skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Spintharus flavidus in the Caribbean—a 30 million year biogeographical history and radiation of a ‘widespread species’

The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by ‘widespread species,’ presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spiderSpintharus flavidusHentz, 1850 (Theridiidae) is one of two describedSpintharusspecies and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis,Spintharus “flavidus”predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by knownS. flavidusbiology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis ofS. flaviduswith the primary goal of testing the ‘widespread species’ hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimen from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum,S. “flavidus”is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genusCyrtognatha(Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test ifCyrtognathabiogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampledCyrtognathaindividuals, using models with and without a founder event parameter. Our results suggest a radiation of CaribbeanCyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola,Cyrtognathasubsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.

    more » « less
  2. Abstract

    Scorpions are an excellent system for understanding biogeographical patterns. Most major scorpion lineages predate modern landforms, making them suitable for testing hypotheses of vicariance and dispersal. The Caribbean islands are endowed with a rich and largely endemic scorpion fauna, the origins of which have not been previously investigated with modern biogeographical methods. Three sets of hypotheses have been proposed to explain present patterns of diversity in the Caribbean: (1) connections via land bridges, (2) vicariance events, and (3) overwater dispersal from continents and among islands. The present study investigates the biogeographical diversification of the New World buthid scorpion subfamily Centruroidinae Kraus, 1955, a clade of seven genera and more than 110 species; infers the ancestral distributions of these scorpions; and tests the relative roles of vicariance and dispersal in the formation of their present distributions. A fossil-calibrated molecular phylogeny was estimated with a Bayesian criterion to infer the dates of diversification events from which ancestral distributions were reconstructed, and the relative likelihood of models of vicariance vs. dispersal, calculated. Although both the timing of diversification and the ancestral distributions were congruent with the GAARlandia land-bridge hypothesis, there was no significant difference between distance-dependent models with or without the land-bridge.HeteroctenusPocock, 1893, the Caribbean-endemic sister taxon ofCentruroidesMarx, 1890 provides evidence for a Caribbean ancestor, which subsequently colonized Central America and North America, and eventually re-colonized the Greater Antilles. This ‘reverse colonization’ event of a continent from an island demonstrates the importance of islands as a potential source of biodiversity.

    more » « less
  3. Premise

    Long‐distance dispersal has been important in explaining the present distributions of many plant species. Despite being infrequent, such dispersal events have considerable evolutionary consequences, because bottlenecks during colonization can result in reduced genetic diversity. We examined the phylogeographic history ofLycium carolinianum, a widespread taxon that ranges from southeastern North America to several Pacific islands, with intraspecific diversity in sexual and mating systems.


    We used Bayesian, likelihood, and coalescent approaches with nuclear and plastid sequence data and genome‐wide single nucleotide polymorphisms to reconstruct the dispersal history of this species. We also compared patterns of genetic variation in mainland and island populations using single nucleotide polymorphisms and allelic diversity at theS‐RNasemating system gene.


    Lycium carolinianumis monophyletic and dispersed once from the North American mainland, colonizing the Pacific islands ca. 40,100 years ago. This dispersal was accompanied by a loss of genetic diversity in SNPs and theS‐RNaselocus due to a colonization bottleneck and the loss of self‐incompatibility. Additionally, we documented at least two independent transitions to gynodioecy: once following the colonization of the Hawaiian Islands and loss of self‐incompatibility, and a second time associated with polyploidy in the Yucatán region of Mexico.


    Long‐distance dispersal via fleshy, bird dispersed fruits best explains the unusually widespread distribution ofL. carolinianum. The collapse of diversity at theS‐RNaselocus in island populations suggests that self‐fertilization may have facilitated the subsequent colonization of Pacific islands following a single dispersal from mainland North America.

    more » « less
  4. Abstract

    Whereas morphology remains a powerful tool for the diagnosis and description of short-tailed whip scorpions, or schizomids (Order Schizomida Petrunkevitch, 1945), especially when adults of both sexes are available, the systematics of some schizomid taxa is difficult to resolve due to a lack of characters in these morphologically conserved arachnids. Stenochrus portoricensis Chamberlin, 1922, defined on a single character of the female spermathecae, is the most widespread schizomid in the New World. Numerous records in the Neotropics, from the southern United States to Brazil, throughout the Caribbean, and further afield, including the Galapagos Islands and Europe, raise the question as to whether S. portoricensis is indeed a single widespread species or a complex of multiple species with conserved morphology? The present study uses a multilocus dataset and the broadest geographical sample currently available to address the phylogeography of S. portoricensis with molecular divergence dating and ancestral area reconstruction of all currently known species of Stenochrus Chamberlin, 1922. Analyses recovered S. portoricensis as paraphyletic. Two species previously synonymized are revalidated and transferred to Stenochrus. Population structure analyses recovered the remaining samples of S. portoricensis as a single monophyletic species with low genetic divergence and comprising two subclades. Ancestral area reconstruction suggests a Mesoamerican origin for Stenochrus, which contains a widespread species, recently introduced to multiple localities. Introductions to Europe and the Caribbean occurred from a single clade in the Yucatán Peninsula, Mexico, within which genetic divergence is minimal, confirming the hypothesis of multiple independent introductions with successful colonization facilitated by parthenogenetic reproduction.

    more » « less
  5. Abstract Aim

    The “sexy shrimp”Thor amboinensisis currently considered a single circumtropical species. However, the tropical oceans are partitioned by hard and soft barriers to dispersal, providing ample opportunity for allopatric speciation. Herein, we test the null hypothesis thatT. amboinensisis a single global species, reconstruct its global biogeographical history, and comment on population‐level patterns throughout the Tropical Western Atlantic.


    Coral reefs in all tropical oceans.


    Specimens ofThor amboinensiswere obtained through field collection and museum holdings. We used one mitochondrial (COI) and two nuclear (NaK, enolase) gene fragments for global species delimitation and phylogenetic analyses (n = 83 individuals, 30 sample localities), while phylogeographical reconstruction in theTWAwas based onCOIonly (n = 303 individuals, 10 sample localities).


    We found evidence for at least five cryptic lineages (9%–22%COIpairwise sequence divergence): four in the Indo‐West Pacific and one in the Tropical Western Atlantic. Phylogenetic reconstruction revealed that endemic lineages from Japan and the South Central Pacific are more closely related to the Tropical Western Atlantic lineage than to a co‐occurring lineage that is widespread throughout the Indo‐West Pacific. Concatenated and species tree phylogenetic analyses differ in the placement of an endemic Red Sea lineage and suggest alternate dispersal pathways into the Atlantic. Phylogeographical reconstruction throughout the Tropical Western Atlantic reveals little genetic structure over more than 3,000 km.

    Main conclusions

    Thor amboinensisis a species complex that has undergone a series of allopatric speciation events and whose members are in secondary contact in the Indo‐West Pacific. Nuclear‐ and mitochondrial‐ gene phylogenies show evidence of introgression between lineages inferred to have been separated more than 20 Ma. Phylogenetic discordance between multi‐locus analyses suggest thatT. amboinensisoriginated in the Tethys sea and dispersed into the Atlantic and Indo‐West Pacific through the Tethys seaway or, alternatively, originated in the Indo‐West Pacific and dispersed into the Atlantic around South Africa. Population‐level patterns in the Caribbean indicate extensive gene flow across the region.

    more » « less