skip to main content


Title: Vortex lock-in transition and evidence for transitions among commensurate kinked vortex configurations in single-layered Fe arsenides
NSF-PAR ID:
10008333
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
87
Issue:
10
ISSN:
1098-0121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In idealized simulations of moist baroclinic instability on a sphere, the most unstable mode transitions from a periodic wave to an isolated vortex in sufficiently warm climates. The vortex mode is maintained through latent heating and shows the principal characteristics of a diabatic Rossby vortex (DRV) that has been found in a range of different simulations and observations of the current climate. Currently, there is no analytical theory for DRVs or understanding of the wave–vortex transition that has been found in warmer climates. Here, we introduce a minimal moist two-layer quasigeostrophic model with tilted boundaries capable of producing a DRV mode, and we derive growth rates and length scales for this DRV mode. In the limit of a convectively neutral stratification, the length scale of ascent of the DRV is the same as that of a periodic moist baroclinic wave, but the growth rate of the DRV is 54% faster. We explain the isolated structure of the DRV using a simple potential vorticity (PV) argument, and we create a phase diagram for when the most unstable solution is a periodic wave versus a DRV, with the DRV emerging when the moist static stability and meridional PV gradients are weak. Last, we compare the structure of the DRV mode with DRV storms found in reanalysis and with a DRV storm in a warm-climate simulation. Significance Statement Past research has identified a special class of midlatitude storm, dubbed the diabatic Rossby vortex (DRV), which derives its energy from the release of latent heat associated with condensation of water vapor and as such goes beyond the traditional understanding of midlatitude storm formation. DRVs have been implicated in extreme and poorly predicted forms of cyclogenesis along the east coast of the United States and the west coast of Europe with significant damage to property and human life. The purpose of this study is to develop a mathematical theory for the intensification rate and length scale of DRVs to gain a deeper understanding of the dynamics of these storms in current and future climates. 
    more » « less
  2. Abstract About 140 years ago, Lord Kelvin derived the equations describing waves that travel along the axis of concentrated vortices such as tornadoes. Although Kelvin’s vortex waves, also known as centrifugal waves, feature prominently in the engineering and fluid dynamics literature, they have not attracted as much attention in the field of atmospheric science. To remedy this circumstance, Kelvin’s elegant derivation is retraced, and slightly generalized, to obtain solutions for a hierarchy of vortex flows that model basic features of tornado-like vortices. This treatment seeks to draw attention to the important work that Lord Kelvin did in this field, and reveal the remarkably rich structure and dynamics of these waves. Kelvin’s solutions help explain the vortex breakdown phenomenon routinely observed in modeled tornadoes, and it is shown that his work is compatible with the widely used criticality condition put forth by Benjamin in 1962. Moreover, it is demonstrated that Kelvin’s treatment, with the slight generalization, includes unstable wave solutions that have been invoked to explain some aspects of the formation of multiple-vortex tornadoes. The analysis of the unstable solutions also forms the basis for determining whether, for example, an axisymmetric or a spiral vortex breakdown occurs. Kelvin’s work thus helps explain some of the visible features of tornado-like vortices. 
    more » « less