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Abstract— Remote health monitoring is of great potential to
bring long-term continuous big data for precision medicine. The
challenge arises since the noise and interferences usually
contaminate the signal significantly. In this study, to decode the
medical insights from the rapidly decayed signal captured
remotely, we propose a deep multi-channel signal decoding system
with cascaded latent-space fidelity boosting. The system is
composed of the multi-channel acoustic sensing device and the
deep multi-channel signal decoding algorithm. The device can be
placed on the bedframe to capture the spatial dynamics of the
acoustic information during breathing. The deep learning
framework with cascaded latent-space fidelity boosting before
inference, can suppress noise and interferences hidden in the
signal, through multiple iterations of space transformation and
signal reconstruction. We take the sleep apnea as the real-world
study, to demonstrate the promise of the proposed system. Our
experiments have demonstrated the effectiveness of the system,
superior to state-of-the-art. This study will promisingly advance
remote signal perception and mining for precision medicine.
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I. INTRODUCTION

Advanced electronics and computing technologies are
advancing health monitoring in daily scenarios [1, 2]. Remote
health monitoring is of great potential to bring long-term
continuous big data for precision medicine [3-6]. The nature of
contactlessness, unobtrusiveness, and convenience makes
remote health monitoring highly promising for different kinds
of vital sign monitoring.

We take a special interest in array-based multi-channel
signal perception and decoding, for complementary pattern
capturing considering the rapid decaying of the signal. Previous
studies usually target the direct signal decoding. Decoding can
leverage sophisticated artificial intelligence to understand the
hidden patterns. The long short-term memory has been
leveraged for contact-free heart rate estimation [7]. The
recurrent network has been designed for risk prediction for
patients [8]. The transformer-based method has been designed
for heart rate and blood pressure forecasting [9]. The
BreathTrack system [10] has been developed with the
smartphone for breathing sound capturing and the deep learning
for sleeping phase analysis. Chen et al. developed the passive
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radio sensing system and the deep transfer network for
respiration analysis [11]. The convolutional neural network has
been developed for acoustic sleep apnea detection [12].

However, the remote signal is usually highly noisy and of
heavy interferences, posing a great challenge for data mining
[13-16]. Therefore, we propose to leverage the array signal
sensing and the deep learning for robust data mining. We take
the sleep apnea as the real-world study, to demonstrate the
promise of the proposed system.

More specifically, the system is composed of the multi-
channel acoustic sensing device and the deep multi-channel
signal decoding algorithm. The device can be placed on the
bedframe to capture the spatial dynamics of the acoustic
information during breathing. The deep learning is leveraging
the cascaded latent-space fidelity boosting before inference,
which is achieved through multiple deep autoencoders stacked
for noise and interference suppression. Each autoencoder
compresses the input to the latent-space where the critical
patterns are maintained and irrelevant signal characteristics are
suppressed. Our experiments have demonstrated the great
promise of the proposed novel system. The major contributions
are summarized as below:

(1) The multi-channel acoustic signal sensing and learning
system, for sleep apnea detection;

(2) The deep learning framework with cascaded latent-
space fidelity boosting before inference, thereby
suppressing noise and interferences hidden in the signal;

(3) The cascaded structure with multiple iterations of latent-
space transformation and signal reconstruction, thereby
boosting the fidelity gradually.

II. APPROACH

A. System Diagram

As shown in Fig. 1, the system is composed of the on-
bedframe acoustic sensing device and the deep learning
framework. The device captures multi-channel acoustic signal
during breathing, and the deep learning leverages the stacked
autoencoder to iteratively suppress the noise and interferences
in the latent-space.

B. Cascaded Latent-Space Noise/Interference Suppression

The deep learning framework leverages the cascaded latent-
space fidelity boosting before inference, thereby suppressing



Traditional On-bedframe
/T
/ ¥
Acoustic Fidelity Insights
Signals Boosting Inference

Detection

Fig. 1. The proposed deep multi-channel signal decoding
framework with cascaded latent-space fidelity boosting, towards
remote health big data. (Notes) AE: Autoencoder; CNN:
Convolutional Neural Network.

noise and interferences hidden in the signal. For each iteration
of the boosting, as (1-2), the encoder D{z transforms the signal
X to the latent-space representation C, and then the decoder D2
reconstructs the input achieving the estimate X . 1 and w
correspond to the parameters of the encoder and the decoder,
respectively.

Dj:X - ¢C (1)
Di:c->X 2)

The learning process is as (3), where, D2°D$ denotes the
combined process that includes the encoding and decoding steps.
The process optimizes the parameters 1 and w, to minimize the
square loss between the input and the reconstructed input.

¥, w = argmin||X — (D17,°D$)X||2 3)
Yw

The cascaded fidelity boosting is as (4), where, ( is the
depth of the cascaded architecture, and O is the final output. Q is
selected as 3 in our study, with a cascaded training strategy,
meaning that the earlier autoencoder is trained and afterwards
the next autoencoder gets trained.

0 = (Dj°p4)"x @

C. Detection and Evaluation

The array signal after the cascaded fidelity boosting is then
learned by the convolutional neural network, for non-breath
event detection. Multiple criteria have been used for evaluation
including accuracy, precision, recall, specificity, and f1-score.

III. RESULTS

A. Experiments

The experiments have been conducted on the acoustic signal
acquired with the on-bedframe monitor customized. With the
IRB approval, four subjects participated in the data collection,
and the corresponding signals have been processed to extract the
signal envelope considering the acoustic signal is highly noisy.
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Fig. 2. The boosted signal with the high fidelity, through the

cascaded latent-space suppression process proposed.

B. Cascaded Latent-Space Noise/Interference Suppression

Fig. 2 shows the boosted signal with the high fidelity,
through the cascaded latent-space suppression process. Two
channels out of four are selected in the visualization. al)
illustrates the channel-1 signal segment for the breath instance,
and a2) corresponds to the channel-2 segment. As indicated, the
proposed novel deep learning framework can effectively
suppress the noise and interferences, thereby yielding the
boosted signal with better morphologies.

Inbl), the channel-1 segment for the non-breath instance has
been visualized, and the channel-2 segment is given in b2). With
a lower signal strength during the non-breath instance, the signal
is pretty noisy but also carries high spikes. The proposed
approach can also enhance the signal fidelity effectively with
major characteristics revealed.

C. Performance Summary and Comparison

Fig. 3 shows the performance summary with the five criteria
introduced previously. Further, the state-of-the-art methods
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Fig. 3. The performance summary for the proposed system, and
the comparison with state-of-the-art.



including the convolutional neural network and the dynamic
time warping [12] have been considered in the comparison.

The results promisingly demonstrate that the proposed novel
deep learning framework has the highest accuracy (94%). The
recall and specificity are also much higher than state-of-the-art,
indicating the effectiveness regarding non-breath events
detection.

IV. CONCLUSION

In this study, we have designed and validated a deep multi-
channel signal decoding system with cascaded latent-space
fidelity boosting, aiming to decode the medical insights from the
rapidly decayed signal captured remotely. The multi-channel
acoustic signal sensing and learning system has been built to
capture the breath sound dynamics. The deep learning
framework with cascaded latent-space fidelity boosting before
inference, has been designed to suppress the noise and
interferences hidden in the signal. The cascaded structure owns
multiple iterations of transformation and signal reconstruction,
for gradual fidelity boosting. Evaluated on the sleep apnea
experiments, our system has demonstrated great promise,
compared with state-of-the-art. This study will greatly
contribute to remote health big data through innovations on
robust signal perception and mining.
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