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Abstract

We propose a novel task, hierarchical instance tracking,
which entails tracking all instances of predefined categories
of objects and parts, while maintaining their hierarchical
relationships. We introduce the first benchmark dataset sup-
porting this task, consisting of 2,765 unique entities that are
tracked in 552 videos and belong to 40 categories (across
objects and parts). Evaluation of seven variants of four
models tailored to our novel task reveals the new dataset
is challenging. Our dataset is available at this URL.

1. Introduction
Many people use camera-based services to stream videos
showing their daily activities. For example, blind individu-
als regularly use them to learn about their visual surround-
ings [44, 45, 48, 60], including with Be My Eyes, Aira, and
Envision AI. A growing number of sighted users are also us-
ing extended reality devices to enrich their daily viewing ex-
periences, including with Meta’s Orion glasses, VITURE’s
XR glasses, and Apple’s Vision Pro. A key challenge for
such video-based services is how to balance preserving pri-
vacy with retaining useful data.

Two types of scenarios underscore the tension between
privacy preservation and data retention. First, is when a
person shares their video feed with another person. This
is common for blind people, who for example may want
human confirmation regarding the required dosage for their
prescribed medication in a particular pill bottle without re-
vealing their name and address. AI could assist by either
(1) obfuscating everything except the part of interest (e.g.,
dosage information) or (2) obfuscating only private cate-
gories (e.g., name and address). The second scenario is
when a person shares video with a service provider that
subsequently saves the data. It is common for blind peo-
ple to share their private information with companies as

a lesser evil to not learning about their visual surround-
ings [21], and in such cases obfuscating only the private
categories (e.g., name and address) would preserve users’
privacy while maintaining much of the utility of saved data
for downstream purposes (e.g., training AI models). Impor-
tantly, for both these scenarios, an incorrect segmentation
in even a single video frame would mean that information a
user wants to conceal is revealed.

Addressing the need to balance preserving privacy with
retaining useful data, we propose a novel task we call hier-
archical instance tracking. It entails identifying and track-
ing all instances of predefined categories of objects and
their parts, while maintaining their hierarchical relation-
ships. This task unifies two problems historically examined
independently: video instance segmentation (i.e.,tracking in
videos all instances of predefined categories of objects) and
part segmentation (i.e., locating in images all instances of
predefined categories of parts of objects).

We introduce the first publicly-available dataset support-
ing our novel task, which includes annotations for tracking
semantically-labeled objects and their parts using masklets
(i.e., tracked segmentation masks). Notably, this is also the
first publicly-available dataset to even semantically track
just parts alone. We create the dataset by annotating 552
publicly-available videos taken by people with vision im-
pairments of private content, which is called BIV-Priv [45].
For each video, we segmented and tracked every object and
its parts that belong to 40 semantic categories, resulting in
tracks for 2,765 entities with 537 objects and 2,228 parts.
We call the resulting annotated dataset BIV-Priv-HIT, re-
flecting the task of Hierarchical Instance Tracking (HIT).

Next, we analyze how BIV-Priv-HIT compares to eight
existing datasets for entity tracking and hierarchical seg-
mentation. We show existing datasets cannot support our
novel task because (1) none track parts with semantic labels
and (2) none simultaneously track an object and its embed-
ded parts, permitting the same pixel to belong to multiple
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Figure 1. Example from our BIV-Priv-HIT dataset showing ground truth annotations we collected to track a pill bottle and its private parts.
The legend on the left indicates the semantic labels and instance colors used to overlay tracked entities in the video frames.

semantic categories. We also show the new dataset fills im-
portant gaps of existing datasets and so supports develop-
ing more generalized algorithms. For instance, videos in
BIV-Priv-HIT are orders of magnitude longer, ranging from
approximately double to 11 times as long as videos in exist-
ing datasets. Additionally, segmentations in our dataset are
unlike those in existing datasets including because (1) parts
tend to contain text, (2) parts tend to have boundaries that
are smoother and more elongated, at times even resembling
a line segment, and (3) objects occupy much larger portions
of video frames. This is exemplified in Figure 1.

Finally, we evaluate seven variants of four top-
performing models for three related tasks—hierarchical im-
age segmentation, video object segmentation, and video
instance segmentation—on our dataset, after repurposing
them for the task of hierarchical instance tracking. This ef-
fort includes introducing a new evaluation metric tailored to
our tracking task. We found that all models perform poorly
overall, especially for tracking parts but more generally for
locating all small entities. In addition, the models are inef-
ficient, as they require ad hoc workarounds involving mul-
tiple inference passes to perform our task. These findings
underscore the value of our new dataset in supporting the
AI community to tackle a new challenging problem.

We expect our dataset challenge will inspire new al-
gorithmic designs for handling a greater diversity of real-
world challenges within a single model. Success in this
work could benefit other privacy-preserving applications,
such as for individuals conversing with video streaming
services (e.g., Zoom, WhatsApp), and robots navigating
environments (e.g., emergency responders sent to crum-
bling/burning buildings). Success can also benefit other
video-based applications by infusing finer-grained part-
level understanding, including for robotics manipulation
tasks, video editing, video retrieval, and pose estimation.

2. Related Work

Part and Hierarchical Segmentation Datasets. The re-
cent successes of segmentation models at locating objects
belonging to pre-defined categories has prompted a shift

of focus for the community to instead segment more chal-
lenging part-level categories. This shift, which began in
the mainstream computer vision community around 2017,
has been inspired and enabled by new datasets that provide
segmentations showing how objects are hierarchically de-
composed into their nested parts [10, 15, 19, 23, 28, 34, 41,
46, 49, 51, 62–64]. Our work complements this literature
by providing the first dataset containing semantic part seg-
mentations as well as hierarchical segmentations for track-
ing content in videos. Additionally, parts in our dataset fill
a gap of existing part-based datasets by exhibiting unique
characteristics, including their tendency to contain text and
so have smoother, more elongated boundaries.

