skip to main content


Title: Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control
NSF-PAR ID:
10002131
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
107
Issue:
17
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We study the thermal evolution of UV-irradiated atomic cooling haloes using high-resolution three-dimensional hydrodynamic simulations. We consider the effect of H− photodetachment by Lyα cooling radiation trapped in the optically-thick cores of three such haloes, a process that has not been included in previous simulations. Because H− is a precursor of molecular hydrogen, its destruction can diminish the H2 abundance and cooling. We find that the critical UV flux for suppressing H2-cooling is decreased by ∼15–50 per cent in our fiducial models. Previous one-zone modelling found a larger effect, with Jcrit reduced by a factor of a few; we show that adopting a constant halo mass to determine the trapped Lyα energy density, as is done in the one-zone models, yields a larger reduction in Jcrit, consistent with their findings. Our results nevertheless suggest that Lyα radiation may have an important effect on the thermal evolution of UV-irradiated haloes, and therefore on the potential for massive black hole formation. 
    more » « less
  2. When operating in direct evaporative cooling (DEC) mode, the amount of moisture added to a system can be controlled by frequently modulating water supply to the wet cooling media. Though many challenges arise due to geographical and site conditions, this concept can be applied to data centers to serve as a cost-effective alternative for maintaining the operating temperature of the facility at any weather condition. However, this method results in scale and mineral build up on the media because of an irregular water distribution. To prevent the scale formation, the operators allow the water supply continuously on the cooling media ultimately leading towards the high consumption of facility water and significantly deteriorating the Wet cooling media life. This challenge has been addressed for the first time by experimentally characterizing the vertically split distribution wet cooling media. These systems allow some section of the media to be wetted while other sections remain dry. Various configuration of vertically staged media may be achieved by dividing the full width of the media into two, three, four or more number of equal and unequal sections and providing individually controlled water distribution headers. To increase the number of stages and provide smooth transition from one stage to the other, a MATLAB code is written to find width of DEC media sections for known total width of the media and number of sections. Here, an experimental design to characterize the performance characteristics of a vertically split wet cooling media which has separate water distribution setup has been presented. Apart from relative humidity and temperature, other parameters of interests like pressure drop across the media and saturation efficiency of the rigid media are presented. In the unequal configuration, the media was tested for 0%, 33%, 66%, and 100%. This research provides a potential solution towards the limitation of direct evaporative cooling in terms of energy savings, facility water, reliability and contaminants. 
    more » « less