skip to main content


Title: Single-fluorophore membrane transport activity sensors with dual-emission read-out

We recently described a series of genetically encoded, single-fluorophore-based sensors, termed AmTrac and MepTrac, which monitor membrane transporter activity in vivo (De Michele et al., 2013). However, being intensiometric, AmTrac and Meptrac are limited in their use for quantitative studies. Here, we characterized the photophysical properties (steady-state and time-resolved fluorescence spectroscopy as well as anisotropy decay analysis) of different AmTrac sensors with diverging fluorescence properties in order to generate improved, ratiometric sensors. By replacing key amino acid residues in AmTrac we constructed a set of dual-emission AmTrac sensors named deAmTracs. deAmTracs show opposing changes of blue and green emission with almost doubled emission ratio upon ammonium addition. The response ratio of the deAmTracs correlated with transport activity in mutants with altered capacity. Our results suggest that partial disruption of distance-dependent excited-state proton transfer is important for the successful generation of single-fluorophore-based dual-emission sensors.

 
more » « less
NSF-PAR ID:
10000461
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
eLife Sciences Publications, Ltd.
Date Published:
Journal Name:
eLife
Volume:
4
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Autofluorescence from the intracellular metabolite, NAD(P)H, is a biomarker that is widely used and known to reliably screen and report metabolic activity as well as metabolic fluctuations within cells. As a ubiquitous endogenous fluorophore, NAD(P)H has a unique rate of fluorescence decay that is altered when bound to coenzymes. In this work we measure the shift in the fluorescence decay, or average fluorescence lifetime (1–3 ns), of NAD(P)H and correlate this shift to changes in metabolism that cells undergo during apoptosis. Our measurements are made with a flow cytometer designed specifically for fluorescence lifetime acquisition within the ultraviolet to violet spectrum. Our methods involved culture, treatment, and preparation of cells for cytometry and microscopy measurements. The evaluation we performed included observations and quantification of the changes in endogenous emission owing to the induction of apoptosis as well as changes in the decay kinetics of the emission measured by flow cytometry. Shifts in NAD(P)H fluorescence lifetime were observed as early as 15 min post‐treatment with an apoptosis inducing agent. Results also include a phasor analysis to evaluate free to bound ratios of NAD(P)H at different time points. We defined the free to bound ratios as the ratio of ‘short‐to‐long’ (S/L) fluorescence lifetime, where S/L was found to consistently decrease with an increase in apoptosis. With a quantitative framework such as phasor analysis, the short and long lifetime components of NAD(P)H can be used to map the cycling of free and bound NAD(P)H during the early‐to‐late stages of apoptosis. The combination of lifetime screening and phasor analyses provides the first step in high throughput metabolic profiling of single cells and can be leveraged for screening and sorting for a range of applications in biomedicine. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

     
    more » « less
  2. Small, monomeric guanine triphosphate hydrolases (GTPases) are ubiquitous cellular integrators of signaling. A signal activates the GTPase, which then binds to an effector molecule to relay a signal inside the cell. The GTPase effector trap flow cytometry assay (G-Trap) utilizes bead-based protein immobilization and dual-color flow cytometry to rapidly and quantitatively measure GTPase activity status in cell or tissue lysates. Beginning with commercial cytoplex bead sets that are color-coded with graded fluorescence intensities of a red (700 nm) wavelength, the bead sets are derivatized to display glutathione on the surface through a detailed protocol described here. A different glutathione-S-transferase-effector protein (GST-effector protein) can then be attached to the surface of each set. For the assay, users can incubate bead sets individually or in a multiplex format with lysates for rapid, selective capture of active, GTP-bound GTPases from a single sample. After that, flow cytometry is used to identify the bead-borne GTPase based on red bead intensity, and the amount of active GTPase per bead is detected using monoclonal antibodies conjugated to a green fluorophore or via labeled secondary antibodies. Three examples are provided to illustrate the efficacy of the effector-functionalized beads for measuring the activation of at least five GTPases in a single lysate from fewer than 50,000 cells. 
    more » « less
  3. Abstract

    Ratiometric sensors generally couple binding events or chemical reactions at a distal site to changes in the fluorescence of a core fluorophore scaffold. However, such approaches are often hindered by spectral overlap of the product and reactant species. We provide a strategy to design ratiometric sensors that display dramatic spectral shifts by leveraging the chemoselective reactivity of novel functional groups inserted within fluorophore scaffolds. As a proof‐of‐principle, fluorophores containing a borinate (RF620) or silanediol (SiOH2R) functionality at the bridging position of the xanthene ring system are developed as endogenous H2O2sensors. Both these fluorophores display far‐red to near‐infrared excitation and emission prior to reaction. Upon oxidation by H2O2both sensors are chemically converted to tetramethylrhodamine, producing significant (≥66 nm) blue‐shifts in excitation and emission maxima. This work provides a new concept for the development of ratiometric probes.

     
    more » « less
  4. Abstract

    High-resolution X-ray observations offer a unique tool for probing the still-elusive connection between galaxy mergers and active galactic nuclei (AGNs). We present an analysis of nuclear X-ray emission in an optically selected sample of 92 close galaxy pairs (with projected separations ≲20 kpc and line-of-sight velocity offsets <500 km s−1) at low redshift (z¯0.07), based on archival Chandra observations. The parent sample of galaxy pairs is constructed without imposing an optical classification of nuclear activity, thus it is largely free of selection effect for or against the presence of an AGN. Nor is this sample biased for or against gas-rich mergers. An X-ray source is detected in 70 of the 184 nuclei, giving a detection rate of38%5%+5%, down to a 0.5–8 keV limiting luminosity of ≲1040erg s−1. The detected and undetected nuclei show no systematic difference in their host galaxy properties such as galaxy morphology, stellar mass, and stellar velocity dispersion. When potential contamination from star formation is avoided (i.e.,L2−10 keV> 1041erg s−1), the detection rate becomes18%3%+3%(32/184), which shows no excess compared to the X-ray detection rate of a comparison sample of optically classified single AGNs. The fraction of pairs containing dual AGN is only2%2%+2%. Moreover, most nuclei at the smallest projected separations probed by our sample (a few kiloparsecs) have an unexpectedly low apparent X-ray luminosity and Eddington ratio, which cannot be solely explained by circumnuclear obscuration. These findings suggest that close galaxy interaction is not a sufficient condition for triggering a high level of AGN activity.

     
    more » « less
  5. Abstract

    Monodisperse, sequence‐specific oligomers that adopt regular three‐dimensional structures, termed foldamers, have found widespread use as biomimetics, sensors, and novel materials. This review highlights recent examples in which steady state and time‐resolved fluorescence techniques have clarified foldamer structure or enabled the development of foldamers with exciting and sophisticated functions. Applications of foldamers include their development into bioactive compounds, supramolecular hosts or sensors, and materials with useful optical properties. Examples that illustrate the use of natively fluorescent and fluorophore‐modified foldamers are discussed along with studies of fluorophore interactions with varied dyes.

     
    more » « less