Tracking Datasets. Two popular types of entity tracking
datasets exist. Video object segmentation (VOS) datasets
provide masks of entities tracked across all video frames
(e.g., SA-V [42], DAVIS [40], YouTube-VOS [56]), while
video instance segmentation (VIS) datasets also require la-
beling the category for each tracked entity (e.g., YouTube-
VIS [54]). Most similar to our work is the SA-V [42] VOS
dataset because it is the only other dataset that contains
masklets (i.e., tracked masks) for parts. However, the SA-V
dataset does not (1) provide semantic labels or (2) specify
whether a masklet is for an object or a part (inferring this is
non-trivial). Our work fills both these gaps.

Models for Segmentation Tracking and Hierarchical
Segmentation. None of the models for tracking or hier-
archical segmentation support our proposed task. For in-
stance, video instance segmentation (VIS) models can be
trained and applied for our target semantic object and part
categories, but they cannot achieve this in a single inference
pass since they do not permit the same pixel to belong to
multiple semantic categories.1 Similarly, video object seg-
mentation (VOS) models [42] don’t permit the same pixel to
belong to multiple semantic categories and so would require

1An orthogonal line of research focuses on part-based tracking. While
these methods also track “parts”, their definition differs: in these ap-
proaches, parts are treated as appearance cues on objects (i.e., patches)
that enhance the robustness of object tracking, rather than as semantic part
categories with distinct identities [1, 6, 12, 14, 25, 37, 57, 58, 61].



multiple inference passes to support our task. Extending
beyond VIS’ limitations, VOS models also ignore seman-
tics and require human annotation at the first appearance of
each entity to track them. An alternative approach could be
to apply hierarchical instance segmentation models [50] to
every video frame to locate objects and parts, however such
models ignore the fundamental concept of preserving “iden-
tities” over time and so would necessitate extra complexity
to associate segmentation masks across video frames. De-
spite modern models’ limitations, we benchmark them us-
ing ad hoc workarounds to highlight their potential value as
a foundation for addressing our novel task. While exper-
imental results reveal all types struggle, underscoring our
dataset offers a challenging problem for the research com-
munity, VOS models offer the greatest promise.

Datasets Originating from Blind Individuals. This
work also contributes to the movement in creating bench-
mark datasets where visual content originates from blind in-
dividuals. Most work focuses on images [2, 5, 7–9, 13, 20–
22, 26, 29, 43, 47, 48, 59], with VizWiz [20] pioneering this
direction in 2018, yet none provide hierarchical segmen-
tations. Other efforts focus on videos [27, 31, 38, 52], yet
none provide masklet annotations. Our work fills both gaps,
contributing to the broader goal of designing more inclusive
AI models that address the interests of blind people.

3. Hierarchical Instance Tracking Dataset

We now introduce BIV-Priv-HIT, the first dataset that sup-
ports hierarchical instance tracking (and part tracking).

3.1. Dataset Creation
Video Source. We leverage the 552 publicly-available
videos from BIV-Priv [45], which were captured by 26 blind
photographers of 16 private object categories [48] (e.g.,
credit cards). Importantly, none of the private content was
pertinent to the photographer and instead originated from
the datasets’ authors with Institutional Review Board ap-
proval. Each photographer was instructed to capture an ap-
proximately 25 second clip for each type of private object
twice, once with it positioned in the background to mimic
accidental privacy disclosures and once in the foreground to
mimic intentional privacy disclosures, emulating what was
previously observed in authentic use cases [21].

Hierarchical Category Selection. We identified 24 part
categories to associate with the 16 object categories estab-
lished when curating the BIV-Priv videos [48]. We devel-
oped the part taxonomy to capture three tiers of common
privacy concerns [18, 33, 39, 53]:
• Personally Identifiable Information (PII): information di-

rectly revealing an individual’s identity, such as names,
account numbers, and credit card numbers.

• Quasi-personally Identifiable Information: information
that can indirectly reveal an individual’s identity, such as
addresses and job titles.

• Sensitive Information: not tied to a person’s identity, but
information a person might not want shared with others.

A list of all object categories and their associated privacy
categories is shown in Figure 2.

Annotation Collection. For every video, we tracked ev-
ery instance of each object and part category in our taxon-
omy using masklets. This involved a three-step process.

First, we constrained the annotation of masklets to only
the clips of videos with target objects visible. To achieve
this, three in-house annotators contributed by indicating the
start and end frames where any target object category ap-
peared (along with the detected category). For quality con-
trol, we had each video annotated by two people and then
annotation differences were resolved via group discussions.

Next, we collected segmentations for every instance of
the target objects and parts. We hired 25 trusted crowd-
workers2 from Amazon Mechanical Turk (AMT) to com-
plete this using a home-grown interface which presents each
frame and then has the annotator sequentially segment a
specified object category followed by every visible instance
of specified part categories. To accommodate occlusions
fragmenting entities into multiple parts, we included a fea-
ture that enables creating multiple polygons when segment-
ing a single entity. We supported high annotation quality
via on-boarding ‘warm up’ tasks, detailed instructions, live
‘office hours’ during annotation deployment periods for an-
swering questions, and phased task rollouts to enable time
for continuous inspection of submitted annotation results
and worker feedback. Additionally, for each video frame,
we collected annotations from two crowdworkers and then
used their similarity to establish high-quality ground truth
instance segmentations (as described in the supplementary
materials). We chose to annotate every 40th video frame
to balance annotating enough frames to be comparable in
size to existing VOS datasets (see Figure 2) while skip-
ping neighboring frames with very similar appearances. In
total, 11,165 frames were annotated. This culminated in
10,165 object segmentation masks and 22,037 part segmen-
tation masks, with 8.9% (i.e., 1,000) of video frames lack-
ing segmentation masks. Cumulatively, the crowdworkers
took 1,820 annotation hours (i.e., 45.5 40-hour work weeks)
to complete the annotations.

