
Safe Policy Learning in Online Reinforcement

Learning Using Augmented PPO and CMDPs for

Robot Navigation

Zhongna Zhou, K. C. Ho , Zhao Sun, Trevor Tran

1 Abstract

This work focuses on online reinforcement learning (RL) in the presence of en-

vironmental constraints. Specifically, we consider applications involving robot

agents exploring in an environment where obstacles and unsafe zones are present,

and the agents must maximize cumulative rewards and at the same time meet

the environmental constraints. To address this challenge, we formulate the prob-

lem using the constrained Markov Decision Process (CMDP) and incorporate

the environmental constraint costs into the policy updates in the proposed Aug-

mented Proximal Policy Optimization (APPO) algorithm. At each state and for

each possible action, we apply a Variational Auto-Encoder (VAE) [1] to obtain

a probabilistic estimate of the discounted cumulative future environmental con-

straint costs and integrate them as a regularization term to the reward function.

This augmented reward function updates the action-value functions within the

APPO algorithm, which is trained by an e!cient optimization scheme. Ex-

perimental results demonstrate that our methodology enables robot agents to

navigate within the safety-constrained regions e”ectively.
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2 Introduction

We handle constraints for online RL by formulating a CMDP with components:

(S,A, P, r),

where S is the state space (e.g., agent’s 2D position), A is the action space,

P (s→|s, a) defines the transition dynamics, and r(s, a) is the reward function

with s, s→ → S, a → A. In this setting, the agent aims to maximize the expected

cumulative rewards while satisfying certain constraints such as obstacle avoid-

ance and safety passages for navigation. The optimization problem is formulated

as

Maximize J(ω) = Eωω

[ ↑∑

t=0

εt r(st, at)

]
, (1)

Subject to Ci(ω) = Eωω

[ ↑∑

t=0

εt ci(st, x, y)

]
↑ di, i = 1, . . . ,m, (2)

where J(ω) is the accumulated rewards, ϑε is the policy, Ci(ω) is the overall

constraints cost, ω are the policy parameters, r(st, at) is the reward function at

time t with state st → S and action at → A, ε is the forgetting factor, ci(st, x, y)

are the constraint cost functions, di are the constraint thresholds, and m is the

number of environmental constraints.

3 Proposed Method

3.1 Learning a Probabilistic Safety Shield of Unsafe Zones

with a VAE

We propose to learn a probabilistic safety shield for unsafe zones [2] with a

VAE. Assume that the robot explores a planar workspace # ↓ R2. At discrete

time steps t → {1, . . . , T}, it records the location

ωt = (xt, yt) → #, ut → {0, 1}, (3)

where ut = 1 indicates that the position is unsafe or be avoided. Given the

dataset D = {((xi, yi), ui)}Ni=1 from N exploration steps, we apply a VAE to
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estimate a belief function

b : # ↔ [0, 1], b(ω) = Pr
(
u = 1 | ω,D

)
, (4)

which returns the probability that a location is unsafe. Introducing a latent

vector z ↗ p(z) = N (0, Id), we model the encoder as:

qϑ(z | ω, u) = N
(
z;µϑ(ω, u), diag(ε

2
ϑ(ω, u))

)
. (5)

Sampling uses the reparameterization z = µϑ +εϑ ↘ ϑ with ϑ ↗ N (0, Id). The

decoder for Locations conditioned on z is,

pε(ω | z) = N
(
ω;µε(z), diag(ε

2
ε(z))

)
, (6)

and the decoder for Safety Labels is:

pε(u = 1 | z) = ϖ
(
gε(z)

)
, ϖ(s) = 1

1+e→s . (7)

Furthermore, pε(ω, u | z) = pε(ω | z) pε(u | z).
After Training, for a given new location ω(x, y) without a label, we form the

approximate posterior

qϑ(z | ω) = N
(
z;µϑ(ω), diag(ε

2
ϑ(ω))

)
, (8)

and estimate the environment constraint cost ci(st, x, y) as the inverse of the

safety probability (logistic function),

p = ϖ(s) = 1
1+e→s (9)

1 + exp(≃x) = 1/p (10)

ci(st, x, y) ⇐
1

ϖ
(
gε(z)

) . (11)

The smaller is the safety probability, the larger is the cost.

3.2 Augmented Proximal Policy Optimization Algorithm

APPO is a refined Trust Region Policy Optimization that uses a value net-

work and a policy network for modeling. Based on the APPO framework, we

propose an APPO algorithm (Algorithm 1) that incorporates the environment
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constraints to the policy update functions, with the environmental constraint

costs from the VAE integrated as a regularization term to the policy updates.

