skip to main content


Title: Little flavor: A model of weak-scale flavor physics
NSF-PAR ID:
10009196
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
87
Issue:
12
ISSN:
1550-7998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present high-statistics results for the isovector and flavor diagonal charges of the proton using 11 ensembles of 2+1+1 flavor HISQ fermions. In the isospin symmetric limit, results for the neutron are given by the $u \leftrightarrow d$ interchange. A chiral-continuum fit with leading order corrections was made to extract the connected and disconnected contributions in the continuum limit and at $M_\pi=135$~MeV. All results are given in the $\overline{MS}$ scheme at 2~GeV. The isovector charges, $g_A^{u-d} = 1.218(25)(30)$, $g_S^{u-d} = 1.022(80)(60) $ and $g_T^{u-d} = 0.989(32)(10)$, are used to obtain low-energy constraints on novel scalar and tensor interactions, $\epsilon_{S}$ and $\epsilon_{T}$, at the TeV scale. The flavor diagonal axial charges are: $g_A^u \equiv \Delta u \equiv \langle 1 \rangle_{\Delta u^+} = 0.777(25)(30)$, $g_A^d \equiv \Delta d \equiv \langle 1 \rangle_{\Delta d^+} = -0.438(18)(30)$, and $g_A^s \equiv \Delta s \equiv \langle 1 \rangle_{\Delta s^+} = -0.053(8)$. Their sum gives the total quark contribution to the proton spin, $\sum_{q=u,d,s} (\frac{1}{2} \Delta q) = 0.143(31)(36)$. This result is in good agreement with the recent COMPASS analysis $0.13 < \frac{1}{2} \Delta \Sigma < 0.18$. Implications of results for the flavor diagonal tensor charges, $g_T^u = 0.784(28)(10)$, $g_T^d = -0.204(11)(10)$ and $g_T^s = -0.0027(16)$ for constraining the quark electric dipole moments and their contributions to the neutron electric dipole moment are discussed. These flavor diagonal charges also give the strength of the interaction of dark matter with nucleons via axial and tensor mediators. 
    more » « less
  2. null (Ed.)
    A bstract We present measurements of the branching fractions for the decays B → Kμ + μ − and B → Ke + e − , and their ratio ( R K ), using a data sample of 711 fb − 1 that contains 772 × 10 6 $$ B\overline{B} $$ B B ¯ events. The data were collected at the ϒ(4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e − collider. The ratio R K is measured in five bins of dilepton invariant-mass-squared ( q 2 ): q 2 ∈ (0 . 1 , 4 . 0) , (4 . 00 , 8 . 12) , (1 . 0 , 6 . 0), (10 . 2 , 12 . 8) and ( > 14 . 18) GeV 2 /c 4 , along with the whole q 2 region. The R K value for q 2 ∈ (1 . 0 , 6 . 0) GeV 2 /c 4 is $$ {1.03}_{-0.24}^{+0.28} $$ 1.03 − 0.24 + 0.28 ± 0 . 01. The first and second uncertainties listed are statistical and systematic, respectively. All results for R K are consistent with Standard Model predictions. We also measure CP -averaged isospin asymmetries in the same q 2 bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the q 2 ∈ (1 . 0 , 6 . 0) GeV 2 /c 4 bin in the mode with muon final states. The measured differential branching fractions, $$ d\mathrm{\mathcal{B}} $$ d ℬ /dq 2 , are consistent with theoretical predictions for charged B decays, while the corresponding values are below the expectations for neutral B decays. We have also searched for lepton-flavor-violating B → Kμ ± e ∓ decays and set 90% confidence-level upper limits on the branching fraction in the range of 10 − 8 for B + → K + μ ± e ∓ , and B 0 → K 0 μ ± e ∓ modes. 
    more » « less