Finally, in-house annotators associated the annotation
masks belonging to the same entity across video frames and
assigned unique instance IDs to each resulting masklet (for
objects and parts). This was achieved using a home-grown
tool, with quality ensured by having all resulting masklets
verified by a second author. Cumulatively, these assocation

2We vetted the crowdworkers through their involvement in creating for
us ∼40,000 object and part segmentations for other datasets.



Ours ADE20K [65] PACO-EGO4D [41] PACO-LVIS [41] PartImageNet [23] PASCAL-Part [10]
Tracking ✓ ✗ ✗ ✗ ✗ ✗
# of Images 11.1K 27.6K 26.3K 57.6K 24K 19.7K
% of Images with Object Masks 91% 100% 90.9% 91.5% 100% 96.4%
% of Images with Part Masks 67.2% 45.7% 90.8% 91.5% 100% 96.4%
% of Objects with Part Masks 73.8% 13.6% 87.2% 76.4% 100% 80%

Table 1. Comparison of the composition of our dataset to existing hierarchical object-part segmentation datasets. While existing datasets
hierarchically segment objects in images, BIV-Priv-HIT is the first to hierarchically segments objects across videos’ frames.

annotations were completed in approximately 150 hours,
which translates to an average of just over 3 minutes to as-
sociate all masks for each of the 2,765 tracked entities.

Dataset Splits. We divided the videos into training, val-
idation, and testing splits using a 60% (327 videos), 15%
(87 videos), and 25% (138 videos) split respectively. This
resulted in the following number of annotated frames in the
three splits: 6,690 in training, 1,680 in validation, and 2,795
in testing. When creating the splits, we ensured that the
blind videographers who initially recorded the videos did
not appear across multiple datasets splits to prevent models
from overfitting to features of specific photographers.

3.2. Dataset Analysis
We now characterize BIV-Priv-HIT and how it compares to
existing datasets.

Baseline Datasets for Comparison. We chose to com-
pare our dataset to existing datasets that support the two
distinct problems our proposed task unifies into the same
framework: hierarchical instance segmentation in images
and entity tracking in videos.

For hierarchical segmentation datasets, we chose those
that similarly provide segmentations with semantic labels
for objects and their nested parts. We chose the fol-
lowing recent and popular datasets: PACO-LVIS [41],
PACO-EGO4D [41], ADE20K [65], PartImageNet [23],
and PASCAL-Part [10].

We chose entity tracking datasets that similarly pro-
vide segmentation masks of entities throughout each video’s
frames to create masklets. This includes a popular video ob-
ject segmentation dataset which provide masklets of objects
without associated semantic labels—DAVIS [40]—and a
popular video instance segmentation dataset which pro-
vides masklets of objects with associated semantic labels—
YouTube-VIS [54, 55]. Also included is the recent SA-
V [42] dataset which is the first dataset to provide part-level
masklets, although without semantic labels or explicit flags
indicating whether a tracked entity is an “object” or “part”.

Dataset Composition. We first characterize and compare
BIV-Priv-HIT’s overall composition to existing datasets.

We report in Table 1 a characterization of the hierarchi-
cal segmentations for all relevant datasets. As shown, BIV-
Priv-HIT is unique because it is the only dataset to provide
hierarchical segmentations for tracking entities in videos.

Ours DAVIS [40] YT-VIS [55] SA-V [42]
Contains Semantics ✓ ✗ ✓ ✗
Part Tracking ✓ ✗ ✗ ✓*
Hierarchy Tracking ✓ ✗ ✗ ✗
# of Videos 552 150 4,019 50.9K
Mean Length (sec) 27.9 2.4 5.31 14
# Annotated Frames 11,165 10,459 4,519 4.2M
# Instance Masks 32,202 27.1K 265.5K 35.5M
# Unique Instances 2,765 376 8,698 642.6K
Disappearance Rate 9% 16.1% 10.8% 42.5%

Table 2. Comparison of the composition of our dataset to exist-
ing entity tracking datasets. BIV-Priv-HIT is unique because it is
the first to contain both semantic part annotations and hierarchical
object-part instance segmentations as well as because it has longer
video durations. (* flags that a dataset, in this case SA-V, lacks la-
bels specifying whether any given mask is of an object or a part.)

All other datasets only provide segmentations for images.
BIV-Priv-HIT also tends to have a smaller prevalence of an-
notated images showing at least one object of interest (i.e.,
91%) and part of interest (67%), an especially important
feature since tracked entities can disappear by leaving the
field of view or becoming occluded.

We report in Table 2 a characterization of all relevant
entity tracking datasets. As shown, BIV-Priv-HIT is unique
in three key ways. First, it is the only dataset to provide
object and part segmentations with semantic labels. Sec-
ond, it is the first to track hierarchically decomposed ob-
jects (i.e., of objects and their nested parts). Third, the typi-
cal video duration for BIV-Priv-HIT is orders of magnitude
longer, with the mean video length of 27.9 seconds nearly
double the mean length for SA-V [42] and over 11 times
longer than the mean length for DAVIS [40]. Beyond these
unique features, BIV-Priv-HIT is largely comparable to ex-
isting datasets. For instance, it lies in the middle of the pack
with respect to size (i.e., number of included videos, anno-
tated frames, and instance masks) and the number of unique
entity instances. It also exhibits a similar prevalence of en-
tity’s disappearing in a video.

Next, we perform more fine-grained analysis of the
prevalence of parts in BIV-Priv-HIT. We observe that dif-
ferent object categories can contain different amounts of
parts (boxplots provided in the Supplementary Materials),
ranging from many (e.g., bank statements contain up to 6
parts) to few (e.g., local newspapers contain at most 1 part)
to none (e.g., tattoo sleeves). This underscores the value of
our dataset in encouraging the design of models that can ac-
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Figure 2. Boxplot showing for the entire dataset how many of each type of part annotation is visible for each object category. Black
centered lines represent medians, bottoms and tops of each box represent the 25th and 75th percentile values respectively, and the whiskers
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Figure 3. Boxplots characterizing segmentations in our dataset and seven other datasets with respect to six metrics, overall as well as with
respect to only objects and parts independently. (Note: object coverage can only be computed for hierarchical segmentation datasets.)

count for object decompositions of different complexities.
Additionally, within a specific object category, we observe
variability regarding how many parts and which types are
visible (Figure 2). Consequently, our dataset will encour-
age models to rely on visual evidence in each frame rather
than biases from typical object-part associations.

