skip to main content


Title: Transport anisotropy in Ge quantum wells in the absence of quantum oscillations
NSF-PAR ID:
10011556
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
92
Issue:
16
ISSN:
1098-0121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The observables associated with a quantum system S form a non-commutative algebra A S . It is assumed that a density matrix ρ can be determined from the expectation values of observables. But A S admits inner automorphisms a ↦ u a u − 1 , a , u ∈ A S , u * u = u u * = 1 , so that its individual elements can be identified only up to unitary transformations. So since Tr  ρ ( uau *) = Tr( u * ρu ) a , only the spectrum of ρ , or its characteristic polynomial, can be determined in quantum mechanics. In local quantum field theory, ρ cannot be determined at all, as we shall explain. However, abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables in abelian algebras A M ⊂ A S ( M for measurement, S for system). We study the uncertainties in extending ρ | A M to ρ | A S (the determination of which means measurement of A S ) and devise a protocol to determine ρ | A S ≡ ρ by determining ρ | A M for different choices of A M . The problem we formulate and study is a generalization of the Kadison–Singer theorem. We give an example where the system S is a particle on a circle and the experiment measures the abelian algebra of a magnetic field B coupled to S . The measurement of B gives information about the state ρ of the system S due to operator mixing. Associated uncertainty principles for von Neumann entropy are discussed in the appendix, adapting the earlier work by Białynicki-Birula and Mycielski (1975 Commun. Math. Phys. 44 129) to the present case. 
    more » « less
  2. Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum computation among quantum computers. In this work, we describe a quantum walk protocol to perform distributed quantum computing in a quantum network. The protocol uses a quantum walk as a quantum control signal to perform distributed quantum operations. We consider a generalization of the discrete-time coined quantum walk model that accounts for the interaction between a quantum walker system in the network graph with quantum registers inside the network nodes. The protocol logically captures distributed quantum computing, abstracting hardware implementation and the transmission of quantum information through channels. Control signal transmission is mapped to the propagation of the walker system across the network, while interactions between the control layer and the quantum registers are embedded into the application of coin operators. We demonstrate how to use the quantum walker system to perform a distributed CNOT operation, which shows the universality of the protocol for distributed quantum computing. Furthermore, we apply the protocol to the task of entanglement distribution in a quantum network. 
    more » « less