skip to main content


Title: A molecular tweezer antagonizes seminal amyloids and HIV infection

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a ‘molecular tweezer’ specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion–amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.

 
more » « less
NSF-PAR ID:
10000588
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
eLife Sciences Publications, Ltd.
Date Published:
Journal Name:
eLife
Volume:
4
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Amyloid-β (Aβ) and semen-derived enhancer of viral infection (SEVI) are considered as the two causative proteins for central pathogenic cause of Alzheimer’s disease (AD) and HIV/AIDS, respectively. Separately, Aβ-AD and SEVI-HIV/AIDS systems have been studied extensively both in fundamental research and in clinical trials. Despite significant differences between Aβ-AD and SEVI-HIV/AIDS systems, they share some commonalities on amyloid and antimicrobial characteristics between Aβ and SEVI, there are apparent overlaps in dysfunctional neurological symptoms between AD and HIV/AIDS. Few studies have reported a potential pathological link between Aβ-AD and SEVI-HIV/AIDS at a protein level. Here, we demonstrate the cross-seeding interactions between Aβ and SEVI proteins using in vitro and in vivo approaches. Cross-seeding of SEVI with Aβ enabled to completely prevent Aβ aggregation at sub-stoichiometric concentrations, disaggregate preformed Aβ fibrils, reduce Aβ-induced cell toxicity, and attenuate Aβ-accumulated paralysis in transgenic AD C. elegans. This work describes a potential crosstalk between AD and HIV/AIDS via the cross-seeding between Aβ and SEVI, identifies SEVI as Aβ inhibitor for possible treatment or prevention of AD, and explains the role of SEVI in the gender difference in AD.

     
    more » « less
  2. P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1–mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti–HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1–related monomeric E-selectin–binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1–mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action. 
    more » « less
  3. null (Ed.)
    Abstract Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution. 
    more » « less
  4. Abstract Motivation

    Due to their high genomic variability, RNA viruses and retroviruses present a unique opportunity for detailed study of molecular evolution. Lentiviruses, with HIV being a notable example, are one of the best studied viral groups: hundreds of thousands of sequences are available together with experimentally resolved three-dimensional structures for most viral proteins. In this work, we use these data to study specific patterns of evolution of the viral proteins, and their relationship to protein interactions and immunogenicity.

    Results

    We propose a method for identification of two types of surface residues clusters with abnormal conservation: extremely conserved and extremely variable clusters. We identify them on the surface of proteins from HIV and other animal immunodeficiency viruses. Both types of clusters are overrepresented on the interaction interfaces of viral proteins with other proteins, nucleic acids or low molecular-weight ligands, both in the viral particle and between the virus and its host. In the immunodeficiency viruses, the interaction interfaces are not more conserved than the corresponding proteins on an average, and we show that extremely conserved clusters coincide with protein–protein interaction hotspots, predicted as the residues with the largest energetic contribution to the interaction. Extremely variable clusters have been identified here for the first time. In the HIV-1 envelope protein gp120, they overlap with known antigenic sites. These antigenic sites also contain many residues from extremely conserved clusters, hence representing a unique interacting interface enriched both in extremely conserved and in extremely variable clusters of residues. This observation may have important implication for antiretroviral vaccine development.

    Availability and Implementation

    A Python package is available at https://bioinf.mpi-inf.mpg.de/publications/viral-ppi-pred/

    Contact

    voitenko@mpi-inf.mpg.de or kalinina@mpi-inf.mpg.de

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a “divide-and-conquer” approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.

     
    more » « less