Segmentation Properties. We also characterize the ap-
pearance of objects and parts and how they compare with
segmented entities in related datasets3. To do so, we use the
following metrics:

• Boundary Complexity: ratio of a entity’s area to the
length of its perimeter (i.e., isoperimetric quotient). Val-
ues range from 0 (highly jagged boundary) to 1 (circular).

• Convexity: ratio of the entity’s convex hull’s perimeter to
the perimeter of the entity. Values range from 0 (signifi-
cant concavities) to 1 (perfectly convex).

3For datasets larger than BIV-Priv-HIT, we randomly sample 10,165
annotations for analysis to avoid excessive computational cost. For
datasets with part annotations, we sample objects with at least one part an-
notation. For datasets smaller than BIV-Priv-HIT we use the entire dataset.

• Eccentricity: ratio of the distance between a segmenta-
tion’s foci and the length of its central axis. Values range
from 0 (circular) to 1 (line segment).

• Solidity: ratio of the entity’s area to the area of the en-
tity’s convex hull. Values range from 0 (fragmented or
concave) to 1 (compact and solid).

• Image Coverage: ratio of the the image’s pixels occupied
by the entity (object or part). Values range from 0 (no
image coverage) to 1 (complete image coverage).

• Object Coverage: ratio of the object’s pixels occupied
by all its nested parts. Values range from 0 (no object
coverage) to 1 (complete object coverage).

Results are shown in Figure 3. When comparing BIV-
Priv-HIT to all the entity tracking and hierarchical seg-
mentation datasets, we observe segmentation masks in our
dataset are distinct for five of the six metrics (not object cov-
erage). We anticipate these distinctions, described below,
will encourage the design of models that can generalize to
a greater diversity of segmentation mask types.

With respect to the entity boundary, we observe that
the objects in BIV-Priv-HIT exhibit the least complexity



(Figure 3a), convexity (Figure 3b), and solidity (Figure
3d). This makes sense since our dataset focuses largely
on human-made artifacts that typically have rectangular
shapes, such as documents (i.e., pieces of paper), boxes, and
pregnancy tests. Such human-made artifacts, unless dam-
aged, lack concavities and jagged edges.

With respect to the entity shape, objects tend to be more
circular than elongated (e.g., line segment) while parts tend
to be more elongated than circular compared to existing
datasets (Figure 3c). We attribute the latter observation to
parts typically being textual information, which manifests
as a line segment.

With respect to entity size, BIV-Priv-HIT’s objects oc-
cupy the greatest diversity of sizes while parts occupy
the least diversity of sizes compared to existing datasets
(Figure 3e). We attribute the former finding to the fact that
the objects of interest were intentionally positioned both in
the background and foreground of images by the photogra-
phers. Moreover, objects can occupy larger portions of an
image than observed in other datasets. This finding aligns
with prior work’s findings [7, 43, 47], which noted that peo-
ple with vision impairments take close-up photographs of
objects to better facilitate visual interpreters to recognize
and so describe the visual content.

Semantic Properties. The 40 semantic categories in BIV-
Priv-HIT share little overlap with all other datasets shown in
Tables 1 and 2.4 We attribute this to existing datasets’ focus
on content lacking private information, in accordance with
best practices for dataset creation to remove such content.
Our work, in contrast, centers on private categories.

Still, existing datasets can capture categories in our
dataset with more abstract forms. For example, ‘document’
is a more general form of our ‘bank statement’ category.
Additionally, PACO-EGO4D, PACO-LVIS, and PartIma-
geNet all feature a category label for ‘bottle’ which shares
a partial overlap with BIV-Priv-HIT’s ‘pill bottle’; how-
ever, the other datasets focus at the part-level categories on
the composition and anatomy of the bottle (e.g., cap, neck,
body, and label) while BIV-Priv-HIT focuses on the private
contents of a pill bottle’s label (e.g., address and prescrip-
tion) [23, 41]. PASCAL-Part also features a label for ‘card,’
yet it makes no distinction as to what kind of card, such
as credit card, playing card, business card, and so on [10].
Last, ADE20K shares the most partial overlap with BIV-
Priv-HIT, with its category labels of bottle, card, bill, and
document [64]. However, these objects do not contain part-
level data and again represent more abstract, non-privacy-
centric forms of the objects. While the category alignment
with our dataset is limited, we suspect the few similarities
across categories could facilitate models trained on the more

4While SA-V could overlap with BIV-Priv-HIT due to its scale, SA-V
excludes semantic labels preventing such comparison.

abstract categories to generalize to the more specific cate-
gories encountered in our dataset.

4. Evaluating Hierarchical Instance Tracking
Given the novelty of our task, we introduce a metric that
for assessing how well models can preserve the hierarchical
structure between an objects and its parts throughout track-
ing. Our key idea is to extend MOTA [4], a standard metric
for multi-object tracking:

MOTA = 1−
∑

t FNt + FPt + IDSWt∑
t GTt

where t is the frame index, FN are False Negatives, FP
are False Positives, IDSW are identity switches, and GT
is the ground truth of one object.

