skip to main content


Title: Use of a Free Ocean CO 2 Enrichment (FOCE) System to Evaluate the Effects of Ocean Acidification on the Foraging Behavior of a Deep-Sea Urchin
NSF-PAR ID:
10001152
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
48
Issue:
16
ISSN:
0013-936X
Page Range / eLocation ID:
9890 to 9897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface oceanpCO2. To address this challenge, we have updated and improved ECCO‐Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint‐based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data‐constrained ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995–2017), ECCO‐Darwin exhibits broad‐scale consistency with observed surface oceanpCO2and air‐sea CO2flux reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest differences between CO2uptake occur in subpolar seasonally stratified biomes, where ECCO‐Darwin results in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO‐Darwin has a time‐mean global ocean CO2sink (2.47 ± 0.50 Pg C year−1) and interannual variability that are more consistent with interpolation‐based products. Compared to interpolation‐based methods, ECCO‐Darwin is less sensitive to sparse and irregularly sampled observations. Thus, ECCO‐Darwin provides a basis for identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon cycle, as well as the climate‐related sensitivity of marine ecosystems. Our study further highlights the importance of physically consistent, property‐conserving reconstructions, as are provided by ECCO, for ocean biogeochemistry studies.

     
    more » « less