
Manuscript accepted by IEEE ICCE2026 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Deep Multi-Channel Signal Decoding with Cascaded 

Latent-space Fidelity Boosting for Precision Medicine 

 

Qingxue Zhang  

Electrical and Computer Engineering 

Temple University, Philadelphia, PA, USA 

qingxue.zhang@temple.edu 

 

 

 

 

Abstract— Remote health monitoring is of great potential to 

bring long-term continuous big data for precision medicine. The 

challenge arises since the noise and interferences usually 

contaminate the signal significantly. In this study, to decode the 

medical insights from the rapidly decayed signal captured 

remotely, we propose a deep multi-channel signal decoding system 

with cascaded latent-space fidelity boosting. The system is 

composed of the multi-channel acoustic sensing device and the 

deep multi-channel signal decoding algorithm. The device can be 

placed on the bedframe to capture the spatial dynamics of the 

acoustic information during breathing. The deep learning 

framework with cascaded latent-space fidelity boosting before 

inference, can suppress noise and interferences hidden in the 

signal, through multiple iterations of space transformation and 

signal reconstruction. We take the sleep apnea as the real-world 

study, to demonstrate the promise of the proposed system. Our 

experiments have demonstrated the effectiveness of the system, 

superior to state-of-the-art. This study will promisingly advance 

remote signal perception and mining for precision medicine.  
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I. INTRODUCTION  

Advanced electronics and computing technologies are 
advancing health monitoring in daily scenarios [1, 2]. Remote 
health monitoring is of great potential to bring long-term 
continuous big data for precision medicine [3-6]. The nature of 
contactlessness, unobtrusiveness, and convenience makes 
remote health monitoring highly promising for different kinds 
of vital sign monitoring. 

We take a special interest in array-based multi-channel 
signal perception and decoding, for complementary pattern 
capturing considering the rapid decaying of the signal. Previous 
studies usually target the direct signal decoding. Decoding can 
leverage sophisticated artificial intelligence to understand the 
hidden patterns. The long short-term memory has been 
leveraged for contact-free heart rate estimation [7]. The 
recurrent network has been designed for risk prediction for 
patients [8]. The transformer-based method has been designed 
for heart rate and blood pressure forecasting [9]. The 
BreathTrack system [10] has been developed with the 
smartphone for breathing sound capturing and the deep learning 
for sleeping phase analysis. Chen et al. developed the passive 

radio sensing system and the deep transfer network for 
respiration analysis [11]. The convolutional neural network has 
been developed for acoustic sleep apnea detection [12].  

However, the remote signal is usually highly noisy and of 
heavy interferences, posing a great challenge for data mining 
[13-16]. Therefore, we propose to leverage the array signal 
sensing and the deep learning for robust data mining. We take 
the sleep apnea as the real-world study, to demonstrate the 
promise of the proposed system.  

More specifically, the system is composed of the multi-
channel acoustic sensing device and the deep multi-channel 
signal decoding algorithm. The device can be placed on the 
bedframe to capture the spatial dynamics of the acoustic 
information during breathing. The deep learning is leveraging 
the cascaded latent-space fidelity boosting before inference, 
which is achieved through multiple deep autoencoders stacked 
for noise and interference suppression. Each autoencoder 
compresses the input to the latent-space where the critical 
patterns are maintained and irrelevant signal characteristics are 
suppressed. Our experiments have demonstrated the great 
promise of the proposed novel system. The major contributions 
are summarized as below:  

(1) The multi-channel acoustic signal sensing and learning 
system, for sleep apnea detection; 

(2) The deep learning framework with cascaded latent-
space fidelity boosting before inference, thereby 
suppressing noise and interferences hidden in the signal; 

(3) The cascaded structure with multiple iterations of latent-
space transformation and signal reconstruction, thereby 
boosting the fidelity gradually. 

II. APPROACH 

A. System Diagram 

As shown in Fig. 1, the system is composed of the on-
bedframe acoustic sensing device and the deep learning 
framework. The device captures multi-channel acoustic signal 
during breathing, and the deep learning leverages the stacked 
autoencoder to iteratively suppress the noise and interferences 
in the latent-space.  