We call our new metric MOTA-H, to reflect that it calcu-
lates tracking object’s Hierarchical compositions such that
parts of an object should remain associated with that ob-
ject over time. Like MOTA, MOTA-H’s score range from
1.0 for perfect tracking accuracy to negative infinity. Un-
like MOTA, which determines detection matches between
a prediction and ground truth using the overlap of bound-
ing boxes, we instead use intersection over union (IoU) be-
tween segmentation masks, setting the IoU threshold to 0.5.
We then change how identity switches are calculated to in-
corporate hierarchical relations as follows:

H-IDSW =


1, if predicted part ID changes
1, if predicted parent object changes
0, otherwise

resulting in the following equation for MOTA-H, where all
scores are only measured for the parts:

MOTA-H = 1−
∑

t FNt + FPt + H-IDSWt∑
t GTt

To also evaluate performance for tracking objects, we in-
clude a MOTA variant we call MOTA-OBJ, where the only
change is computing detection matches between predicted
and ground truth objects using IoU between segmentation
masks (instead of the overlap between bounding boxes).

5. Model Benchmarking
We next benchmarked seven variants of four models. All
experiments were run on NVIDIA’s Tesla A100 GPUs.

Evaluation Metrics. We evaluate with respect to five
metrics. Two are the metrics we introduced for our hier-
archical instance tracking task: MOTA-H and MOTA-OBJ.
The other three provide backward compatibility for analy-
sis with video object segmentation (VOS), video instance



Cheats Inf./Vid. MOTA-H MOTA-OBJ J & F AP AR

(Mean) Total Objects Parts Total Objects Parts Total Objects Parts

HIPIE-R50 ✗ 20.25 – – 0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HIPIE-ViT ✗ 20.25 – – 0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 Mask2Formers ✗ 2.00 0.03 0.12 0.27 0.21 0.07 0.41 0.25 0.11 0.65 0.41 0.32
1 Mask2Former ✗ 1.00 0.00 0.12 0.21 0.21 0.00 0.25 0.25 0.00 0.41 0.41 0.00
XMem++ ✓ 6.05 0.47 0.71 0.73 0.77 0.69 0.71 0.74 0.66 0.79 0.82 0.75
SAM-2 ✓ 6.05 0.39 0.54 0.58 0.73 0.53 0.58 0.82 0.53 0.59 0.76 0.55
SAM-2 Fine-tuned ✓ 6.05 0.72 0.76 0.78 0.90 0.77 0.76 0.90 0.74 0.83 0.93 0.82

Table 3. Performance of benchmarking repurposed models for hierarchical segmentation (top), VIS (middle), VOS (bottom) on our dataset.
(Inf./Vid. = Average number of inference passes per video)

segmentation (VIS), and hierarchical segmentation meth-
ods, but are all image-based (i.e., ignore tracking). First
is J&F [40], the standard metric for VOS, which com-
putes the mean between the Jaccard Index (J) (i.e., aka,
intersection over union) and the boundary F-measure (F ),
the harmonic mean of precision and recall . The next two
are average precision (AP ) and average recall (AR), the
standard metrics for VIS. Hierarchical segmentation pa-
pers [16, 30, 50] also use AP scores, with the key distinc-
tion from VIS methods that they report scores for both ob-
ject and part categories (separately). The final three metrics
all result in scores that range from 0 to 1, with larger scores
(i.e., closer to 1) signifying better performance.

5.1. Hierarchical Image Segmentation
One relevant family of models for our task are those per-
forming hierarchical instance segmentation. That is because
they can provide the first critical step for tracking of locat-
ing all relevant objects and parts in each frame, and then
leave it up to downstream association methods (e.g., Hun-
garian matching) to match segmentation masks across video
frames to create masklets.

Model. We evaluate the top-performing hierarchical
image segmentation model called Hierarchical Open-
vocabulary Universal Image Segmentation (HIPIE) [50].
As noted in its name, the model is designed to support any
vocabulary without further training. It outputs which cate-
gories are present where in a given image, when provided
as input a list of all candidate categories that it should find.
We feed the model as input our 40 object and part cate-
gories. We test two publicly-available variants, which rely
on different backbones: ResNet-50 [24] and ViT-H [17].

Results. Results are shown in the first two rows of Ta-
ble 3. Both variants failed completely, indicating no cat-
egories were present for nearly all the images where at
least one relevant category was actually present. We at-
tribute HIPIE’s poor performance to poor generalization
abilities, despite its claim to support an open vocabulary.
Thus, we conclude current hierarchical image segmentation
models are an inadequate foundation to extend for tracking,

as they provide no detected instances for downstream asso-
ciate methods to associate across frames.

5.2. Video Instance Segmentation
Another relevant family of models are those for video in-
stance segmentation (VIS), which track specified semantic
categories. While they cannot support our task in a single
inference pass, since they do not permit the same pixel to
belong to multiple semantic categories, a workaround is to
instead develop two VIS models developed to support ob-
jects and parts separately and then leverage post-processing
to associate parts with parent objects.

Model. We benchmark two variants of the popular, top-
performing model called Mask2Former [11]. One variant
results from fine-tuning two models for object and parts re-
spectively, and then associating all masklets for parts to the
masklet for the detected object, since a bias of our videos
is they show only a single tracked object. The other variant
results from fine-tuning a single Mask2Former to simulta-
neously support all object and part categories in our dataset.

Results. Results are shown in the second and third rows of
Table 3. Overall, both methods perform poorly with respect
to both the tracking-based and segmentation-based metrics.
Moreover, both Mask2Formers performed worse for parts
than objects, with the single Mask2Former trained to sup-
port both types neglecting parts entirely (i.e., scores of 0
for part-only metrics) in order to instead prioritize finding
objects. We suspect the bias towards objects stem from a
combination of this prioritization during initial training as
well as that objects can be easier to locate, possibly due to
their larger sizes and greater contrast of appearance relative
to surrounding content.

Nonetheless, we observe a considerable performance
boost from these models compared to the hierarchical in-
stance segmentation model. We attribute this largely to
Mask2Former being trained on in-domain data reflective
of the test set. Moreover, it is promising to see that
Mask2Former trained on only parts can succeed at times;
e.g., AR of 0.32 and AP of 0.11. A valuable direction for
future work is to explore if greater boosts can be secured



Figure 4. Initial video frames followed by cropped ground truths and predictions from SAM-2, as is and fine-tuned, in subsequent frames.

from more training data, or if fundamentally new architec-
tures are needed.

