelity boosting aims to 
transform the raw signal to the sparse space for noise and 
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inference suppression. It is achieved by an encoder 𝐷𝜓
𝑒  and a 

decoder 𝐷𝜔
𝑑 , as (1), where, 𝜓  and 𝜔  correspond to their 

parameters, respectively, 𝑥𝑛  is the 𝑛 − 𝑡ℎ signal segment, and 
𝑥̂𝑛 is reconstructed signal from the latent space representation 
𝐷𝜓

𝑒 (𝑥𝑛).  

 

𝑥̂𝑛 = 𝐷𝜔
𝑑 (𝐷𝜓

𝑒 (𝑥𝑛))                             (1) 

 

The learning process is as (2), where, ℒ𝑛(∙)  is the mean 
square loss function, 𝑥𝑛,𝑐  and 𝑥̂𝑛,𝑐  correspond to the 𝑐 − 𝑡ℎ 
channel in the input and output, respectively, 𝐶 is the number of 
channels, and 𝑁 is the number of instances.  

 

min
𝜓,𝜔 

1

𝑁𝐶
∑ ∑ ℒ𝑛(𝑥𝑛,𝑐 , 𝑥̂𝑛,𝑐)𝐶−1

𝑐=0
𝑁−1
𝑛=0                  (2) 

 

To further investigate the array signal fidelity boosting 
approach, we have considered two architectures, with the first 
named as ‘AE + CNN’ denoting autoencoder plus convolutional 
neural network, and with the latter named as ‘Guided AE + 
CNN’ that further introduces the nose-side acoustic signal as 
part of the ground truth during fidelity boosting. For the latter 
one, the loss function is thus as (3), where, 𝑥𝑡

𝑛 + 𝜇𝑔𝑡
𝑛 is the new 

ground truth that also considers the nose-side strong signal 𝑠𝑡
𝑛 

regulated by the coefficient 𝜇, and 𝑇 is the number of samples 
in the signal segment. This will facilitate the understanding of 
whether additional training information can enhance detection 
performance.     

 

ℒ𝑛(𝑥𝑛, 𝑥̂𝑛) =
1

𝑇
∑ ‖(𝑥𝑡

𝑛 + 𝜇𝑠𝑡
𝑛) − 𝑥̂𝑡

𝑛‖𝑇−1
𝑡=0

2
       (3) 

 

C. Inference and Evaluation 

The boosted array signal is then fed into the inference stage, 
which is composed of the convolutional neural network and the 
fully connected neural network. To extensively evaluate the 
effectiveness of the proposed novel deep learning framework, 
we have compared it with the CNN-only method, and the CNN 
method with the boosted dataset (bstCNN) considering that the 
sleep apnea events in our experiments are minority cases [7]. 
Further, we have taken into account the Dynamic Time Warping 
(DTW) for comparison, which is a popular sequence matching 
technique for classification.  

III. RESULTS 

A. Experiments 

In out experiments, we have collected the human data with 
the IRB approval, from four human subjects. Each one 
performed two trials for training and testing, respectively, with 
each trial as 30-min. In each trial the participants were asked to 
have normal breath for 50min, and then repeat the process: hold 
the breath for about 10-sec and then have normal breath for 
about 50-sec. The customized array monitor was placed on the 
bedframe for noncontact acoustic monitoring. 

B. Latent-Space Array Signal Fidelity Boosting  

The latent-space array signal fidelity boosting has been 
illustrated in Fig. 2, where two boosting methods are given in 
a1-a2) and b1-b2), respectively. As shown, in a1) the ‘AE + 
CNN’ method can effectively suppress the signal distortions that 
may be induced by noise and interferences. One (channel No. 4) 
of the four channels is chosen for visualization. In a2), all four 
boosted channels are visualized together, indicating the 
effectiveness of the algorithm.  

Further in b1), the ‘Guided AE + CNN’ shows enhanced 
signal fidelity boosting, since the reconstructed signal is more 

 
Fig. 1. The proposed novel two-stage deep learning framework, to 
firstly boost the array signal fidelity, and then generate the medical 
insight. (Notes) E: encoder; D: decoder; F: inference function. 
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Fig. 2. The latent-space array signal fidelity boosting, where two 

boosting methods are given in a1-a2) and b1-b2), respectively. 
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Fig. 3. The inference performance of the two methods, ‘Guided 

AE + CNN’ and ‘AE + CNN’, where state-of-the-art, bstCNN, 

CNN, and DTW, are also illustrated. (Note) nb: non-breath. 

 



consistent with the trend of the raw signal. b2) further illustrates 
all channels boosted. The interesting results indicate that the 
introduction of the nose-side strong acoustic signal to the 
training process can facilitate the signal boosting essentially.  

C. Inference Performance vs State-of-the-art 

The inference performance of the two methods, ‘Guided AE 
+ CNN’ and ‘AE + CNN’, is given in Fig. 3, where state-of-the-
art methods [7], bstCNN, CNN, and DTW, are also illustrated.  

The proposed ‘Guided AE + CNN’ approach has the highest 
accuracy (93.3%), as well as the highest recall and f1-score, 
regarding the non-breath events (nb). This indicates that the 
algorithm encourages the detection of the non-breath events, 
which is essential for sleep apnea monitoring.  

IV. CONCLUSION 

In this study, we have proposed a novel two-stage deep 
learning framework for array signal decoding, targeting the 
remote health big data. The array signal fidelity is firstly boosted 
in the first stage with the latent-space transformation through the 
deep autoencoder, thereby suppressing the noise and 
interferences. The enhanced supervision is further investigated 
through introducing the near-body signal as the additional 
reference. In the second stage, the enhanced signal is fed into the 
convolutional neural network for inference. Evaluated on the 
remote sleep apnea detection application, the proposed 
innovative framework can effectively boost the acoustic signal 
fidelity and detect the non-breath events with an accuracy up to 
93.3%. This study will greatly advance remote health big data 
through deep signal array decoding innovations. 
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