By incorporating the probabilistic environment constraint cost, the policy can

be learned to avoid the unsafe zone in the environment. The details correspond-

ing to the steps in Algorithm 1 are as follows.

Value Function:

Vω(s) = Eω

[ ↑∑

t=0

εt r(st, at)
∣∣∣ s0 = s

]
. (12)

Modified Reward:

r→(s, a) = r(s, a)≃ϱ ĉi(s, x, y), (13)

with ϱ > 0 serving as a scaling factor for penalty intensity for incorporating the

learned environment cost.

Action-Value Function Update:

Qω(s, a) = r→(s, a) + ε
∑

s↑↓S
P (s→ | s, a)

∑

a↑↓A
ϑ(a→ | s→)Qω(s

→, a→). (14)

where Qω(s→, a→) is modeled by the value network and ϑ(a→ | s→) by the policy

network, and P (s→ | s, a) is from the parametric action distribution.

Advantage Function:

Aω(s, a) = Qω(s, a)≃ Vω(s). (15)

Policy Loss:

Lω = Es,a

[
≃ log ϑ(a | s)Aω(s, a)

]
. (16)

Value Loss:

Lv = mean
(
(advantage policy values≃ baseline policy values)2

)
⇒ 0.25. (17)

where 0.25 is a scaling coe!cient used in the experiment.
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Entropy Loss:

Le = ≃Es,a

[
ϑ(a | s) log ϑ(a | s)

]
. (18)

Total Loss for Agent Training:

L = Lω + Lv + Le. (19)

Algorithm 1 Augmented Proximal Policy Optimization with Environment
Constraints

Input: Policy parameters ω, learning rate ς0, discount factor ε, and environ-

ment constraint definitions.

for each iteration k = 0, 1, 2, . . . do

Policy Evaluation: Compute Vω(s) as in Eq. (12).

Environment Cost: Update the probabilistic environment constraint cost

using the VAE (see Eq. (11) )

Modified Reward: Compute r→(s, a) according to Eq. (13).

Action-Value and Advantage: Compute Qω(s, a) and Aω(s, a) based

on the policy network and value network (see Eqs. (14) and (15)).

Loss Components: Compute policy loss Lω by Eq. (16), value loss Lv by

Eq. (17), and entropy loss Le by Eq. (18).

Total Loss: Form the total loss L = Lω + Lv + Le (see Eq. (19)).

Policy Update: Update parameters:

ω ⇑ ω ≃ ς0 ⇓εL.

end for

4 Experimental Results

In the experiment, we train the VAE for computing the environment constraints

cost for each position, obtain a cost probability value, then apply it in the APPO

policy updating.

The simulation used the MuJoCo simulator [3] with a robot agent. The experi-

ments were conducted on a system equipped with an NVIDIA T4 GPU (15 GB

GPU RAM), 51 GB of system RAM, and a 236 GB disk. The software stack
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includes JAX and OpenAI Safety Gym, and the implementation was performed

in Python using Google Colab. The environment is a maze with black holes.

We treat these black holes as unsafe zones and they are indicated in Figure 1

by the red dots.

Our method extends the PPO framework by combining a VAE to learn the

probabilistic environment constraint cost and then uses it in the modified re-

ward functions during policy network updating. Figure 2 shows the safety cost

distribution, the closer to the unsafe zone, the higher is the cost. Figure 1

illustrates a trajectory after applying the learned policy with the probabilistic

shield (constraints) cost. The agent can avoid the unsafe zone and reach the

goal point. During our experiments, we observe that without the probability

shield cost, we can’t prevent the robot agent from falling into the unsafe zone

(Figure 3). If the agent enters an unsafe zone, it will return to its starting

point. The results show that the probabilistic environment constraint cost can

direct the agent according to the safety constraints and produce an optimized

trajectory to reach the destination.

Figure 1: Online RL trajectory with the probabilistic environment safety con-
straint cost
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Figure 2: Probabilistic safety cost distribution

Figure 3: Illustration of online RL without the proposed probabilistic environ-
ment safety constraint cost
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5 Conclusion

We proposed the use of the inverse of the safety probability as the probabilistic

environment constraints cost and developed the APPO algorithm that leverages

multi-step loss components for robot navigation in an environment where unsafe

zones or obstacles are present. We developed a VAE to learn and then infer the

safety probability, to form the probabilistic environment constraints cost. The

cost is used to modify the reward value functions to update the policy network.

Experimental results show that the probabilistic environment constraints cost

improves the optimum trajectory of the agent. Without the probabilistic safety

shield, the agent cannot prevent from falling into an unsafe/restricted area.
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