5.3. Video Object Segmentation
Last, we evaluate video object segmentation (VOS) models.
Like VIS models, they require multiple inference passes to
recover objects and parts. Unlike VIS models, this is be-
cause VOS models only track one entity at a time, necessi-
tating an inference pass for each object and part alongside
post-processing to associate parts with objects. VOS mod-
els also require as input the target entity’s segmentation in
the first frame it appears.

Models. We evaluate two popular VOS models—SAM-
2 [42] and XMem++ [3]—designed to track anything. Both
are configured to cheat, receiving ground truth segmenta-
tion of each target entity in the first frame that each ap-
pears so they track entities only after knowing where to
look when. This is necessary because automated localiza-
tion from a model is not yet suitable (Section 5.1).

Results. Results in Table 3 (rows 5-6) show these models
outperform all other benchmarked models across metrics.
This underscores a strong benefit of automating the cheating
manual annotation step of locating target categories in im-
ages. This highlights a clear direction for future work: au-
tomating the manual annotation step we introduced, which
currently provides the model with ground-truth part loca-
tions and artificially inflates performance.

Further analysis indicates that while VOS models of-
ten segment parts correctly in individual video frames, they
struggle to consistently associate them across frames, lead-
ing to identity switching. This is reflect in high image-based
segmentation scores (i.e., all exceed 0.5) alongside com-
paratively low tracking scores (i.e., MOTA-H below 0.5),
suggesting that future work should also focus on improving
mechanisms for associating part masks across frames.

Reinforcing earlier observations, a substantial perfor-
mance gap remains between parts and objects. Suspecting
this stems from a domain shift between SAM-2’s original
training data and our dataset, we fine-tuned SAM-2 on our

training split.5 The results in the final row of Table 3 show a
considerable improvement, particularly in MOTA-H, which
nearly doubles from 0.39 to 0.72. We attribute this to
SAM-2 learning a more effective appearance model for text-
based parts, improving mask association across neighboring
frames. Qualitatively, Figure 4 shows the left sequence re-
solving identity switches between the “address” and “letter
content” categories and the right sequence producing more
uniform masks that exclude irrelevant regions (e.g. for the
card number). While SAM-2 is designed to track anything,
these results highlight that specialized datasets like BIV-
Priv-HIT can substantially improve its tracking ability.

6. Conclusions
We introduce the novel task of hierarchical instance track-
ing along with the first dataset designed to support this
task, called BIV-Priv-HIT. We also introduce an evalua-
tion metric, MOTA-H to benchmark models’ performance
for the task. Our analysis reveals the unique characteris-
tics of BIV-Priv-HIT compared to existing datasets. Bench-
marking modern video object segmentation, video instance
segmentation, and hierarchical image segmentation models
demonstrate the dataset provides a challenging problem for
the research community.

While this work advances hierarchical instance track-
ing, it has limitations. For example MOTA-H is based on
MOTA, which can conflate different error types; other met-
rics (e.g., HOTA [36], TETA [32]) may provide a clearer
assessment. The dataset also focuses on a limited set of
part categories and domain, which may restrict generaliza-
tion to other real-world scenarios. This work also carries
ethical risks from misuse of models developed using the
dataset, which future work should mitigate through devel-
oping responsible-use safeguards.

Acknowledgments. We thank Josh Myers-Dean for his
assistance with setting up the models. This project was
supported by National Science Foundation SaTC awards
(#2148080, #2126314, and #2125925).

5XMem++ wasn’t fine-tuned due to no public scripts or documentation.
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Supplementary Materials
This document supplements the main paper with ad-
ditional information concerning:

A. Dataset Creation (supplements Section 3.1)
• Video Source
• Annotation Collection
• Ground Truth Generation

B. Dataset Analysis (supplements Section 3.2)
• Baseline Datasets for Comparison
• Dataset Composition
• Segmentation Properties

C. Model Benchmarking (supplements Section 4)
• Fine-Grained Analysis

A. Dataset Creation

Video Source. As noted in the main paper, two in-house
annotators specified for each of the 552 videos the start and
end frames when objects of interest where visible. We em-
ployed the Intersection Over Union (IoU) similarity score
to gauge similarity among the annotator-flagged start and
stop frames. For the intersection, we calculated the du-
ration between the maximum value of the two annotated
start times and the minimum value of the two annotated end
times. For the union, we calculated the duration between
the minimum value of the two annotated start times and the
maximum value of the two annotated end times. We used
an IoU threshold of 0.99 to determine whether the start and
end frame annotations match.

Annotation Collection. We hired crowdworkers on Ama-
zon Mechanical Turk to annotate our objects and parts with
an annotation interface that we built. The interface collects
a series of clicked points to create connected polygons on
independent video frames. The interface supports annotat-
ing multiple polygons to capture when (1) there are multiple
instances of a part (e.g., multiple account numbers) and (2)
occlusions that break a part’s appearance into multiple, dis-
connected pieces. Workers were given a comprehensive in-
struction set including instructions on how to segment each
object class along with its parts.

To facilitate collection of high-quality annotations, we
employed several quality control checks. We monitored on-
going quality by reviewing outliers regarding worker’s fre-
quency of indicating object and part non-presence, average
time to complete a full annotation task, and the level of de-
tail they provided in their segmentations (e.g., high preva-
lence of triangles). We conducted manual spot-checks at the
conclusion of each phased task rollout.

Ground Truth Generation. We used redundant annota-
tions to establish ground truth for objects.

We observed annotation agreement regarding the pres-
ence of an object for 96.5% of frames (present in 9,804
frames and absent in 971 frames), with 93% of the remain-
ing 361 frames showing the object. Consequently, 91%
(10,165) of the 11,165 annotated frames showed a target
object. Of these, 98% (9980) were similar while 2% (185)
had IoU scores less than 0.75 or lacked a redundant anno-
tation necessary to calculate an IoU similarity score. For
those lacking annotation agreement, the in-house annota-
tors reviewed both annotations side by side and then chose
one of the two annotations to keep for ground truth for 95%
(175) of instances and resegmented the other 4% (10) where
an object was missing or misidentified.