B. Cascaded Latent-Space Noise/Interference Suppression  

The deep learning framework leverages the cascaded latent-
space fidelity boosting before inference, thereby suppressing 
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noise and interferences hidden in the signal. For each iteration 
of the boosting, as (1-2), the encoder 𝐷𝜓

𝑒  transforms the signal 

𝒳 to the latent-space representation 𝒞, and then the decoder 𝐷𝜔
𝑑  

reconstructs the input achieving the estimate 𝒳̂ . 𝜓  and 𝜔 
correspond to the parameters of the encoder and the decoder, 
respectively.  

𝐷𝜓
𝑒 : 𝒳 → 𝒞                                  (1) 

𝐷𝜔
𝑑 : 𝒞 → 𝒳̂                                 (2) 

The learning process is as (3), where,  𝐷𝜓
𝑒 °𝐷𝜔

𝑑  denotes the 

combined process that includes the encoding and decoding steps. 
The process optimizes the parameters 𝜓 and 𝜔, to minimize the 
square loss between the input and the reconstructed input.  

 

𝜓, 𝜔 = argmin
𝜓,𝜔 

‖𝒳 − (𝐷𝜓
𝑒 °𝐷𝜔

𝑑 )𝒳‖
2
                 (3) 

The cascaded fidelity boosting is as (4), where,  Ω is the 
depth of the cascaded architecture, and 𝒪 is the final output. Ω is 
selected as 3 in our study, with a cascaded training strategy, 
meaning that the earlier autoencoder is trained and afterwards 
the next autoencoder gets trained.    

𝒪 = (𝐷𝜓
𝑒 °𝐷𝜔

𝑑 )
Ω

𝒳                             (4) 

C. Detection and Evaluation  

The array signal after the cascaded fidelity boosting is then 
learned by the convolutional neural network, for non-breath 
event detection. Multiple criteria have been used for evaluation 
including accuracy, precision, recall, specificity, and f1-score.  

III. RESULTS 

A. Experiments 

The experiments have been conducted on the acoustic signal 
acquired with the on-bedframe monitor customized. With the 
IRB approval, four subjects participated in the data collection, 
and the corresponding signals have been processed to extract the 
signal envelope considering the acoustic signal is highly noisy.  

B. Cascaded Latent-Space Noise/Interference Suppression  

Fig. 2 shows the boosted signal with the high fidelity, 
through the cascaded latent-space suppression process. Two 
channels out of four are selected in the visualization. a1) 
illustrates the channel-1 signal segment for the breath instance, 
and a2) corresponds to the channel-2 segment. As indicated, the 
proposed novel deep learning framework can effectively 
suppress the noise and interferences, thereby yielding the 
boosted signal with better morphologies.  

In b1), the channel-1 segment for the non-breath instance has 
been visualized, and the channel-2 segment is given in b2). With 
a lower signal strength during the non-breath instance, the signal 
is pretty noisy but also carries high spikes. The proposed 
approach can also enhance the signal fidelity effectively with 
major characteristics revealed. 

C. Performance Summary and Comparison 

Fig. 3 shows the performance summary with the five criteria 
introduced previously. Further, the state-of-the-art methods 

 
Fig. 2. The boosted signal with the high fidelity, through the 

cascaded latent-space suppression process proposed. 

 
Fig. 3. The performance summary for the proposed system, and 

the comparison with state-of-the-art. 

 
Fig. 1. The proposed deep multi-channel signal decoding 
framework with cascaded latent-space fidelity boosting, towards 
remote health big data. (Notes) AE: Autoencoder; CNN: 
Convolutional Neural Network.  
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including the convolutional neural network and the dynamic 
time warping [12] have been considered in the comparison.  

The results promisingly demonstrate that the proposed novel 
deep learning framework has the highest accuracy (94%). The 
recall and specificity are also much higher than state-of-the-art, 
indicating the effectiveness regarding non-breath events 
detection.  

IV. CONCLUSION 

In this study, we have designed and validated a  deep multi-
channel signal decoding system with cascaded latent-space 
fidelity boosting, aiming to decode the medical insights from the 
rapidly decayed signal captured remotely. The multi-channel 
acoustic signal sensing and learning system has been built to 
capture the breath sound dynamics. The deep learning 
framework with cascaded latent-space fidelity boosting before 
inference, has been designed to suppress the noise and 
interferences hidden in the signal. The cascaded structure owns 
multiple iterations of transformation and signal reconstruction, 
for gradual fidelity boosting. Evaluated on the sleep apnea 
experiments, our system has demonstrated great promise, 
compared with state-of-the-art. This study will greatly 
contribute to remote health big data through innovations on 
robust signal perception and mining.  
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