skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
eLife Sciences Publications, Ltd.
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Observations of relative paleointensity reveal several forms of asymmetry in the time dependence of the virtual axial dipole moment (VADM). Slow decline of the VADM into a reversal is often followed by a more rapid rise back to a quasi‐steady state. Asymmetry is also observed in trends of VADM during times of stable polarity. Trends of increasing VADM over time intervals of a few 10s of kyr are more intense and less frequent than decreasing trends. We examine the origin of this behavior using stochastic models. The usual (Langevin) model can account for asymmetries during reversals, but it cannot reproduce the observed asymmetry in trends during stable polarity. Better agreement is achieved with a different class of stochastic models in which the dipole is generated by a series of impulsive events in time. The timing of each event occurs randomly as a Poisson process and the amplitude is also randomly distributed. Predicted trends replicate the observed asymmetry when the generation events are large and the recurrence time is long (typically longer than 3 kyr). Large and infrequent generation events argue against dipole generation by small‐scale turbulent flow. Instead, the observations favor a mechanism that relies on expulsion of poloidal magnetic field from the core.

    more » « less
  2. The human sensorimotor system can adapt to various changes in the environmental dynamics by updating motor commands to improve performance after repeated exposure to the same task. However, the characteristics and mechanisms of the adaptation process remain unknown for dexterous manipulation, a unique motor task in which the body physically interacts with the environment with multiple effectors, i.e., digits, in parallel. We addressed this gap by using robotic manipulanda to investigate the changes in the digit force coordination following mechanical perturbation of an object held by tripod grasps. As the participants gradually adapted to lifting the object under perturbations, we quantified two components of digit force coordination. One is the direction-specific manipulation moment that directly counteracts the perturbation, whereas the other one is the direction-independent internal moment that supports the stability and stiffness of the grasp. We found that trial-to-trial improvement of task performance was associated with increased manipulation moment and a gradual decrease of the internal moment. These two moments were characterized by different rates of adaptation. We also examined how these two force coordination components respond to changes in perturbation directions. Importantly, we found that the manipulation moment was sensitive to the extent of repetitive exposure to the previous context that has an opposite perturbation direction, whereas the internal moment did not. However, the internal moment was sensitive to whether the postchange perturbation direction was previously experienced. Our results reveal, for the first time, that two distinct processes underlie the adaptation of multidigit force coordination for dexterous manipulation. NEW & NOTEWORTHY Changes in digit force coordination in multidigit object manipulation were quantified with a novel experimental design in which human participants adapted to mechanical perturbations applied to the object. Our results show that the adaptation of digit force coordination can be characterized by two distinct components that operate at different timescales. We further show that these two components respond to changes in perturbation direction differently. 
    more » « less
  3. We address the problem of retrieving a specific moment from an untrimmed video by a query sentence. This is a challenging problem because a target moment may take place in relations to other temporal moments in the untrimmed video. Existing methods cannot tackle this challenge well since they consider temporal moments individually and neglect the temporal dependencies. In this paper, we model the temporal relations between video moments by a two-dimensional map, where one dimension indicates the starting time of a moment and the other indicates the end time. This 2D temporal map can cover diverse video moments with different lengths, while representing their adjacent relations. Based on the 2D map, we propose a Temporal Adjacent Network (2D-TAN), a single-shot framework for moment localization. It is capable of encoding the adjacent temporal relation, while learning discriminative features for matching video moments with referring expressions. We evaluate the proposed 2D-TAN on three challenging benchmarks, i.e., Charades-STA, ActivityNet Captions, and TACoS, where our 2D-TAN outperforms the state-of-the-art. 
    more » « less
  4. Abstract

    When selecting from too many options (i.e., choice overload),maximizers(people who search exhaustively to make decisions that areoptimal) report more negative post‐decisional evaluations of their choices than dosatisficers(people who search minimally to make decisions that aresufficient). Although ample evidence exists for differences in responses after‐the‐fact, little is known about possible divergences in maximizers’ and satisficers’ experiencesduringchoice overload. Thus, using the biopsychosocial model of challenge/threat, we examined 128 participants’ cardiovascular responses as they actively made a selection from many options. Specifically, we focused on cardiovascular responses assessing the degree to which individuals (a) viewed their decisions as valuable/important and (b) viewed themselves as capable (vs. incapable) of making a good choice. Although we found no differences in terms of the value individuals placed on their decisions (i.e., cardiovascular responses of task engagement), satisficers—compared to maximizers—exhibited cardiovascular responses consistent with feeling less capable of making their choice (i.e., greater relative threat). The current work provides a novel investigation of the nature of differences in maximizers’/satisficers’ momentary choice overload experiences, suggesting insight into why they engage in such distinct search behaviors.

    more » « less
  5. Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.


    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.


    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.


    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.


    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 ( within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

    more » « less