We observed annotation agreement that parts were not
present for 43% (19,201) of 44,600 instances where crowd-
workers were prompted about a part’s presence. Of the parts
deemed present, 67.8% (17,217) had high segmentation
similarity and the remaining 32.2% (8,182) went through
further manual review. An in-house annotator reviewed
both part-level annotations and then selected the correct op-
tion when available or created a new segmentation when
neither were suitable. Of the 8,182 part-level annotations,
one part-level annotation was selected for 53.2% (4,357) in-
stances and new segmentations were created for the rest.

B. Dataset Analysis
Baseline Datasets for Comparison. Only one other
dataset could feasibly support hierarchically tracking ob-
jects and parts, Meta’s SA-V [42], since it provides both
object and part masklets. However, it is non-trivial to de-
termine the hierarchical object-part relations automatically.
Specifically, inference is necessary because part and ob-
ject masklets are treated the same, yet this is non-trivial to
achieve for numerous reasons including that unrelated oc-
cluding entities can lead one to incorrectly deem an entity
to be a part (e.g., a watch on a person’s wrist).

Dataset Composition. The object category frequency
distribution across the BIV-Priv-HIT dataset is shown in
Figure 5. When observing the object category frequency
distribution, the condom and pregnancy test boxes have the
lowest object counts. This is because, in the original dataset,
they are both categorized under the same label, ‘condom’
and ‘pregnancy test.’ In contrast, we observe that docu-
ments and similar objects feature the most part annotations
per object. For example, bank statements, business cards,
doctor’s prescriptions, and similar objects feature the most
part annotations per object. To ensure semantic labeling
precision and increase granularity, we separated images fea-
turing only the box versus the object and vice versa. In
addition, we had comparable frame sampling across object
labels, with every object label featuring between 650 and
800 human annotations per object.
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Figure 5. BIV-Priv-HIT object annotation frequency distribution of objects across all 10,165 object annotations
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Figure 6. BIV-Priv-HIT part annotation frequency distribution of part categories across all object 10,165 annotations.

We observe a similar trend in cumulative part annota-
tions per object as in object annotations per object illus-
trated in Figure 6. We observe that condom boxes and
pregnancy test boxes have the lowest number of part an-
notations per object because these labels also have the low-
est number of object annotations. We also note that con-
dom packets, medical records, and pregnancy tests have the
highest occurrences of single-part annotations. This is be-
cause the condom packet and pregnancy test only have two
parts, where one part (branding) is predominantly more vis-
ible than the other (sensitive text) in nearly all viewing sce-
narios. The medical record has four parts; however, the pa-
tient data part label features the highest visibility across di-
verse viewing scenarios, as it occupies the most significant
amount of area relative to the object compared to its other
parts (diagnoses, prognoses, and physician info). The most
common frequency of part annotations across all objects is
between 1 and 4 part annotations per object. Lastly, we
found that Bank statements, MIR reports, and Transcripts
are the only objects featuring 6 potential parts; however,
only bank statements and MIR reports have instances where
all six parts were annotated, and transcripts do not. Tat-
too sleeves and local newspapers most often show no part
annotations, which we attribute to a lack of parts for tat-
too sleeves and no visibility of the private content for local
newspapers.

Segmentation Properties. Statistics characterizing typi-
cal appearances of BIV-Priv-HIT’s objects and parts are
shown in Figure 7. In BIV-Priv-HIT, we observe that most
objects feature boundary complexities between 0.65 and
0.75 (Figure 7a), while most parts feature boundary com-

plexities between 0.35 and 0.60 (Figure 7e). The pregnancy
test object features the most jagged and diverse boundary
complexity, with 75% of its boundary complexities rang-
ing from 0.25 to 0.42. We attribute this finding to preg-
nancy tests being the most geometrically complex objects
out of all the object categories in the dataset. Moreover,
the pregnancy test is the only object in the dataset that is
not a square or rectangle and continuously presents com-
plex boundaries regardless of the viewing angle. At the part
level, the parts of the Business Card object feature the most
jagged boundary complexities, with 75% of values ranging
from 0.29 to 0.44. We attribute this finding to the inherent
jagged edges caused by the occurrence of ‘headings’ and
‘information.’ For example, business cards typically fea-
ture a heading such as ‘Job Title’ or ‘Email’ followed by the
information, which is the actual job title or email address.
In many cases, the information is longer than the heading,
so when annotating the part where we directed annotators to
include the heading, the information naturally lends itself to
creating multiple jagged edges due to including the heading
and information in a single part annotation.

Regarding solidity (Figure 7d), nearly all objects and
their respective parts are solid or ‘filled’ (solidity values
closer to 1), illustrating that nearly all objects and their parts
are their own convex hulls, and exhibit minimal indenta-
tions in their perimeters. At the object level, we observe
that nearly all objects feature solidity values ranging from
0.96 to 1.0, meaning that nearly all of the object’s pixels
also fall within its convex hull. The two notable exceptions
to this observation are the pregnancy test. We attribute this
finding to the pregnancy test being the most geometrically
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Figure 7. Boxplots showing the distribution of boundary complexity, convexity, and eccentricity at the object and part level. Part-object
coverage and part-image coverage are also shown. The blue lines represent medians, bottoms and tops of each box represent the 25th and
75th percentile values respectively, and whiskers represent the most extreme data points not considered outliers.

complex among the objects in the dataset, with the object’s
structure featuring several concavities. Similarly, the tattoo
sleeve follows the shape of the arm from the elbow down to
the wrist, lending itself to an inherently indented perimeter
shape. We see slight variations in other objects but attribute
these variations to viewing angles, occlusions, and other ar-
tifacts that can potentially alter the object’s relative convex-
ity, for example, viewing a document nearly straight on as
opposed to from the top-down.

We see a similar phenomenon at the part level (Figure
7j); however, the objects with the more diverse solidity at
the part level are the condom packet and the pill bottle. In
the case of all the objects, we observe a similar trend to the
object level: nearly all parts are ‘solid’ with solidity values
ranging from 0.95 to 1.0. Regarding the condom packet and
the pill bottle, the exceptions to this trend, we attribute the
increased convexity to the fact that these two objects feature
a significant presence of text. In the case of the condom
packet, the sensitive text is also placed among the brand-
ing, causing annotators to create more concavities in their
annotations to segment sensitive text accurately. We see a
similar trend in the pill bottle object due to parts such as
addresses, personal information, and prescription data, all
of which are shapes that require more significant concavi-
ties in their segmentation to accurately demarcate from the
other parts.

Regarding center bias (Figure 7e), values close to 0.5
indicate a balanced distribution of objects within the frame,
suggesting that objects are neither heavily centralized nor
significantly off-center. The dataset’s median center bias
value is approximately 0.4997, and all objects feature a nar-
row center bias range between 0.49 and 0.5, indicating a
precise and slight central tendency at the object level. At
the part level (Figure 7k), we see the same median value of
0.4997, albeit the spreads and whiskers are slightly wider
than the object level, indicating more variability in the po-
sitioning of parts within objects.

Regarding convexity (Figure 7b), we see similar trends
to solidity at the object level, with convexity values ranging
from 0.94 to 0.99. This finding suggests that the shapes are
relatively smooth at the object level and lack significant in-
dentations or concavities. We see almost an identical trend
at the part level (Figure 7h), with convexity values typi-
cally ranging from 0.94 to 0.97. The only exception to this
finding is the condom packet, which consists of two parts:
sensitive text and branding. We find both of these parts to
present many concavities due to the shapes required to seg-
ment sensitive text and branding accurately. For example,
two of the condom packet brands found in the dataset are
KY and Trojan; when segmenting the branding for these
two condom packets, the KY logo and the Trojan helmet
brand are shapes with many concavities and jagged edges.



As a result, we observed that the parts of the condom packet
had the broadest range of convexity values, ranging from
0.8 to 0.95.

Concerning eccentricity, at the object level (Figure 7c),
we observe values exhibiting medians close to 0.8, a signifi-
cant finding that indicates a generally high elongation in ob-
jects across categories. The interquartile range spans from
approximately 0.62 to 0.98, further emphasizing the high
median values. Moreover, we see a trend of whiskers ex-
tending from around 0.35 to 1.0, highlighting some eccen-
tricity variation but maintaining a tendency towards higher
values (more elongated). We see the condom packet’s
whiskers extend from 0.0 to 1.0, a finding we attribute pri-
marily to the viewing angle because condom packets are
only square-like when viewed top-down. In contrast, they
can appear more elongated in nearly any other viewing sce-
nario. We also observe high median values and tight spreads
in the pill bottle, tattoo sleeve, and pregnancy test (median
values ≥ 0.9), all of which are the most elongated objects
in the dataset.

At the part level (Figure 7i), we see similar trends, albeit
with higher median values (0.75 to 0.98) and less variance
compared to the object level (whiskers primarily between
0.5 and 1.0). Again, we observe the condom packet elic-
its the most diverse eccentricity values, mainly due to the
placement of sensitive text and the unique shape of their
graphical brandings. We see a similar phenomenon in the
letter with the address and medical record objects, which we
attribute to the presence of text as these two objects consist
of the most textually dense parts compared to other objects
in the dataset. Overall, the eccentricity values at the part
level generally show less variation than the object level, as
the object’s parts tend to have more defined and consistent
shapes within their parent objects. We also provide solid-
ity and center bias statistics at the object and part levels,
detailed further in the supplementary materials.

Concerning part coverage, the relative area occupied by
the region of interest, at the image level (Figure 7l) for
nearly every object category, parts occupy less than 20%
of the image with a majority of parts occupying less than
5% of the image. Again, we attribute the more significant
inter-quartile range in the medical record object to the pa-
tient data, a part within medical records that can easily and
often occupy more than half of the object.

At the object level (Figure 7f), we observe a similar phe-
nomenon in that objects such as the bank statement, bill or
receipt, medical record, and transcripts feature the largest
interquartile ranges, a finding that we attribute to the relative
sizes of the composite parts within these objects. For exam-
ple, the transaction data part of a bank statement can and
often does occupy most of the object compared to the ac-
count holder’s name and address. Similarly, the grades part
within the transcripts takes up most of the object’s space in-

stead of the student’s name. In contrast, when examining
the pregnancy test, we see a narrow interquartile range and
a tight variance because the parts of the pregnancy test, such
as the result and sensitive text, occupy very little space on
the object itself.

We also report findings for adopting size thresholds in-
troduced for the MSCOCO dataset [35], where 322 and
962 are thresholds determining whether an object is small,
medium, or large. We find that in BIV-Priv-HIT’s object an-
notations, 0.1% (13) of objects qualify as small, 2.9% (298)
as medium, and 95% (9,854) as large. For part-level anno-
tations, we find 6% (1,323) qualify as small, 41% (8,989)
as medium, and 53% (11,725) as large.

C. Model Benchmarking
Despite the improved performance that comes from fine-
tuning, our dataset still remains challenging for current state
of the art models. Figure 8a shows that even a static object
has so much variation in the predicted masks across frames.
In Figure 8b, the model was unable to track all parts of the
wrapper over time due to a shaky recording. Figure 8d not
only has more than nine parts, but the object is under low
lighting, which appears together to be challenging for the
model, even at the object level.



Figure 8. Examples of SAM-2’s performance on frames collected from four video clips in our dataset. Shown is a full video frame with
the ground truth mask (top) followed by cropped views of the ground truths and model predictions at subsequent frames in the video in
order to make it easier to observe the model’s performance on the region of interest.
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